Equations for the Flex locus of a hypersurface

Laurent Busé, **Carlos D'Andrea**, Martín Sombra, Martin Weimann

EACA 2018 Zaragoza - September 2018

Flexes of curves

Let $C \subset \mathbb{K}^2$ be a graph of a function

Flexes of curves

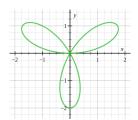
Let $C \subset \mathbb{K}^2$ be a graph of a function

A flex or inflexion point of C is a point $p \in C$ such that its tangent line has contact order ≥ 3

A point $p \in C$ is called a flex of C

A point $p \in C$ is called a flex of C if there exists a line L such that $\operatorname{mult}_p(C \cap L) \geq 3$

A point $p \in C$ is called a flex of C if there exists a line L such that $\operatorname{mult}_p(C \cap L) \geq 3$



we have that

we have that
$$\mathsf{Flex}(C) = \{f = H_f = 0\} \subset \mathbb{P}^2$$

we have that
$$\mathsf{Flex}(C) = \{f = H_f = 0\} \subset \mathbb{P}^2$$

 $f = f(x_0, x_1, x_2)$ the homogeneous irreducible equation of C

we have that
$$\mathsf{Flex}(C) = \{f = H_f = 0\} \subset \mathbb{P}^2$$

- $f = f(x_0, x_1, x_2)$ the homogeneous irreducible equation of C
- $\blacksquare H_f =$ the Hessian of f

As a consequence...

As a consequence...

If a degree d curve C does not contain any line,

As a consequence...

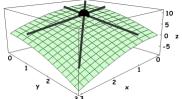
If a degree d curve C does not contain any line, its flex locus has d(3d-6) points counted with multiplicities

A point $p \in S \subset \mathbb{P}^3$ is called a flex of S

A point $p \in S \subset \mathbb{P}^3$ is called a flex of S if there exists a line $L \subset \mathbb{P}^3$ such that $\operatorname{mult}_p(S \cap L) \geq 4$

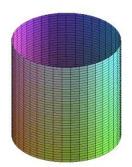
A point $p \in S \subset \mathbb{P}^3$ is called a flex of S

if there exists a line $L \subset \mathbb{P}^3$ such that $\operatorname{mult}_p(S \cap L) \geq 4$



Warning

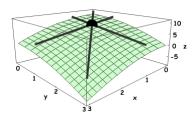
 $p \in Flex(S)$ if there is a line through p contained in S



■ Dimension?

- Dimension?
- Degree?

- Dimension?
- Degree?
- Equations?



A bit of history

A bit of history

Rev. George Salmon

A bit of history

Rev. George Salmon

A Treatise on the analytic geometry of three dimensions

Longmans, Green & Co., 1862

Theorem (Salmon, 1862)

For a reduced $f \in \mathbb{C}[x_0, x_1, x_2, x_3]$ of degree d

Theorem (Salmon, 1862)

For a reduced $f \in \mathbb{C}[x_0, x_1, x_2, x_3]$ of degree d there exists $P_f \in \mathbb{C}[x_0, x_1, x_2, x_3]$ of degree $\leq 11d - 24$ defining Flex(V(f))

Corollary 1 (Salmon, 1862)

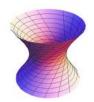
For a general degree d algebraic surface $S \subset \mathbb{P}^3$,

Corollary 1 (Salmon, 1862)

For a general degree d algebraic surface $S \subset \mathbb{P}^3$, Flex(S) is a one dimensional variety of degree $\leq d(11d-24)$

Corollary 2 (Salmon, 1862)

If $P_S(x, y, z)$ vanishes in S, then it is a ruled surface



Corollary 3 (Salmon, 1862)

If S of degree d contains more than d(11d-24) lines, then it has a ruled component

Back to the 21st century...

Janos Kollár (2014)

"I get a polynomial of degree 11d - 18. Salmon claims that in fact the degree should be 11d - 24. I have not checked this"

Terence Tao (blog, 2014)

"The original proof of the Cayley-Salmon theorem, dating back to at least 1915, is not easily accessible and not written in modern language"

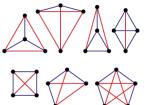
Nets Katz (ICM 2014)

"One of the motives for this lecture is to defend Salmon's honor and explain his original proof"

Why do we care more than 150 years after???

A conjecture by Erdös (1946)

Given *n* different points in the plane, there are at least $\mathcal{O}\left(\frac{n}{\sqrt{\log(n)}}\right)$ different distances among them



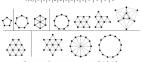
Sharpest result so far

Larry Guth & Nets Katz Annals of Mathematics (2015)

$$\mathcal{O}\left(\frac{n}{\log(n)}\right)$$

Conjecture 1 (Erdős) The minimum number of distinct distances determined by n points in the Euclidean plane is $\Theta\left(\frac{n}{\sqrt{\log n}}\right)$.

The first few exact values of the function v(n) were determined in [ErF96]:



ets with k distinct distances, $2 \le k \le 6$, and maximum number of points

Via Incidence Geometry...

Theorem (Guth-Katz 2015)

Via Incidence Geometry...

Theorem (Guth-Katz 2015)

Let \mathcal{L} be a set of \mathbb{N}^2 lines in \mathbb{R}^3 , with no more than $\mathcal{O}(\mathbb{N})$ of them lying either in the same plane or in a double-ruled surface.

Via Incidence Geometry...

Theorem (Guth-Katz 2015)

Let \mathcal{L} be a set of \mathbb{N}^2 lines in \mathbb{R}^3 , with no more than $\mathcal{O}(N)$ of them lying either in the same plane or in a doubleruled surface. For $2 \le k \le N$, the number of points lying in at least in k lines is of order $\mathcal{O}(N^3k^{-2})$

The proof of this Theorem uses the degree of the Salmon Polynomial!



Let $V \subset \mathbb{P}^n$ a hypersurface

Let $V \subset \mathbb{P}^n$ a hypersurface $p \in V$ is a flex point if there is a line $L \subset \mathbb{P}^n$

Let $V \subset \mathbb{P}^n$ a hypersurface $p \in V$ is a flex point if there is a line $L \subset \mathbb{P}^n$ such that $\operatorname{mult}_p(V \cap L) \geq n+1$

Let $V \subset \mathbb{P}^n$ a hypersurface $p \in V$ is a flex point if there is a line $L \subset \mathbb{P}^n$ such that $\operatorname{mult}_p(V \cap L) \geq n+1$ L is called a flex line

Let $V \subset \mathbb{P}^n$ a hypersurface $p \in V$ is a flex point if there is a line $I \subset \mathbb{P}^n$ such that $\operatorname{mult}_p(V \cap L) \geq n+1$ I is called a flex line The flex locus of V is the set of all the flex points of V

Setup

Let $f_V \in K[x_0, ..., x_n]$ a squarefree homogeneous polynomial defining V, of degree d

Setup

Let $f_V \in K[x_0, \dots, x_n]$ a squarefree homogeneous polynomial defining V, of degree d Set $f_V(\mathbf{x}+t\mathbf{y})=\sum f_{V,k}(\mathbf{x},\mathbf{y})t^k$

k=0

Theorem (Busé-D-Sombra-Weimann 18)

Theorem (Busé-D-Sombra-Weimann 18)

There is a homogeneous $\rho_V \in K[x_0, \dots, x_n]$ with $\deg(\rho_V) = d \sum_{k=1}^n \frac{n!}{k} - (n+1)!$ defining the flex locus of V.

Theorem (Busé-D-Sombra-Weimann 18)

There is a homogeneous $\rho_V \in K[x_0, \ldots, x_n]$ with $\deg(\rho_V) = d\sum_{k=1}^n \frac{n!}{k} - (n+1)!$ defining the flex locus of V. It is uniquely determined modulo f_V by the condition

$$\mathsf{Res}^{oldsymbol{y}}(f_{V,1}(oldsymbol{x},oldsymbol{y}),\ldots,f_{V,n}(oldsymbol{x},oldsymbol{y}),\ell(oldsymbol{y})) \equiv \ell^{n!}
ho_V \, \mathsf{mod}\, f_V$$

for any linear form $\ell \in K[x_0, \dots, x_n]$

Consequences

Corollary (Busé-**D**-Sombra-Weimann 18)

If V has no ruled irreducible components, then Flex(V) is a complete intersection subscheme of \mathbb{P}^n of dimension n-2 and degree $d^2 \sum_{k=1}^n \frac{n!}{k} - d(n+1)!$

In particular

In particular

Flex(V) is set-theoretically defined by equations of degree at most $\max(d, d\sum_{k=1}^n \frac{n!}{k} - (n+1)!)$, and its degree is at most $d^2\sum_{k=1}^n \frac{n!}{k} - d(n+1)!$

Let \mathcal{L}_V be the union of lines contained in V

Let \mathcal{L}_V be the union of lines contained in VWhen d=n, a flex line at a $p\in V$ has order of contact at least n+1, and so it is necessarily contained in V.

Let \mathcal{L}_V be the union of lines contained in VWhen d = n, a flex line at a $p \in V$ has order of contact at least n+1, and so it is necessarily contained in V. In this case, \mathcal{L}_V coincides with the flex locus of V

If V has degree n and no ruled components, then \mathcal{L}_V is a ruled subvariety of V of dimension n-2 and degree at most $n^3 (n-1)! \sum_{k=2}^{n-1} \frac{1}{k}$

Let $V \subset \mathbb{P}^n$ be a generic hypersurface of degree $d \geq n$.

Let $V \subset \mathbb{P}^n$ be a generic hypersurface of degree $d \geq n$. Then

■ Flex(V) is a reduced subscheme of V of dimension n-2

Let $V \subset \mathbb{P}^n$ be a generic hypersurface of degree $d \geq n$. Then

- Flex(V) is a reduced subscheme of V of dimension n-2
- For a generic flex point p of V, there is a unique flex line passing through it.

Let $V \subset \mathbb{P}^n$ be a generic hypersurface of degree $d \geq n$. Then

- Flex(V) is a reduced subscheme of V of dimension n-2
- For a generic flex point p of V, there is a unique flex line passing through it.

If d = n, then this line is contained in V.

Let $V \subset \mathbb{P}^n$ be a generic hypersurface of degree $d \geq n$. Then

- Flex(V) is a reduced subscheme of V of dimension n-2
- For a generic flex point p of V, there is a unique flex line passing through it.

```
If d = n, then this line is contained in V.
If d > n, its order of contact with V at p is exactly n + 1.
```

If $V \subset \mathbb{P}^n$ is a generic hypersurface of degree n

If $V \subset \mathbb{P}^n$ is a generic hypersurface of degree n, then \mathcal{L}_V is a ruled subvariety of V of dimension n-2

If $V \subset \mathbb{P}^n$ is a generic hypersurface of degree n, then \mathcal{L}_V is a ruled subvariety of V of dimension n-2 and degree

$$n^3 (n-1)! \sum_{k=2}^{n-1} \frac{1}{k}$$

complete intersection of V with a hypersurface of degree $n^2(n-1)!$ $\sum_{k=2}^{n-1} \frac{1}{k}$

Explicit formulae for ρ_V ?

Explicit formulae for ρ_V ?

$$n = 2$$

Explicit formulae for ρ_V ?

$$\rho_{V} = H_{f_{V}} = \begin{vmatrix} \frac{\partial^{2} f_{V}}{\partial x_{0}^{2}} & \frac{\partial^{2} f_{V}}{\partial x_{0} \partial x_{1}} & \frac{\partial^{2} f_{V}}{\partial x_{0} \partial x_{2}} \\ \frac{\partial^{2} f_{V}}{\partial x_{0} \partial x_{1}} & \frac{\partial^{2} f_{V}}{\partial x_{1}^{2}} & \frac{\partial^{2} f_{V}}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f_{V}}{\partial x_{0} \partial x_{2}} & \frac{\partial^{2} f_{V}}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f_{V}}{\partial x_{2}^{2}} \end{vmatrix}$$

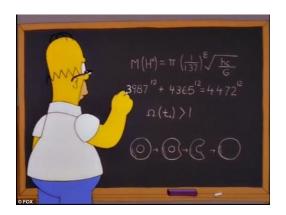
n = 3

$$\rho_V = \Theta - 4H(\Phi + a\Psi)$$

$$\rho_V = \Theta - 4H(\Phi + a\Psi)$$

with $\mathbf{a} \in \mathbb{Z}$ y Θ , H, Φ , Ψ covariants of f_V

Explicit formula for ρ_V ??



All these and more...

All these and more...

Busé, Laurent; D'Andrea, Carlos; Sombra, Martín, Weimann, Martin The geometry of the flex locus of a hypersurface.

arXiV:1804.08025

Moltes Gràcies!!

http://www.ub.edu/arcades/cdandrea.html