Microscopic description of systems of points with Coulomb-type interactions

Sylvia SERFATY

Courant Institute, New York University

FOCM 2017, July 19, Barcelona

collaborations:
Etienne Sandier, Nicolas Rougerie, Simona Rota Nodari,
Mircea Petrache, Thomas Leblé
The question

- Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1, \ldots, x_N) = \sum_{i\neq j} w(x_i - x_j) + N \sum_{i=1}^{N} V(x_i) \quad x_i \in \mathbb{R}^d, d \geq 1$$

- interaction potential

 $$w(x) = -\log |x| \quad \text{with } d = 1, 2 \quad \text{(log gas)}$$

 or $$w(x) = \frac{1}{|x|^s} \quad \max(0, d - 2) \leq s < d \quad \text{(Riesz)}$$

- includes Coulomb: $s = d - 2$ for $d \geq 3$, $w(x) = -\log |x|$ for $d = 2$.

- V confining potential, sufficiently smooth and growing at infinity.
The question

- Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1, \ldots, x_N) = \sum_{i \neq j} w(x_i - x_j) + N \sum_{i=1}^{N} V(x_i) \quad x_i \in \mathbb{R}^d, d \geq 1$$

- Interaction potential

$$w(x) = -\log |x| \quad \text{with } d = 1, 2 \quad \text{(log gas)}$$

or

$$w(x) = \frac{1}{|x|^s} \quad \max(0, d - 2) \leq s < d \quad \text{(Riesz)}$$

- Includes Coulomb: $s = d - 2$ for $d \geq 3$, $w(x) = -\log |x|$ for $d = 2$.

- V confining potential, sufficiently smooth and growing at infinity
Numerical minimization of H_N for $w(x) = -\log |x|$, $V(x) = |x|^2$ (Gueron-Shafrir), $N = 29$
Motivation 1: Fekete points

▶ In logarithmic case minimizers are maximizers of

\[\prod_{i < j} |x_i - x_j| \prod_{i=1}^{N} e^{-N \frac{V}{2}(x_i)} \]

→ weighted Fekete sets (approximation theory) Saff-Totik, Rakhmanov-Saff-Zhou...

▶ Fekete points on spheres and other closed manifolds
Borodachev-Hardin-Saff, Brauchart-Dragnev-Saff...

\[\min_{x_1, \ldots, x_N \in \mathcal{M}} - \sum_{i \neq j} \log |x_i - x_j| \]

▶ Smale’s 7th problem: find an algorithm that computes a minimizer on the sphere up to an error \(\log N \), in polynomial time

▶ Riesz \(s \)-energy

\[\min_{x_1 \ldots x_N \in \mathcal{M}} \sum_{i \neq j} \frac{1}{|x_j - x_j|^s} \]
Minimal s-energy points on a torus, $s = 0, 1, 0.8, 2$
(from Rob Womersley’s webpage)
Motivation 2: Condensed matter physics

Vortices in the Ginzburg-Landau model of superconductivity, in superfluids and Bose-Einstein condensates

Figure: Abrikosov lattices in superconductors
Motivation 3: Statistical mechanics and Random Matrix Theory

With temperature: Gibbs measure

\[d\mathbb{P}_{N,\beta}(x_1, \ldots, x_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{\beta}{2} H_N(x_1, \ldots, x_N)} dx_1 \ldots dx_N \quad x_i \in \mathbb{R}^d \]

\(Z_{N,\beta} \) partition function

- \(d = 1, 2, \ w = -\log |x|: \)

\[d\mathbb{P}_{N,\beta}(x_1, \ldots, x_N) = \frac{1}{Z_{N,\beta}} \left(\prod_{i<j} |x_i - x_j| \right)^{\beta} e^{-\frac{N\beta}{2} \sum_{i=1}^N V(x_i)} dx_1 \ldots dx_N \]

\(\beta = 2 \leadsto \) determinantal processes
Motivation 3: Statistical mechanics and Random Matrix Theory

With temperature: Gibbs measure

\[d\mathbb{P}_{N,\beta}(x_1, \ldots, x_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{\beta}{2} H_N(x_1, \ldots, x_N)} dx_1 \ldots dx_N \quad x_i \in \mathbb{R}^d \]

\(Z_{N,\beta} \) partition function

\(d = 1, 2, \ w = -\log |x|: \)

\[d\mathbb{P}_{N,\beta}(x_1, \ldots, x_N) = \frac{1}{Z_{N,\beta}} \left(\prod_{i<j} |x_i - x_j| \right)^{\beta} e^{-\frac{N\beta}{2} \sum_{i=1}^{N} V(x_i)} dx_1 \ldots dx_N \]

\(\beta = 2 \sim \) determinantal processes
Corresponds to random matrix models (first noticed by Wigner, Dyson):

- **GUE** (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries)
 \[\leftrightarrow d = 1, \beta = 2, V(x) = x^2/2. \]

- **GOE** (real symmetric matrices with Gaussian i.i.d. entries)
 \[\leftrightarrow d = 1, \beta = 1, V(x) = x^2/2. \]

- **Ginibre ensemble** (matrices with complex Gaussian i.i.d. entries)
 \[\leftrightarrow d = 2, \beta = 2, V(x) = |x|^2. \]

Also connection with “two-component plasma”, XY model, sine-Gordon model and Kosterlitz-Thouless phase transition.
The leading order to min H_N (or “mean field limit”)

- Assume $V \to \infty$ at ∞ (faster than $\log |x|$ in the log cases).
 For (x_1, \ldots, x_N) minimizing

$$H_N = \sum_{i \neq j} w(x_i - x_j) + N \sum_{i=1}^{N} V(x_i)$$

one has (Choquet)

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} \delta_{x_i}}{N} = \mu_V \quad \lim_{N \to \infty} \frac{\min H_N}{N^2} = \mathcal{E}(\mu_V)$$

where μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.
- \mathcal{E} has a unique minimizer μ_V among probability measures, called the equilibrium measure (potential theory) Frostman 30’s.
Example: $V(x) = |x|^2$, Coulomb case, then $\mu_V = \frac{1}{cd} 1_{B_1}$ (circle law).

Example $d = 1, w = -\log |x|, V(x) = x^2$ then $\mu_V = \frac{1}{2\pi} \sqrt{4 - x^2} 1_{|x|<2}$ (semi-circle law)

Denote $\Sigma = \text{Supp}(\mu_V)$. We assume Σ is compact with C^1 boundary and if $d \geq 2$ that μ_V has a density which is regular enough in Σ.
Example: $V(x) = |x|^2$, Coulomb case, then $\mu_V = \frac{1}{c_d} 1_{B_1}$ (circle law).

Example $d = 1$, $w = -\log |x|$, $V(x) = x^2$ then $\mu_V = \frac{1}{2\pi} \sqrt{4 - x^2} 1_{|x|<2}$ (semi-circle law).

Denote $\Sigma = \text{Supp}(\mu_V)$. We assume Σ is compact with C^1 boundary and if $d \geq 2$ that μ_V has a density which is regular enough in Σ.
A 2D log gas for $V(x) = |x|^2$

Figure: $\beta = 400$ and $\beta = 5$
Questions

Fluctuations

In what sense does \(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i} \approx \mu \nu \)?
- At small scales (\(O(1) \rightarrow O(N^{-1/d+\varepsilon}) \))?
- Deviations bounds?
- Central limit theorem?

Microscopic behavior

Zoom into the system by \(N^{1/d} \rightarrow \) infinite point configuration.
- What does it look like? What quantities can describe the point configurations?
- How does the picture depend on \(\beta \)? On \(\nu \)?
A CLT for fluctuations (2D Coulomb Gas)

Theorem (Leblé-S)

Assume $d = 2$, $w = -\log$, $\beta > 0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial \Sigma$. Let $f \in C^3_\text{c}(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

mean = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta f \left(1_\Sigma + \log \Delta V \right)^\Sigma
\quad \text{var} = \frac{1}{2\pi \beta} \int_{\Sigma} |\nabla f^\Sigma|^2

where $f^\Sigma = \text{harmonic extension of } f \text{ outside } \Sigma$.

$\Rightarrow \Delta^{-1} \left(\sum_{i=1}^{N} \delta_{x_i} - N \mu_V \right)$ converges to the Gaussian Free Field.

The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Should be generalizable to Coulomb case $d \geq 3$, Riesz cases.
A CLT for fluctuations (2D Coulomb Gas)

Theorem (Leblé-S)

Assume $d = 2$, $w = -\log$, $\beta > 0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial\Sigma$. Let $f \in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^N f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\text{mean} = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta f \left(1_{\Sigma} + \log \Delta V \right) \Sigma \quad \text{var} = \frac{1}{2\pi \beta} \int_{\Sigma} |\nabla f^\Sigma|^2$$

where $f^\Sigma = \text{harmonic extension of } f \text{ outside } \Sigma$.

$$\sim \Delta^{-1} \left(\sum_{i=1}^N \delta_{x_i} - N \mu_V \right)$$

converges to the Gaussian Free Field. The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Should be generalizable to Coulomb case $d \geq 3$, Riesz cases.
A CLT for fluctuations (2D Coulomb Gas)

Theorem (Leblé-S)

Assume $d = 2$, $w = -\log$, $\beta > 0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial \Sigma$. Let $f \in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

mean $= \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta f \left(1 + \log \Delta V \right) \Sigma$

var $= \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^\Sigma|^2$

where $f^\Sigma =$ harmonic extension of f outside Σ.

$\Rightarrow \Delta^{-1} \left(\sum_{i=1}^{N} \delta_{x_i} - N \mu_V \right)$ converges to the Gaussian Free Field.

The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Should be generalizable to Coulomb case $d \geq 3$, Riesz cases.
A CLT for fluctuations (2D Coulomb Gas)

Theorem (Leblé-S)

Assume $d = 2$, $w = -\log$, $\beta > 0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial \Sigma$. Let $f \in C_c^3(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\text{mean} = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta f (1_\Sigma + \log \Delta V) \Sigma \quad \text{var} = \frac{1}{2\pi \beta} \int_{\Sigma} |\nabla f^\Sigma|^2$$

where $f^\Sigma = \text{harmonic extension of } f \text{ outside } \Sigma$.

$\Rightarrow \Delta^{-1} \left(\sum_{i=1}^{N} \delta_{x_i} - N \mu_V \right)$ converges to the Gaussian Free Field.

The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Should be generalizable to Coulomb case $d \geq 3$, Riesz cases.
Previous results

- **2D log case**
 - Rider-Virag same result for $\beta = 2$, $V(x) = |x|^2$
 - Ameur-Hedenmalm-Makarov same result for $\beta = 2$, $V \in C^\infty$ and analyticity in case the support of f intersects $\partial \Sigma$
 - Suboptimal bounds (in N^ε, but with quantified error in probability), including at mesoscale, on $\| \sum_{i=1}^{N} \delta_{x_i} - N_{\mu V} \|$
 - Sandier-S, Leblé, Bauerschmidt-Bourgade-Nikkula-Yau
 - Simultaneous result by Bauerschmidt-Bourgade-Nikkula-Yau for $f \in C^4_c(\Sigma)$

- **1D log case**
 - Johansson 1-cut, V polynomial
 - Borot-Guionnet, Shcherbina 1-cut and V, ξ locally analytic, multi-cut and V analytic
 - Bekerman-Leblé-S with weaker assumptions
 - New proof Lambert-Ledoux-Webb for 1-cut, mesoscopic result Bekerman-Lodhia
 Blow-up procedure

- blow-up the configurations at scale $(\mu V(x)N)^{1/d}$
- define interaction energy \mathbb{W} for infinite configurations of points in whole space
- the total energy is the integral or average of \mathbb{W} over all blow-up centers in Σ.
The energy method: expanding the Hamiltonian

Explicit splitting formula

\[\sum_{i \neq j} w(x_i - x_j) = \int \int_{\Delta_c} w(x - y)(\sum_i \delta_{x_i})(x)(\sum_i \delta_{x_i})(y) \]

\[= \int w*(N_{\mu_V})(N_{\mu_V}) + \int w*(\sum_i \delta_{x_i} - N\mu_V)(\sum_i \delta_{x_i} - N\mu_V) + \text{cross terms} \]

- compute the energy via the potential

\[h_N = w * \left(\sum_i \delta_{x_i} - N\mu_V \right) \]

\[-\Delta h_N = \left(\sum_i \delta_{x_i} - N\mu_V \right) \]
The renormalized energy

Sandier-S, Rougerie-S, Petrache-S
At the limit $N \to \infty$ and after blow-up, in Coulomb cases

$$-\Delta h = (C - 1) \quad C = \sum_{p \in C} \delta_p$$

$$\mathbb{W}(C) := \liminf_{R \to \infty} \frac{1}{R^d} \int_{K_R} |\nabla h|^2$$

but computed in a “renormalized way”

For point processes (Leblé)

$$<\mathbb{W}> = \liminf_{R \to \infty} \frac{1}{R^d} \int_{K_R \times K_R \setminus \triangle} w(x - y)(\rho_2(x - y) - 1) \, dx \, dy$$
The case of the torus

- Assume Λ is T-periodic. Then W is $+\infty$ unless all $N_p = 1$, and can be written as a function of $\Lambda = \{a_1, \ldots, a_M\}$, $M = |T|$.

$$W(a_1, \ldots, a_M) = \frac{c_d^2}{|T|} \sum_{j \neq k} G(a_j - a_k) + \text{cst},$$

where $G =$ Green’s function of the torus ($-\Delta G = \delta_0 - 1/|T|$).

- G can be expressed explicitly via an Eisenstein series and the Dedekind Eta function
Main result on the energy

- Given a configuration (x_1, \ldots, x_N), we examine the blow-up point configurations $\{(\mu_N(x)N^{1/d}(x_i-x))\}$ and their infinite limits C. Averaging near the blow-up center x yields a “point process” $P^x = \text{probability law on infinite point configurations}$. $P = \text{“tagged point process”}$, probability on $\Sigma \times \text{configs}$. The limits will all be stationary. We define

\[
\bar{W}(P) := \int_\Sigma \int \bar{W}(C) dP^x(C) dx
\]

- The main result is

\[
H_N(x_1, \ldots, x_N) \sim N^2 \mathcal{E}(\mu_N) - \frac{N}{d} \log N + N^{1 + \frac{s}{d}} \bar{W}(P)
\]

Sandier-S, Rougerie-S, Petrache-S
Main result on the energy

Given a configuration \((x_1, \ldots, x_N)\), we examine the blow-up point configurations \(\{(\mu_V(x)N)^{1/d}(x_i - x)\}\) and their infinite limits \(C\). Averaging near the blow-up center \(x\) yields a “point process” \(P_x = \) probability law on infinite point configurations. \(P = “tagged point process”,\) probability on \(\Sigma \times \text{configs}\). The limits will all be stationary. We define

\[
\overline{W}(P) := \int_{\Sigma} \int W(C) dP_x(C) dx
\]

The main result is

\[
H_N(x_1, \ldots, x_N) \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + N^{1 + \frac{s}{d}} \overline{W}(P)
\]

Sandier-S, Rougerie-S, Petrache-S
Consequently, if \((x_1, \ldots, x_N)\) is a minimizer of \(H_N\), after blow-up at scale \((\mu_V(x)N)^{1/d}\) around a point \(x \in \Sigma\), for a.e. \(x \in \Sigma\), the limiting infinite configuration as \(N \to \infty\) minimizes \(W\).

Next order expansion of the minimal energy

\[
\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \left\{ \begin{array}{l}
N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\
C_{d,s} \int \mu_V^{1+s/d}(x) \, dx.
\end{array} \right.
\]

Expansion to order \(N\) for minimal logarithmic energy on the sphere Bétermin-Sandier.

For minimizers, points are separated by \(\frac{C}{(N\|\mu_V\|_\infty)^{1/d}}\) and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S.

Similar results for the Ginzburg-Landau model of superconductivity Sandier-S.
Consequently, if \((x_1, \ldots, x_N)\) is a minimizer of \(H_N\), after blow-up at scale \((\mu_V(x)N)^{1/d}\) around a point \(x \in \Sigma\), for a.e. \(x \in \Sigma\), the limiting infinite configuration as \(N \to \infty\) minimizes \(W\).

Next order expansion of the minimal energy

\[
\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \begin{cases}
N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\
C_{d,s} \int \mu_V^{1+s/d}(x) \, dx.
\end{cases}
\]

Expansion to order \(N\) for minimal logarithmic energy on the sphere Bétermin-Sandier

For minimizers, points are separated by \(C/(N\|\mu_V\|_\infty)^{1/d}\) and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S

Similar results for the Ginzburg-Landau model of superconductivity Sandier-S
Consequently, if (x_1, \ldots, x_N) is a minimizer of H_N, after blow-up at scale $(\mu_V(x)N)^{1/d}$ around a point $x \in \Sigma$, for a.e. $x \in \Sigma$, the limiting infinite configuration as $N \to \infty$ minimizes \mathcal{W}.

Next order expansion of the minimal energy

$$
\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \begin{cases}
N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\
C_{d,s} \int \mu_V^{1+s/d}(x) \, dx.
\end{cases}
$$

Expansion to order N for minimal logarithmic energy on the sphere Bétermin-Sandier

For minimizers, points are separated by $\frac{C}{(N\|\mu_V\|_\infty)^{1/d}}$ and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S

Similar results for the Ginzburg-Landau model of superconductivity Sandier-S.
Partial minimization results

- In dimension $d = 1$, the minimum of W over all possible configurations is achieved for the lattice \mathbb{Z} ("clock distribution").

- In dimension $d = 2$, the minimum of W over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).
Partial minimization results

- In dimension $d = 1$, the minimum of W over all possible configurations is achieved for the lattice \mathbb{Z} (“clock distribution”).

- In dimension $d = 2$, the minimum of W over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).
The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50’s)

For $s > 2$, the Epstein zeta function of a lattice Λ in \mathbb{R}^2:

$$
\zeta(s) = \sum_{\substack{p \in \Lambda \backslash \{0\}}} \frac{1}{|p|^s}
$$

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (E_8 and Leech lattices). In dimension 3, does the BCC (body centered cubic) lattice play this role?
The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50’s)

For \(s > 2 \), the Epstein zeta function of a lattice \(\Lambda \) in \(\mathbb{R}^2 \):

\[
\zeta(s) = \sum_{p \in \Lambda \setminus \{0\}} \frac{1}{|p|^s}
\]

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (\(E_8 \) and Leech lattices).

In dimension 3, does the BCC (body centered cubic) lattice play this role?
Conjecture

In dimension 2, the triangular lattice is a global minimizer of W.

- this conjecture was made in the context of vortices in the GL model, which form triangular Abrikosov lattices
- Bétermin-Sandier show that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order N term in the expansion of the minimal logarithmic energy on S^2.
- link with the Cohn-Kumar conjecture, proved in ’17 for dimensions 8 and 24
- In any case, W can be seen as measuring the disorder of a point configuration / process Borodin-S, Leblé
Conjecture

In dimension 2, the triangular lattice is a global minimizer of W.

- This conjecture was made in the context of vortices in the GL model, which form triangular Abrikosov lattices.
- Bétermin-Sandier show that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order N term in the expansion of the minimal logarithmic energy on S^2.
- Link with the Cohn-Kumar conjecture, proved in ’17 for dimensions 8 and 24.
- In any case, W can be seen as measuring the disorder of a point configuration / process Borodin-S, Leblé.
Recall

\[d\mathbb{P}_{N,\beta}(x_1, \ldots, x_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{\beta}{2} N^{-\frac{s}{d}} H_N(x_1, \ldots, x_N)} dx_1 \ldots dx_N \quad x_i \in \mathbb{R}^d \]

- insert next-order expansion of H_N and combine it with an estimate for the volume in phase-space occupied by a neighborhood of a given limiting tagged point process \mathbb{P}
Theorem (Leblé-S, ’15)

We have a Large Deviation Principle at speed N with good rate function $\beta(\mathcal{F}_{\beta} - \inf \mathcal{F}_{\beta})$, i.e.

$$P_{N,\beta}(P) \simeq \exp \left(-\beta N (\mathcal{F}_{\beta}(P) - \inf \mathcal{F}_{\beta}) \right)$$

\Rightarrow the Gibbs measure concentrates on minimizers of \mathcal{F}_{β}.

Here,

$$\mathcal{F}_{\beta}(P) := \frac{1}{2} \overline{W}(P) + \frac{1}{\beta} \int_{\Sigma} \text{ent}[P^{|\Pi}] \, dx,$$

$$\text{ent}[P|\Pi] := \lim_{R \to \infty} \frac{1}{|K_R|} \text{Ent} \left(P_{K_R}|\Pi_{K_R} \right) \quad \text{specific relative entropy}$$

and Π is the Poisson point process of intensity 1.

For specific relative entropy see Rassoul-Agha - Seppäläinen
Interpretation

- Three regimes
 - $\beta \gg 1$ crystallization expected
 - $\beta \ll 1$ entropy dominates \sim Poisson process
 - $\beta \propto 1$ intermediate, no crystallization expected

- In 1D log case the limiting process is “sine-β” (Valko-Virag) and must minimize $\frac{1}{2} W + \frac{1}{\beta} \text{ent}(\cdot | \Pi)$, same for the Ginibre point process in 2D log case $\beta = 2$.

- The crystallization result is complete in 1D (uses uniqueness result of Leblé).

- In 2D log case: local version of the result at any mesoscale
 Leblé

- Generalization to the 2D “two component plasma”
 Leblé-S-Zeitouni
Expansion of $\log Z_{N,\beta}$

1D and 2D Log gas case:

$$\log Z_{N,\beta} = -\frac{\beta N^2}{2} \mathcal{E}(\mu_V) + \frac{\beta N}{2d} \log N - \beta N \min \left(\frac{1}{2\pi} \mathbb{W} + \frac{1}{\beta} \text{ent} \left[\cdot | \Pi \right] \right)$$

$$C_\beta, \text{ indep of } V$$

$$- \beta N \left(\frac{1}{\beta} - \frac{1}{2d} \right) \int_\Sigma \mu_V(x) \log \mu_V(x) \, dx + o(N).$$

Riesz cases:

$$\log Z_{N,\beta} = -\frac{\beta N^{2-s}}{2} \mathcal{E}(\mu_V) - \beta N \min \mathcal{F}_\beta + o(N).$$

To be compared with Borot-Guionnet, Shcherbina, $d = 1$ log case (expansions to larger order in N under stronger assumptions on V), Wiegmann-Zabrodin, $d = 2$ log case (semi-formal)
THANK YOU FOR YOUR ATTENTION!

and some advertising:
ICERM Semester Program on "Point Configurations in Geometry, Physics and Computer Science" February 1, May 4, 2018
https://icerm.brown.edu/programs/sp-s18/