Measurement of ^{85}Kr in the environment by liquid scintillation counting

N. Momoshima, F. Inoue, S. Sugihara

OUTLINE
1. Introduction
2. Purpose
3. Description of analytical flow
4. Analytical system
5. Application
6. Detection limit
7. Summary
The concentration of \(^{85}\text{Kr}\) in the environment has been increasing from 1950s by release from nuclear power related facilities in the world. It reaches 1.5 Bq/m\(^3\) level in the northern hemisphere in 2000s. There is no effective sink in the environment except radioactive decay due to Kr is a noble gas.

Kr-85:
- half life 10.76y
- \(\beta\)-decay: 0.67MeV (100%)
- \(\gamma\)-ray: 0.514MeV (0.43%)

Major source:
Nuclear fuel reprocessing plant.

Kr in the atmosphere:
1.14ppm
The purpose of the research is to develop an analytical method which can be applied to determine low level 85Kr in environmental samples.

We planed to apply the developed method to atmospheric 85Kr determination and to 85Kr dating of groundwater.

The concentration of 85Kr in groundwater is very low due to limited dissolution of Kr in water. The activity of 0.1 Bq/1000L is expected for surface water even if all of the Kr dissolved is recovered. Older groundwater would have lower 85Kr due to decay.

Then, we need a method with very low detection limit of 85Kr

- Gamma spectrometry is inappropriate considering small probability of gamma-ray emission. Therefore, beta-ray counting is necessary to achieve low level measurement.
- We decided to use liquid scintillation counting (LSC) because high counting efficiency is expected.
- The most difficult point in LSC is how to enclose Kr in a counting vial.
3. Description of analytical flow

For atmospheric ^{85}Kr determination

Atmosphere ($\text{Kr} + ^{85}\text{Kr}$)

- Kr: 1.14 ppm

Collection of Kr from air by charcoal trap at liquid nitrogen temperature

Separation of Kr from other gases by gas chromatography

^{85}Kr activity measurement by LSC

Specific activity determination

$^{85}\text{Kr}/\text{Kr}$ specific activity is not sensitive to partial sample loss either in sampling or analysis.

For ^{85}Kr Dating of groundwater

Solubility of Kr:

- $6-8 \times 10^{-8} \text{ml/g water}$ (0.06-0.08 ml/1000 L)

Recovery of dissolved gas by hollow fiber membrane module and filling into gas container

I will speak on atmospheric ^{85}Kr analysis
4. Analytical system

The system has 3 parts.
Air is collected in charcoal trap at -196°C. N\textsubscript{2}/O\textsubscript{2} were purged with He at -78°C for 2 h. Heated at 200°C, Kr is moved to the charcoal column at -196°C.
Heat the charcoal column with water. Gases are introduced to GC. Kr fraction is taken to the vial with silica gel at -196°C. Scintillator is poured to the vial at -196°C.

Vial is made of synthetic quartz (86ml) Scintillator (PPO/ p-xylene) mp. 13°C Low background LS counter, Aloka LB-5

\(^{85}\text{Kr}\) standard gas (KR85EZSE20, Cerca Lea, France) Counting efficiency: 72.1% (FOM)
Selection of counting vial

No leakage of Kr
Low background

Synthetic quartz vial Glass vial

![Image of vials]

Graph showing BG (cpm) and Kr-85 (counts) over time (h) for different vials:
- Synthetic quartz (86ml)
- Glass (20ml)
- Teflon (50ml)
- Teflon (20ml)

Legend:
- poly (no piece)
- poly (glass piece)
- poly (synthetic quartz piece)
- poly (natural quartz piece)
5. Application to atmospheric ^{85}Kr determination

500-1000 L air, 62-92% Kr recovery

1.44 to 1.60 Bq m$^{-3}$
Av. 1.54 ± 0.05 Bq m$^{-3}$
Change in 85Kr in the atmosphere

The increasing rate:
0.029 Bq m$^{-3}$/y

1981: 0.77 ± 0.03 Bq m$^{-3}$

2008: 1.54 ± 0.05 Bq m$^{-3}$
The detection limit of the present analytical method is calculated with a 95% confidence level \((a = b = 0.05)\) for paired (sample and background) measurements (Currie, 1968).

\[
S_D = 2.71 + 4.65\sigma_B
\]

where \(S_D\) is the detection limit and \(\sigma_B\) is the standard deviation of the background. Using a background count rate of 0.160 cps, a counting time of 2500 min, and counting efficiency of 72.1%, we obtain \(S_D = 0.0015 \text{ Bq}\), which corresponds to the analysis of 1.3 L of air with a 74.6% recovery of Kr. However, the minimum detectable amount of Kr by gas chromatography is about 0.01 mL—this requires a volume of air about 10 times greater than the detection limit of radioactivity.
1. Analytical method of 85Kr by LSC was develop.
2. The method was successfully applied to determination of atmospheric 85Kr concentration.
3. The detection limit of 0.0015 Bq is achieved.
4. Application to 85Kr dating of groundwater is now going on.

Thank you for your kind attention.