# Knowledge spillovers and the geography of duplicated inventions: an analysis from patent citations

Stefano Baruffaldi École Polytechnique Fédérale de Lausanne <u>stefano.baruffaldi@epfl.ch</u> Julio Raffo World Intellectual Property Organization julio.raffo@wipo.int

AQR – Workshop October, 2012 Barcelona, Spain



## **Motivation**

- "far from being odd or curious or remarkable, the pattern of independent multiple discoveries in science is in principle the dominant pattern" (Merton, 1961).
- Duplication and the cumulative nature of knowledge makes harder for future generations of inventors to be innovative and leads to diminishing returns on R&D investments (Jones, 2009; Kortum, 1993; Gómez, 2011;).
- "..a significant and growing number of very expensive lawsuits occur each year because firms have invested millions of dollars on the research, development, and commercialization of technology that is legedly owned by others" (Bessen and Meurer, 2008)

Does geography affect duplication?



## **Duplication in literature**

- « It is in the air » (Merton, 1979; Lamb, 1984; Murray & O'Mahony, 2007)
  - Knowledge is cumulative
  - The same invention can be reached by more than one inventor when the preconditions are present.
  - State of the equipment, level of scintific ideas and the readiness to accept or require a certain invention.
- The theory of Communication: (Merton, 1979; Brannigan, 1983)
  - "unnecessary duplication" resulting from imperfections in the channels of communication among scientists.
  - Failure of the notice function of patents. (Bessen and Meurer, 2008)
- **Competition** (Dasgupta and Maskin, 1983; Aghion et al., 2002; Encaoua et al., 2005)
  - Competition induces inventors to chose overly similar research projects
  - Patent races and inventing around
  - Pre-emptive patenting



#### 4 of 15

## **Duplication and knowledge spillovers**

- Unawareness: lack of awareness of replicating others' research efforts leading to independent duplications.
  - Diffusion of knowledge makes less likely that inventions are involuntarily replicated.
- **Competition:** the inventor is aware of replicating others' research and voluntarily engages in this effort leading to competitive duplications.
  - Higher knowledge spillovers increase duplications when there are incentive to compete on the same technological path.



## **Hypotheses**

H1: Duplication is more likely to occur close in space for recent technologies.

H2: Duplication is more likely to occur far in space for not recent technologies.

H3: Geographic distance affect more duplication of complex technologies than discrete technologies.



### **Methodology: Patent citations**

Assumption: the knowledge disclosure in patent document is less than perfect. (Atal and Bar, 2010; Walsh et al., 2007; Bessen and Meurer, 2008)

Duplication revealed by patent citations:

| Category | Definition                                                                                            | Construct            |  |  |
|----------|-------------------------------------------------------------------------------------------------------|----------------------|--|--|
| A        | Citations to documents defining the state of<br>the art and not prejudicing novelty                   | Knowledge base       |  |  |
| Х, Е     | Citations to patents that <b>taken alone</b> imply <b>the lack of novelty</b> of a claimed invention. | Revealed duplication |  |  |



#### **Methodology: Data**

- Patent citations data from EPO's Worldwide Patent Statistics Database (PATSTAT, September 2010):
  - 994,193 EPO to EPO citations (605,181 citing patents)
  - 1982-2007
- Localization of inventors from the OECD's REGPAT Database (December 2010).
- Each NUTS 3 region has been geo-localized in order to construct distance measure between citations.
- Citations categories and origin available



#### **Descriptives: Citations categories over years**





ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

## Descriptives:

#### patents with at least 1 X citation over sectors



## **Methodology: Model**

Linear probability model with fixed effects:

$$P(Y_{ij} = 1 | X_{ij}) = \beta_0 + \beta_1 A_{ij} + \beta_2 I_{ij} + \beta_3 T_{ij} + \beta_4 G_{ij} + \beta_5 T_{ij} \times G_{ij} + a_i + \varepsilon_{ij}$$

 $Y_{ij} = 1$  if patent citation linking patent *i* cites and patent *j* is an "X" or an "E", 0 otherwise

 $X_{ij}$  = regressors depending on *i* and *j* 

 $A_{ij} = 1$  if the applicant of patent *i* is the same inventor of patent *j*Controls $I_{ij} = 1$  if the inventor of patent *i* is the same inventor of patent *j*Time lag control $T_{ij} =$  time distance between patent *i* and patent *j*Time lag control $G_{ij} =$  geographic distance between patent *i* and patent *j*H1 (-) $T_{ij} \times G_{ij} =$  time and geographic distance interactionH2 (+)

 $a_i$  = citing patent fixed effect



## **Results: full sample**

|                             | Model 1     | Model 2      | Model 3     | Model 4     | Model 5     |
|-----------------------------|-------------|--------------|-------------|-------------|-------------|
| same inventor               | 0.0575***   | 0.0535***    | 0.0523***   | 0.0475***   | 0.0441***   |
|                             | (0.00225)   | (0.00227)    | (0.00228)   | (0.00235)   | (0.00241)   |
| same applicant              | -0.0117***  | -0.0139***   | -0.0107***  | -0.0121***  | -0.0157***  |
|                             | (0.00196)   | (0.00197)    | (0.00202)   | (0.00222)   | (0.00223)   |
| prior_diffy                 | -0.0113***  | -0.0136***   | -0.00829*** | -0.00895*** | -0.00917*** |
|                             | (0.000181)  | (0.000232)   | (0.000231)  | (0.000203)  | (0.000197)  |
| Distmin                     | 5.50e-07*** | -2.71e-06*** |             |             |             |
|                             | (1.80e-07)  | (2.73e-07)   |             |             |             |
| c.prior_diffy#c.distmin     |             | 6.00e-07***  |             |             |             |
|                             |             | (3.77e-08)   |             |             |             |
| same_ctry_any               |             |              | 0.0241***   |             |             |
|                             |             |              | (0.00239)   |             |             |
| same_ctry_any#c.prior_diffy |             |              | -0.00686*** |             |             |
|                             |             |              | (0.000324)  |             |             |
| same_reg2_any               |             |              |             | 0.0382***   |             |
|                             |             |              |             | (0.00272)   |             |
| same_reg2_any#c.prior_diffy |             |              |             | -0.00941*** |             |
|                             |             |              |             | (0.000368)  |             |
| same_reg3_any               |             |              |             |             | 0.0498***   |
|                             |             |              |             |             | (0.00290)   |
| same_reg3_any#c.prior_diffy |             |              |             |             | -0.0110***  |
|                             |             |              |             |             | (0.000401)  |
| Constant                    | 0.332***    | 0.345***     | 0.323***    | 0.324***    | 0.324***    |
|                             | (0.00137)   | (0.00157)    | (0.00153)   | (0.00127)   | (0.00122)   |
| F                           | 1359.92***  | 1139.36***   | 1189.14***  | 1223.15***  | 1239.52***  |
| Observations                | 626,726     | 626,726      | 626,726     | 626,726     | 626,726     |
| Number of groups            | 237,714     | 237,714      | 237,714     | 237,714     | 237,714     |



## **Results: sample without self citations**

|                             | Model 1                              | Model 2                                  | Model 3         | Model 4     | Model 5                 |
|-----------------------------|--------------------------------------|------------------------------------------|-----------------|-------------|-------------------------|
|                             |                                      |                                          |                 |             |                         |
| prior_diffy                 | -0.00881***                          | -0.00985***                              | -0.00794***     | -0.00855*** | -0.00869***             |
| distmin                     | (0.000224)<br>2.29e-07<br>(2.08e-07) | (0.000308)<br>-9.85e-07***<br>(3.23e-07) | (0.000261)      | (0.000234)  | (0.000229)              |
| c.prior diffy#c.distmin     | (2.080-07)                           | 2.22e-07***                              |                 |             |                         |
|                             |                                      | (4.53e-08)                               |                 |             |                         |
| same_ctry_any               |                                      |                                          | $0.00970^{***}$ |             |                         |
| same ctry any#c.prior diffy |                                      |                                          | -0.00274***     |             |                         |
|                             |                                      |                                          | (0.000417)      |             |                         |
| same_reg2_any               |                                      |                                          |                 | 0.00813**   |                         |
| same reg2 any#c.prior diffy |                                      |                                          |                 | -0.00232*** |                         |
|                             |                                      |                                          |                 | (0.000603)  |                         |
| same_reg3_any               |                                      |                                          |                 |             | 0.00549                 |
| same reg3 any#c prior diffy |                                      |                                          |                 |             | (0.00517)<br>-0.00186** |
| same_regs_any#e.prior_anny  |                                      |                                          |                 |             | (0.000765)              |
| Constant                    | 0.331***                             | 0.337***                                 | 0.329***        | 0.332***    | 0.332***                |
|                             | (0.00158)                            | (0.00195)                                | (0.00166)       | (0.00139)   | (0.00134)               |
| F                           | 775.33***                            | 524.97***                                | 533.18***       | 522.14***   | 518.96***               |
| Observations                | 441,394                              | 441,394                                  | 441,394         | 441,394     | 441,394                 |
| Number of groups            | 206,748                              | 206,748                                  | 206,748         | 206,748     | 206,748                 |



## **Results: Marginal effects of distance along time**

Distance **decrease** the probability of duplication

Distance **increase** the probability of duplication

| Time lag        | Model 2       | Model 3        | Model 4       | Model 5         |  |
|-----------------|---------------|----------------|---------------|-----------------|--|
| ( <u>years)</u> | (Km distance) | (same country) | (same region) | (same province) |  |
| 0               | -9.85e-07***  | 0.009704***    | 0.00813**     | 0.005487        |  |
|                 | (3.23E-07)    | (0.002967)     | (0.004099)    | (0.005174)      |  |
| 1               | -7.63e-07***  | 0.006964***    | 0.00581       | 0.003632        |  |
|                 | (2.90E-07)    | (0.002666)     | (0.003661)    | (0.004616)      |  |
| 2               | -5.41e-07**   | 0.004223*      | 0.003491      | 0.001777        |  |
|                 | (2.60E-07)    | (0.0024)       | (0.003276)    | (0.004124)      |  |
| 3               | -3.19e-07     | 0.001483       | 0.001172      | -7.8E-05        |  |
|                 | (2.36E-07)    | (0.002182)     | (0.002965)    | (0.003725)      |  |
| 4               | -9.66e-08     | -0.00126       | -0.00115      | -0.00193        |  |
|                 | (2.18E-07)    | (0.002027)     | (0.002753)    | (0.003453)      |  |
| 5               | 1.26e-07      | -0.004         | -0.00347      | -0.00379        |  |
|                 | (2.09E-07)    | (0.001951)     | (0.002663)    | (0.003337)      |  |
| 6               | 3.48e-07*     | -0.00674**     | -0.00579**    | -0.00564*       |  |
|                 | (2.09E-07)    | (0.001963)     | (0.002709)    | (0.003393)      |  |
| 7               | 5.70e-07***   | -0.00948***    | -0.0081***    | -0.0075**       |  |
|                 | (2.19E-07)    | (0.002061)     | 0.002882      | (0.003615)      |  |
| 8               | 7.92e-07***   | -0.01222***    | -0.01042***   | -0.00935**      |  |
|                 | (2.37E-07)    | (0.002233)     | (0.003163)    | (0.003974)      |  |
|                 |               |                |               |                 |  |
| 31              | 5.90e-06***   | -0.07524***    | -0.06376***   | -0.05202***     |  |
|                 | (1.17E-06)    | (0.010867)     | (0.015811)    | (0.020036)      |  |

 $\frac{\partial P(Y_{ij} = 1 \mid )}{\partial G} = \beta_4 + \beta_5 T$ 



## **Results: Robustness**

|                             | Model 1<br>(Complex<br>technologies) | Model 2<br>(Discrete<br>technologies) | Model 3<br>(Semiconduct<br>ors) | Model 4<br>(Mechanical<br>elements) | Model 5<br>(Basic<br>materials<br>chemistry) |
|-----------------------------|--------------------------------------|---------------------------------------|---------------------------------|-------------------------------------|----------------------------------------------|
| prior_diffy                 | -0.0146***                           | -0.0122***                            | -0.0213***                      | -0.0110***                          | -0.0116***                                   |
| distmin                     | (0.00043)<br>-3.35e-06***            | (0.00048)<br>-1.07e-06*               | (0.00186)<br>-6.89e-06***       | (0.00166)<br>1.04e-06               | (0.000853)                                   |
| usunn                       | (4.95e-07)                           | (6.30e-07)                            | (1.74e-06)                      | (2.27e-06)                          | (1.15e-06)                                   |
| c.prior_diffy#<br>c.distmin | 8.03e-07***                          | 3.16e-07***                           | 1.65 <b>e-</b> 06***            | 5.56 <b>e-</b> 07*                  | -1.01e-07                                    |
| same inventor               | (7.11e-08)<br>0.0619***              | (7.80e-08)<br>0.0493***               | (2.68e-07)<br>0.0605***         | (2.91e-07)                          | (1.40e-07)<br>0.0309***                      |
| same_mventor                | (0.00440)                            | (0.00486)                             | (0.0179)                        | (0.0143)<br>(0.0181)                | (0.00850)                                    |
| same_applicant              | $-0.0205^{***}$<br>(0.00360)         | -0.0027<br>(0.00438)                  | -0.0398***<br>(0.0145)          | -0.00997<br>(0.0158)                | -0.0166**<br>(0.00757)                       |
| Constant                    | 0.3498***<br>(0.00284)               | 0.3460***<br>(0.00376)                | 0.402***<br>(0.0113)            | 0.285***<br>(0.0122)                | 0.346***<br>(0.00639)                        |
|                             |                                      |                                       |                                 | × ,                                 | × ×                                          |
| F                           | 352.43***                            | 236.11***                             | 34.5***                         | 12.41***                            | 64.84***                                     |
| Number of<br>groups         | 81,622                               | 39,144                                | 6,379                           | 3,849                               | 10,417                                       |
|                             |                                      |                                       |                                 |                                     |                                              |
|                             | N°                                   | N° of sectors                         |                                 | 4/35                                | 10/35                                        |
|                             | % (                                  | % of sample                           |                                 | 14%                                 | 16%                                          |



## **Conclusions**

- Geography affect the rate of duplication
- Bivalent effect of proximity; trade off
- Imperfect disclosure of knowledge in patents
- Contribution to the literature on the meaning of patent citations

#### Limits:

- Which proximity?
- Underlying R&D efforts and incentives?



## Thank you!

