36Cl measurement in stainless steel by liquid scintillation counting

F.Goutelard¹, P.Perret¹, C.Hamon¹, R.Brennetot¹, C.Andrieu²

Du Bois de Maquillé|Laurence¹

(1) Operator Support Analyses Laboratory
Atomic Energy Commission (CEA)
Building 459, PC171, 91191 Gif-sur-Yvette Cedex, FRANCE
laurence.de-maquille@cea.fr
(2) EDF – CIDEN / Département Etudes - Division Déconstruction/Groupe Inventaire et Agréments
OUTLINE

✓ Context of the study

✓ Radioanalytical process

✓ Validation

✓ Conclusion
CONTEXT OF THE STUDY

RADIOANALYTICAL PROCESS

VALIDATION

CONCLUSION
CONTEXT OF THE STUDY

- Dismantling of 1st French generation nuclear reactors (UNGG)
 - Large volume of radioactive waste

- \(^{36}\text{Cl} \) is a long-lived (3.01 \(\times 10^5 \) y) beta-emitting radionuclide produced from neutron activation of naturally occurring \(^{35}\text{Cl} \)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Acceptance limit (Bq.g(^{-1})) for surface disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{3}\text{H})</td>
<td>(2 \times 10^5)</td>
</tr>
<tr>
<td>(^{60}\text{Co})</td>
<td>(1.3 \times 10^8)</td>
</tr>
<tr>
<td>(^{137}\text{Cs})</td>
<td>(3.3 \times 10^5)</td>
</tr>
<tr>
<td>(^{14}\text{C})</td>
<td>(9.2 \times 10^4)</td>
</tr>
<tr>
<td>(^{36}\text{Cl})</td>
<td>(5)</td>
</tr>
<tr>
<td>(^{63}\text{Ni})</td>
<td>(3.2 \times 10^6)</td>
</tr>
<tr>
<td>(^{55}\text{Fe})</td>
<td>(6.1 \times 10^9)</td>
</tr>
<tr>
<td>(\Sigma) alpha-emitters</td>
<td>(3.7 \times 10^3)</td>
</tr>
</tbody>
</table>

ANDRA: radioactive waste management agency in France

\(^{36}\text{Cl} \leq 5\text{Bq/g} \)

1 mg/g \(^{35}\text{Cl} \) \(\rightarrow \) 0.03 to 91 Bq/g \(^{36}\text{Cl} \) (depends on neutron flux)
Limitations:

- Activated product Total digestion is required
- Lack of data on stable Cl 200 samples collected to obtain good statistical data
 Minimal experimental time for radiochemistry
- Required limit of detection <5 Bq/g
- Samples can be highly radioactive should be implemented in a glove box
- Pure beta emitters Separation from matrix and interference prior to the measurement
 Radioanalytical process must be developed
CONTEXT OF THE STUDY

RADIOANALYTICAL PROCESS

VALIDATION

CONCLUSION
Based on the existing standard method (AFNOR M60-332, May 2010), a protocol has been developed:

1. **Dissolution of steel**
 - Optimisation of the solution composition for complete digestion of steel to minimize the quantity of stable Cl

2. **Chlorine extraction**
 - Optimisation of the trapping solution for preliminary measurements (establishment of a first screening of sample)

3. **Radiochemical separation**

4. **36Cl Liquid scintillation measurement**
 - Optimisation of the scintillation cocktail
provide the complete dissolution of the sample by minimizing the amount of stable chlorine

used KCl instead of HCl

optimal solution to dissolve 0.2 g of stainless steel is 8 mL of 69% HNO₃ and 1.8 g of KCl

28 mmol of Cl : high salt concentration
Chlorine extraction and optimisation of the trapping solution

Two constraints:

- The volume of the trapping solution must be minimal to have a good limit of detection.
- The trapping solution must be compatible with scintillation cocktails for preliminary measurements by LSC.

For the trap flask, 2 trapping solutions tested:

- NaOH 3.8 M (10 ml)
- Na₂CO₃ + H₂O₂ + H₂O (30 ml)
Chlorine extraction and optimisation of the trapping solution

NaOH

- nitrous vapor trapped in the trap flask
- progressive coloration of the trapping solution
2 Chlorine extraction and optimisation of the trapping solution

NaOH

- nitrous vapor trapped in the trap flask
- progressive coloration of the trapping solution

quenching

Na₂CO₃ + H₂O₂ + H₂O

- no nitrous vapor in the trap flask
- no quenching
2 Chlorine extraction and optimisation of the trapping solution

- trapping of 14C: problem of specificity

<table>
<thead>
<tr>
<th>Trapping solution</th>
<th>LS trap bottle (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stainless steel 1</td>
<td>NaOH</td>
</tr>
<tr>
<td></td>
<td>18 000</td>
</tr>
</tbody>
</table>
Cl radioanalytical process

2 Chlorine extraction and optimisation of the trapping solution

<table>
<thead>
<tr>
<th>Trapping solution</th>
<th>LS trap bottle after radiochemistry (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>18 000</td>
</tr>
<tr>
<td>NaOH</td>
<td>6</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>2 300</td>
</tr>
<tr>
<td>Na$_2$CO$_3$</td>
<td>6</td>
</tr>
</tbody>
</table>

Removal of 14C trapped in the trap flask by acidification
Chlorine extraction and optimisation of the trapping solution

Trapping solution

Trapping solution after ^{14}C removal

Optimal solution: 10 ml Na$_2$CO$_3$ + 5 ml H$_2$O$_2$ + 15 ml H$_2$O
Precipitation of AgCl by addition of AgNO₃

Dissolution of AgCl into NH₄OH

Elimination of Ag by reduction of Ag⁺ with N₂H₅⁺, HSO₄⁻

Elimination of sulphate by BaSO₄ precipitation

Volume reduction by evaporation from 150mL to 10mL

Yield: 90%

AgCl

Ag, NH₄⁺, Cl⁻

NH₄⁺, Cl⁻, SO₄²⁻

NH₄⁺, Cl⁻, NO₃⁻

NaNO₃ 2.3 M
NaCl 1.3 M
Liquid scintillation measurement

Choice of LSC cocktail

At the end of the radioanalytical process: NaNO₃ + NaCl 2 mol/L

LSC Cocktail tested in the laboratory: Ultimagold LLT® / Ultimagold XR®
§36Cl Liquid scintillation measurement

- 15 ml Ultimagold XR ®
 - 5 ml of (NaNO\textsubscript{3} 2.3 M + NaCl 1.3M)

- Establishment of the quenching curve
CONTEXT OF THE STUDY

RADIOANALYTICAL PROCESS

VALIDATION

CONCLUSION
Application of the French AFNOR NF T90-210 standard

norme française

NF T 90-210
Mai 2009

Indice de classement : T 90-210
ICS : 03.120.30 ; 13.060.50 ; 13.060.60

Qualité de l'eau

Protocole d'évaluation initiale des performances d'une méthode dans un laboratoire

E : Water quality — Protocol for the initial method performance assessment in a laboratory

“B test” : method to check whether a presupposed Limit of Quantification can be acceptable
1. Presuppose a limit of quantification LOQ

2. Choice of a representative sample without ^{36}Cl:

3. Spike the sample with LOQ presupposed:

4. Protocol repeated to be in intermediate fidelity conditions.
1. Presuppose a limit of quantification LOQ

\[
LOQ_{\text{detection}} \approx 3LD \approx 3 \times 4 \times \sqrt{\frac{2 \times \text{CPM}_{\text{MP}} \times T}{60 \times T \times \text{Eff}}}
\]

\[
LOQ_{\text{méthode}} \approx \text{yield} \times LOQ_{\text{detection}}
\]

LOQ \approx 0.35 \text{ Bq}

2. Choice of a representative sample without ^{36}Cl :

3. Spike the sample with LOQ presupposed :

4. Protocol repeated four times and the measurement has been performed on two distinct scintillation counter
1. Presuppose a limit of quantification LOQ

\[\text{LOQ}_{\text{detection}} \approx 3LD \approx 3 \times 4 \times \frac{\sqrt{2 \times CPM_{MP} \times T}}{60 \times T \times \text{Eff}} \]

\[\text{LOQ}_{\text{methode}} \approx \text{yield} \times \text{LOQ}_{\text{detection}} \]

\[\text{LOQ} \approx 0.35 \text{ Bq} \]

2. Choice of a representative sample without \(^{36}\text{Cl} \):

stainless steel 316, 200 mg

3. Spike the sample with LOQ presupposed:

4. Protocol repeated four times and the measurement has been performed on two distinct scintillation counters.
1. Presuppose a limit of quantification LOQ

\[\text{LOQ}_{\text{detection}} \approx 3 \times 4 \times \frac{\sqrt{2 \times CPM_{MP} \times T}}{60 \times T \times \text{Eff}} \]

\[\text{LOQ}_{\text{methode}} \approx \text{yield} \times \text{LOQ}_{\text{detection}} \]

\[\text{LOQ} \approx 0.35 \text{ Bq} \]

2. Choice of a representative sample without \(^{36}\text{Cl}\) :

stainless steel 316, 200 mg

3. Spike the sample with LOQ presupposed :

labeled KCl \(^{36}\text{Cl}\)

4. Protocol repeated four times and the measurement has been perform on two distinct scintillation counters
The presupposed LOQ is valid if:

$$z_{LOQ} - 2 \times s_{LOQ} > LOQ - 60\% \times LOQ$$
$$z_{LOQ} + 2 \times s_{LOQ} < LOQ + 60\% \times LOQ$$
the presupposed LOQ 0.35Bq is valid (1.75 Bq/g)

$$\text{LOD} = \frac{\text{LOQ}}{3} = 0.6 \text{ Bq/g} \quad \llll 5 \text{ Bq/g}$$
CONTEXT OF THE STUDY

RADIOANALYTICAL PROCESS

VALIDATION

CONCLUSION
Measurement of 36Cl in steel sample with a validated procedure

<table>
<thead>
<tr>
<th>Sample</th>
<th>Weigh (g)</th>
<th>Activity (Bq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0,9</td>
<td><0,4</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0,2</td>
<td><1,8</td>
</tr>
<tr>
<td>Sample 3</td>
<td>0,09</td>
<td>4 (23%)</td>
</tr>
<tr>
<td>Sample 4</td>
<td>0,05</td>
<td>6 (33%)</td>
</tr>
</tbody>
</table>

Improvement of the limit of detection for steel materials:
- alternative dissolution with less stable chlorine (HBr)
- alternative detection: measurement by AMS
Laurence du Bois de Maquillé

Operator Support Analyses Laboratory
Atomic Energy Commission (CEA)
Building 459, PC171, 91191 Gif-sur-Yvette Cedex, FRANCE
laurence.de-maquille@cea.fr