AQR workshop on Innovation and economic regional performace

Barcelona 18-19 October 2012

Does intentional mean hierarchical?

Knowledge flows and innovative performance of European regions
M.A. Maggioni**, M. Nosvelli**, T.E. Uberti** CSCC
*CSCC
(Cognitive Science and Communication research Centre)
${ }^{\circ}$ DISEIS
(Dept. of International Economics, Institutions and Development)

${ }^{\bullet}$ CERIS-CNR

(National Research Council - Institute for Economic Research on Firms and Growth)

A wider framework

Networks and Geography in the economics of S\&T

A wider framework

Networks and Geography in the economics of S\&T

Networks and Geography

Strategy I

Putting networks into geography

Relational vs. Spatial proximity

Strategies
Strategy II
Putting geography into networks

Object of analysis

Networks of "geographically-defined" meso/macro nodes

Space = Proximity
my behaviour = f(neighbours')
Who is my neighbour?

- Someone living nearby
- Someone I frequently interact with

Rationale of the analysis

Who establish and acts relations? Agents/organizations = micro level However micro behaviours are influenced by unobservable "local" conditions/interactions; thus the need for "meso/macro" analysis

Social Network Analysis
Spatial Econometrics:
Spatial + Relational weights

Analytical Tools

Social Network Analysis
Network Topology
Space = Distance -> Gravity models

Aims of the presentation

Innovation activity is affected by spatial concentration at all geographical levels (Nuts2, Nuts3, TTWA, etc). Empirics shows that R\&D institutions (universities, govt.labs, H-T firms) do cluster

How do scientific information and knowledge flow between these clusters/regions?

- According to diffusive patterns based on spatial contiguity (unintended spatial spillover à la Acs, Anselin and Varga, 2002)?
- According to intentional relations based on a-spatial networks (knowledge barter exchange à la Cowan and Jonard, 1999)?

We analyse the information and knowledge flows associated with patents and co-patents in Europe (EU15: 171 NUTS2 regions) to:

- Measure the role of geography and relations
- Study the impact of EU S\&T policy (w.r.t. Framework programmes)

Background literature

Innovation activity and networks:

Griliches, 1979; Jaffe A.B., Henderson R., Trajtenberg M., 1993; Audretsch, Feldman, 1996; Cowan and Jonard, 1999; Paci and Usai, 2000; Breschi and Lissoni, 2004 and 2009; Maggioni and Uberti, 2005 and 2008, Maggioni, Nosvelli and Uberti, 2007, Maggioni, Uberti and Usai 2011, Le Sage and Pace, 2008 Picci, 2010 and many others

Spatial econometrics and innovation:

Acs, Anselin and Varga, 2002; Fischer and Varga, 2003; Bottazzi and Peri, 2003, Greunz, 2003; Bode E., 2004; Moreno, Paci and Usai, 2005, Autant-Bernard and LeSage, 2009; Usai, 2010; Varga et al. 2010 and many others

Geographical diffusion:

 unintended knowledge spillovers

Relational networking:

intentional knowledge barter exchange

Relational networking: intentional knowledge barter exchange

How to measure relational networking?

Through the EU 5 $5^{\text {th }}$ Framework Programme (1998-2002)
Aim of EU 5FP : "to integrate different research areas and to develop a critical mass of European resources in S\&T".
Total number of financed contracts: 16,085
We select contracts with a network structure (mainly joint research projects) and based our analysis on 6,755 networks between institutions (42% of total 5FP contracts): average membership being equal to 7 (6 participants +1 coordinator).
We aggregate these "institutional" networks at the regional level to:

- detect the unobservable structure of S\&T knowledge flows;
- compare geographic and relational autocorrelation phenomena;
- test the robustness of our previous results to enlarged sample of regions, different networks structures and link value patterns;
- study the effect of EU S\&T policy (Framework Programmes)

Before the analysis: A logical guide to the presentation

In this paper we measure the effect of proximity on innovative performance (by spatial e'trix estimation techniques). Proximity (Maggioni et Al. 2007) has a Geographic and a Relational dimensions (2 dimensions: GEO, REL)
Since the actual relational structure measured by 5FP research networks is unobservable, we allow for different network structures (by limiting ourselves to "regular" patterns we identified 6 structures: A, B, C, D, E, F)
For each structure we allow also for different criteria for evaluation of links (5 links values: 1, N, L, FS, FA)
Econometric analysis is designed in order to detect which of the different specification of relational proximity is more relevant.
Ex-ante, 3 possible results:

- Results are robust to all specification = irrelevance of specification
- Results are significant and different for any specification = need for case studies a/o field experiments
- Results are significant only for a given specification = exact identification

A logical guide to the presentation Link values and direction

Links	Undirected	Directed
Binary		BUN
Weighted		

Source:
Fagiolo et al. 2007

A logical guide to the presentation Link values and direction

Source:
Fagiolo et al. 2007

A logical guide to the presentation Link values

For each structure we have to allow also for different criteria for evaluation of links (5 links values: 1, N, L, FS, FA). In other words we assume that each links is valued.
1 a constant value, irrespective of the number of nodes in the net
\mathbf{N} a value which is inversely dependent on the number of nodes in the net
L a value which is inversely dependent on the number of links in the net
FS the total funding of contract divided equally among participants
FA the total funding of contract divided unequally among participants
The coordinators gets
each participant gets
In a 5 nodes net, therefore each link may be alternatively valued:

The weights matrices: spatial vs. relational

- Spatial weight matrix:
rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a $3+1$ steps procedure based on 5FP

1 contract between institutions

The weights matrices: spatial vs. relational

- Spatial weight matrix:
rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a 3 + 1 steps procedure based on 5FP

The weights matrices: spatial vs. relational

- Spatial weight matrix:
rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a $3+1$ steps procedure based on 5FP

The weights matrices: spatial vs. relational

regions	\mathbf{i}	j	k	w	\mathbf{z}
i		1	1	0	0
j	1		0	0	1
k	1	0		0	0
w	0	0	0		0
z	0	1	0	0	

Geograph. Proximity $\neq \begin{aligned} & \text { Relationa } \\ & \text { proximity }\end{aligned}$ (contiguity) (intensity)

regions	i	j	k	w	z
i		12	3	38	5
j	7		3	0	0
k	0	3		6	3
w	0	0	0		0
z	8	0	0	0	

Relational proximity à la Maggioni et AI (2007)

 hierarchical vs. a-hierarchical
hierarchical network

information flows only between the coordinator-participant couplets

[^0]
a-hierarchical network

information flows among all members

Member 6

Relational proximity (a complete framework) hierarchical/A-hierarchical vs. Symmetrical/a-symmetrical

Relational proximity (a complete framework) hierarchical/A-hierarchical vs. Symmetrical/a-symmetrical

Geographical spillover and relational networking in patenting activity:
A spatial (geographic/relational) dependence analysis

Area:
171 European regions at Nuts2 level (EU 15) (exceptions: DK Nuts0, LUX Nuts0, UK Nuts1)

Time Period:
dependent variable (average 2005-2006) indep. variables (average 1999-2004)

Dependent variable: patent applications per million labour force (source: OECD)

Spatial Weights:
Geographical contiguity matrices (contiguity) Relational proximity matrices (FP5)

TABLE 1: Testing for the existence of:
GEOgraphic and RELational autocorrelation: Moran's I

VARIABLE	WEIGHT	Moran's I	PROB
PAT	GEO	0.118	0.002
PAT	REL A1	0.059	0.000
PAT	REL AN	0.084	0.014
PAT	REL AL	0.061	0.001
PAT	REL AFS	0.043	0.010
PAT	REL AFA	0.043	0.009
PAT	REL B1	0.063	0.000
PAT	REL BN	0.069	0.000
PAT	REL BL	0.069	0.000
PAT	REL BFS	0.054	0.000

VARIABLE	WEIGHT	Moran's I	PROB

PAT	REL C1	0.070	0.000
PAT	REL CN	0.074	0.000
PAT	REL CL	0.076	0.001
PAT	REL CFS	0.074	0.000
PAT	REL CFA	0.074	0.000
PAT	REL D1	0.058	0.000
PAT	REL DN	0.057	0.002
PAT	REL DL	0.056	0.005
PAT	REL DFS	0.041	0.039
PAT	REL DFA	0.041	0.036

Moran's I computed on dependent variable PAT (all + and significant) (patent "inventor-based", average value of the period 2005-06) 20 different "Spatial" (1 GEO and 19 REL) weight matrices
possibly spurious spatial correlation!!

GEO vs. REL in patenting activity:

 a knowledge production function frameworkSEM (Spatial Error Model) ML estimation, double-log specification

| PAT $_{i t}=\beta_{0}+\beta_{1}$ BizRDD $_{i}^{t-n}+\beta_{2} G o v R D_{i}^{t-n}+\beta_{3} I N N_{i}^{t-n}+\beta_{4} P R O D_{i}^{t-n}+$ |
| :--- | :--- |
| $+\beta_{5} A C C E S S_{i}^{t-n}+\beta_{6} C O O R D_{i}^{t-n}+\beta_{6} B E T W_{i}^{t-n} \lambda W_{i} \varepsilon^{t-n}+\xi_{i}^{t-n}$ |

SAR (Spatial Autoregressive Model) ML estimation, double-log specification

$$
\begin{aligned}
& \text { PAT }_{i t}=\rho W P A T_{i t}+\beta_{0}+\beta_{1} B_{i z R D} D_{i}^{t-n}+\beta_{2} \text { GovRD }_{i}^{t-n}+\beta_{3} I N N_{i}^{t-n}+ \\
& +\beta_{4} P R O D_{i}^{t-n}+\beta_{5} A C C E S S_{i}^{t-n}+\beta_{6} \text { COORD }_{i}^{t-n}+\beta_{6} \text { BETW }_{i}^{t-n}+v_{i}^{t-n}
\end{aligned}
$$

BizRD = business R\&D (Eurostat: average 1999-2003)
GovRD = government R\&D (Eurostat: average 1999-2003)
INN = Location Quotient HT patent (reference area: EU 15)
PROD = Location Quotient HT manufacturing (Eurostat: average 1999-2003)
ACCESS = Multimodal accessibility (ESPON 1999)
COORD $=\mathrm{n}$. of contract coordinated by a regional institution (EU 5FP)
BETW = betweenness centrality of region i (EU 5FP)

TABLE 2: Testing for the existence of:
GEOgraphic or RELational "spatial" autocorrelation: regressions

	Weight Matrix	Moran's I/ DF	Probability	Model strategy
	GEO	0.1009	0.051	LAG
	B_{1}	-0.0001	0.233	OLS
	B_{N}	0.0088	0.049	LAG
	B_{L}	0.0225	0.091	ERROR
	$\mathrm{B}_{\text {FS }}$	-0.0037	0.678	OLS
	C_{1}	0.0464	0.007	LAG
	C_{N}	0.0512	0.007	LAG
	C_{L}	0.0541	0.009	LAG
	$\mathrm{C}_{\text {FS }}$	0.0475	0.011	LAG
	$\mathrm{C}_{\text {FA }}$	0.0472	0.011	LAG
	A	0.011	0.22	OLS
	D	0.0002	0.673	OLS

Moran's I (errors) based on different weight matrices (1 GEO, 11 REL)

No "spatial" autocorrelation for these A and D net structures

The relational weights matrices:

 hierarchical/a-hierarchical vs. Symmetrical/a-symmetrical

A and D:
E'trix
Exclusion
GEO only REL only

TABLE 3: Testing for the existence of: GEOgraphic or RELational autocorrelation

${ }^{* * *}$	1% l.o.s.	
$* *$	5% l.o.s.	
$*$		10% l.o.s.
	$>10 \%$ l.o.s.	

		Geo Prox	Relational Proximity						
	OLS	contiguity	B_{N}	B_{L}	C_{1}	C_{N}	C_{L}	C_{FS}	C_{FA}
Variables									
Constant	5.653	4.726	3.464	5.796	3.568	3.428	3.463	3.691	3.71
BIZR\&D	1.091	0.966	1.06	1.084	1.073	1.068	1.065	1.073	1.074
GOVR\&D	-0.102	-0.072	-0.096	-0.121	-0.083	-0.089	-0.089	-0.073	-0.073
ACCESS	0.001	$2.72 \mathrm{E}-04$	0.001	0.001	0.001	0.001	0.001	0.001	0.001
PROD	1.038	1.021	1.023	1.025	1.039	1.038	1.039	1.041	1.041
INN	0.066	0.054	0.054	0.08	0.061	0.062	0.063	0.058	0.058
COORD	-0.055	-0.055	-0.052	-0.056	-0.188	-0.195	-0.193	-0.181	-0.18
PPAT		0.196	0.408		0.51	0.54	0.533	0.479	0.475
λ PAT				0.485					
Obs.	171	171	171	171	171	171	171	171	171
LIK	-283.5	-280.31	-282.9	-282.5	-277.3	-276.2	-275.9	-278.1	-278.1
AIC	581.07	576.62	581.81	579.09	570.63	568.3	567.81	572.13	572.29

2 alternative specifications of a complete model GEO and REL autocorrelation

ML estimation, double-log specification
SAR (REL) + Spatially lagged independent Variable WgeoPAT

$$
\begin{aligned}
& P A T_{i t}=\rho W^{2} e l P A T_{i t}+\beta_{0}+\beta_{1} \operatorname{BizRD}_{i}^{t-n}+\beta_{2} G o v R D_{i}^{t-n}+\beta_{3} I N N_{i}^{t-n} \\
& +\beta_{4} P R O D_{i}^{t-n}+\beta_{5} P E R I P H_{i}^{t-n}+\beta_{6} n M E M B_{i}^{t-n}+{W g e o P A T_{i t}}+v_{i}^{t-n}
\end{aligned}
$$

SAR (GEO) + Spatially lagged independent Variable WreIPAT

$$
\begin{aligned}
& P A T_{i t}=\rho W g e o P A T_{i t}+\beta_{0}+\beta_{1} \operatorname{BizRD}_{i}^{t-n}+\beta_{2} G o v R D_{i}^{t-n}+\beta_{3} I N N_{i}^{t-n} \\
& +\beta_{4} P R O D_{i}^{t-n}+\beta_{5} P E R I P H_{i}^{t-n}+\beta_{6} n M E M B_{i}^{t-n}+W_{i t}=I P A T_{i t}+\mu_{i}^{t-n}
\end{aligned}
$$

If data generation process has got both a GEOgraphical and a RELational component and we estimates separatedly these 2 components, we are using misspecified models

TABLE 4a: Testing for the existence of:
GEOgraphic and RELational autocorrelation GEO lagged indep. variable + REL Weight Matrix

Lagged variable	Coefficient	Probability	Weight matrix	Moran's I/DF	Probability	Model specification
W_GEO PAT	0.246	0.008	$\mathrm{~B}_{1}$	-0.0046	0.656	OLS
W_GEO PAT	0.246	0.008	$\mathrm{~B}_{\mathrm{N}}$	0.0026	0.191	OLS
W_GEO PAT	0.246	0.008	$\mathrm{~B}_{\mathrm{L}}$	0.0162	0.167	OLS
W_GEO PAT	0.246	0.008	$\mathrm{~B}_{\text {FS }}$	-0.0079	0.86	OLS
W_GEO PAT	0.246	0.008	C_{1}	0.0391	0.017	LAG
W_GEO PAT	0.246	0.008	C_{N}	0.0443	0.015	LAG
W_GEO PAT	0.246	0.008	C_{L}	0.0477	0.017	LAG
W_GEO PAT	0.246	0.008	$C_{\text {FS }}$	0.0391	0.028	LAG
W_GEO PAT	0.246	0.008	$\mathrm{C}_{\text {FA }}$	0.0388	0.029	LAG

No "spatial" autocorrelation for B network structures

TABLE 4b: Testing for the existence of: GEOgraphic and RELational autocorrelation

 REL lagged indep. variable + GEO Weight Matrix| Lagged variable W | Coefficient | Probability | Moran's I/DF
 Weight matrix $=$ GEO | Probability | Model specification |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W_B1 PAT | 0.499 | 0.344 | 0.094 | 0.065 | OLS |
| $W_{-} B_{N}$ PAT | 0.401 | 0.362 | 0.096 | 0.059 | OLS |
| W_B ${ }_{\text {L }}$ PAT | 0.258 | 0.326 | 0.099 | 0.053 | OLS |
| W_B ${ }_{\text {FS }}$ PAT | 0.579 | 0.276 | 0.098 | 0.055 | OLS |
| W_C ${ }_{1}$ PAT | 0.534 | 0.001 | 0.084 | 0.093 | LAG |
| $\mathrm{W}_{-} \mathrm{C}_{\mathrm{N}}$ PAT | 0.566 | 0.000 | 0.083 | 0.095 | LAG |
| W_C ${ }_{\text {L }}$ PAT | 0.556 | 0.000 | 0.085 | 0.089 | LAG |
| W_C ${ }_{\text {FS }}$ PAT | 0.499 | 0.001 | 0.083 | 0.097 | LAG |
| W_C ${ }_{\text {FA }}$ PAT | 0.495 | 0.001 | 0.083 | 0.096 | LAG |

No "spatial" autocorrelation for B network structures

The relational weights matrices:

 hierarchical/a-hierarchical vs. Symmetrical/a-symmetrical

TABLE 5: Testing for the existence of: GEOgraphic and RELational autocorrelation

1\% l.o.s.
5\% l.o.s.
10\% I.o.s.
$>10 \%$ l.o.s.

	C1	CN	CL	CFS	CFA	GEO				
VARIABLE	COEFF									
COORD	-0.173	-0.182	-0.179	-0.165	-0.163	-0.181	-0.19	-0.187	-0.172	-0.171
BETW_C	0.006	0.006	0.005	0.004	0.004	0.004	0.004	0.003	0.002	0.002
W_GEO PAT	0.191	0.184	0.184	0.199	0.2					
W_C ${ }_{1}$ PAT						0.471				
$\mathrm{W}_{-} \mathrm{C}_{\mathrm{N}}$ PAT						5	0.507			
W_C ${ }_{\text {L }}$ PAT								0.5		
$W_{\sim} \mathrm{C}_{\text {FS }}$ PAT									0.438	
W_C ${ }_{\text {FA }}$ PAT									\cdots	0.433
					${ }^{0.397}$					
ρ REL	0.431	0.467	0.463	0.401	0.397					
ρ GEO						0.142	0.137	0.137	0.149	0.149
Obs.	171	171	171	171	171	171	171	171	171	171
LIK	-275.02	-274.02	-273.74	-275.57	-275.64	-275.39	-274.31	-274.04	-276.01	-276.1
AIC	570.05	568.04	567.49	571.14	571.28	570.79	568.62	568.08	572.04	573.19

Conclusion

This paper tests the joint role, within the innovation activity of European regions, of formal a-spatial networks between geographically distant region (intentional knowledge barter exchange) and diffusive patterns based on geographical contiguity (unintended knowledge spillovers).
Building on previous works we address two methodological issues:

- How to jointly estimates two different (GEO and REL) autocorrelation phenomena (weight matrix + lagged variable)
- How to model the unobservable structure and link value of actual knowledge flows within joint research project
Results show that:
- formal knowledge networks play a relevant role besides geographical spillovers;
- knowledge follows hierarchical structures (efficiency reasons?); therefore FP may sustain the "knowledge economy" but not regional cohesion if most coordinators are in core regions
- coordinating a large number of networks is not as important as being in the "right" networks (connected to other "hot spots")

Future research

After 10-15 years on knowledge-science-technology nets ...

- need to build a bridge between the "macro/descriptive" approach and the "micro-based" network formation/stability approach

How can we achieve it?

- theoretical models which take into account more realistic hypotheses on the nature of knowledge and on the informational asymmetries, i.e. mix Jackson and Wolinsky (1996), with Cowan and Jonard (2004);
- behavioural experiments on how people thinks and acts when they have to establish relations in order to solve complex problems requiring collaboration (Callander and Plott, 2005);
- simulations of the same task performed by "rational, utility maximising agents/algorithm" (based on Maggioni, Uberti, 2009);
- field experiments (and case studies) based on specific Joint Research projects;

[^0]: Participant 5

