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Abstract
We provide an overview of goodness-of-fit testing in categorical data analysis

with applications to item response theory modeling. A promising line of research
is the use of limited information statistics. These are quadratic form statistics
in marginal residuals such as univariate and bivariate residuals. We describe two
approaches to obtain asymptotic p-values for these statistics: (1) matching the
asymptotic moments of the statistic with those of a chi-square distribution, (b)
using g-inverses. Also, we discuss statistics for piecewise assessment of model fit
(i.e., for items, pairs of items, etc.).

1. Introduction
Until recently, researchers interested in modeling multivariate categorical data

faced the problem that most often no procedure existed to assess goodness-of-
fit of the fitted models that yielded trustworthy p-values except for very small
models. Fortunately, this situation has recently changed, and it is now possible to
reliably assess the fit of multivariate categorical data models. This breakthrough
is based on the principle that for goodness-of-fit assessment one should not use all
the data available. Rather, by using only a handful of the information at hand
(i.e., by using limited information) researchers can obtain goodness-of-fit statistics
that yield asymptotic p-values that are accurate even in large models and small
samples. Furthermore, the power of such statistics can be larger than that of full
information statistics (i.e., statistics that use all the data available).

The purpose of this article is to provide an overview of the new developments in
limited information goodness-of-fit assessment of categorical data models; see also
Bartholomew and Tzamourani (1999), Cai et al. (2006), Mavridis et al. (2007),
Maydeu-Olivares and Joe (2005, 2006), and Reiser (in press). Although the expo-
sition focuses on psychometric models (and in particular on item response theory
models), the results provided here are completely general and can be applied to
any multidimensional categorical data model.

2. The Challenge of Testing Goodness-of-Fit in Multivariate Categor-
ical Data Analysis

Consider modeling N independent and identically distributed observations on n
discrete random variables whose categories have been labeled 0, 1, . . . , K − 1. For
notational ease we assume that all observed variables consists of the same number
of categories K. This leads to a n-dimensional contingency table with C = Kn

cells. However, the theory applies also for variables with different number of
categories. We assume a parametric model for π, the C-dimensional vector of
cell probabilities, writing π(θ), where θ is a q-dimensional parameter vector to be
estimated from the data. The null and alternative hypotheses are H0 : π = π(θ)
for some θ versus H1 : π 6= π(θ) for any θ.
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The two most commonly used statistics for testing the overall fit of the model
are Pearson’s X2 = 2N

∑C
c=1(pc−πc)2/πc, and the likelihood ratio statistic G2 =

2N
∑C

c=1 pc ln(pc/πc). When the model holds and maximum likelihood estima-

tion is used, the two statistics are asymptotically equivalent, G2 a=X2 d→χ2
C−q−1.

However, in sparse tables the empirical Type I error rates of the X2 and G2 test
statistics do not match their expected rates under their asymptotic distribution.
Of the two statistics, X2 is less adversely affected by the sparseness of the contin-
gency table than G2.

One reason for the poor empirical performance of X2 is that the empirical vari-
ance of X2 and its variance under its reference asymptotic distribution differ by a
term that depends on the inverse of the cell probabilities. When the cell probabili-
ties become small the discrepancy between the empirical and asymptotic variances
of X2 can be large. Thus, the accuracy of the type I errors will depend on the
model being fitted to the table (as it determines the cell probabilities), but also
on the size of the contingency table. This is because when the size of the contin-
gency table is large, the cell probabilities must be small. However, for C and π(θ)
fixed the accuracy of the the asymptotic p-values for X2 depends also on sample
size, N . As N becomes smaller some of the cell proportions increasingly become
more poorly estimated (their estimates will be zero) and the empirical Type I
errors of X2 will become inaccurate. The degree of sparseness N/C summarizes
the relationship between sample size and model size. Thus, the accuracy of the
asymptotic p-values for X2 depend on the model and the degree of sparseness of
the contingency table.

Three alternative strategies have been proposed to obtain accurate p-values:

(a) Pooling cells. If cells are pooled before the model is fitted and if the estima-
tion is based on the C ′ pooled categories and not the C original categories,
then the approximate null distribution of X2 is χ2

C′−1−q′ , where q′ denotes
the number of parameters used after pooling. However, if estimation is
based on the original categories, and pooling is based based on the results
of the analysis, then the resulting X2 is stochastically larger than χ2

C′−1−q,
and hence using a χ2

C′−1−q reference distribution could give an unduly im-
pression of poor fit, see Joe and Maydeu-Olivares (2007) for details. Most
importantly, there is a limit in the amount of pooling that can be performed
without distorting the purpose of the analysis.

(b) Resampling methods. P-values for goodness-of-fit statistics can be obtained
by generating the empirical sampling distribution of goodness-of-fit statis-
tics using a resampling method such as the parametric bootstrap method,
see Langeheine et al. (1996), Bartholomew and Tzamourani (1999), and Tol-
lenaar and Mooijaart (2003). However, there is strong evidence that para-
metric bootstrap procedures do not yield accurate p-values, see Tollenaar
and Mooijaart (2003) and Mavridis et al. (2007)). Furthermore, resampling
methods may be very time consuming if the researcher is interested in com-
paring the fit of several models.

(c) Limited information methods. Only the information contained in suitable
summary statistics of the data, typically the low order marginals of the
contingency table, is used to assess the model. This amounts to pooling cells
a priori, in a systematic way, so that the resulting statistics have a known
asymptotic null distribution. These procedures are computationally much
more efficient than resampling methods.
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3. An Overview of Limited Information Methods For Goodness-of-Fit
In this section, we consider methods for testing the overall fit of the model,

followed by methods for assessing the source of any misfit.
Before proceeding, notice that one observation of the ith variable Yi has a

Multinomial(1;πi0, . . . , πi,K−1) distribution. Hence, the joint distribution of the
random variables is multivariate multinomial (MVM). In the special case where
K = 2, Yi has a Bernoulli distribution, and the joint distribution is multivariate
Bernoulli (MVB). The MVM can be represented by the C vector of joint proba-
bilities π, or equivalently by the C − 1 vector of marginal probabilities π̇. The
relationship between both representations is one-to-one and can be written as
π̇ = Tπ, where T is a (Kn− 1)×Kn matrix of 1s and 0s, of full row rank. π̇ can
be partitioned as π̇′ = (π̇′1, π̇

′
2, . . . , π̇

′
n)′, where π̇r is the si =

(
n
r

)
(K − 1)r vector

of rth way marginal probabilities, such that the marginal probabilities involving
category 0 are excluded. Also, we write πr = (π̇′1, . . . , π̇

′
r)
′ for the s =

∑r
i=1 si

vector of multivariate marginal probabilities up to order r (r ≤ n). Now, let p
and pr be the vector of cell proportions, and the vector of marginal proportions
up to order r, respectively. Also, let e = p− π and er = pr − πr be respectively
the vector of cell residuals and marginal residuals. Finally, we use ê and êr when
these residual vectors depend on the estimated parameters.

To give a completely general result, we only assume that θ̂ is a
√

N -consistent
and asymptotically normal estimator. Specifically, we assume that θ̂ satisfies

√
N (θ̂ − θ) = H

√
N (p− π(θ)) + op(1) (1)

for some q × C matrix H. This includes minimum variance or best asymptotic
normal (BAN) estimators such as the maximum likelihood estimator (MLE) or the
minimum chi-square estimator. It also includes the limited information estimators
for IRT models: those implemented in programs such as LISREL, EQS, MPLUS,
or NOHARM, and those proposed by Christoffersson (1975) and Jöreskog and
Moustaki (2001).

We have the following results for the cell residuals:
√

N e d→ N(0,Γ), and√
N ê d→ N(0,Σ), where Γ = ∆ − ππ′, and Σ = (I −∆H)Γ(I −∆H)′. Here,

D = diag(π), and ∆ = ∂π(θ)/∂θ′, which is assumed to be of full rank so that
the model is identified when using full information. For BAN estimators H =
I−1∆′D−1, where I = ∆′D−1∆ is the Fisher information matrix.

For the marginal residuals up to order r,

√
N er

d→ N(0,Ξr) and
√

N êr
d→ N(0,Σr),

where
Ξr = TrΓT′r,

Σr = TrΣT′r = Ξr −∆rHΓT′r −TrΓH′∆′
r + ∆r[HΓH′]∆′

r. (2)

In equation (2), HΓH′ is the asymptotic covariance matrix of
√

N θ̂, and ∆r =
∂πr(θ)/∂θ′ is an s × q matrix, where s denotes the dimension of the vector of
residuals considered. In the special case of BAN estimators such as the MLE, we
have Σ = Γ−∆I−1∆′, and Σr = Ξr −∆rI−1∆′

r, respectively.
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3.1. Testing the overall fit of the model
Two general strategies have been proposed to obtain goodness-of-fit statistics

using limited information. Both are based on quadratic forms in marginal residu-
als. Suppose testing is to be performed using êr. We write

Tr = N ê′rŴêr, (3)

where Ŵ converges in probability to an s× s weight matrix W.
The first strategy consists in choosing Ŵ so that the quadratic form is easily

computed. Two obvious choices are (a) Ŵ = I, leading to Ur = N ê′rêr, and (b)
Ŵ = (diag(Ξ̂r))−1 = (diag(π̂)−π̂π̂′)−1, leading to Dr = N ê′r(diag(π̂)− π̂π̂′)−1êr.

Quite generally, the asymptotic distribution of Tr is a mixture of independent
chi-square variates. P-values for Tr are then obtained by matching the moments of
Tr with those of a central chi-square distribution. One, two, or three moments can
be matched. The first three asymptotic moments (mean, variance and third central
moment) of Tr are: µ1(Tr) = tr (WΣr), µ2(Tr) = 2tr (WΣr)2, and µ3(Tr) =
3tr (WΣr)3. Let Aν be a random variable with χ2

ν distribution. To obtain a p-
value using a two-moment adjustment, we assume that Tr can be approximated by
bAc. Solving for the two unknown constants b and c using the first two asymptotic
moments of Tr yields b = µ2(Tr)/(2µ1(Tr)), c = µ1(Tr)/b. For the three-moment
adjustment, we assume that Tr can be approximated by a + bAc. Solving for the
three unknown constants a, b, and c using the first three asymptotic moments of
Tr yields b = µ3(Tr)/(4µ2(Tr)), c = µ2(Tr)/(2b2), and a = µ1(Tr)− bc. A p-value
for the two moment adjusted statistic is obtained using Pr(Ac > Tr/b), and for the
three moment adjusted statistic using Pr(Ac > (Tr − a)/b). For the one-moment
approximation, we assume again that Tr can be approximated by bAt, where t is
the number of degrees of freedom available for testing. Heuristically, this can be
taken to be t = s− q. Solving for b, we have b = µ1(Tr)/t, and the p-value for the
first moment adjusted statistic is given by Pr(At > Tr/b).

Many different limited information statistics can be constructed in this way
depending on the choice of (a) marginal residual in the quadratic form, (b) weight
matrix, and (c) number of moments used to approximate the central chi-square
distribution. Regarding (a), a typical choice is ê2, the set of univariate and bi-
variate residuals that do not include category 0. This is a vector of dimension
s = n(K − 1) +

(
n
2

)
(K − 1)2. Another choice is the set of all bivariate residuals

ẽ2 = p̃2 − π̃2(θ̂), where π̃2 is a
(
n
2

)
K2 vector with elements π

(ij)
k1k2

= Pr(Yi =

k1, Yj = k2) and sample counterparts p
(ij)
k1k2

. An statistic based on ẽ2 is

X2 = N ẽ′2
(
diag

(
π̃2

))−1
ẽ2 = N

∑

i<j

∑

k1

∑

k2

(
p
(ij)
k1k2

− π
(ij)
k1k2

(θ̂)
)2

π
(ij)
k1k2

,

the sum of all
(
n
2

)
X2 bivariate statistics.

The fact that Σr, the asymptotic covariance matrix of the estimated marginal
residuals, needs to be estimated in this approach results in some drawbacks. First,
the estimation of Σr can be computationally involved for some estimators, such as
the MLE, when the model is large. Another drawback is that a different implemen-
tation is needed for each estimator under consideration, as Σr depends on H, which
depends on the estimator chosen. Thus, (a) formulae for moment adjusted statis-
tics for testing IRT models for binary data estimated using the MLE were given by
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Cai et al. (2006); see also Bartholomew and Leung (2002), (b) formulae for testing
IRT models estimated sequentially using tetrachoric/polychoric correlations were
given by Maydeu-Olivares (2001a) for the binary case, and Maydeu-Olivares (2006)
for the polytomous case, and (c) formulae for testing IRT models for binary data
estimated using the NOHARM program were given by Maydeu-Olivares (2001a).
Maydeu-Olivares (2001a, 2001b, 2006) considered one- and two-moment approxi-
mations to U2. Cai et al. (2006) considered one- to three-moment approximations
to D2, and also to the analogous statistic based only on bivariate residuals.

In any case, available evidence on the use of this approach suggests that (a) all in
all this approach gives accurate p-values, except when only one moment is matched,
in which case the approximation is generally poor, (b) there is little to choose from
U2 and D2, and that (c) statistics based on univariate and bivariate residuals are
slightly more powerful than statistics based only on bivariate residuals.

The second strategy consists of choosing Ŵ so that the resulting quadratic form
is asymptotically chi-square. This is the strategy followed by Reiser (1996) and

Maydeu-Olivares and Joe (2005, 2006). Choosing Ŵ = Σ̂−
r ensures that Tr

d→χ2
t ,

where t equals to the rank of Σr. A g-inverse (or alternatively a Moore-Penrose
inverse Σ̂+

r ) needs to be employed because Σr is almost invariably of deficient
rank. Reiser (1996) considered a quadratic form in ê2 with Ŵ = Σ̂+

2 for testing
models for binary data.

The use of Σ̂+
r as a weight matrix has two drawbacks. The first drawback

is that, as was the case with the moment-adjustment strategy, Σr needs to be
estimated. The second drawback stems from the fact that almost invariably, the
rank of Σr can not be determined a priori. In that case, one can determine t,
the degrees of freedom, by inspecting the magnitude of the eigenvalues of Σ̂r.
However, this may be tricky, as this matrix often has some small eigenvalues, and
t (and the value of the statistic itself) will depend on which eigenvalues are judged
to be zero.

To overcome these difficulties, Maydeu-Olivares and Joe (2005, 2006) considered
using instead a weight matrix Ŵ such that Σr is a g-inverse of W, that is, W =
WΣrW. More specifically, they proposed using

W = Ξ−1
r −Ξ−1

r ∆r

(
∆′

rΞ
−1
r ∆r

)−1
∆′

rΞ
−1
r = ∆(c)

r

(
∆(c)

r

′
Ξr∆(c)

r

)−1
∆(c)

r

′
, (4)

evaluated at θ̂, as the weight matrix in equation (3). Here, ∆(c)
r is the s× (s− q)

orthogonal complement of ∆r = Tr∆ (i.e, it satisfies ∆(c)
r
′∆r = 0).

One advantage of using this weight matrix is that it does not require an esti-
mate of Σr, but of the more easily computable Ξr. Another advantage is that by
construction, if the model is identified from the marginal probabilities up to order
r, the degrees of freedom t can be determined a priori: Tr

d→χ2
s−q. Yet, another

advantage is that the result holds for any estimator (1), and hence, a single imple-
mentation suits all estimators. Maydeu-Olivares and Joe (2005, 2006) considered
the full class of statistics with (4) (referred to as Mr statistics) and they showed
that Pearson’s X2 is a special case of the family when the MLE is used and all
marginal residuals are used.

3.2. Assessing the source of the misfit
Limited information methods are also useful to identify the source of misfit in

poorly fitting models. The inspection of standardized cell residuals is often not
very useful to this aim. It is difficult to find trends in inspecting these residuals,
and even for moderate n the number of residuals to be inspected is too large.
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Perhaps most importantly, Bartholomew and Tzamourani (1999) point out that
because the cell frequencies are integers and the expected frequencies in large
tables must be very small, the resulting standardized residuals will be either very
small or very large.

Yet, dividing a marginal residual by its asymptotic standard error we obtain a
standardized marginal residual that is asymptotically standard normal. To iden-
tify the source of the misfit, these residuals (univariate, bivariate, or trivariate) can
be inspected. However, when the observed variables are not binary, the number
of marginal residuals grows very rapidly as the number of categories and variables
increases, and it may be difficult to draw useful information by inspecting individ-
ual marginal residuals. For polytomous data models, a more fruitful avenue is to
assess how well the model fits single variables, variable pairs, etc. (i.e., subtables).
Note that this is like multiple testing after a jointly significant result.

If the model for an r-variate subtable is identified (with t′ > 0 degrees of
freedom), Maydeu-Olivares and Joe’s Mr statistic can be used to assess the fit to

the subtable, where Mr
d→χ2

t′ . In contrast, when applied to an identified subtable,
the asymptotic distribution of X2 is stochastically larger than χ2

t′ , because the
parameters in the subtable have been estimated using the full table, see Maydeu-
Olivares and Joe (2006).

4. Numerical Examples
To illustrate the discussion we consider two numerical examples. The first one

is the well-known LSAT 7 dataset, see Bock and Lieberman (1970). It consists of
1000 observations on five binary variables; thus, C = 25 = 32. A two parameter
logistic IRT model is fitted to this data. The second dataset consists of 551 young
women responding to the five items of the Positive Problem Orientation (PPO)
scale of the Social Problem Solving Inventory-Revised, see D’Zurilla et al. (2002).
These Likert-type items consist of five categories. For this analysis the two lowest
and the two highest categories were merged; thus C = 35 = 243. Samejima’s
(1969) graded model is fitted to these data. Maximum likelihood estimation was
used in both examples.

4.1. LSAT 7 data
Table 1 provides the results obtained with X2 and G2. Because the data are

not sparse, both statistics yield similar results. The model can not be rejected at
the 5% significance level. We have also included in this table the results obtained
with three limited information test statistics: M2, M3, and D2. Univariate and
bivariate residuals are used in M2 and D2. Up to trivariate residuals are used in
M3. Also, from Maydeu-Olivares and Joe (2005), X2 = M5 because ML estimation
was used.

One-, two-, and three-moment adjustments where used to obtain p-values for
D2. They are labeled D

(1)
2 , D

(2)
2 , and D

(3)
2 in Table 1. We see in this table that,

for this example, the same approximate p-values for D2 are obtained regardless of
the number of moments used. Even a one-moment adjustment gives good results.

We also see in Table 1 that when data are not sparse, limited information
statistics yield similar p-values than full information statistics. However, they do
so at the expense of fewer degrees of freedom. It is interesting to compare the
statistic/df ratios for the members of the M family of statistics. These ratios are
2.39, 1.77 and 1.55 for M2, M3 and M5, respectively. Joe and Maydeu-Olivares
(2007) have theory that relate larger ratios with smaller degrees of freedom to test
statistics that have more power for reasonable directional alternatives.

We now consider using R2 = ê′2Σ̂
+

r ê2, as in Reiser (1996). There are 15 uni-
variate and bivariate residuals in ê2. Table 2 provides the value of the 6 smallest
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Table 1 Goodness-of-Fit Results for the LSAT7 Data.

stat value df p-value stat value df p-value

X2 32.48 21 0.052 D
(1)
2 11.33 5 0.045

G2 31.70 21 0.063 D
(2)
2 11.36 5.0 0.045

M2 11.94 5 0.036 D
(3)
2 10.90 4.7 0.045

M3 26.48 15 0.033

eigenvalues of Σr, the value of R2 for j = 1, . . . , 6, if the jth eigenvalue and those
smaller are judged to be zero, and the resulting df and p-values. The results il-
lustrate how the p-value is affected by how many eigenvalues are judged to be
zero. Also, notice that a larger range of p-values are obtained than when moment
corrections for D2 are used. Nevertheless, simulation results by Mavridis et al.
(2007) reveal this statistic also works adequately. Also, determining the degrees
of freedom in Reiser’s approach is more numerically stable when fitting models
that do not require numerical integration to obtain probabilities (such as loglinear
models).

Table 2 Range of P-values Obtainable for R2

eigenvalue R2 df p-value

2.22× 10−5 17.82 9 0.037
3.83× 10−6 18.29 10 0.050
3.95× 10−9 19.42 11 0.069
2.90× 10−11 19.78 12 0.079
1.03× 10−13 19.78 13 0.101
−1.02× 10−15 19.78 14 0.137

Finally, consider obtaining a better fitting model by dropping one item. The
standardized cell residuals are not very helpful to this end. There are only two
standardized cell residuals significant at a 5% level, those for patterns (0, 1, 0, 0, 0)
and (1, 0, 0, 0, 0). The inspection of univariate, bivariate and trivariate residuals is
more helpful. The significant standardized residuals for up to trivariate margins
are for margins (1, 3), (1, 4), (1.5), and (2, 3). They indicate that item 1 is the
best selection if an item is to be dropped to fit the model. This is indeed the case,
as shown in Table 3.

Table 3 X2 Obtained When Dropping One Item at a Time (df = 7)

item dropped 1 2 3 4 5

X2 5.01 9.52 8.59 18.68 9.86

p-value 0.66 0.22 0.28 0.01 0.20

4.2. PPO data
With polytomous data, the contingency table often becomes sparse and X2 and

G2 sometimes yield conflicting results, indicating that both p-values are incorrect.
In those cases, G2 gives an overly optimistic p-value (often 1), and X2 generally
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gives a p-value of 0. Because in this example the data are not sparse, the dis-
crepancy between both statistics is not large, as shown in Table 4. The table also
includes the results obtained with M2, and the results of using D2 and X2 (using
1- to 3-moment adjustments to obtain their approximate p-values). In this case,
the p-values for D2 appear inflated, but those for X2 appear reasonable.

Table 4 Goodness-of-Fit Results for the PPO Data.

stat value df p-value

X2 304.89 227 0.0004
G2 271.09 227 0.024
M2 55.01 35 0.017

D
(1)
2 42.58 35 0.177

D
(2)
2 22.21 18.3 0.236

D
(3)
2 14.62 11.5 0.230

X
(1)
2 52.13 35 0.031

X
(2)
2 45.19 30.3 0.041

X
(3)
2 34.11 21.6 0.042

We also applied R2 to these data. For this example, Σ̂2 is of full rank (its
smallest eigenvalue is 8.42×10−5), yielding a statistic of 66.65 on 50 df, p = 0.058.
Thus, for this example, based on the same residuals, this statistic has 15 more df
than M2 and yields a slightly larger p-value.

Table 5 Bivariate X2 Statistics (Above the Diagonal) and M2 Statistics (Below the Diagonal)

1 2 3 4 5

1 −− 5.92 4.89 6.97∗ 3.99

2 0.69 −− 4.99 7.47∗ 4.53

3 3.36 2.94 −− 0.41 7.89∗

4 2.70 2.29 0.15 −− 2.97

5 1.90 3.45 4.34 1.57 −−

We next consider obtaining a better fitting model by dropping one item. To
do so, we shall assess how well the model fits different subtables. The degrees of
freedom for testing the fitted model one item at a time is negative. Thus, item
level testing is not possible for this model. There are 2 df for testing the model
for pairs of items, and the model for the subtable is identified. Table 5 provides
the M2 statistics for each pair of variables, and for comparison the X2 statistics.
Starred statistics are significant at α = 0.05, based on a χ2

2.
Notice that the values of the X2 statistics are larger than the values of the

M2 statistics. Also, they yield a misleading impression of poor fit because the
asymptotic distribution of X2 is stochastically larger than χ2

2. The inspection of
the values of X2 suggests the model misfits at the bivariate level, and it suggests
that fit would improve the most by dropping item 4. In contrast, the inspection
of the M2 values does not reveal any model misfit at the bivariate level. These
statistics are not useful to locate the source of the misfit. In this case, we can
inspect the value of M3 for triplets of items. With 17 degrees of freedom, there are
two M3 statistics significant at α = 0.05; for triplets (2, 3, 5) and (2, 4, 5), which
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suggests that either item 2 or 5 should be dropped. Table 6 reveals that item 2
should to be dropped to get a better fit.

Table 6 X2 Obtained When Dropping One Item at a Time (df = 68)

item dropped 1 2 3 4 5

X2 82.92 66.61 86.97 106.42 89.17

p-value 0.105 0.525 0.060 0.002 0.044

5. Discussion
Limited information statistics appear to be a promising avenue to overcome the

decades long problem of assessing the goodness-of-fit in multivariate categorical
data analysis. Using these statistics, it is possible to obtain p-values for extremely
large models. Extant results suggest their asymptotic p-values yield accurate
results even in samples of 300 observations. However, so far the behavior of these
statistics has only been investigated for a handful of models containing up to 20
variables. More research is needed to investigate the behavior of the statistics in
the extremely large models that are common in Social Science applications, and
for alternative models.

A critical limitation of these methods is that the model must be identified from
the statistics used for testing. This needs to be verified numerically application by
application and for the statistics that assess the overall fit and also the statistics
used for subtables. It may be that the model is identified from the statistic of
interest but that in a given application it is nearly non-identified. In that case,
the statistic will become numerically unstable and yield unreliable results.

Here, we have focused on limited information statistics based on low order
marginal residuals. A limitation of these statistics is that if testing is performed
using up to say r-variate information, then they have no power to detect model
misfit if it is only present in r + 1 and higher associations. In our view, this is not
a serious limitation. A researcher interested in detecting a specific model misfit
can construct a limited information statistic (not necessarily based on residual
moments) so that it achieves good power with respect to the specific alternatives
of interest (Joe and Maydeu-Olivares, 2007), and the resulting statistic is more
powerful than full information statistics.
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