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This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equa-
tion models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen’s
(Psychometrika 61:109–121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous
variables. We derive the PIV estimator and its asymptotic standard errors for the regression coefficients in
the latent variable and measurement models. We also provide an estimator of the variance and covariance
parameters of the model, asymptotic standard errors for these, and test statistics of overall model fit. We
examine this estimator via an empirical study and also via a small simulation study. Our results illustrate
the greater robustness of the PIV estimator to structural misspecifications than the system-wide estimators
that are commonly applied in SEMs.

Key words: latent variables, ordinal variables, dichotomous variables, instrumental variables, two-stage
least squares (2SLS), factor analysis

1. Introduction

The Life Orientation Test (LOT) (Scheier & Carver, 1985) is an eight-item scale designed
to measure two latent variables, optimism and pessimism. Each item is a five-category ordi-
nal variable. Like these items, many measures in the social and behavioral sciences are ordinal
or dichotomous variables rather than continuous. One of the challenges of Structural Equation
Models (SEMs) is the incorporation of categorical observed variables such as these. If such vari-
ables are exogenous dummy variables, then they do not pose a problem (Jöreskog, 1973; Bollen,
1989, pp. 126–128). However, if noncontinuous observed variables are endogenous (i.e., influ-
enced by other variables), then a SEM must take this into account. In recent decades researchers
have made great strides in the incorporation of categorical endogenous variables in SEMs (e.g.,
Olsson, 1979; Jöreskog & Sörbom, 1984; Jöreskog, Sörbom, du Toit, & du Toit, 2001; Muthén,
1984; Muthén & Muthén, 2001; Poon & Lee, 1987; Maydeu-Olivares, 2001, 2006). These SEM
approaches have at least four things in common:

(1) they assume that a continuous indicator underlies each categorical variable;
(2) they estimate category thresholds for each ordinal variable and estimate a polychoric corre-

lation matrix among the underlying indicators;
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(3) they use an estimate of the asymptotic covariance matrix of the elements of the polychoric
correlation matrix; and

(4) they employ a system-wide estimator (e.g., weighted least squares (WLS)) to estimate all
parameters in all equations in the last stage.

In SEMs with continuous endogenous variables there has been some work on limited in-
formation equation-by-equation estimators that are more robust to structural misspecification
than are the system-wide estimators such as full information maximum likelihood (FIML). See
Madansky (1964), Hägglund (1982), Jöreskog (1983), and Bollen (1989, 1996a, 1996b, 2001).
Though these estimators are not identical, they have in common that they transform the latent
variables into observed variables and use Instrumental Variable (IV) and two-stage least squares
(2SLS) estimators. Some of these estimators (e.g., Bollen, 1996a) can be implemented with
widely available statistical software. An important advantage of the IV and 2SLS approaches
is that they are less likely to spread the bias that occurs with misspecified structures through-
out the system of equations than are the dominant full information, system-wide estimators like
FIML (Bollen, Kirby, Curran, Paxton, & Chen, 2007). Given the approximate nature and the
likely structural misspecification in virtually all SEMs, this greater robustness is a desirable fea-
ture of the IV/2SLS estimators. Yet, these limited information estimators have not been applied
to latent variable, structural equation models with categorical observed variables.

The main purpose of this paper is to present a generalization of Bollen’s 2SLS/IV estimator
for continuous variables to SEMs that contain categorical endogenous variables. We refer to this
extension as the Polychoric Instrumental Variable (PIV) estimator for SEMs. We will derive a
consistent IV estimator and its asymptotic standard errors for the regression coefficients in the
latent variable and measurement model. We also will provide an estimator of the variances and
covariances, asymptotic standard errors for these, and test statistics of overall model fit. We will
examine this estimator via an empirical study, and also, via a small simulation study.

The next section presents the model and assumptions. This is followed by a section that
reviews the standard estimation and testing approach which culminates in a system-wide esti-
mator. After this we have the section that develops the PIV estimator, its standard errors, and
tests of overall model fit. The sections that follow will present an empirical example and a small
simulation study. The conclusion summarizes the results and discusses remaining issues.

2. Model and Assumptions

Let y∗ ∼ N(0,P) where P denotes a correlation matrix with elements ρii′ . Suppose that each
y∗
j , j = 1, . . . , p, has been categorized as yj = kj if τjk

< y∗
j < τjk+1 , kj = 0, . . . ,Kj − 1, where

τj0 = −∞, τjK
= ∞.

We assume the following linear structure for modeling the y∗ as a function of m latent
variables η:

y∗ = �η + ε, (1)

η = Bη + ζ , (2)

where (
ε

ς

)
∼ N

((
0
0

)
,

(
� 0
0 �

))
. (3)

This is the model used in LISREL (Jöreskog & Sörbom, 2001) and Mplus (Muthén & Muthén,
2001) when there are no exogenous observed variables in a model. See the conclusion for com-
ments on extending these models to exogenous observed variables.
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Letting � = I − diag(�(I − B)−1�(I − B)−1�′), the covariance structure of the latent re-
sponse variables y∗ implied by the model in (1)–(3) is a correlation structure, P, namely,

P = �(I − B)−1�(I − B)−1′�′ + �. (4)

3. Standard Estimation and Testing Approach

Given a random sample of size N from the above model, estimation generally proceeds
using a multistage procedure. First, the tetrachoric/polychoric correlations ρ are consistently
estimated along with their asymptotic covariance matrix 
ρρ . Then the model parameters θ (i.e.,
the mathematically independent parameters in �,B,�, and �) are estimated by minimizing

F = (̂
ρ − ρ(θ)

)′Ŵ
(̂
ρ − ρ(θ)

)
, (5)

where ρ(θ) denotes the restrictions imposed on the p∗ = p(p − 1)/2 correlations by the q pa-

rameter vector θ , and Ŵ
p→ W, a positive definite matrix. Some obvious choices of Ŵ in (5)

are Ŵ = 
̂
−1
ρρ (WLS) (Muthén, 1978), Ŵ = (diag(
̂ρρ))−1 (diagonally weighted least squares

(DWLS)) (Jöreskog & Sörbom, 1984; Gunsjö, 1994; Muthén, du Toit, & Spisic, 1997), and
Ŵ = I (unweighted least squares (ULS)) (Muthén, 1993).

This is the standard approach to estimate these models in such popular programs as LISREL
(Jöreskog & Sörbom, 2001), Mplus (Muthén & Muthén, 2001), and EQS (Bentler, 1995). The
estimation of the polychoric correlations is the same in LISREL and Mplus, although their es-
timated asymptotic covariance matrices are only equivalent asymptotically (Muthén & Satorra,
1995). In LISREL, the asymptotic covariance matrix is estimated as in Jöreskog (1994), whereas
in Mplus it is estimated as in Muthén (1984). In EQS, the polychorics and their asymptotic co-
variance matrix are estimated as in Lee, Poon, and Bentler (1995). Throughout this paper we
assume that the polychoric correlations and their asymptotic covariance matrix have been con-
sistently estimated and that

√
N(ρ̂ − ρ)

d→ N(0,
ρρ). (6)

All procedures discussed above satisfy these conditions.
Let H = (�′W�)−1�′W, where � = ∂ρ(θ)/∂θ ′ a full column rank matrix so that the model

is (locally) identified. From the consistency and asymptotic normality of the polychoric estimates
and from standard results for weighted least squares estimators (e.g., Browne, 1984; Satorra,
1989; Satorra & Bentler, 1994) the estimator θ̂ obtained by minimizing 5) is consistent and

√
N

(
θ̂ − θ

) d→ N(0,H
ρρH′). (7)

In particular, when W = 
−1
ρρ , (7) simplifies to

√
N(θ̂ − θ)

d→ N(0, (�′
−1
ρρ �)−1), and we ob-

tain an estimator that asymptotically has minimum variance among the class of estimators (5).

Letting r = p∗ − q , in this special case, T = NF̂
d→ χ2

r . In the general case, T is a mixture
of one degree of freedom independent chi-square variates and a goodness of fit test can be ob-
tained by matching its moments with those of a chi-square variable (Satorra & Bentler, 1994;
Muthén, 1993).

Alternatively, following Browne (1984) another goodness of fit test of the model uses a
quadratic form in the residual polychoric correlations. Let

TB = N
(̂
ρ − ρ(θ̂)

)′Ĉ
(̂
ρ − ρ(θ̂)

)
, (8)
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where C = �c(�
′
c
ρρ�c)

−1�′
c , and �c, a p∗ × (p∗ − q) matrix, is an orthogonal complement

to �, such that �′
c� = 0. Then, TB

d→ χ2
r . In practice, it is well known that the residual-based

statistic converges very slowly to its asymptotic distribution. An asymptotically equivalent test
statistic can be obtained following Yuan and Bentler (1997) as

TYB = TB

1 + NTB/(N − 1)2
. (9)

The results of Yuan and Bentler suggest that TYB may have a better small sample performance
than TB .

4. Polychoric Instrumental Variable (PIV) Estimator

In this section we develop the PIV estimator that builds on the approach taken in Bollen
(1996a). However, one difference is that the estimator is based on the polychoric correlation
matrix rather than the raw continuous data. Another difference is that we provide a method to es-
timate the variance and covariance model parameters and their standard errors. A final difference
is that we also provide test statistics to assess the overall fit of the model.

To set the scale of the latent variables, we let

y∗
1 = η + ε1, (10)

that is, we scale the latent variables using the m × 1 vector y∗
1. Also, we partition ε and the

matrices � and � according to the partitioning of y∗ = (y∗
1

y∗
2

)
. Thus, we write

y∗
2 = �2η + ε2. (11)

Now, from (10) we can write

η = y∗
1 − ε1. (12)

Inserting (2) into (10) and using (12) we have

y∗
1 = η + ε1 = Bη + ζ + ε1 = B(y∗

1 − ε1) + ζ + ε1 = By∗
1 + (I − B)ε1 + ζ . (13)

Also, we can insert (12) into (11) to obtain

y∗
2 = �2η + ε2 = �2(y∗

1 − ε1) + ε2 = �2y∗
1 − �2ε1 + ε2. (14)

Thus, we can write the latent variable and measurement models (1) and (2) as

(
y∗

1
y∗

2

)
=

(
B
�2

)
y∗

1 +
(

(I − B) 0 I
−�2 I 0

)⎛
⎝ε1

ε2
ζ

⎞
⎠ , (15)

y∗ = θ1y∗
1 + u, (16)

where θ1 contains all coefficients and u is a composite disturbance. The resulting equation cor-
responds to that in Bollen (1996a) with the exception that in the previous paper the y∗ variables
are observed. However, here we can consistently estimate the polychoric correlation matrix and
its asymptotic covariance matrix. We can use these to estimate the model parameters. Estimation
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of the parameter vector θ = (θ ′
1, θ

′
2)

′ proceeds in two stages. In the first stage, θ1 is estimated.
These are the mathematically independent parameters in �2 and B; that is, the coefficient pa-
rameters. In a second stage, θ2 is estimated given the first-stage estimates θ̂1. θ2 consists of
the mathematically independent parameters in � and �; that is, variance and covariance model
parameters.

4.1. Polychoric Instrumental Variable (PIV) Estimator of Regression Model Parameters

Consider a single equation j from (15):

y∗
j = z′

j θ
(j)

1 + uj , (17)

where θ
(j)

1 is the q
(j)

1 × 1 column vector formed from the nonzero coefficients in the j th row

of θ1. The z′
j is a 1 × q

(j)

1 vector of latent response variables from y∗
1 that have nonzero co-

efficients in the j th equation and uj is the scalar composite disturbance for the j th equation
of (16).

Let COV(zj , z′
j ) = Pzz and COV(zj ,y

∗
j ) = Pzy∗ . Estimation of θ

(j)

1 with the ordinary least
squares (OLS) estimator leads to

θ̂
(j)

1 = P̂−1
zz P̂zy∗ (18)

(see Bollen, 1989, pp. 161–162). However, this is an inconsistent estimator as the composite
disturbance, uj , correlates with variables in zj . We make use of IVs to “purge” the explanatory
variables of that part which is correlated with the disturbances. The intuitive idea behind IVs
is to construct predicted versions of the original explanatory variables that unlike the original
explanatory variables are uncorrelated with the disturbances. To do this, the predicted versions
of the explanatory variables are linear combinations of the IVs for that equation, where the IVs
are uncorrelated with the disturbances.

In an identified model there will be a subset of the y∗ variables that qualify as IVs.1 Define
vj to be the IVs that correspond to zj . Instrumental Variables are y∗ variables that meet three
conditions:

(1) vj must correlate with zj (COV(zj ,v′
j ) �= 0);

(2) vj must not correlate with uj (COV(uj ,v′
j ) = 0); and

(3) there must be at least as many variables in vj as there are in zj .

The potential pool of IVs is a subset of all y∗ variables in a model. The structure of the model
implies that some of these y∗ variables satisfy conditions (1) and (2) and others do not. Those
that do are the model implied instrumental variables (Bollen, 1996a, 2001).

Condition (1) is easy to check by using the sample correlations of the IVs or by regressing
the variables in zj on those in vj and checking for nonzero R2s. In addition, these R2s should
not be too low (not less than, say, 0.10). Condition (3) is just a counting rule that is tied to the
identification of the parameters in an equation. If there are fewer IVs than variables in zj that
correlate with uj , then the equation is underidentified in the absence of other restrictions on
the coefficients. If there are exactly the same number, the equation meets a necessary condition

1We have not come across any situations where an identified model does not have IVs. In the context of simultaneous
equation models without latent variables where all equation disturbances are allowed to correlate, the rank condition of
identification used for such models ensures sufficient number of IVs (Bowden & Turkington, 1984, p. 129). However, it
might be possible to construct a more general example where there are constraints on variance or covariance parameters
that enable model identification, but that do not permit a sufficient number of IVs to estimate coefficients. If so, we expect
this to rarely occur in practice.
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for exact identification of its unconstrained coefficients. More IVs than variables in zj leads to
overidentification.

Condition (2), that the IVs are uncorrelated with uj , is the most problematic condition. The
disturbance term is a composite disturbance that is some function of the measurement errors or
the latent variable disturbances. We must choose as IVs those y∗ variables that do not correlate
with the elements of the composite disturbance term for the j th equation.2 A variable that is
neither directly nor indirectly influenced by any elements in the composite disturbance of the
equation (i.e., uj ) is a potential IV. Researchers can determine this for each equation via the
equations of the model or the path diagram. It is possible to automate the selection of model-
implied IVs and Bollen and Bauer (2004) provide an algorithm and an SAS macro to do so. We
will illustrate the selection of IVs in the empirical example.

The IVs will often differ from one equation to the next rather than being the same set for all
equations. Hence the use of j to distinguish the IVs for the j th equation from those of the others.
Define COV(vj , z′

j ) = Pvz,COV(vj ,v′
j ) = Pvv, and COV(y∗

j ,vj ) = Py∗v . We can represent the
2SLS as an IV estimator (see, e.g., Bowden & Turkington, 1984) that in our notation is

θ
(j)

1 = (
P′

vzP−1
vv Pvz

)−1P′
vzP−1

vv Pvy∗ . (19)

With P̂zv , P̂−1
vv , and P̂vy∗ consistent estimators of Pzv , P−1

vv , and Pvy∗ , respectively, the PIV esti-

mator, θ̂
(j)

1 , is

θ̂
(j)

1 = (
P̂′

vzP̂−1
vv P̂zv

)−1P̂′
vzP̂−1

vv P̂vy∗ . (20)

To establish the consistency of the PIV estimator, θ̂
(j)

1 , note that

Pvy∗ = COV
(
vj ,z′

j θ
(j)

1 + uj

)
= COV

(
vj ,z′

j θ
(j)

1

) + COV(vj ,uj )

= Pvzθ
(j)

1 , (21)

where the last line follows from the IVs being uncorrelated with uj . Using this result and equa-
tion (19) we have:

(
P′

vzP−1
vv Pvz

)−1P′
vzP−1

vv Pvy∗ = (
P′

vzP−1
vv Pvz

)−1P′
vzP−1

vv Pvzθ
(j)

1

= θ
(j)

1 (22)

and

plim
(
θ̂

(j)

1

) = plim
[(

P̂′
vzP̂−1

vv P̂zv

)−1P̂′
vzP̂−1

vv P̂vy∗
]

= (
P′

vzP−1
vv Pvz

)−1P′
vzP−1

vv Pvy∗

= θ
(j)

1 . (23)

Thus, θ̂
(j)

1 is a consistent estimator of θ
(j)

1 .

2A simple illustration of variables that can always serve as IVs are exogenous observed variables. These are observed
variables that have no measurement error and that are predetermined in the model (i.e., no other variables influence them).
For instance, gender or race are often exogenous variables in social and behavioral science research. Exogenous variables
are uncorrelated with all disturbances in a model so they will qualify as IVs in all equations. We discuss exogenous
observed variables in the conclusion.
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4.1.1. Asymptotic Standard Errors of PIV Regression Parameter Estimates
Collecting all p – m equations (23) we can write

θ̂1 = γ (̂ρ). (24)

The asymptotic distribution of θ̂1 = γ (̂ρ) then is obtained via a first-order expansion, θ̂1
a= θ1 +

(∂γ (ρ)/∂ρ′)(ρ̂ − ρ). Now, letting K = ∂γ (ρ)/∂ρ ′, we can write

√
N

(
θ̂1 − θ1

) a= K
√

N(ρ̂ − ρ). (25)

From (6) and (25) we obtain
√

N(θ̂1 − θ1)
d→ N(0,K
ρρK′). Thus, standard errors for θ̂1

are obtained using

̂Acov
(
θ̂1

) = 1

N
K̂
̂ρρK̂′, (26)

and we consistently estimate K by evaluating it at the sample polychoric correlations.

4.2. Estimation of PIV Variance and Covariance Model Parameters

To estimate θ2 given θ̂1 we shall simply minimize

F2 = (̂
ρ − ρ

(
θ2, θ̂1

))′(̂
ρ − ρ

(
θ2, θ̂1

))
. (27)

Let �2 = ∂ρ(θ2, θ̂1)/∂θ ′
2 and H2 = (�′

2�2)
−1�′

2. From standard results

√
N

(
θ̂2 − θ2

) a= H2
√

N
(̂
ρ − ρ

(
θ2, θ̂1

))
. (28)

Now, the asymptotic distribution of
√

N(̂ρ − ρ(θ2, θ̂1)) is obtainable as follows: Let �1 =
∂ρ(θ1)/∂θ ′

1. We have ρ(θ2, θ̂1)
a= ρ + (∂ρ(θ1)/∂θ ′

1) (θ̂1 − θ1). Thus, from (25), ρ(θ2, θ̂1) −
ρ

a= �1K
√

N(ρ̂ − ρ). Also, ρ̂−ρ(θ2, θ̂1) = [ρ̂ − ρ] − [ρ(θ2, θ̂1) − ρ]. Therefore,

√
N

(̂
ρ − ρ

(
θ2, θ̂1

)) a= (I − �1K)
√

N(ρ̂ − ρ), (29)

and from (6) we obtain the desired result:

√
N

(̂
ρ − ρ

(
θ2, θ̂1

)) d→ N
(
0, (I − �1K)
̂ρρ(I − �1K)′

)
. (30)

4.2.1. Asymptotic Standard Errors of PIV Variance and Covariance Parameter Estimates
From (6), (28), and (29),

√
N

(
θ̂2−θ2

) d→ N
(
0,H2(I − �1K)
ρρ(I − �1K)′H′

2

)
.

Thus, standard errors for θ̂2 can be obtained using

̂Acov
(
θ̂2

) = 1

N
Ĥ2(I − �̂1K̂)
̂ρρ(I − �̂1K̂)′Ĥ′

2, (31)

where H2, �1, and K are evaluated at θ̂ .
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4.3. Goodness of Fit Tests

The above procedure yields consistent estimates θ̂ = (θ̂ ′
1, θ̂

′
2)

′. The consistency of θ̂1 was

described above, whereas the consistency of θ̂2 follows from the consistency of the residual
vector

√
N(̂ρ − ρ(θ2, θ̂1)) and standard results for minimum distance estimators.

Since the estimator is consistent, to assess the goodness of fit of the restrictions imposed by
the model on the matrix of polychoric correlations we can simply use the statistics TB and TYB

given in (8) and (9). In this paper we consistently estimate 
ρρ as in Jöreskog (1994).
Alternatively, we can assess the overall goodness of fit of the model by matching the asymp-

totic moments of a test statistic with those of a chi-square distribution (see Satorra & Bentler,
1994; Cai, Maydeu-Olivares, Coffman, & Thissen, 2006). Let ê = ρ̂ − ρ(θ̂), and consider the
statistic

T = ê′ê. (32)

This statistic is the ULS fit function, evaluated at the PIV parameter estimates. Now, let � =
∂ρ(θ)/∂θ ′ and G =

(
K

I−�1K

)
. We have ρ(θ̂)

a= ρ + (∂ρ(θ)/∂θ ′)(θ̂ − θ), and since ê = [ρ̂ −
ρ] − [ρ(θ̂)−ρ], ê a= (I − �G)(ρ̂ − ρ). Finally, let

M = (I − �G)�ρρ′(I − �G)′. (33)

The first two asymptotic moments of T are Tr(M) and 2 Tr(M2).
The mean corrected scaled statistic is therefore Ts = T/(Tr(M)/r) which is referred to a

chi-square distribution with r degrees of freedom. The mean and variance adjusted statistic is
Ta = T/(Tr(M2)/r), which is referred to a chi-square distribution with d = Tr(M)2/(Tr(M2)/r)

degrees of freedom.3

5. Empirical Example: PIV vs. ULS Estimation of the Lot Data

We mentioned the Life Orientation Test (LOT) in the Introduction to motivate this paper.
The LOT consists of eight items that measure optimism and pessimism where each item consists
of a five-category ordinal variable. Chang, D’Zurilla, and Maydeu-Olivares (1994) fitted a confir-
matory two-factor model to this questionnaire: P(θ) = ���′ + �, where � = I − diag(���′)
is a diagonal matrix,

�′ =
(

1 λ21 λ31 λ41 0 0 0 0
0 0 0 0 1 λ62 λ72 λ82

)
and � =

(
ψ11 ψ21
ψ21 ψ22

)
.

The clusters correspond to the positively and to the negatively worded items of the questionnaire,
respectively. That is, the factors measure optimism and pessimism, respectively.

Chang et al. (1994) used WLS and found that this model reproduced well the polychoric
matrix. Their data (389 observations) are reanalyzed here using the ULS and the PIV estimators.

This confirmatory factor analysis is overidentified and for all of the equations there are more
than enough model-implied IVs to estimate the factor loadings. To illustrate the selection of

3Although we do not consider it further, another model test statistic that could be used is the vanishing tetrad test for
polychoric correlations (Hipp & Bollen, 2003).
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model-implied IVs, consider the equations for the model,

y∗
1 = η1 + ε1, y∗

5 = η2 + ε5, (34)

y∗
2 = λ21η1 + ε2, y∗

6 = λ62η2 + ε6, (35)

y∗
3 = λ31η1 + ε3, y∗

7 = λ72η2 + ε7, (36)

y∗
4 = λ41η1 + ε4, y∗

8 = λ82η2 + ε8. (37)

From (34) we have η1 = y∗
1 − ε1. Substituting this into the y∗

2 equation leads to

y∗
2 = λ21y

∗
1 − λ21ε1 + ε2. (38)

To estimate λ21 we need IVs for y∗
1 . The IVs must correlate with y∗

1 and be uncorrelated with
−λ21ε1 + ε2. Given that � is diagonal (all εs are uncorrelated), y∗

3 to y∗
8 are uncorrelated with

ε1and ε2, and hence all these variables meet one condition of being an IV. We also want indicators
that correlate with y∗

1 . A correlation between η1 and η2 implies that y∗
3 to y∗

8 correlate with y∗
1 .

Thus, all of these indicators (y∗
3 to y∗

8 ) are model-implied IVs for y∗
1 . Bollen et al.’s (2007)

results suggest that in small- to moderate-sized samples the IV estimator is relatively unbiased
when using pi + 1 or pi + 2 IVs for each equation, where pi denotes the number of z variables
for each equation. Those model-implied IVs that are most strongly related to the scaling indicator
that they will predict are usually the best IVs to use when choosing a subset of eligible ones. In
a valid model any subset of the model-implied IVs will result in a consistent estimator of the
factor loading even though in a given sample the estimates will differ depending on the subset of
IVs chosen due to sampling fluctuations. In the following table we list the IVs we used in each
equation:

y z IV

2 1 3, 4
3 1 2, 4
4 1 2, 3
6 5 7, 8
7 5 6, 8
8 5 6, 7

Table 1 shows that compared to the ULS estimator, we obtained similar goodness of fit
results when employing the PIV estimator. This is particularly true in the case of the TB and TYB

statistics. Table 2 contains the parameter estimates and standard errors using the IV estimator
and for comparison using ULS. As can be seen in this table, very similar parameter estimates
and standard errors are obtained with both estimators.

TABLE 1.
Goodness of fit tests for the LOT data.

PIV ULS

Stat. Value df p Value df p

TB 25.30 19 0.15 25.01 19 0.16
TYB 23.75 19 0.21 23.49 19 0.21
Ts 23.56 19 0.21 24.6 19 0.17
Ta 12.20 9.83 0.26 14.66 11.33 0.22
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TABLE 2.
Parameter estimates and standard errors for the LOT data.

PIV estimation ULS estimation

Par. Est. SE Est. SE

λ21 1.23 0.11 1.25 0.13
λ31 1.05 0.10 1.15 0.13
λ41 0.63 0.10 0.69 0.11
λ62 1.32 0.12 1.38 0.14
λ72 1.32 0.11 1.32 0.13
λ82 1.07 0.11 1.18 0.13
ψ11 0.46 0.06 0.42 0.07
ψ21 −0.24 0.04 −0.22 0.04
ψ22 0.43 0.07 0.40 0.07

Notes: N = 389.

6. Simulation

In this section we investigate the finite sample behavior of the PIV parameter estimates,
standard errors, and goodness of fit tests by means of a small simulation study with correctly
and incorrectly specified models. We use a standard multivariate normal (MVN) density with
p = 8 variables where each variable is categorized into K = 2 categories using the thresholds
τi = 0. The following correlation structure was used: P(θ) = �(I − B)−1�(I − B)−1′�′ + �.
The parameters for the correct specification were

�′ =
(

1 λ21 λ31 λ41 0 0 0 λ81
0 0 0 λ42 1 λ62 λ72 λ82

)
,

B =
(

0 0
β21 0

)
, � =

(
ψ11 0

0 ψ22

)
, and � = I − diag

(
�(I − B)−1�(I − B)−1′�′).

The second column of Table 3 contains the true parameter values.
We fitted two models to the simulated data: a correctly specified model, and a misspecified

model where λ42 = λ81 = 0. We pitted the performance of the PIV estimator against the ULS
estimator as it is a natural system-wide counterpart of the PIV estimator, since both estimators
are based on unweighted/ordinary least squares.

6.1. Correctly Specified Model

The estimated parameter estimates and asymptotic standard errors for the PIV estimator and
the system-wide ULS estimator are reported in Table 3 for the correctly specified models for an
N of 200, 1000, and 5000.

The results shown in Table 3 reveal that there is little to choose from between these two
estimators in this correctly specified model. However, the PIV estimates have slightly less bias
than the ULS for N = 200. Both PIV and ULS estimators are essentially unbiased in the larger
sample sizes. The standard errors for ULS are slightly more accurate than for PIV.

To shed some light onto whether PIV is more accurate than ULS in very small samples,
we considered the case N = 50. Also, we pitted the PIV estimator against the DWLS estimator.
Table 6.1 summarizes the results. In this table we provide the median absolute parameter bias as
well as the median absolute standard error bias for each of the conditions. Here, we define pa-
rameter and standard error bias as (x̄

θ̂
− θ0)/θ0 and (x̄

SE(θ̂)
− sd

θ̂
)/sd

θ̂
, respectively. Consistent
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TABLE 4.
Simulation results for the correctly specified model: Median absolute bias for parameter
estimates and standard errors.

Converged Est. SEs
Estimator N replications

PIV 50 945 .036 .066
200 993 .0060 .025

1000 1000 .0038 .025
5000 1000 .0008 .014

ULS 50 940 .056 .092
200 991 .010 .021

1000 1000 .0012 .018
5000 1000 .0015 .011

DWLS 50 938 .045 .10
200 993 .010 .024

1000 1000 .0016 .013
5000 1000 .0010 .0065

with previous comparisons between DWLS and ULS (Maydeu-Olivares, 2001), Table 4 shows
that the differences between these estimators are small. The differences between these estimators
and the PIV estimator are also small. It is worth mentioning, however, that the PIV estimator
minimally outperforms the other estimators in number of convergent replications and parameter
estimation accuracy in small samples (N ≤ 200).

The small sample behavior of the goodness of fit test statistics is reported in Table 5. The
mean and variance of the tests statistics under consideration, as well as empirical rejection rates
in the critical region 1% to 20%, are provided in this table. For N = 200, rejection rates using
the Ts and Ta tend to be closest to the expected rejection rates for PIV and ULS. Indeed, for the
ULS estimator, the mean and variance adjusted statistic Ta provides a fairly accurate test of the
model for N = 200. In the largest samples, TB and TYB tend to be the most accurate for PIV and
ULS.

For comparison, we also investigated the performance of moment corrections to the
weighted statistic

T = ê′(diag
(

̂ρρ

))−1ê.

This statistic is the DWLS fit function, evaluated at the PIV parameter estimates. With this sta-
tistic instead of (32), M in equation (33) becomes

M = (
diag

(

̂ρρ

))−1
(I − �G)
̂ρρ′(I − �G)′.

The behavior of the moment corrections to this weighted statistic is very similar to the behavior
of the unweighted statistic reported in Table 5.

6.2. Incorrectly Specified Model

Previous literature suggests that 2SLS/IV is more robust to specification error than are
system-wide estimators (e.g., Cragg, 1968; Bollen et al., 2007). Bollen (2001) gives conditions
for his 2SLS/IV estimator to be robust to structural misspecifications. Adapting these to our
notation, they are as follows:

Suppose that for the j th equation in the correctly specified model, the model-implied IVs are

in vj . The 2SLS/IV estimator of the coefficients in θ̂
(j)

1 is robust for any structural misspecifica-
tions in other equations under two conditions:
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TABLE 5.
Simulation results for the correctly specified model: Goodness of fit tests of the structural restrictions.

Rejection rates

Estimator N Stat. Mean Variance 1% 5% 10% 20%

PIV 200 TB 18.5 40.3 1.5 9.1 16.4 28.9
TYB 16.8 27.5 0.3 2.5 7.6 17.7
Ts 15.7 61.9 3.1 8.3 12.5 18.2
Ta 6.7 14.2 0.7 2.9 6.2 13.9

1000 TB 17.2 33.7 1.2 4.7 10.3 21.1
TYB 16.9 31.2 1.0 4.1 8.6 20.0
Ts 16.6 71.2 4.2 9.5 13.9 21.4
Ta 7.6 17.7 1.5 4.5 8.3 16.4

5000 TB 17.0 35.5 1.2 5.0 10.9 20.5
TYB 16.93 34.97 1.1 4.9 10.4 20.0
Ts 16.95 77.3 5.2 10.6 14.2 22.3
Ta 7.7 16.9 2 5.6 9.8 16.9

ULS 200 TB 18.8 41.4 1.6 9.6 18.7 30.5
TYB 17.0 28.1 0.4 2.7 7.9 20.0
Ts 17.2 46.2 3.0 7.2 12.7 22.7
Ta 11.7 21.6 0.9 4.6 9.2 19.5

1000 TB 17.2 34.1 1.2 5.0 10.2 21.1
TYB 16.9 31.6 0.9 4.3 8.8 20.0
Ts 16.9 42.9 2.4 6.6 12.0 20.7
Ta 12.4 23.19 0.9 4.5 8.9 18.7

5000 TB 17.0 35.6 1.1 5.2 10.7 20.6
TYB 17.0 35.1 1 4.9 10.2 20.1
Ts 17.1 47.1 2.7 7.2 13.0 23.0
Ta 12.7 26.1 1 5.5 10.4 20.7

Notes: 17 df. 1000 replications per condition. All replications converged except for N = 200, where 993
replications converged for PIV and 991 for ULS.

(1) the equation being estimated is correctly specified; and
(2) the misspecifications in the other equations do not alter the variables in vj .

These same robustness conditions will hold for the PIV estimator of the coefficients. They ap-
ply to coefficients (θ1) and not necessarily to variance and covariance parameters (θ2). Indeed
our estimator of the variances and covariances in θ2 utilizes a system-wide estimator that is
conditional on the values in θ̂1. Since at least some parameters in θ̂1 will be biased in an in-
correct model, θ̂2 need not be robust to structural misspecifications. In system-wide estimators
like ULS, robustness conditions are not known but simulation evidence for system-wide estima-
tors suggests that it is more prone to spread structural misspecifications to both coefficients and
variance/covariance parameters.

We return to our simulation data to illustrate these properties. We used the same simulated
data as before but estimate a misspecified model where λ42 = λ81 = 0. The parameter estimates
and asymptotic standard errors for the PIV estimator and the system-wide ULS estimator are
reported in Table 6. This model meets the conditions for robustness to misspecification set forth
in Bollen (2001).

The above robustness conditions predict that the PIV estimator of coefficients will be robust
for the β21 coefficient that links the two latent variables, and for all factor loadings except in
the two structurally misspecified equations for y4 and y8. In fact, it is, and the PIV estimates for



322 PSYCHOMETRIKA

T
A

B
L

E
6.

Si
m

ul
at

io
n

re
su

lts
fo

r
th

e
in

co
rr

ec
tly

sp
ec

ifi
ed

m
od

el
:P

ar
am

et
er

es
tim

at
es

an
d

st
an

da
rd

er
ro

rs
.

PI
V

es
tim

at
or

U
L

S
es

tim
at

or

N
=

20
0

N
=

10
00

N
=

50
00

N
=

20
0

N
=

10
00

N
=

50
00

Pa
r

Tr
ue

x̄
es

t
x̄

SE
sd

es
t

x̄
es

t
x̄

SE
sd

es
t

x̄
es

t
x̄

SE
sd

es
t

x̄
es

t
x̄

SE
sd

es
t

x̄
es

t
x̄

SE
sd

es
t

x̄
es

t
x̄

SE
sd

es
t

λ
21

0.
8

0.
80

0.
13

0.
13

0.
80

0.
06

0.
05

0.
80

0.
02

0.
02

0.
83

0.
14

0.
14

0.
82

0.
06

0.
06

0.
82

0.
02

0.
02

λ
31

0.
8

0.
79

0.
13

0.
13

0.
80

0.
06

0.
05

0.
80

0.
02

0.
03

0.
83

0.
14

0.
14

0.
82

0.
06

0.
06

0.
82

0.
02

0.
02

λ
41

0.
8

0.
91

0.
14

0.
14

0.
92

0.
06

0.
06

0.
92

0.
03

0.
03

1.
31

0.
12

0.
21

1.
30

0.
08

0.
09

1.
30

0.
04

0.
04

λ
62

0.
8

0.
79

0.
11

0.
11

0.
80

0.
05

0.
05

0.
80

0.
02

0.
02

0.
82

0.
12

0.
13

0.
82

0.
05

0.
05

0.
82

0.
02

0.
02

λ
72

0.
8

0.
80

0.
11

0.
11

0.
80

0.
05

0.
05

0.
80

0.
02

0.
02

0.
83

0.
12

0.
12

0.
82

0.
05

0.
05

0.
82

0.
02

0.
02

λ
82

0.
8

0.
90

0.
11

0.
11

0.
91

0.
05

0.
05

0.
91

0.
02

0.
02

1.
22

0.
14

0.
16

1.
21

0.
06

0.
07

1.
21

0.
03

0.
03

β
21

0.
3

0.
29

0.
16

0.
16

0.
30

0.
07

0.
07

0.
30

0.
03

0.
03

0.
58

0.
12

0.
12

0.
57

0.
05

0.
05

0.
57

0.
02

0.
02

ψ
11

0.
7

0.
79

0.
13

0.
14

0.
80

0.
07

0.
06

0.
80

0.
03

0.
03

0.
55

0.
11

0.
12

0.
55

0.
05

0.
05

0.
55

0.
02

0.
02

ψ
22

0.
7

0.
69

0.
12

0.
13

0.
69

0.
05

0.
05

0.
69

0.
02

0.
02

0.
44

0.
09

0.
10

0.
45

0.
04

0.
04

0.
45

0.
02

0.
02

N
ot

es
:1

00
0

re
pl

ic
at

io
ns

pe
r

co
nd

iti
on

.T
he

nu
m

be
r

of
co

nv
er

ge
d

re
pl

ic
at

io
ns

fo
r
N

=
20

0,
10

00
,a

nd
50

00
is

96
9,

97
6,

an
d

95
3

fo
r

PI
V

;a
nd

95
5,

96
8,

an
d

95
1

fo
r

U
L

S.



KENNETH A. BOLLEN AND ALBERT MAYDEU-OLIVARES 323

TABLE 7.
Simulation results for the incorrectly specified model: Median absolute bias for parameter
estimates and standard errors.

Converged
Estimator N replications Est. SEs

PIV 200 969 .013 .017
1000 976 .0057 .018
5000 953 .0022 .020

ULS 200 955 .21 .035
1000 968 .22 .064
5000 951 .22 .052

these correct equations are identical in the correct and incorrect models. In contrast in the mis-
specified model, the system-wide ULS estimator spreads bias from the omitted cross-loadings.
In this model the bias in the factor loadings for the correctly specified equations are not large,
leading to a slightly higher value than the population parameter (estimate of 0.82 or 0.83 for
0.80 parameter). But the β21 estimate shifts from 0.30 in the correct model to 0.57 or 0.58 in
the misspecified one, a nearly 100% bias and enough to change our assessment of the relation
between these latent variables. In addition, the factor loadings for the indicator equations with
omitted cross-loadings exhibit more bias in ULS than they do for the PIV estimates. For exam-
ple, for N = 1000 the mean of the ULS estimator of λ41 is 1.30 compared to the mean of 0.92
for PIV where the true parameter value is 0.80. For this structurally misspecified equation, both
are biased as expected, but the bias in ULS is far greater than for PIV.

Table 7 provides a summary of the bias for the incorrectly specified model by giving the
median absolute bias for the parameter estimates and standard errors. Across all sample sizes
and for estimates and standard errors, the bias is consistently greater for the ULS estimator than
for the PIV. Concealed by this table but revealed in Table 6 is that the bias in the PIV estimator is
confined to the structurally misspecified equations and the variance estimates. The remaining fac-
tor loadings are essentially unbiased and robust to the structural misspecification. With the ULS
estimator the bias spreads across all parameters, even those from correctly specified equations.

7. Discussion and Conclusion

In this paper we developed the PIV estimator for SEMs when one or more endogenous
observed variables are dichotomous or ordinal. Unlike the system-wide estimators such as poly-
choric ULS, WLS, or DWLS, the PIV estimator is an equation-by-equation estimator of the coef-
ficient parameters. The variance and covariance parameters in the model are estimated given the
PIV coefficient parameter estimates. Furthermore, we provide methods to estimate the asymp-
totic standard errors of all estimated parameters and developed chi-square tests of the models
overidentification restrictions. The PIV estimator of the model parameters and their asymptotic
standard errors performed well in our empirical example and simulation. The TYB and TB chi-
square test performs reasonably well in moderate-sized samples, but were less accurate in smaller
samples.

Our presentation concentrated on SEMs without exogenous observed covariates. For ease
of exposition, the present account has focused on correlation structure models where all the
observed variables are categorical. However, the PIV procedure described here (η = Bη + ζ )
can be generalized to η = Bη + �x + ζ where x consists of observed exogenous covariates
along the lines of Bollen (2002). In this latter model, the assumption of underlying multivariate
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normality is replaced by an assumption of underlying continuous variables conditional on the
set of exogenous variables (see, e.g., Muthén, 1984). Also, we can treat structural models with
restrictions on the mean vector, covariance matrix, and (probit) regression slopes. For further
details of this general model, see Muthén (1984), Browne and Arminger (1995), and Küsters
(1987). For details on how mean and covariance structures can be estimated with IV estimators,
see Bollen (1996a).

It is interesting to contrast the properties of the PIV estimator for categorical endogenous
variables compared to those of the 2SLS/IV estimator of Bollen (1996a) from which it builds.
It is worth noting that the approach to estimating variances and covariances and the chi-square
tests of overall model fit that we developed for the PIV estimator could be modified to apply to
Bollen’s (1996a) 2SLS/IV estimator for continuous variables. The 2SLS/IV estimator for con-
tinuous variables is robust to excess kurtosis in the observed variables in that the consistency of
the parameter estimator and the accuracy of the asymptotic standard errors still hold. In contrast,
the usual polychoric correlation estimator is consistent when each pair of variables comes from a
bivariate normal distribution. Nonnormality of the underlying variables can undermine the con-
sistency of the PIV estimator or of the standard WLS or DWLS estimators. Work by Quiroga
(1992), Flora (2002), Flora and Curran (2004), and Maydeu-Olivares (2006) suggests that the
polychoric matrix is robust to some forms of nonnormality, but this is an area that requires fur-
ther research. If alternative distributional assumptions are made for y∗, a new estimator of the
correlation matrix for these variables is possible and these could be subject to PIV estimation.
But if the estimator of the polychoric correlation matrix is not a consistent estimator, then the
PIV estimator, like the ULS, DWLS, and WLS estimators, need not be consistent.

Another area of robustness, besides distributional robustness, is the robustness to structural
misspecifications in a model. Structural misspecifications refer to the use of the wrong structure
in an SEM such as omitted paths, omitted correlated disturbances, or the wrong dimensional-
ity of measures. In a previous section we noted that the structural misspecification robustness
conditions given in Bollen (2001) carry over to the PIV estimator of the regression parame-
ters. However, the same robustness does not carry over for θ̂2 since its consistency depends on

the consistency of all regression parameters. Though many of the PIV estimators of θ̂
(i)

1 could be
consistent under a structural misspecification, at least some, particularly in the misspecified equa-
tion, will not be. Similar conditions for robustness to structural misspecification are not known
for the system-wide estimators such as polychoric ULS, WLS, or DWLS, but based on experi-
ence with continuous variables (Cragg, 1968; Bollen et al., 2007) these system-wide estimators
are likely to be less robust than the PIV estimator for regression and factor loading parameters.
When structural misspecifications of a model are suspected, we recommend the PIV estimator as
the parameter estimator for the factor loadings and regression coefficients since they are likely to
be closer to their parameter values than are those for system-wide estimators.

We end with a cautionary note. The properties that we have established for the PIV estimator
are asymptotic. Other analytical and simulation work will need to examine when and under
what conditions these asymptotic properties take hold. But the simplicity of the estimator and its
greater robustness of regression parameter estimates to structural specification errors suggest that
the PIV should be further examined. In addition, its finite sample behavior should be compared
to the more common system-wide estimators that are in use.
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