My precious! The location and diffusion of scientific research: evidence from the Synchrotron Diamond Light Source

Christian Helmers^{§,‡} Henry Overman[‡]

§ Universidad Carlos III, Madrid

‡ SERC LSE

October 19, 2012

Overview

• Analyze impact of GBP380 million basic scientific research facility on geographic distribution of research

- Analyze impact of GBP380 million basic scientific research facility on geographic distribution of research
- **Diamond Light Source** (3rd generation synchrotron) single largest investment in research in UK

- Analyze impact of GBP380 million basic scientific research facility on geographic distribution of research
- **Diamond Light Source** (3rd generation synchrotron) single largest investment in research in UK
- ▶ Impact of location choice on distribution of research

- Analyze impact of GBP380 million basic scientific research facility on geographic distribution of research
- **Diamond Light Source** (3rd generation synchrotron) single largest investment in research in UK
- Impact of location choice on distribution of research
- Direct impact on clustering of research that uses facility

- Analyze impact of GBP380 million basic scientific research facility on geographic distribution of research
- **Diamond Light Source** (3rd generation synchrotron) single largest investment in research in UK
- Impact of location choice on distribution of research
- Direct impact on clustering of research that uses facility
- Indirect impact on location of related research

Main Questions

Impact of major 'lumpy' infrastructure investments

- Impact of major 'lumpy' infrastructure investments
- "Sharing of indivisibilities" one of the crucial determinants of agglomeration

- Impact of major 'lumpy' infrastructure investments
- "Sharing of indivisibilities" one of the crucial determinants of agglomeration
- Role of knowledge spillovers

- Impact of major 'lumpy' infrastructure investments
- "Sharing of indivisibilities" one of the crucial determinants of agglomeration
- Role of knowledge spillovers
- As input into research

- Impact of major 'lumpy' infrastructure investments
- "Sharing of indivisibilities" one of the crucial determinants of agglomeration
- Role of knowledge spillovers
- As input into research
- As determinant of location of research

- Impact of major 'lumpy' infrastructure investments
- "Sharing of indivisibilities" one of the crucial determinants of agglomeration
- Role of knowledge spillovers
- As input into research
- As determinant of location of research
- \Rightarrow Importance of agglomeration externalities produced by indivisible scientific research facilities for science and innovation

Identification

Identification

• Test whether establishment of Diamond in Didcot has resulted in concentration of research and innovation in geographical proximity beyond what would have happened, had Diamond been sited elsewhere

Identification

- Test whether establishment of Diamond in Didcot has resulted in concentration of research and innovation in geographical proximity beyond what would have happened, had Diamond been sited elsewhere
- Main challenge in identifying **causal** link from Diamond to geographical distribution is potential **endogeneity of Diamond's location**:

"[Didcot] is a thriving hub of scientific research [...]. Diamond is surrounded by a number of scientific research facilities making the site a centre of excellence in terms of tools and expertise and therefore the ideal location."

Identification

- Test whether establishment of Diamond in Didcot has resulted in concentration of research and innovation in geographical proximity beyond what would have happened, had Diamond been sited elsewhere
- Main challenge in identifying **causal** link from Diamond to geographical distribution is potential **endogeneity of Diamond's location**:

"[Didcot] is a thriving hub of scientific research [...]. Diamond is surrounded by a number of scientific research facilities making the site a centre of excellence in terms of tools and expertise and therefore the ideal location."

• If related research increasingly clustered in existing centers regardless of Diamond (government anticipated this) then wrongly attribute affect to Diamond

Identification

Identification

• Use diff-in-diff identification strategy

Identification

- Use diff-in-diff identification strategy
- Exploit **runner up location** at Daresbury (Manchester) to address endogeneity

Identification

- Use diff-in-diff identification strategy
- Exploit **runner up location** at Daresbury (Manchester) to address endogeneity
- Assumption: conditional on observable as well as unobservable location-specific characteristics, in the absence of Diamond, **changes** in pattern would have been same around Diamond and Daresbury

Empirical approach

• Distance to Diamond of scientists/inventors (in geographical area)

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)

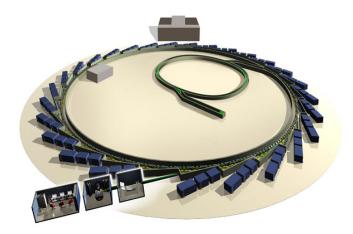
- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)
- Research output:

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)
- Research output:
 - Scientific publications

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)
- Research output:
 - Scientific publications
 - 2 Patents

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)
- Research output:
 - Scientific publications
 - 2 Patents
- Focus on UK: whether one flies from Tokyo to Daresbury or from Tokyo to Oxford is irrelevant. (Hon. Stunell, March 2000)

- Distance to Diamond of scientists/inventors (in geographical area)
- Hard sciences produce **codifiable** knowledge (e.g. structural biology, physics, chemistry, materials science etc.)
- Research likely 'cutting edge' (i.e., publishable and patentable)
- Research output:
 - Scientific publications
 - 2 Patents
- Focus on UK: whether one flies from Tokyo to Daresbury or from Tokyo to Oxford is irrelevant. (Hon. Stunell, March 2000)
- Does it matter where infrastructure is sited within the UK?


The synchrotron Location choice

The Diamond Synchrotron

The synchrotron Location choice

The Diamond Synchrotron

• What is Diamond used for?

The synchrotron Location choice

The Diamond Synchrotron

The synchrotron Location choice

The Diamond Synchrotron

• What is Diamond used for?

The synchrotron Location choice

The Diamond Synchrotron

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)
 - Expensive GBP380 million (86% Government, 14% Wellcome trust)

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)
 - Expensive GBP380 million (86% Government, 14% Wellcome trust)
- Phase 1 began operation January 2007

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)
 - Expensive GBP380 million (86% Government, 14% Wellcome trust)
- Phase 1 began operation January 2007
- "Beam time" free to academic users

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)
 - Expensive GBP380 million (86% Government, 14% Wellcome trust)
- Phase 1 began operation January 2007
- "Beam time" free to academic users
- 3rd generation produce more intense and brighter synchrotron light than 2nd generation

The synchrotron Location choice

- What is Diamond used for?
- Synchrotron facilities are circular particle accelerators that produce beams of x-rays, infrared and ultraviolet light
 - Used for looking at very small things
 - Big (561m storage ring, floor area 45,500m²)
 - Expensive GBP380 million (86% Government, 14% Wellcome trust)
- Phase 1 began operation January 2007
- "Beam time" free to academic users
- 3rd generation produce more intense and brighter synchrotron light than 2nd generation
- Novel research in hard sciences

The synchrotron Location choice

The synchrotron Location choice

The synchrotron Location choice

The synchrotron Location choice

The Controversy

 Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km – opened 1981)

The synchrotron Location choice

- Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km opened 1981)
- Wellcome pushed for Harwell (Didcot/Oxford)

The synchrotron Location choice

- Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km – opened 1981)
- Wellcome pushed for Harwell (Didcot/Oxford)
- "Greater scientific benefits would result from a location close to the existing neutron source and to MRC units and the University of Oxford"

The synchrotron Location choice

- Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km – opened 1981)
- Wellcome pushed for Harwell (Didcot/Oxford)
- "Greater scientific benefits would result from a location close to the existing neutron source and to MRC units and the University of Oxford"
- Daresbury supporters claimed Wellcome overstating the benefits of proximity

The synchrotron Location choice

- Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km – opened 1981)
- Wellcome pushed for Harwell (Didcot/Oxford)
- "Greater scientific benefits would result from a location close to the existing neutron source and to MRC units and the University of Oxford"
- Daresbury supporters claimed Wellcome overstating the benefits of proximity
- High-level dispute (e.g. parliamentary debate), broad public attention (e.g. BBC, Financial Times, the Times Higher Education, The Guardian, Nature)

The synchrotron Location choice

- Initially government intended to site in Daresbury (Manchester) next to existing 2nd generation synchrotron (distance to Diamond approx. 215km – opened 1981)
- Wellcome pushed for Harwell (Didcot/Oxford)
- "Greater scientific benefits would result from a location close to the existing neutron source and to MRC units and the University of Oxford"
- Daresbury supporters claimed Wellcome overstating the benefits of proximity
- High-level dispute (e.g. parliamentary debate), broad public attention (e.g. BBC, Financial Times, the Times Higher Education, The Guardian, Nature)
- Government went with Harwell in March 2000

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

Estimate following model:

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

• c_{at}: count of articles/patents in area a at time t

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise
 - 3 ring dummies: 0-25km, 25km-125km, 125km-175km

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise
 - 3 ring dummies: 0-25km, 25km-125km, 125km-175km
 - >175km from Diamond omitted category

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise
 - 3 ring dummies: 0-25km, 25km-125km, 125km-175km
 - >175km from Diamond omitted category
- $I(t \ge 2007)$: indicator variable = 1 from 2007 onwards

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise
 - 3 ring dummies: 0-25km, 25km-125km, 125km-175km
 - >175km from Diamond omitted category
- $I(t \ge 2007)$: indicator variable = 1 from 2007 onwards
- D_t a dummy variable taking value one if year is equal to t

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(1)

- c_{at}: count of articles/patents in area a at time t
- D^r_{DI}: set of R 'ring' dummies which = 1 if area within given distance of **Diamond** & = 0 otherwise
 - 3 ring dummies: 0-25km, 25km-125km, 125km-175km
 - >175km from Diamond omitted category
- $I(t \ge 2007)$: indicator variable = 1 from 2007 onwards
- D_t a dummy variable taking value one if year is equal to t
- α_a : area FE (if included, $\sum_R D_{DI}^r$ drops out)

Use 'runner-up' location:

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \sum_R D_{DA}^r + \sum_R D_{DA}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_a t \times I(t \ge 2007) + \epsilon_{at}$$
(2)

Use 'runner-up' location:

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r + \sum_R D_{DI}^r \times I(t \ge 2007) + \sum_R D_{DA}^r + \sum_R D_{DA}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_a t \times I(t \ge 2007) + \epsilon_{at}$$
(2)

D^r_{DA}: set of R 'ring' dummies which = 1 if area within given distance of **Daresbury** & = 0 otherwise

Use third location (Newcastle upon Tyne – Institute for Cell and Molecular Biosciences):

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r \times I(t \ge 2007) + \sum_R D_{DA}^r \times I(t \ge 2007) + \sum_R D_{NT}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(3)

Use third location (Newcastle upon Tyne – Institute for Cell and Molecular Biosciences):

$$c_{at} = \alpha_a + \sum_t D_t + \sum_R D_{DI}^r \times I(t \ge 2007) + \sum_R D_{DA}^r \times I(t \ge 2007) + \sum_R D_{NT}^r \times I(t \ge 2007) + \beta_1 X_{at} + \beta_2 X_{at} \times I(t \ge 2007) + \epsilon_{at}$$
(3)

D^r_{NT}: set of R 'ring' dummies which = 1 if area within given distance of Newcastle-upon-Tyne & = 0 otherwise

Academic publications

Data: Overview

Academic publications

Data: Overview

▷ Identify *relevant* research & researchers from Diamond user output:

Academic publications

Data: Overview

- ▷ Identify *relevant* research & researchers from Diamond user output:
- Academic publications

Academic publications

Data: Overview

- ▷ Identify *relevant* research & researchers from Diamond user output:
- Academic publications
- Patent applications

Academic publications

Data: Overview

▷ Identify *relevant* research & researchers from Diamond user output:

- Academic publications
- Patent applications
- Direct Effect

Academic publications

Data: Overview

- ▷ Identify *relevant* research & researchers from Diamond user output:
 - Academic publications
- Patent applications
- Direct Effect
- ▷ Identify *related* research:

Academic publications

Data: Overview

- ▷ Identify *relevant* research & researchers from Diamond user output:
 - Academic publications
- Patent applications
- Direct Effect
- ▷ Identify *related* research:
- Similar academic publications

Academic publications

Data: Overview

▷ Identify *relevant* research & researchers from Diamond user output:

- Academic publications
- Patent applications
- Direct Effect
- ▷ Identify *related* research:
- Similar academic publications
- Similar patent applications

Academic publications

Data: Overview

- ▷ Identify *relevant* research & researchers from Diamond user output:
 - Academic publications
 - Patent applications
- Direct Effect
- ▷ Identify *related* research:
- Similar academic publications
- Similar patent applications
- Indirect Effect

Academic publications

Data: Overview

▷ Identify *relevant* research & researchers from Diamond user output:

- Academic publications
- Patent applications
- Direct Effect
- ▷ Identify *related* research:
- Similar academic publications
- Similar patent applications
- Indirect Effect

▷ Analysis at Local Administrative District level (379 LADs)

Academic publications

Academic publications

Data: Diamond User Output

Start with complete list of scientific publications from work at Diamond

Academic publications

- Start with complete list of scientific publications from work at Diamond
 - Standardize/clean names & affiliations

Academic publications

- Start with complete list of scientific publications from work at Diamond
- Standardize/clean names & affiliations
- 347 publications in 121 journals (December 2010)

Academic publications

- Start with complete list of scientific publications from work at Diamond
 - Standardize/clean names & affiliations
 - 347 publications in 121 journals (December 2010)
 - 1,760 authors affiliated to 441 institutions worldwide

Academic publications

- Start with complete list of scientific publications from work at Diamond
 - Standardize/clean names & affiliations
 - 347 publications in 121 journals (December 2010)
 - 1,760 authors affiliated to 441 institutions worldwide
 - Location determined by affiliation postcode

Academic publications

- Start with complete list of scientific publications from work at Diamond
 - Standardize/clean names & affiliations
 - 347 publications in 121 journals (December 2010)
 - 1,760 authors affiliated to 441 institutions worldwide
 - Location determined by affiliation postcode
 - Focus on GB affiliations: 1,282 authors affiliated to 194 institutions

Academic publications

Academic publications

Data: Academic publications

• How to identify similar/relevant scientific publications?

Academic publications

- How to identify similar/relevant scientific publications?
- Find 5 most similar articles to "Diamond Articles" according to adjusted **references overlap**

Academic publications

- How to identify similar/relevant scientific publications?
- Find 5 most similar articles to "Diamond Articles" according to adjusted **references overlap**
- Find 1,528 related articles

Academic publications

- How to identify similar/relevant scientific publications?
- Find 5 most similar articles to "Diamond Articles" according to adjusted **references overlap**
- Find 1,528 related articles
- Focus on authors with at least 1 UK affiliation

Descriptives Regression Results

Summary statistics for Academic publications Diamond academic journal articles

	Mean	Median	Std. Dev.	Min.	Max.				
Descriptive Statistics of Authors & Affiliations (UK only)									
# authors per article	5.69	5	2.99	1	20				
# affiliations per article	2.19	2	1.23	1	7				
# affiliations per author	1.13	1	0.38	1	3				
GEOGRAPHICAL DISTRIBUTIO	on of Au	THORS' AI	FFILIATIONS						
< 2007 (Before Establishm	ent of I	DIAMOND)							
Distance (km) to Diamond	180.1	120.6	148.4	0	539.3				
Distance (km) to Daresbury	206.2	219.4	76.7	0	340.0				
≥ 2007 (<i>After</i> Establishme	> 2007 (<i>After</i> Establishment of Diamond)								
Distance (km) to Diamond	152.4	116.5	153.1	0	623.4				
Distance (km) to Daresbury	196.9	216.5	81.6	0	425.6				

Descriptives Regression Results

Summary statistics for Academic publications Diamond academic journal articles

Distance (km) to Daresbury

	Mean	Median	Std. Dev.	Min.	Max.				
Descriptive Statistics of Authors & Affiliations (UK only)									
# authors per article	5.69	5	2.99	1	20				
# affiliations per article	2.19	2	1.23	1	7				
# affiliations per author	1.13	1	0.38	1	3				
Geographical Distribution	on of Au	THORS' A	FFILIATIONS						
< 2007 (<i>Before</i> Establishm	ent of I	Diamond)							
Distance (km) to Diamond	180.1	120.6	148.4	0	539.3				
Distance (km) to Daresbury	206.2	219.4	76.7	0	340.0				
$\geq 2007 \; (After \; \text{Establishment of Diamond})$									
Distance (km) to Diamond	152.4	116.5	153.1	0	623.4				

216.5

81.6

0

425.6

196.9

Descriptives Regression Results

Summary statistics for Academic publications Diamond academic journal articles

	Mean	Median	Std. Dev.	Min.	Max.				
Descriptive Statistics of Authors & Affiliations (UK only)									
# authors per article	5.69	5	2.99	1	20				
# affiliations per article	2.19	2	1.23	1	7				
# affiliations per author	1.13	1	0.38	1	3				
Geographical Distribution of Authors' Affiliations									
< 2007 (Before Establishm	ent of I	Diamond)							
Distance (km) to Diamond	180.1	120.6	148.4	0	539.3				
Distance (km) to Daresbury	206.2	219.4	76.7	0	340.0				
≥ 2007 (After Establishme	nt of Di	AMOND)							
Distance (km) to Diamond	152.4	116.5	153.1	0	623.4				
Distance (km) to Daresbury	196.9	216.5	81.6	0	425.6				

Descriptives Regression Results

Summary statistics for Academic publications Related academic journal articles

	Mean	Median	Std. Dev.	Min.	Max.				
Descriptive Statistics of Authors & Affiliations (UK only)									
# authors per article	3.85	3	2.47	1	17				
# affiliations per article	1.66	1	0.92	1	8				
# affiliations per author	1.26	1	0.50	1	4				
GEOGRAPHICAL DISTRIBUTIO	on of Au	THORS' A	FFILIATIONS						
< 2007 (Before Establishm	ent of I	Diamond)							
Distance (km) to Diamond	170.5	120.6	136.9	0	554.3				
Distance (km) to Daresbury	192.0	209.7	85.7	0	347.3				
≥ 2007 (<i>After</i> Establishme	> 2007 (<i>After</i> Establishment of Diamond)								
Distance (km) to Diamond	164.4	118.4	155.1	0	624.3				
Distance (km) to Daresbury	199.2	212.0	84.7	0	426.7				

Descriptives Regression Results

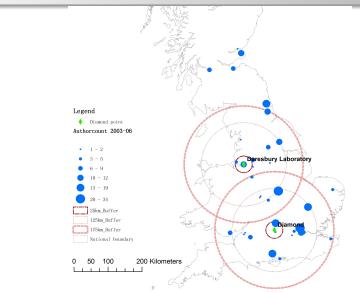
Summary statistics for Academic publications Related academic journal articles

THORS &	AFFILIA	fions (UK o	only)	
.85	3	2.47	1	17
.66	1	0.92	1	8
.26	1	0.50	1	4
	.85 .66 .26	.85 3 .66 1	.85 3 2.47 .66 1 0.92	.85 3 2.47 1 .66 1 0.92 1

GEOGRAPHICAL DISTRIBUTION OF AUTHORS' AFFILIATIONS

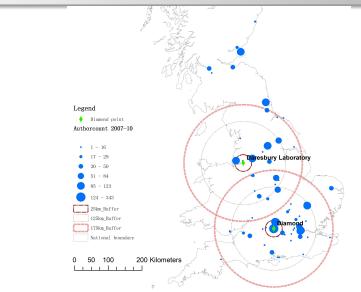
< 2007 (Before Establishment of Diamond)

Distance (km) to Diamond	170.5	120.6	136.9	0	554.3					
Distance (km) to Daresbury	192.0	209.7	85.7	0	347.3					
()										
≥ 2007 (<i>After</i> Establishment of Diamond)										
Distance (km) to Diamond	164.4	118.4	155.1	0	624.3					
Distance (km) to Daresbury	199.2	212.0	84.7	0	426.7					

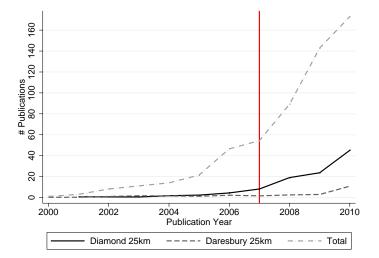

Descriptives Regression Results

Summary statistics for Academic publications Related academic journal articles

	Mean	Median	Std. Dev.	Min.	Max.				
Descriptive Statistics of Authors & Affiliations (UK only)									
# authors per article	3.85	3	2.47	1	17				
# affiliations per article	1.66	1	0.92	1	8				
# affiliations per author	1.26	1	0.50	1	4				
Geographical Distributio	on of Au	THORS' AI	FFILIATIONS						
< 2007 (Before Establishm	ent of I	Diamond)							
Distance (km) to Diamond	170.5	120.6	136.9	0	554.3				
Distance (km) to Daresbury	192.0	209.7	85.7	0	347.3				
$\geq 2007 (After \text{ Establishme})$	NT OF DI	AMOND)							
Distance (km) to Diamond	164.4	118.4	155.1	0	624.3				
Distance (km) to Daresbury	199.2	212.0	84.7	0	426.7				

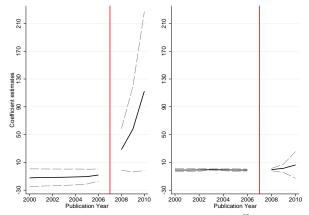

Descriptives Regression Results

Academic Publications: Pre-Diamond 2003-2006


Descriptives Regression Results

Academic Publications: Post-Diamond 2007-2010

Descriptives Regression Results


Academic Publications: # Articles – Distance to **Diamond** vs **Daresbury**

26 / 35

Descriptives Regression Results

Academic Publications: annual estimates for **Diamond** vs **Daresbury**

Notes: Annual coefficient estimates β_{Ct} from the regressions $p_{at} = \alpha_a + \sum_t D_t + \beta_{Dt} D_C^{2S} \times D_t + \epsilon_{at}$ (with C = [DI, DA]) for Diamond and Daresbury (within 25km) where t = 2000, 2001, ..., 2010, 2007 is the omitted category.

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[I]	[11]	[111]	[IV]
Diamond	25km	6.649*	0.529*	0.493	
		(3.474)	(0.308)	(0.305)	
	125km	0.047	0.015	-0.001	
		(0.109)	(0.026)	(0.021)	
	175km	-0.228***	-0.031*	-0.003	
		(0.069)	(0.049)	(0.016)	
Diamond $\times I(t \ge 2007)$	25km	. ,	16.834*	16.135*	16.250*
			(8.983)	(8.883)	(8.881)
	125km		0.087	-0.317*	-0.340**
			(0.238)	(0.166)	(0.159)
	175km		-0.528***	-0.045	-0.116
			(0.150)	(0.131)	(0.126)
Time dummies		YES	YES	YES	YES
Controls		NO	NO	YES	YES
Fixed Effects		NO	NO	NO	YES
Daresbury		NO	NO	NO	NO
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[1]	[11]	[11]	[IV]
Diamond	25km	6.649*	0.529*	0.493	
		(3.474)	(0.308)	(0.305)	
	125km	0.047	0.015	-0.001	
		(0.109)	(0.026)	(0.021)	
	175km	-0.228***	-0.031*	-0.003	
		(0.069)	(0.049)	(0.016)	
Diamond $\times I(t \ge 2007)$	25km		16.834*	16.135*	16.250*
			(8.983)	(8.883)	(8.881)
	125km		0.087	-0.317*	-0.340**
			(0.238)	(0.166)	(0.159)
	175km		-0.528***	-0.045	-0.116
			(0.150)	(0.131)	(0.126)
Time dummies		YES	YES	YES	YES
Controls		NO	NO	YES	YES
Fixed Effects		NO	NO	NO	YES
Daresbury		NO	NO	NO	NO
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[1]	[11]	[111]	[IV]
Diamond	25km	6.649*	0.529*	0.493	
		(3.474)	(0.308)	(0.305)	
	125km	0.047	0.015	-0.001	
		(0.109)	(0.026)	(0.021)	
	175km	-0.228***	-0.031*	-0.003	
		(0.069)	(0.049)	(0.016)	
Diamond $\times I(t \ge 2007)$	25km		16.834*	16.135*	16.250*
			(8.983)	(8.883)	(8.881)
	125km		0.087	-0.317*	-0.340**
			(0.238)	(0.166)	(0.159)
	175km		-0.528***	-0.045	-0.116
			(0.150)	(0.131)	(0.126)
Time dummies		YES	YES	YES	YES
Controls		NO	NO	YES	YES
Fixed Effects		NO	NO	NO	YES
Daresbury		NO	NO	NO	NO
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[1]	[11]	[11]	[IV]
Diamond $\times I(t \ge 2007)$	25km	16.788*	16.277*	17.071*	16.482*
		(8.985)	(8.886)	(8.987)	(8.887)
	125km	0.044	-0.309	0.327	-0.093
		(0.307)	(0.233)	(0.245)	(0.179)
	175km	-0.572**	-0.087	-0.289*	0.130
		(0.245)	(0.219)	(0.159)	(0.176)
Daresbury $\times I(t \ge 2007)$	25km	1.060	0.811	1.343	1.052
		(1.113)	(1.029)	(1.098)	(1.018)
	125km	-0.107	-0.002	0.117	0.187
		(0.316)	(0.248)	(0.250)	(0.196)
	175km	-0.347*	-0.016	-0.357**	0.140
		(0.329)	(0.254)	(0.151)	(0.178)
Time dummies		YES	YES	YES	YES
Fixed Effects		YES	YES	YES	YES
Controls		NO	YES	NO	YES
Newcastle		NO	NO	YES	YES
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[1]	[11]	[111]	[IV]
Diamond $\times I(t \ge 2007)$	25km	16.788*	16.277*	17.071*	16.482*
		(8.985)	(8.886)	(8.987)	(8.887)
	125km	0.044	-0.309	0.327	-0.093
		(0.307)	(0.233)	(0.245)	(0.179)
	175km	-0.572**	-0.087	-0.289*	0.130
		(0.245)	(0.219)	(0.159)	(0.176)
Daresbury $\times I(t \ge 2007)$	25km	1.060	0.811	1.343	1.052
		(1.113)	(1.029)	(1.098)	(1.018)
	125km	-0.107	-0.002	0.117	0.187
		(0.316)	(0.248)	(0.250)	(0.196)
	175km	-0.347*	-0.016	-0.357**	0.140
		(0.329)	(0.254)	(0.151)	(0.178)
Time dummies		YES	YES	YES	YES
Fixed Effects		YES	YES	YES	YES
Controls		NO	YES	NO	YES
Newcastle		NO	NO	YES	YES
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Academic Articles: OLS (379 LAD - 2000-2010)

		[I]	[11]	[11]	[IV]
Diamond $\times I(t \ge 2007)$	25km	16.788*	16.277*	17.071*	16.482*
		(8.985)	(8.886)	(8.987)	(8.887)
	125km	0.044	-0.309	0.327	-0.093
		(0.307)	(0.233)	(0.245)	(0.179)
	175km	-0.572**	-0.087	-0.289*	0.130
		(0.245)	(0.219)	(0.159)	(0.176)
Daresbury $\times I(t \ge 2007)$	25km	1.060	0.811	1.343	1.052
		(1.113)	(1.029)	(1.098)	(1.018)
	125km	-0.107	-0.002	0.117	0.187
		(0.316)	(0.248)	(0.250)	(0.196)
	175km	-0.347*	-0.016	-0.357**	0.140
		(0.329)	(0.254)	(0.151)	(0.178)
Time dummies		YES	YES	YES	YES
Fixed Effects		YES	YES	YES	YES
Controls		NO	YES	NO	YES
Newcastle		NO	NO	YES	YES
Obs		4,121	4,121	4,121	4,121

Descriptives Regression Results

Robustness - variations of the basic model

- Channels:
 - Research input: author counts by LA and year
 - Research input: 'unique' institution counts by LA and year
- Vary size of distance rings (30km, 100km, 150km)
- Vary number of distance rings (25km, 125km; 25km, 75km, 125km, 175km)
- Daresbury shut-down effect
- Diamond construction effect
- Limit sample to LAs that report a positive author/article count in at least 1 sample year
- Alternative ways of constructing related articles sample (field/journal restrictions)
- Count data model

Descriptives Regression Results

Descriptives Regression Results

Conclusion

• Does the location of basic scientific research infrastructure affect its use and impact?

Descriptives Regression Results

- Does the location of basic scientific research infrastructure affect its use and impact?
- Analyze the impact of a GBP380 million scientific facility on geographic distribution of research

Descriptives Regression Results

- Does the location of basic scientific research infrastructure affect its use and impact?
- Analyze the impact of a GBP380 million scientific facility on geographic distribution of research
- Find evidence of impact on clustering of research that uses facility & related research (moved closer to Diamond)

Descriptives Regression Results

- Does the location of basic scientific research infrastructure affect its use and impact?
- Analyze the impact of a GBP380 million scientific facility on geographic distribution of research
- Find evidence of impact on clustering of research that uses facility & related research (moved closer to Diamond)
- Not driven by increased proximity to existing clusters (unless unique to Diamond)

Descriptives Regression Results

- Does the location of basic scientific research infrastructure affect its use and impact?
- Analyze the impact of a GBP380 million scientific facility on geographic distribution of research
- Find evidence of impact on clustering of research that uses facility & related research (moved closer to Diamond)
- Not driven by increased proximity to existing clusters (unless unique to Diamond)
- Work in progress...