#### AQR workshop on Innovation and economic regional performace

Barcelona 18-19 October 2012

#### **Does intentional mean hierarchical?**

Knowledge flows and innovative performance of European regions



## A wider framework

#### Networks and Geography in the economics of S&T



## A wider framework

#### Networks and Geography in the economics of S&T



# Networks and Geography

| Strategy I                                                                                                      | Strategies                | Strategy II                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Putting networks into geography                                                                                 |                           | Putting geography into networks                                                                                                           |
| Relational vs. Spatial proximity                                                                                | Object of analysis        | Networks of "geographically-defined" meso/macro nodes                                                                                     |
| Space = Proximity<br>my behaviour = f (neighbours')                                                             | Rationale of the analysis | Who establish and acts relations?<br>Agents/organizations = micro level                                                                   |
| <ul><li>Who is my neighbour?</li><li>Someone living nearby</li><li>Someone I frequently interact with</li></ul> | ith                       | However micro behaviours are<br>influenced by unobservable "local"<br>conditions/interactions; thus the need<br>for "meso/macro" analysis |
| Social Network Analysis<br>Spatial Econometrics:                                                                | Analytical<br>Tools       | Social Network Analysis<br>Network Topology                                                                                               |
| Spatial + Relational weights                                                                                    |                           | Space = Distance -> Gravity models                                                                                                        |

### Aims of the presentation

- Innovation activity is affected by spatial concentration at all geographical levels (Nuts2, Nuts3, TTWA, etc). Empirics shows that R&D institutions (universities, govt.labs, H-T firms) do cluster
- How do scientific information and knowledge flow between these clusters/regions?
- According to diffusive patterns based on spatial contiguity (unintended spatial spillover à la Acs, Anselin and Varga, 2002)?
- According to intentional relations based on a-spatial networks (knowledge barter exchange à la Cowan and Jonard, 1999)?
- We analyse the information and knowledge flows associated with patents and co-patents in Europe (EU15: 171 NUTS2 regions) to:
- Measure the role of geography and relations
- Study the impact of EU S&T policy (w.r.t. Framework programmes)

## **Background literature**

#### **Innovation activity and networks**:

Griliches, 1979; Jaffe A.B., Henderson R., Trajtenberg M., 1993; Audretsch, Feldman, 1996; Cowan and Jonard, 1999; Paci and Usai, 2000; Breschi and Lissoni, 2004 and 2009; Maggioni and Uberti, 2005 and 2008, Maggioni, Nosvelli and Uberti, 2007, Maggioni, Uberti and Usai 2011, Le Sage and Pace, 2008 Picci, 2010 and many others

#### **Spatial econometrics and innovation**:

Acs, Anselin and Varga, 2002; Fischer and Varga, 2003; Bottazzi and Peri, 2003, Greunz, 2003; Bode E., 2004; Moreno, Paci and Usai, 2005, Autant-Bernard and LeSage, 2009; Usai, 2010; Varga et al. 2010 and many others











# Relational networking: intentional knowledge barter exchange



# Relational networking: intentional knowledge barter exchange



# How to measure relational networking?

Through the EU 5<sup>th</sup> Framework Programme (1998-2002)

- Aim of **EU 5FP** : "to integrate different research areas and to develop a critical mass of European resources in S&T".
- Total number of financed contracts: 16,085
- We select contracts with a network structure (mainly joint research projects) and based our analysis on **6,755** networks between institutions (**42%** of total 5FP contracts): average membership being equal to 7 (6 participants + 1 coordinator).
- We aggregate these "institutional" networks at the regional level to:
- detect the unobservable structure of S&T knowledge flows;
- compare geographic and relational autocorrelation phenomena;
- test the robustness of our previous results to enlarged sample of regions, different networks structures and link value patterns;
- study the effect of EU S&T policy (Framework Programmes)

#### Before the analysis: A logical guide to the presentation

- In this paper we measure the effect of proximity on innovative performance (by spatial e'trix estimation techniques). Proximity (Maggioni et Al. 2007) has a Geographic and a Relational dimensions (**2 dimensions: GEO, REL**)
- Since the actual relational structure measured by 5FP research networks is unobservable, we allow for different network structures (by limiting ourselves to "regular" patterns we identified 6 structures: **A**, **B**, **C**, **D**, **E**, **F**)
- For each structure we allow also for different criteria for evaluation of links (5 links values: 1, N, L, FS, FA)
- Econometric analysis is designed in order to detect which of the different specification of relational proximity is more relevant.
- Ex-ante, 3 possible results:
- Results are robust to all specification = irrelevance of specification
- Results are significant and different for any specification = need for case studies a/o field experiments
- Results are significant only for a given specification = exact identification

## A logical guide to the presentation Link values and direction



## A logical guide to the presentation Link values and direction



Source: Fagiolo et al. 2007

# A logical guide to the presentation Link values

- For each structure we have to allow also for different criteria for evaluation of links (**5 links values**: **1**, **N**, **L**, **FS**, **FA**). In other words we assume that each links is valued.
- 1 a constant value, irrespective of the number of nodes in the net1
- N a value which is inversely dependent on the number of nodes in the net 1/N
- L a value which is inversely dependent on the number of links in the net 1/L
- FS the total funding of contract divided equally among participants F/N
- FA the total funding of contract divided unequally among participants The coordinators gets

2F/(N+2)

F/(N+2)

since 2F/(N+2)+ NF/(N+2) = F

In a 5 nodes net, therefore each link may be alternatively valued:



each participant gets







- Spatial weight matrix: rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a 3 + 1 steps procedure based on 5FP

#### 1 contract between institutions



- Spatial weight matrix: rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a 3 + 1 steps procedure based on 5FP



- Spatial weight matrix: rook procedure (in Europe not too dissimilar from queen procedure)
- Relational weight matrix: a 3 + 1 steps procedure based on 5FP





#### Relational proximity à la Maggioni et Al (2007) hierarchical vs. a-hierarchical

#### hierarchical network

information flows only between the coordinator-participant couplets



#### Participant 5

#### a-hierarchical network

information flows among all members



Member 6

#### Relational proximity (a complete framework) hierarchical/A-hierarchical vs. Symmetrical/a-symmetrical



#### Relational proximity (a complete framework) hierarchical/A-hierarchical vs. Symmetrical/a-symmetrical



# Geographical spillover and relational networking in patenting activity:

A spatial (geographic/relational) dependence analysis

| Area:               | 171 European regions at Nuts2 level (EU 15)<br>(exceptions: DK Nuts0, LUX Nuts0, UK Nuts1) |
|---------------------|--------------------------------------------------------------------------------------------|
| Time Period:        | dependent variable (average 2005-2006)<br>indep. variables (average 1999-2004)             |
| Dependent variable: | <b>patent</b> applications per million labour force (source: OECD)                         |
| Spatial Weights:    | Geographical contiguity matrices (contiguity)<br>Relational proximity matrices (FP5)       |

# **TABLE 1**: Testing for the existence of:**GEO**graphic and **REL**ational autocorrelation: Moran's I

| VARIABLE | WEIGHT  | Moran's I | PROB  | VARIABLE | WEIGHT  | Moran's I | PROB  |
|----------|---------|-----------|-------|----------|---------|-----------|-------|
| PAT      | GEO     | 0.118     | 0.002 | -        |         |           |       |
|          |         |           |       | PAT      | REL C1  | 0.070     | 0.000 |
| PAT      | REL A1  | 0.059     | 0.000 | PAT      | REL CN  | 0.074     | 0.000 |
| PAT      | REL AN  | 0.084     | 0.014 | PAT      | REL CL  | 0.076     | 0.001 |
| PAT      | REL AL  | 0.061     | 0.001 | PAT      | REL CFS | 0.074     | 0.000 |
| PAT      | REL AFS | 0.043     | 0.010 | PAT      | REL CFA | 0.074     | 0.000 |
| PAT      | REL AFA | 0.043     | 0.009 |          |         |           |       |
|          |         |           |       | PAT      | REL D1  | 0.058     | 0.000 |
| PAT      | REL B1  | 0.063     | 0.000 | PAT      | REL DN  | 0.057     | 0.002 |
| PAT      | REL BN  | 0.069     | 0.000 | PAT      | REL DL  | 0.056     | 0.005 |
| PAT      | REL BL  | 0.069     | 0.000 | PAT      | REL DFS | 0.041     | 0.039 |
| PAT      | REL BFS | 0.054     | 0.000 | PAT      | REL DFA | 0.041     | 0.036 |

Moran's I computed on dependent variable PAT (all + and significant) (patent "inventor-based", average value of the period 2005-06) 20 different "Spatial" (1 GEO and 19 REL) weight matrices possibly spurious spatial correlation!!

GEO vs. REL in patenting activity: a knowledge production function framework SEM (Spatial Error Model) ML estimation, double-log specification  $PAT_{it} = \beta_0 + \beta_1 BizRD_i^{t-n} + \beta_2 GovRD_i^{t-n} + \beta_3 INN_i^{t-n} + \beta_4 PROD_i^{t-n} + \beta_4 PROD_i^{$ + $\beta_5 ACCESS_i^{t-n} + \beta_6 COORD_i^{t-n} + \beta_6 BETW_i^{t-n} \lambda W_i \varepsilon^{t-n} + \xi_i^{t-n}$ SAR (Spatial Autoregressive Model) ML estimation, double-log specification  $PAT_{it} = (\rho WPAT_{it}) + \beta_0 + \beta_1 BizRD_i^{t-n} + \beta_2 GovRD_i^{t-n} + \beta_3 INN_i^{t-n} + \beta_2 GovRD_i^{t-n} + \beta_3 INN_i^{t-n} + \beta_3 INN$  $+\beta_4 PROD_i^{t-n} + \beta_5 ACCESS_i^{t-n} + \beta_6 COORD_i^{t-n} + \beta_6 BETW_i^{t-n} + \nu_i^{t-n}$ **BizRD = business R&D** (Eurostat: average 1999-2003) GovRD = government R&D (Eurostat: average 1999-2003) **INN = Location Quotient HT patent (reference area: EU 15) PROD** = Location Quotient **HT** manufacturing (Eurostat: average 1999-2003) ACCESS = Multimodal accessibility (ESPON 1999) COORD = n. of contract coordinated by a regional institution (EU 5FP)

**BETW** = betweenness centrality of region i (EU 5FP)

#### **TABLE 2**: Testing for the existence of:

GEOgraphic or RELational "spatial" autocorrelation: regressions

|           | Weight Matrix   | Moran's I/DF | Probability | Model<br>strategy |
|-----------|-----------------|--------------|-------------|-------------------|
|           | GEO             | 0.1009       | 0.051       | LAG               |
|           | B <sub>1</sub>  | -0.0001      | 0.233       | OLS               |
|           | B <sub>N</sub>  | 0.0088       | 0.049       | LAG               |
|           | BL              | 0.0225       | 0.091       | ERROR             |
| elational | B <sub>FS</sub> | -0.0037      | 0.678       | OLS               |
|           |                 |              |             |                   |
|           | C <sub>1</sub>  | 0.0464       | 0.007       | LAG               |
|           | C <sub>N</sub>  | 0.0512       | 0.007       | LAG               |
| -<br>     | CL              | 0.0541       | 0.009       | LAG               |
|           | C <sub>FS</sub> | 0.0475       | 0.011       | LAG               |
|           | C <sub>FA</sub> | 0.0472       | 0.011       | LAG               |
|           | А               | 0.011        | 0.22        | OLS               |
|           | D               | 0.0002       | 0.673       | OLS               |

Moran's I (errors) based on different weight matrices (1 GEO, 11 REL)

No "spatial" autocorrelation for these A and D net structures

#### The relational weights matrices: hierarchical/a-hierarchical vs. Symmetrical/a-symmetrical



# **TABLE 3**: Testing for the existence of:**GEO**graphic **Or REL**ational autocorrelation



|           |        | Geo Prox   |                | Relational Proximity |                |                |        |                 |                 |  |
|-----------|--------|------------|----------------|----------------------|----------------|----------------|--------|-----------------|-----------------|--|
|           | OLS    | contiguity | B <sub>N</sub> | BL                   | C <sub>1</sub> | C <sub>N</sub> | CL     | C <sub>FS</sub> | C <sub>FA</sub> |  |
| Variables |        |            |                |                      |                |                |        |                 |                 |  |
| Constant  | 5.653  | 4.726      | 3.464          | 5.796                | 3.568          | 3.428          | 3.463  | 3.691           | 3.71            |  |
| BIZR&D    | 1.091  | 0.966      | 1.06           | 1.084                | 1.073          | 1.068          | 1.065  | 1.073           | 1.074           |  |
| GOVR&D    | -0.102 | -0.072     | -0.096         | -0.121               | -0.083         | -0.089         | -0.089 | -0.073          | -0.073          |  |
| ACCESS    | 0.001  | 2.72E-04   | 0.001          | 0.001                | 0.001          | 0.001          | 0.001  | 0.001           | 0.001           |  |
| PROD      | 1.038  | 1.021      | 1.023          | 1.025                | 1.039          | 1.038          | 1.039  | 1.041           | 1.041           |  |
| INN       | 0.066  | 0.054      | 0.054          | 0.08                 | 0.061          | 0.062          | 0.063  | 0.058           | 0.058           |  |
| COORD     | -0.055 | -0.055     | -0.052         | -0.056               | -0.188         | -0.195         | -0.193 | -0.181          | -0.18           |  |
| ρΡΑΤ      |        | 0.196      | 0.408          |                      | 0.51           | 0.54           | 0.533  | 0.479           | 0.475           |  |
| λΡΑΤ      |        |            |                | 0.485                |                |                |        |                 |                 |  |
|           |        |            |                |                      |                | 474            |        |                 |                 |  |
| Obs.      | 171    | 171        | 171            | 171                  | 171            | 1/1            | 171    | 171             | 171             |  |
| LIK       | -283.5 | -280.31    | -282.9         | -282.5               | -277.3         | -276.2         | -275.9 | -278.1          | -278.1          |  |
| AIC       | 581.07 | 576.62     | 581.81         | 579.09               | 570.63         | 568.3          | 567.81 | 572.13          | 572.29          |  |

#### 2 alternative specifications of a complete model GEO <u>and</u> REL autocorrelation

ML estimation, double-log specification

SAR (REL) + Spatially lagged independent Variable WgeoPAT

$$PAT_{it} = \rho WrelPAT_{it} + \beta_0 + \beta_1 BizRD_i^{t-n} + \beta_2 GovRD_i^{t-n} + \beta_3 INN_i^{t-n} + \beta_4 PROD_i^{t-n} + \beta_5 PERIPH_i^{t-n} + \beta_6 nMEMB_i^{t-n} + WgeoPAT_{it} + v_i^{t-n}$$

SAR (GEO) + Spatially lagged independent Variable WrelPAT  $PAT_{it} = \rho WgeoPAT_{it} + \beta_0 + \beta_1 BizRD_i^{t-n} + \beta_2 GovRD_i^{t-n} + \beta_3 INN_i^{t-n} + \beta_4 PROD_i^{t-n} + \beta_5 PERIPH_i^{t-n} + \beta_6 nMEMB_i^{t-n} + WrelPAT_{it} + \mu_i^{t-n}$ 

If data generation process has got both a GEOgraphical and a RELational component and we estimates separatedly these 2 components, we are using misspecified models

**TABLE 4a**: Testing for the existence of:**GEO**graphic and**REL**ational autocorrelationGEO lagged indep. variable + REL Weight Matrix

| Lagged variable | Coefficient | Probability | Weight<br>matrix | Moran's<br>I/DF | Probability | Model specification |  |
|-----------------|-------------|-------------|------------------|-----------------|-------------|---------------------|--|
|                 |             |             |                  |                 |             |                     |  |
| W_GEO PAT       | 0.246       | 0.008       | B <sub>1</sub>   | -0.0046         | 0.656       | OLS                 |  |
| W_GEO PAT       | 0.246       | 0.008       | B <sub>N</sub>   | 0.0026          | 0.191       | OLS                 |  |
| W_GEO PAT       | 0.246       | 0.008       | BL               | 0.0162          | 0.167       | OLS                 |  |
| W_GEO PAT       | 0.246       | 0.008       | B <sub>FS</sub>  | -0.0079         | 0.86        | OLS                 |  |
| W_GEO PAT       | 0.246       | 0.008       | C <sub>1</sub>   | 0.0391          | 0.017       | LAG                 |  |
| W_GEO PAT       | 0.246       | 0.008       | C <sub>N</sub>   | 0.0443          | 0.015       | LAG                 |  |
| W_GEO PAT       | 0.246       | 0.008       | CL               | 0.0477          | 0.017       | LAG                 |  |
| W_GEO PAT       | 0.246       | 0.008       | C <sub>FS</sub>  | 0.0391          | 0.028       | LAG                 |  |
| W_GEO PAT       | 0.246       | 0.008       | C <sub>FA</sub>  | 0.0388          | 0.029       | LAG                 |  |

No "spatial" autocorrelation for B network structures

# **TABLE 4b**: Testing for the existence of:**GEO**graphic and **REL**ational autocorrelationREL lagged indep. variable + GEO Weight Matrix

| Lagged<br>variable W  | Coefficient | Probability | Probability Moran's I/DF P<br>Weight matrix = GEO |       | Model specification |  |
|-----------------------|-------------|-------------|---------------------------------------------------|-------|---------------------|--|
|                       |             |             |                                                   |       |                     |  |
| W_B <sub>1</sub> PAT  | 0.499       | 0.344       | 0.094                                             | 0.065 | OLS                 |  |
| W_B <sub>N</sub> PAT  | 0.401       | 0.362       | 0.096                                             | 0.059 | OLS                 |  |
| W_B <sub>L</sub> PAT  | 0.258       | 0.326       | 0.099                                             | 0.053 | OLS                 |  |
| W_B <sub>FS</sub> PAT | 0.579       | 0.276       | 0.098                                             | 0.055 | OLS                 |  |
|                       |             |             |                                                   |       |                     |  |
| W_C <sub>1</sub> PAT  | 0.534       | 0.001       | 0.084                                             | 0.093 | LAG                 |  |
| W_C <sub>N</sub> PAT  | 0.566       | 0.000       | 0.083                                             | 0.095 | LAG                 |  |
| W_C <sub>L</sub> PAT  | 0.556       | 0.000       | 0.085                                             | 0.089 | LAG                 |  |
| W_C <sub>FS</sub> PAT | 0.499       | 0.001       | 0.083                                             | 0.097 | LAG                 |  |
| W_C <sub>FA</sub> PAT | 0.495       | 0.001       | 0.083                                             | 0.096 | LAG                 |  |

#### No "spatial" autocorrelation for B network structures

#### The relational weights matrices: hierarchical/a-hierarchical vs. Symmetrical/a-symmetrical



# **TABLE 5**: Testing for the existence of:**GEO**graphic and **REL**ational autocorrelation

"control" variables not reported in the table

\*\*\* 1 \*\* 5 \* 1

1% l.o.s. 5% l.o.s. 10% l.o.s. > 10% l.o.s.

|                       | C1      | CN      | CL      | CFS     | CFA     | GEO     |         |         |         |        |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| VARIABLE              | COEFF   | COEFF  |
|                       |         |         |         |         |         |         |         |         |         |        |
| COORD                 | -0.173  | -0.182  | -0.179  | -0.165  | -0.163  | -0.181  | -0.19   | -0.187  | -0.172  | -0.171 |
| BETW_C                | 0.006   | 0.006   | 0.005   | 0.004   | 0.004   | 0.004   | 0.004   | 0.003   | 0.002   | 0.002  |
|                       |         |         |         |         |         |         |         |         |         |        |
| W_GEO PAT             | 0.191   | 0.184   | 0.184   | 0.199   | 0.2     |         |         |         |         |        |
|                       |         |         |         |         |         |         |         |         |         |        |
| W_C <sub>1</sub> PAT  |         |         |         |         |         | Q.471   |         |         |         |        |
| W_C <sub>N</sub> PAT  |         |         |         |         |         |         | 0.507   |         |         |        |
| W_C <sub>L</sub> PAT  |         |         |         |         |         |         |         | 0.5     |         |        |
| W_C <sub>FS</sub> PAT |         |         |         |         |         |         |         | /       | 0.438   |        |
| W_C <sub>FA</sub> PAT |         |         |         |         |         |         |         |         |         | 0.433  |
|                       |         |         |         |         |         |         |         |         |         |        |
| ρ REL                 | 0.431   | 0.467   | 0.463   | 0.401   | 0.397   |         |         |         |         |        |
| ρ GEO                 |         |         |         |         |         | 0.142   | 0.137   | 0.137   | 0.149   | 0.149  |
|                       |         |         |         |         |         |         |         |         |         |        |
| Obs.                  | 171     | 171     | 171     | 171     | 171     | 171     | 171     | 171     | 171     | 171    |
| LIK                   | -275.02 | -274.02 | -273.74 | -275.57 | -275.64 | -275.39 | -274.31 | -274.04 | -276.01 | -276.1 |
| AIC                   | 570.05  | 568.04  | 567.49  | 571.14  | 571.28  | 570.79  | 568.62  | 568.08  | 572.04  | 573.19 |

# Conclusion

- This paper tests the joint role, within the innovation activity of European regions, of formal a-spatial networks between geographically distant region (intentional knowledge barter exchange) and diffusive patterns based on geographical contiguity (unintended knowledge spillovers).
- Building on previous works we address two methodological issues:
- How to jointly estimates two different (GEO and REL) autocorrelation phenomena (weight matrix + lagged variable)
- How to model the unobservable structure and link value of actual knowledge flows within joint research project

#### Results show that:

- formal knowledge networks play a relevant role besides geographical spillovers;
- knowledge follows hierarchical structures (efficiency reasons?); therefore FP may sustain the "knowledge economy" but not regional cohesion if most coordinators are in core regions
- coordinating a large number of networks is not as important as being in the "right" networks (connected to other "hot spots")

#### Future research

#### After 10-15 years on knowledge-science-technology nets ...

 need to build a bridge between the "macro/descriptive" approach and the "micro-based" network formation/stability approach

#### How can we achieve it?

- **theoretical models** which take into account more realistic hypotheses on the nature of knowledge and on the informational asymmetries, i.e. mix Jackson and Wolinsky (1996), with Cowan and Jonard (2004);
- **behavioural experiments** on how people thinks and acts when they have to establish relations in order to solve complex problems requiring collaboration (Callander and Plott, 2005);
- **simulations** of the same task performed by "rational, utility maximising agents/algorithm" (based on Maggioni, Uberti, 2009);
- field experiments (and case studies) based on specific Joint Research projects;