Microscopic description of systems of points with Coulomb-type interactions

Sylvia SERFATY

Courant Institute, New York University

FOCM 2017, July 19, Barcelona

collaborations:

Etienne Sandier, Nicolas Rougerie, Simona Rota Nodari, Mircea Petrache, Thomas Leblé

The question

 Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1,\ldots,x_N)=\sum_{i\neq j}w(x_i-x_j)+N\sum_{i=1}^NV(x_i)\qquad x_i\in\mathbb{R}^d, d\geq 1$$

▶ interaction potential

$$w(x) = -\log |x|$$
 with $d=1,2$ (log gas) or $w(x) = \frac{1}{|x|^s}$ max $(0,d-2) \le s < d$ (Riesz)

- ▶ includes Coulomb: s = d 2 for $d \ge 3$, $w(x) = -\log |x|$ for d = 2.
- ► V confining potential, sufficiently smooth and growing at infinity

The question

 Several problems coming from physics and approximation theory lead to minimizing, with N large

$$H_N(x_1,\ldots,x_N) = \sum_{i\neq j} w(x_i-x_j) + N \sum_{i=1}^N V(x_i) \qquad x_i \in \mathbb{R}^d, d \geq 1$$

▶ interaction potential

$$w(x) = -\log|x|$$
 with $d = 1, 2$ (log gas)

or
$$w(x) = \frac{1}{|x|^s}$$
 max $(0, d-2) \le s < d$ (Riesz)

- ▶ includes Coulomb: s = d 2 for $d \ge 3$, $w(x) = -\log |x|$ for d = 2.
- ► V confining potential, sufficiently smooth and growing at infinity

Numerical minimization of
$$H_N$$
 for $w(x) = -\log |x|$, $V(x) = |x|^2$ (Gueron-Shafrir), $N = 29$

Motivation 1: Fekete points

▶ In logarithmic case minimizers are maximizers of

$$\prod_{i< j} |x_i - x_j| \prod_{i=1}^N e^{-N\frac{V}{2}(x_i)}$$

- → **weighted Fekete sets** (approximation theory) Saff-Totik, Rakhmanov-Saff-Zhou...
- ► Fekete points on spheres and other closed manifolds Borodachev-Hardin-Saff, Brauchart-Dragnev-Saff...

$$\min_{x_1, \dots, x_N \in \mathcal{M}} - \sum_{i \neq j} \log |x_i - x_j|$$

- ► Smale's 7th problem : find an algorithm that computes a minimizer on the sphere up to an error log *N*, in polynomial time
- Riesz s-energy

$$\min_{x_1...x_N \in \mathcal{M}} \sum_{i \neq i} \frac{1}{|x_i - x_j|^s}$$

Minimal s-energy points on a torus, s = 0, 1, 0.8, 2

(from Rob Womersley's webpage)

Motivation 2: Condensed matter physics

Vortices in the Ginzburg-Landau model of superconductivity, in superfluids and Bose-Einstein condensates

Figure: Abrikosov lattices in superconductors

Motivation 3: Statistical mechanics and Random Matrix Theory

With temperature: Gibbs measure

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{\beta}{2}H_N(x_1,\ldots,x_N)} dx_1 \ldots dx_N \qquad x_i \in \mathbb{R}^d$$

$Z_{N,\beta}$ partition function

▶
$$d = 1, 2, w = -\log|x|$$
:

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N) = \frac{1}{Z_{N,\beta}} \Big(\prod_{i< j} |x_i - x_j|\Big)^{\beta} e^{-\frac{N\beta}{2} \sum_{i=1}^N V(x_i)} dx_1 \dots dx_N$$

 $\beta = 2 \rightsquigarrow \text{determinantal processes}$

Motivation 3: Statistical mechanics and Random Matrix Theory

With temperature: Gibbs measure

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N) = \frac{1}{Z_{N,\beta}} e^{-\frac{\beta}{2}H_N(x_1,\ldots,x_N)} dx_1 \ldots dx_N \qquad x_i \in \mathbb{R}^d$$

 $Z_{N,\beta}$ partition function

► $d = 1, 2, w = -\log|x|$:

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N) = \frac{1}{Z_{N,\beta}} \Big(\prod_{i < j} |x_i - x_j| \Big)^{\beta} e^{-\frac{N\beta}{2} \sum_{i=1}^N V(x_i)} dx_1 \dots dx_N$$

 $\beta = 2 \rightsquigarrow determinantal processes$

Corresponds to **random matrix models** (first noticed by Wigner, Dyson):

- ► **GUE** (= law of eigenvalues of Hermitian matrices with complex Gaussian i.i.d. entries) $\leftrightarrow d = 1$, $\beta = 2$, $V(x) = x^2/2$.
- ▶ **GOE** (real symmetric matrices with Gaussian i.i.d. entries) $\leftrightarrow d = 1$, $\beta = 1$, $V(x) = x^2/2$.

Also connection with "two-component plasma", XY model, sine-Gordon model and Kosterlitz-Thouless phase transition.

The leading order to min H_N (or "mean field limit")

▶ Assume $V \to \infty$ at ∞ (faster than $\log |x|$ in the log cases). For (x_1, \ldots, x_N) minimizing

$$H_N = \sum_{i \neq j} w(x_i - x_j) + N \sum_{i=1}^N V(x_i)$$

one has (Choquet)

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} \delta_{x_i}}{N} = \mu_V \qquad \lim_{N \to \infty} \frac{\min H_N}{N^2} = \mathcal{E}(\mu_V)$$

where μ_V is the unique minimizer of

$$\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

among probability measures.

▶ \mathcal{E} has a unique minimizer μ_V among probability measures, called the **equilibrium measure** (potential theory) Frostman 30's

- ► Example: $V(x) = |x|^2$, Coulomb case, then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- ► Example d = 1, $w = -\log |x|$, $V(x) = x^2$ then $\mu_V = \frac{1}{2\pi} \sqrt{4 x^2} \mathbb{1}_{|x| < 2}$ (semi-circle law)
- ▶ Denote $\Sigma = Supp(\mu_V)$. We assume Σ is compact with C^1 boundary and if $d \ge 2$ that μ_V has a density which is regular enough in Σ .

- Example: $V(x) = |x|^2$, Coulomb case, then $\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1}$ (circle law).
- ► Example d = 1, $w = -\log |x|$, $V(x) = x^2$ then $\mu_V = \frac{1}{2\pi} \sqrt{4 x^2} \mathbb{1}_{|x| < 2}$ (semi-circle law)
- ▶ Denote $\Sigma = Supp(\mu_V)$. We assume Σ is compact with C^1 boundary and if $d \geq 2$ that μ_V has a density which is regular enough in Σ .

A 2D log gas for $V(x) = |x|^2$

Figure: $\beta = 400$ and $\beta = 5$

Questions

Fluctuations

In what sense does $\frac{1}{N} \sum_{i=1}^{N} \delta_{x_i} \approx \mu_V$?

- ▶ At small scales $(O(1) \rightarrow O(N^{-1/d+\varepsilon}))$?
- ► Deviations bounds?
- ► Central limit theorem?

Microscopic behavior

Zoom into the system by $N^{1/d} o ext{infinite point configuration}$.

- ► What does it look like? What quantities can describe the point configurations?
- ▶ How does the picture depend on β ? On V?

Theorem (Leblé-S)

Assume d=2, $w=-\log$, $\beta>0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial\Sigma$. Let $f\in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N o \infty$ to a Gaussian distribution with

$$\mathit{mean} = \frac{1}{2\pi} (\frac{1}{\beta} - \frac{1}{4}) \int \Delta f \left(\mathbb{1}_{\Sigma} + \log \Delta V \right)^{\Sigma} \qquad \mathit{var} = \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^{\Sigma}|^2$$

where f^{Σ} = harmonic extension of f outside Σ .

$$\sim \Delta^{-1} \left(\sum_{i=1}^{N} \delta_{x_i} - N \mu_V \right)$$
 converges to the Gaussian Free Field. The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Theorem (Leblé-S)

Assume d=2, $w=-\log$, $\beta>0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial\Sigma$. Let $f\in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N o \infty$ to a Gaussian distribution with

$$\textit{mean} = \frac{1}{2\pi} (\frac{1}{\beta} - \frac{1}{4}) \int \Delta f \left(\mathbb{1}_{\Sigma} + \log \Delta V \right)^{\Sigma} \qquad \textit{var} = \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^{\Sigma}|^2$$

where f^{Σ} = harmonic extension of f outside Σ . $\rightarrow \Delta^{-1} \left(\sum_{i=1}^{N} \delta_{x_i} - N\mu_V \right)$ converges to the Gaussian Free Field.

The result can be localized with f supported on any mesoscale $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Theorem (Leblé-S)

Assume d=2, $w=-\log$, $\beta>0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial\Sigma$. Let $f\in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\mathit{mean} = \frac{1}{2\pi} (\frac{1}{\beta} - \frac{1}{4}) \int \Delta f \left(\mathbb{1}_{\Sigma} + \log \Delta V \right)^{\Sigma} \qquad \mathit{var} = \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^{\Sigma}|^2$$

where $f^{\Sigma}=$ harmonic extension of f outside Σ . $\leadsto \Delta^{-1}\left(\sum_{i=1}^N \delta_{\mathsf{x}_i} - \mathsf{N}\mu_V\right)$ converges to the Gaussian Free Field. The result can be localized with f supported on any mesoscale $\mathsf{N}^{-\alpha}$, $\alpha<\frac{1}{2}$.

Theorem (Leblé-S)

Assume d=2, $w=-\log$, $\beta>0$ arbitrary, and the previous assumptions on regularity of μ_V and $\partial\Sigma$. Let $f\in C^3_c(\mathbb{R}^2)$. Then

$$\sum_{i=1}^{N} f(x_i) - N \int_{\Sigma} f \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\textit{mean} = \frac{1}{2\pi} (\frac{1}{\beta} - \frac{1}{4}) \int \Delta f \left(\mathbb{1}_{\Sigma} + \log \Delta V \right)^{\Sigma} \qquad \textit{var} = \frac{1}{2\pi\beta} \int_{\Sigma} |\nabla f^{\Sigma}|^2$$

where f^{Σ} = harmonic extension of f outside Σ .

 $\rightsquigarrow \Delta^{-1}\left(\sum_{i=1}^{N} \delta_{x_i} - N\mu_V\right)$ converges to the Gaussian Free Field. The result can be localized with f supported on any mesoscale

 $N^{-\alpha}$, $\alpha < \frac{1}{2}$.

Should be generalizable to Coulomb case $d \ge 3$, Riesz cases $\mathbb{R} \times \mathbb{R} = 900$

Previous results

▶ 2D log case

- ▶ Rider-Virag same result for $\beta = 2$, $V(x) = |x|^2$
- ► Ameur-Hedenmalm-Makarov same result for $\beta=2,\ V\in C^\infty$ and analyticity in case the support of f intersects $\partial\Sigma$
- ▶ suboptimal bounds (in N^{ε} , but with quantified error in probability), including at mesoscale, on $\|\sum_{i=1}^{N} \delta_{x_i} N\mu_V\|$ Sandier-S, Leblé, Bauerschmidt-Bourgade-Nikkula-Yau
- ightharpoonup simultaneous result by Bauerschmidt-Bourgade-Nikkula-Yau for $f \in C^4_c(\Sigma)$

► 1D log case

- ► Johansson 1-cut, *V* polynomial
- ▶ Borot-Guionnet, Shcherbina 1-cut and V, ξ locally analytic, multi-cut and V analytic
- ► Bekerman-Leblé-S with weaker assumptions
- new proof Lambert-Ledoux-Webb for 1-cut, mesoscopic result Bekerman-Lodhia

Blow-up procedure

- ▶ blow-up the configurations at scale $(\mu_V(x)N)^{1/d}$
- define interaction energy W for infinite configurations of points in whole space
- ▶ the total energy is the integral or average of \mathbb{W} over all blow-up centers in Σ .

The energy method: expanding the Hamiltonian

Explicit splitting formula

$$\sum_{i \neq j} w(x_i - x_j) = \iint_{\triangle^c} w(x - y) \left(\sum_i \delta_{x_i}\right)(x) \left(\sum_i \delta_{x_i}\right)(y)$$

$$= \int w*(N\mu_V)(N\mu_V) + \int w*(\sum_i \delta_{x_i} - N\mu_V) \left(\sum_i \delta_{x_i} - N\mu_V\right) + \text{cross term}$$

compute the energy via the potential

$$h_N = w * \left(\sum_i \delta_{x_i} - N\mu_V\right)$$

 $-\Delta h_N = \left(\sum_i \delta_{x_i} - N\mu_V\right)$

The renormalized energy

Sandier-S, Rougerie-S, Petrache-S At the limit $N \to \infty$ and after blow-up, in Coulomb cases

$$-\Delta h = (\mathcal{C}-1)$$
 $\qquad \mathcal{C} = \sum_{p \in \mathcal{C}} \delta_p$

$$\mathbb{W}(\mathcal{C}) := \liminf_{R \to \infty} \frac{1}{R^d} \int_{\mathcal{K}_R} |\nabla h|^2$$

but computed in a "renormalized way" For point processes (Leblé)

$$<\mathbb{W}>=\liminf_{R o\infty}rac{1}{R^d}\iint_{K_R imes K_R\setminus\triangle}w(x-y)(
ho_2(x-y)-1)dxdy$$

The case of the torus

▶ Assume Λ is \mathbb{T} -periodic. Then \mathbb{W} is $+\infty$ unless all $N_p = 1$, and can be written as a function of Λ " = " $\{a_1, \ldots, a_M\}$, $M = |\mathbb{T}|$.

$$\mathbb{W}(a_1,\cdots,a_M)=\frac{c_d^2}{|\mathbb{T}|}\sum_{j\neq k}G(a_j-a_k)+cst,$$

where $\emph{G}=$ Green's function of the torus $(-\Delta \emph{G}=\delta_0-1/|\mathbb{T}|).$

► *G* can be expressed explicitly via an Eisenstein series and the Dedekind Eta function

Main result on the energy

▶ Given a configuration (x_1, \ldots, x_N) , we examine the blow-up point configurations $\{(\mu_V(x)N)^{1/d}(x_i-x)\}$ and their infinite limits \mathcal{C} . Averaging near the blow-up center x yields a "point process" P^x = probability law on infinite point configurations. P = "tagged point process", probability on $\Sigma \times$ configs. The limits will all be stationary. We define

$$\overline{\mathbb{W}}(P) := \int_{\Sigma} \int \mathbb{W}(\mathcal{C}) dP^{\times}(\mathcal{C}) dx$$

► The main result is

$$H_N(x_1,\ldots,x_N) \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + N^{1+\frac{s}{d}} \overline{\mathbb{W}}(P)$$

Sandier-S, Rougerie-S, Petrache-S

Main result on the energy

▶ Given a configuration (x_1, \ldots, x_N) , we examine the blow-up point configurations $\{(\mu_V(x)N)^{1/d}(x_i-x)\}$ and their infinite limits \mathcal{C} . Averaging near the blow-up center x yields a "point process" P^x = probability law on infinite point configurations. P = "tagged point process", probability on $\Sigma \times configs$. The limits will all be *stationary*. We define

$$\overline{\mathbb{W}}(P) := \int_{\Sigma} \int \mathbb{W}(\mathcal{C}) dP^{\times}(\mathcal{C}) dx$$

► The main result is

$$H_N(x_1,\ldots,x_N) \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + N^{1+\frac{s}{d}} \overline{\overline{\mathbb{W}}}(P)$$

Sandier-S, Rougerie-S, Petrache-S

- ▶ Consequently, if (x_1, \ldots, x_N) is a minimizer of H_N , after blow-up at scale $(\mu_V(x)N)^{1/d}$ around a point $x \in \Sigma$, for a.e. $x \in \Sigma$, the limiting infinite configuration as $N \to \infty$ minimizes \mathbb{W}
- ► Next order expansion of the minimal energy

$$\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \begin{cases} N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\ C_{d,s} \int \mu_V^{1+s/d}(x) dx. \end{cases}$$

- ► Expansion to order *N* for minimal logarithmic energy on the sphere Bétermin-Sandier
- For minimizers, points are separated by $\frac{C}{(N||\mu_V||_{\infty})^{1/d}}$ and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S
- ► Similar results for the Ginzburg-Landau model of superconductivity Sandier-S

- ▶ Consequently, if (x_1, \ldots, x_N) is a minimizer of H_N , after blow-up at scale $(\mu_V(x)N)^{1/d}$ around a point $x \in \Sigma$, for a.e. $x \in \Sigma$, the limiting infinite configuration as $N \to \infty$ minimizes \mathbb{W}
- ► Next order expansion of the minimal energy

$$\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \begin{cases} N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\ C_{d,s} \int \mu_V^{1+s/d}(x) dx. \end{cases}$$

- ► Expansion to order *N* for minimal logarithmic energy on the sphere Bétermin-Sandier
- ► For minimizers, points are separated by $\frac{C}{(N\|\mu_V\|_{\infty})^{1/d}}$ and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S
- ► Similar results for the Ginzburg-Landau model of superconductivity Sandier-S

- ▶ Consequently, if (x_1, \ldots, x_N) is a minimizer of H_N , after blow-up at scale $(\mu_V(x)N)^{1/d}$ around a point $x \in \Sigma$, for a.e. $x \in \Sigma$, the limiting infinite configuration as $N \to \infty$ minimizes \mathbb{W}
- ► Next order expansion of the minimal energy

$$\min H_N \sim N^2 \mathcal{E}(\mu_V) - \frac{N}{d} \log N + \begin{cases} N \left(C_{d,0} - \frac{1}{2d} \int \mu_V(x) \log \mu_V(x) \right) \\ C_{d,s} \int \mu_V^{1+s/d}(x) dx. \end{cases}$$

- ► Expansion to order *N* for minimal logarithmic energy on the sphere Bétermin-Sandier
- ► For minimizers, points are separated by $\frac{C}{(N||\mu_V||_{\infty})^{1/d}}$ and there is uniform distribution of points and energy (rigidity result) Petrache-S, Rota Nodari-S
- ► Similar results for the Ginzburg-Landau model of superconductivity Sandier-S

Partial minimization results

- ▶ In dimension d=1, the minimum of \mathbb{W} over all possible configurations is achieved for the lattice \mathbb{Z} ("clock distribution").
- ▶ In dimension d=2, the minimum of \mathbb{W} over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).

Partial minimization results

- ▶ In dimension d=1, the minimum of \mathbb{W} over all possible configurations is achieved for the lattice \mathbb{Z} ("clock distribution").
- ▶ In dimension d = 2, the minimum of \mathbb{W} over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice (modulo rotations).

The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50's)

For s > 2, the Epstein zeta function of a lattice Λ in \mathbb{R}^2 :

$$\zeta(s) = \sum_{p \in \Lambda \setminus \{0\}} \frac{1}{|p|^s}$$

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (E_8 and Leech lattices) In dimension 3, does the BCC (body centered cubic) lattice play this role?

The proof relies on

Theorem (Cassels, Rankin, Ennola, Diananda, 50's)

For s > 2, the Epstein zeta function of a lattice Λ in \mathbb{R}^2 :

$$\zeta(s) = \sum_{p \in \Lambda \setminus \{0\}} \frac{1}{|p|^s}$$

is uniquely minimized among lattices of volume one, by the triangular lattice (modulo rotations).

There is no corresponding result in higher dimension except for dimensions 8 and 24 (E_8 and Leech lattices) In dimension 3, does the BCC (body centered cubic) lattice play this role?

Conjecture

In dimension 2, the triangular lattice is a global minimizer of \mathbb{W} .

- this conjecture was made in the context of vortices in the GL model, which form triangular Abrikosov lattices
- ▶ Bétermin-Sandier show that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order *N* term in the expansion of the minimal logarithmic energy on S².
- ► link with the Cohn-Kumar conjecture, proved in '17 for dimensions 8 and 24
- ▶ In any case, W can be seen as measuring the disorder of a point configuration / process Borodin-S, Leblé

Conjecture

In dimension 2, the triangular lattice is a global minimizer of \mathbb{W} .

- this conjecture was made in the context of vortices in the GL model, which form triangular Abrikosov lattices
- ▶ Bétermin-Sandier show that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order *N* term in the expansion of the minimal logarithmic energy on S².
- ▶ link with the Cohn-Kumar conjecture, proved in '17 for dimensions 8 and 24
- ► In any case, W can be seen as measuring the disorder of a point configuration / process Borodin-S, Leblé

Large deviations principle

Recall

$$d\mathbb{P}_{N,\beta}(x_1,\cdots,x_N)=\frac{1}{Z_{N,\beta}}e^{-\frac{\beta}{2}N^{-\frac{s}{d}}H_N(x_1,\ldots,x_N)}dx_1\ldots dx_N \qquad x_i\in\mathbb{R}^d$$

► insert next-order expansion of *H_N* and combine it with an estimate for the volume in phase-space occupied by a neighborhood of a given limiting tagged point process *P*

Theorem (Leblé-S, '15)

We have a Large Deviation Principle at speed N with good rate function $\beta(\mathcal{F}_{\beta} - \inf \mathcal{F}_{\beta})$, i.e.

$$\mathbb{P}_{N,\beta}(P) \simeq \exp\left(-\beta N\left(\mathcal{F}_{\beta}(P) - \inf \mathcal{F}_{\beta}\right)\right)$$

 \leadsto the Gibbs measure concentrates on minimizers of \mathcal{F}_{β} . Here,

$$\mathcal{F}_{eta}(P) := rac{1}{2} \overline{\mathbb{W}}(P) + rac{1}{eta} \int_{\Sigma} \operatorname{ent}[P^{ extit{x}}|\Pi] \, d extit{x},$$

$$\operatorname{ent}[P|\Pi] := \lim_{R \to \infty} \frac{1}{|K_R|} \operatorname{Ent}(P_{K_R}|\Pi_{K_R})$$
 specific relative entropy

and Π is the Poisson point process of intensity 1.

For specific relative entropy see Rassoul-Agha - Seppälainen

Interpretation

- Three regimes
 - $\beta \gg 1$ crystallization expected
 - $\beta \ll 1$ entropy dominates \leadsto Poisson process
 - $ightharpoonup eta \propto 1$ intermediate, no crystallization expected
- ▶ In 1D log case the limiting process is "sine- β " (Valko-Virag) and must minimize $\frac{1}{2}\mathbb{W}+\frac{1}{\beta}\mathrm{ent}(\cdot|\Pi)$, same for the Ginibre point process in 2D log case $\beta=2$.
- ► The **cristallization** result is **complete** in 1D (uses uniqueness result of Leblé).
- ► In 2D log case: local version of the result at any mesoscale Leblé
- Generalization to the 2D "two component plasma" Leblé-S-Zeitouni

Expansion of $\log Z_{N,\beta}$

1D and 2D Log gas case:

$$\log Z_{N,\beta} = -\frac{\beta N^2}{2} \mathcal{E}(\mu_V) + \frac{\beta N}{2d} \log N - \beta N \underbrace{\min \left(\frac{1}{2\pi} \mathbb{W} + \frac{1}{\beta} \text{ent}[\cdot|\Pi^1] \right)}_{C_\beta, \text{ indep of } V} - \beta N \left(\frac{1}{\beta} - \frac{1}{2d} \right) \int_{\Gamma} \mu_V(x) \log \mu_V(x) \, dx + o(N).$$

Riesz cases:

$$\log Z_{N,\beta} = -\frac{\beta N^{2-\frac{s}{d}}}{2} \mathcal{E}(\mu_V) - \beta N \min \mathcal{F}_{\beta} + o(N).$$

To be compared with Borot-Guionnet, Shcherbina, d=1 log case (expansions to larger order in N under stronger assumptions on V), Wiegmann-Zabrodin, d=2 log case (semi-formal)

THANK YOU FOR YOUR ATTENTION!

and some advertising:

ICERM Semester Program on "Point Configurations in Geometry, Physics and Computer Science" February 1, May 4, 2018 https://icerm.brown.edu/programs/sp-s18/