Inorganic Nanomaterials (NNM group research lines)

Using theoretical structure search methods (e.g. global optimisation, data mining) and classical and quantum mechanical calculations we determine the structure and properties of technologically important inorganic materials (e.g. ZnO, TiO2, CdS, CeO2) when one or more of their dimensions is reduced to the nanoscale. Our studies range from nanoclusters and nanoparticles to nanofilms and nanoporous materials. We are particularly interested in the non-bulk-like properties of inorganic nanoclusters and how they can provide inspiration for novel nanostructured materials (e.g. low density polymorphs) for technological applications.

Graphical abstract: Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles  figure  TOC hydroxylated TiO2 SiO2

Understanding the interplay between size, morphology and energy gap in photoactive TiO2 nanoparticles

Efficient preparation of TiO2 nanoparticle models using interatomic potentials

Properties of hydrated TiO2 and SiO2 nanoclusters: dependence on size, temperature and water vapour pressure

 TiO2 SiO2 NPs 2017 Cluster to bulk ZnO NPs 2017

Stability of Mixed-oxide Titanosilicates: Dependency on Size and Composition from Nanocluster to Bulk

Predicting Size-dependent Emergence of Crystallinity in Nanomaterials: Titania Nanoclusters versus Nanocrystals (back cover)

O. Lamiel-Garcia, A. Cuko, M. Calatayud, F. Illas, S. T. Bromley, Nanoscale (2017) 9, 1049.

Size dependent structural and polymorphic transitions in ZnO: from nanocluster to bulk

F. Viñes, O. Lamiel-Garcia, F. Illas, S. T. Bromley, Nanoscale (2017) 9, 10067.

TiO2 NP band alignment 2017 CeO2 films 2015 

Graphical abstract: Bandgap engineering through nanoporosity

 Size-Dependent Level Alignment between Rutile and Anatase TiO2 Nanoparticles: Implications for Photocatalysis

K. C. Ko, S. T. Bromley, J. Y. Lee, F. Illas, Journal of Physical Chemistry Letters (2017) 8, 5593

Reduced ceria nanofilms from structure prediction

S. M. Kozlov, I. Demiroglu, K. M. Neyman, S. T. Bromley, Nanoscale (2015) 7, 4361.

Bandgap Engineering through Nanoporosity

I. Demiroglu, S. Tosoni, F. Illas, S. T. Bromley, Nanoscale (2014) 6, 1181.

 ZnO on Ag 2014


2D vs 3D energy levels fig

Tetrahedral CeO2 NPs 2012

From monomer to monolayer: a global optimisation study of (ZnO)n nanoclusters on the Ag surface

I. Demiroglu, S. M. Woodley, A. A. Sokol, S. T. Bromley, Nanoscale (2014) 6, 14754

Nanofilm versus Bulk Polymorphism in Wurtzite Materials

I. Demiroglu, S. T. Bromley, Physical Review Letters (2013) 110, 245501.

Octahedrality versus tetrahedrality in stoichiometric ceria nanoparticles

A. Migani, K. M. Neyman, S. T. Bromley, Chemical Communications (2012) 48, 4199.

AB materials croppped Nanowires cropped

Bromley group fig


Apparent Scarcity of Low-Density Polymorphs of Inorganic Solids 

M. A. Zwijnenburg, F. Illas, S. T. Bromley, Physical Review Letters (2010) 104, 175503.

Persistence of Magic Cluster Stability in Ultra-thin Semiconductor Nanorods

W. Sangthong, J. Limtrakul, F. Illas, S. T. Bromley, Nanoscale (2009) 2, 72.

Ultralow-Density Nanocage-Based Metal-Oxide Polymorphs 

J. Carrasco, F. Illas, S. T. Bromley, Physical Review Letters (2007) 99, 235502.


New logo IQTC

logoXRQTC UB logo new

© 2018 Computational Materials Science Laboratory


 iqtc logo

JSN Epic is designed by