Australian Olive Oils (and Sterols)

Paul Miller
President emeritus AOA
Founder Extra Virgin Alliance
hortempm@bigpond.com

WORKSHOP ACEITE DE OLIVA 2016
Los esteroles en el aceite de oliva.
Barcelona
September 8 2016
Presentation Outline

• Australian olive oil data for sterols
• Information from Argentina and California
• Australian research results
• Observations and recommendations
Australian Data, sterols in olive oil

• Analyses were conducted by two Australian laboratories:
 • Australian Oils Research Laboratory (AORL), New South Wales Department of Primary Industries, Wagga Wagga, New South Wales, Australia
 • Modern Olives Laboratory Services, Boundary Bend Ltd, Lara, Victoria, Australia
• Data is from 1251 single variety olive oil analyses done between 2005 and 2014, representing all olive varieties and all regions of Australia
Australian Data, sterols in olive oil

- Data was presented to the Codex (Alimentarius) Fats and Oils Committee (CCFO) electronic working group on campesterol in olive oil
- Two standards and ranges are considered - from the IOC standard and the Australian Standard AS 5264-2011
- Note decision trees are also in the IOC standard and the EU regulation
- CCFO is considering how to deal with natural variations in campesterol
Australian Data, sterols in olive oil

<table>
<thead>
<tr>
<th>Analyses 2005-2014</th>
<th>Cholesterol</th>
<th>Brassicasterol</th>
<th>Campesterol</th>
<th>Stigmasterol</th>
<th>D-7-Stigmastenol</th>
<th>β-Sitosterol</th>
<th>Total sterols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC limits</td>
<td>0.0-0.5</td>
<td>0.0-0.1</td>
<td>0.0-4.0</td>
<td>< Camp.</td>
<td>0.0-0.5</td>
<td>93.0-100.0</td>
<td>> 1000</td>
</tr>
<tr>
<td>AS 5264-2011 limits</td>
<td>0.0-0.5</td>
<td>0.0-0.1</td>
<td>0.0-4.8</td>
<td>0.0-1.9</td>
<td>0.0-0.5</td>
<td>92.5-100.0</td>
<td>> 1000</td>
</tr>
</tbody>
</table>

MEAN	0.19	0.02	3.74	0.74	0.24	94.2	1644
STANDARD DEVIATION	0.13	0.02	0.62	0.26	0.10	0.7	316
MAXIMUM	0.80	0.24	5.10	2.30	1.19	96.7	2862
MINIMUM	0.00	0.00	1.88	0.00	0.00	91.9	707
NUMBER OF SAMPLES	1251	1251	1251	1251	1251	1251	1251
BELOW AS 5264-2011	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.8%
ABOVE AS 5264-2011	0.5%	0.0%	1.1%	0.3%	0.4%	0.0%	0.0%
BELOW IOC	0.0%	0.0%	0.0%	0.0%	0.0%	**2.8%**	1.8%
ABOVE IOC	0.5%	0.0%	**31.4%**	0.0%	0.4%	0.0%	0.0%
Australian Data, sterols in olive oil

<table>
<thead>
<tr>
<th>Analyses 2005-2014</th>
<th>Campesterol</th>
<th>β-Sitosterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC limits</td>
<td>0.0-4.0</td>
<td>93.0-100.0</td>
</tr>
<tr>
<td>AS 5264-2011 limits</td>
<td>0.0-4.8</td>
<td>92.5-100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Campesterol</th>
<th>β-Sitosterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>3.74</td>
<td>94.2</td>
</tr>
<tr>
<td>STANDARD DEVIATION</td>
<td>0.62</td>
<td>0.7</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>5.10</td>
<td>96.7</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>1.88</td>
<td>91.9</td>
</tr>
<tr>
<td>NUMBER OF SAMPLES</td>
<td>1251</td>
<td>1251</td>
</tr>
<tr>
<td>BELOW AS 5264-2011</td>
<td>0.0%</td>
<td>1.0%</td>
</tr>
<tr>
<td>ABOVE AS 5264-2011</td>
<td>1.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>BELOW IOC</td>
<td>0.0%</td>
<td>2.8%</td>
</tr>
<tr>
<td>ABOVE IOC</td>
<td>31.4%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Australian Data, sterols in olive oil

• The key natural variant outside traditional norms is campesterol
• When campesterol levels are high in olive oils, the same oils tend to exhibit lower apparent \(\beta\)-sitosterol levels
Data from Argentina and USA

Sources

• Argentina – Carelli, A. 2008 Olive Oil Chemistry in Argentina, AOCS Hot Topic session, AOCS 2008 Seattle USA

• USA - Evaluation of Fatty Acid and Sterol Profiles, California Olive Oil, 2014/15 Season, Olive Oil Commission of California
Data from Argentina

• With regard to percentages of campesterol, oils from the varieties Arbequina (3.8-5.3), Arauco (4.2-4.5) and Barnea (4.4-5.0) had levels above the international norms (require less than 4.0%)

• As usual when campesterol levels are high in olive oils, the same oils tend to exhibit lower apparent β-sitosterol levels than traditional norms
Data from California

- Some olive oils from the varieties Arbequina and Arbosana have levels of campesterol above international norms
- These cases also exhibit apparent β-sitosterol levels lower than international norms
- Some samples of the variety Koroneiki have total sterols lower than international norms
Australian Research Results

• Sources:

• **The Natural Chemistry of Australian Olive Oil**, Rural Industries Research and Development Corporation, *2007*, *Publication No. 06/132*

• **Sterols in Australian Olive Oil, The effects of technological and biological factors**, Rural Industries Research and Development Corporation, *2010*, *Publication No. 10/173*
Australian Research Results

• The 2007 work showed that olive oils from the varieties Barnea and Koroneiki grown in Australia could have campesterol levels above the international norms

• In addition, some olive oils from the varieties Coratina, Pendolino and Koroneiki had levels of total sterols below international norms
Australian Research Results

• The 2010 work is a comprehensive evaluation of the horticultural and processing factors influencing sterols in olive oils as well as biochemical and genetic factors

• This work examined oils made from fruit (and parts of fruit) of the varieties Frantoio, Barnea and Picual
Australian Research Results

The 2010 work found that:

- Sterol composition in olives and olive oils is influenced by genetic factors – variety has a major influence in particular on levels of campesterol, stigmasterol, apparent β-sitosterol and total sterols.
Australian Research Results

The 2010 work found that:

• Processing practices affected the concentrations of triterpene dialcohols and stigmasterol in olive oils

• The same compounds were found in higher concentrations in oils extracted from olive seeds and the skin/outer flesh of olive fruits than from the flesh of olives
Australian Research Results

The 2010 work found that:

- Horticultural factors can influence the sterol composition of olive oils, in particular \(\beta \)-sitosterol, sitostanol, \(\Delta 5 \)-avenasterol and \(\Delta 7 \)-avenasterol can be affected by irrigation, fruit maturity and fruit size.

- The campesterol/stigmasterol ratio has some potential to be used as an indicator of olive oil quality.
Observations and recommendations

• Since 2005 a lot of work has been done on olive oil sterols ($$ resources)

• This work has mostly been done in consideration of international standards such as those of Codex Alimentarius

• It has also been done because international trade has been affected by the natural variation in olive oil (outside international norms) of the levels of certain sterols – e.g. oils from Argentina, Israel and Australia
Observations and recommendations

• The only sterol that I have seen used after analysis to detect and pursue olive oil fraud is brassicasterol (a strong indicator of the presence of rapeseed or canola oil)

• I have never seen campesterol used for this purpose (and would welcome any examples)

• Despite this, year after year the argument against increasing campesterol levels in standards (e.g. from 4.0 to 4.8 %) is the “increased risk of fraud”
Observations and recommendations

• I am aware of the levels of campesterol and \(\Delta 7 \)-stigmastenol – when exceeding international norms - being used to discount olive oils by olive oil traders both importing into Europe and within Europe.
Observations and recommendations

• We need descriptive ranges of the components of olive oil like sterols in international norms and they must accommodate the natural variations in olive oils from around the world.

• Such variations are likely to increase as olive oil is made from olives in more and more countries from new varieties and in a greater range of climates.
Observations and recommendations

• The detection of fraud is an important function of olive oil analyses
• The sterol analysis is one of the most expensive analyses of olive oil
• Other analyses that are used for this purpose may be cheaper and/or more effective than sterol analysis – this should be considered with regard to research on olive oil analyses and the development of olive oil standards and regulations
Thank you