A functional explanation of otolith structure

Mariella Dimiccoli 1*, Daniel Bennequin 2, Benoît Girard 3, Alain Berthoz 1
1 LPPA, Collège de France-CNRS, Paris, France
2 Equipe Géométrie et Dynamique, Université Paris Diderot-Paris VII, Paris, France
3 ISIR, Université Pierre et Marie Curie-CNRS, Paris, France

*Contact author: maria.dimiccoli@college-de-france.fr

Problem statement

Otolith organs are responsible for sensing linear head accelerations including gravity.

We investigate the role that the structure of otolith organs plays in their sensory function, focusing on the role of the striola.

The striola is a narrow curved zone that divides each macula in two areas:
1. It is observable in all mammalians.
2. It is parallel to the line of polarity reversal (PRL).
3. It differs structurally from the extra-striolar regions.

Approach

We propose a functional model that can account for the structural diversity between the striola and the extra-striolar regions as well as for the observed shape of the striola.

Our model is based on two hypotheses:

- Hair cells of type I together with striolar afferents constitute a subsystem specialized in the detection of the direction acceleration variations (jerk), including gravity variations.

- The observed shape of the striola, that is a narrow curve region with curvature and torsion, is such that it allows the detection of a large domain of jerk.

Model of acceleration detection

- The striola is modelized as a 3D curve lying on a spherical surface representing the macula.

- Most striolar afferents capture several hair cells (HCS).

- Acceleration direction changes are computed by a striolar afferent as intersection of sectors associated to the hair cells it captures.

- Each sector is perpendicular to the macula and determined by the polarization vector of the hair cell.

- Curvature and torsion are necessary to the striolar afferents to detect a large domain of jerk in spite of being localized on a narrow region.

Results

- We have developed a functional model of the striolar system that explains:
 - The structural diversity between the striola and the extra-striolar regions
 - The observed shape of the striola
 - We have proved the possibility of the existence of a striolar subsystem able to detect a large domain of jerk
 - We have proved that information coded by our model can be decoded by the brain
 - We have tested robustness with respect to neuronal variability

Supported by the EU via the Future & Emerging Technologies Open Scheme: FP7-ITC-2007.8.0. Project 225929: Closed LOop Neural prosthesis for vestibular disorders (CLONS)