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Bartholomew and Leung proposed a limited-information goodness-of-fit test statistic
(Y ) for models fitted to sparse 2P contingency tables. The null distribution of Y was
approximated using a chi-squared distribution by matching moments. The moments
were derived under the assumption that the model parameters were known in advance
and it was conjectured that the approximation would also be appropriate when
the parameters were to be estimated. Using maximum likelihood estimation of the
two-parameter logistic item response theory model, we show that the effect of
parameter estimation on the distribution of Y is too large to be ignored. Consequently,
we derive the asymptotic moments of Y for maximum likelihood estimation. We show
using a simulation study that when the null distribution of Y is approximated using
moments that take into account the effect of estimation, Y becomes a very useful
statistic to assess the overall goodness of fit of models fitted to sparse 2P tables.

1. Introduction

It is common in social science research to encounter surveys, personality inventories, or

educational tests consisting of P dichotomously scored items. The responses of a sample

of individuals to items can be described by a contingency table consisting of C ¼ 2P

cells. When modelling such contingency tables one assumes that the cell probabilities

depend on a set of q parameters whose values are either fixed in advance (simple

hypothesis) or estimated from the data (composite hypothesis). Because most often the

parameters are estimated when modelling 2P tables, in this paper we focus on goodness-
of-fit testing under composite null hypotheses.

Pearson’s X
2 and the likelihood ratio G

2 are arguably the two most widely used

statistics in contingency table analysis. When the model parameters are estimated using

maximum likelihood (ML), these two statistics are asymptotically equivalent and their
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asymptotic distribution is chi-squared with C 2 q 2 1 degrees of freedom. However, it

is well known (see Cochran, 1952) that when some cell probabilities are small the type I

error rates of goodness-of-fit tests using X
2 or G

2 do not match their expected rates

under their reference asymptotic distribution. Since the number of items in typical

psychometric applications is large, the number of cells in the resulting contingency

tables is even larger (often several million) while the number of respondents is usually in

the hundreds. As a result, most of the cells have very small probabilities (Bartholomew &
Tzamourani, 1999) in such large tables. Also, cell proportions are very poorly estimated

(most cell proportions are zero). In sum, goodness-of-fit testing in such sparse tables

poses a serious challenge to psychometricians.

To overcome the limitations of X 2 and G
2, three remedies have been proposed. One

proposal is to pool cells so that the cell probabilities of the resulting table are large

(see Bartholomew & Tzamourani, 1999, for an excellent discussion). The second

proposal is to use resampling methods such as the parametric bootstrap to obtain an

empirical p-value for X
2 and G

2 (Bartholomew & Knott, 1999; Bartholomew &

Tzamourani, 1999; Collins, Fidler, Wugalter, & Long, 1993; Langeheine, Pannekoek, &
van de Pol, 1996; Tollenaar & Mooijaart, 2003). The third proposal is to use limited-

information statistics (Bartholomew & Leung, 2002; Maydeu-Olivares, 1997, 2001a;

Reiser, 1996; Reiser & Lin, 1996; Reiser & VandenBerg, 1994).

Pooling cells after the model has been fitted often results in statistics with an unknown

sampling distribution, as the procedure is data-dependent. It may also lead to a gross loss

of information about model misfit. The use of resampling methods, on the other hand, has

become increasingly popular given the power of today’s computers. However, to obtain a

stable p-value for any goodness-of-fit test, several hundred resamples are needed. In

addition, if the researcher is interested in comparing the fit of different models, the
resampling procedure must be repeated for each model. In sum, resampling methods are

not very practical computationally. Furthermore, Tollenaar and Mooijaart (2003) showed

that the validity of a bootstrap-based test depends critically upon what statistic is being

bootstrapped. In particular, bootstrapping X
2 or G2 does not provide immediate Type I

error rate control under sparseness.

As an alternative to statistics such as X
2 and G

2 which use all the information

contained in the contingency table (i.e. full information), several researchers in

psychometrics have proposed limited-information statistics based on the lower-order

margins of the contingency table (see Bartholomew & Leung, 2002, and the references

therein). There is evidence that when the table is large and sparseness severe, limited-
information tests can be superior to tests based on the full cross-classifications (Agresti,

Lipsitz, & Lang, 1992; Agresti & Yang, 1987; Maydeu-Olivares & Joe, in press).

Limited-information methods have a long tradition in psychometrics. The classical

solutions to the factor-analytic model involving dichotomous indicators

(Christofferson, 1975; Muthén, 1978) use limited-information methods that yield a

class of consistent and asymptotically normal estimators of the model parameters using

only the first- and second-order margins. These procedures yield goodness-of-fit tests that

also use limited information.

In this paper, we are primarily interested in the combination of full-information
estimation (Bock & Aitkin, 1981; Bock & Lieberman, 1970) and limited-information

goodness-of-fit testing. This ‘hybrid’ approach is similar to that found in Reiser (1996).

Bartholomew and Leung (2002) proposed a limited-information goodness-

of-fit statistic, called Y in their paper, with two attractive properties. First, it is

computationally simpler than other statistics suggested in the literature (such as
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Reiser, 1996). Second, after conducting an overall goodness-of-fit test, it is easy to

‘decompose’ Y into simple additive pieces to assess the contributions of individual

margins to the misfit of the model. To obtain p-values for Y, Bartholomew and

Leung (2002) approximated its distribution under the simple null hypothesis by

matching its exact moments to the moments of a linear transformation of a central

chi-squared variable. They also showed that the exact moments of their statistic

could be well approximated by asymptotic moments that are much easier to

compute in practice. However, we are most often interested in composite null

hypotheses where the parameters are estimated from the data. Bartholomew and

Leung (2002) suggested that moment adjustments based on simple null hypotheses

could also be used when testing composite null hypotheses. In this paper we

investigate the usefulness of the asymptotic moment adjustments for Y proposed by

Bartholomew and Leung (2002) in testing composite null hypotheses when the

model parameters have been estimated by ML.

The remainder of the paper is organized as follows. In Section 2 we present a

characterization of the multivariate Bernoulli (MVB) distribution using its moments.

This characterization is very useful for introducing limited-information goodness-of-fit

statistics. In Section 3 we discuss limited- and full-information goodness-of-fit tests for

simple null hypotheses within an MVB framework. Within this framework, Y is simply a

quadratic form in residual bivariate MVB moments. In Section 4 we consider the use of Y

for testing composite null hypotheses. We approximate the distribution of Y with the

same moment-based adjustments as in Bartholomew and Leung (2002), but taking into

account that the parameters have been estimated by ML. In Section 5 we employ the

two-parameter logistic (2PL) item response theory (IRT) model in a set of simulations to

empirically investigate the type I error rates and power of Y with various moment

adjustments. We use the moments of Y computed as in Bartholomew and Leung (2002),

assuming that the parameters are fixed, and we also use the moments of Y derived in this

paper for the maximum likelihood estimator (MLE). We shall see that ignoring the fact

that the parameters are estimated has an adverse effect on the behaviour of Y. Finally, we

analyse a real data set to illustrate our discussion.

2. A multivariate Bernoulli framework

Throughout this paper we consider a test consisting of P dichotomously scored items,

administered to a sample of N examinees. Without loss of generality, we may assign a

score of 1 to the ‘correct’ response to an item, and 0 otherwise, so that each variable is

Bernoulli, and their joint distribution is MVB1 (see Teugels, 1990, for details).

2.1. The MVB distribution
Consider one of the 2P response patterns – a random P-vectorU ¼ (U1, : : : ,Ui, : : : ,UP)0

of Bernoulli random variables – and let u ¼ (u1, : : : , ui, : : : , uP)0, ui [ {0, 1}, be a

realization of U. We write the joint distribution of this MVB variable as2

pu ¼ PðUi ¼ uiÞ; ð1Þ

1 The notation for the MVB characterization used here follows Maydeu-Olivares (1997).
2 To differentiate scalars from vectors or matrices, we use bold lower-case letters to indicate a vector, and bold capital letters to
indicate a matrix.
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for i ¼ 1, : : : ,P. Without loss of generality, we order the elements in p by the number of

items correct (also known as the summed-score group in IRT terminology),

10u ¼ 0, 1, : : : , P, where 1 is a P £ 1 summing vector. Within each summed-score

group, the individual joint probabilities are sorted by the (inverse) lexicographical

ordering of the response patterns in u. For example, for P ¼ 3, p ¼ (p(0,0,0), p(1,0,0),

p(0,1,0), p(0,0,1), p(1,1,0), p(1,0,1), p(0,1,1), p(1,1,1))
0.

The MVB distribution can be characterized by the set of 2P probabilities p. In

the psychometrics literature, rather than using an MVB sampling scheme, it is

customary to consider a multinomial sampling scheme for the observed frequencies

of the response patterns. Specifically, let N represent a random 2P-vector of cell

frequencies associated with the response patterns, and n be a realization of N; the

distribution of N is then multinomial with

pðN ¼ nÞ ¼ N!
u

Y ½pu�nu

nu!
; ð2Þ

where the subscript u indicates that the product is taken over all of the 2P patterns,

and nu refers to the corresponding element in n.

In this paper we use an MVB framework rather than a multinomial framework as the

former is more amenable to presenting limited-information methods. This is because the

MVB distribution can be equivalently characterized by its joint moments. This

characterization is discussed next.

2.2. A characterization by moments of the MVB distribution
Consider the (2P 2 1)-vector _p of joint moments of the MVB distribution. For

convenience, _p can be written in the partitioned form _p ¼ ð _p0
1; _p0

2; : : : ; _p
0
r; : : : ; _p

0
PÞ0,

where the dimension of the vector _pr is
�
P
r

�
: The vector _p1 ¼ ð _p1; : : : ; _pi; : : : ; _pPÞ0

contains P univariate (first-order marginal) moments, where _pi ¼ EðUiÞ ¼
PðUi ¼ 1Þ ¼ pi. The P(P 2 1)/2-dimensional vector _p2 contains bivariate (second-

order marginal) moments, _pij ¼ EðUiUjÞ ¼ PðUi ¼ 1;Uj ¼ 1Þ ¼ pij, for all distinct

integers i and j satisfying 1 # i , j # P. The joint moments are defined in this way up to

the P th order, with the last one, _pP ¼ EðU1· · ·UPÞ ¼ PðU1 ¼ · · · ¼ UP ¼ 1Þ; having a

dimension of
�
P
P

�
¼ 1.

When p is sorted according to the descriptions given in Section 2.1, there exists a

(2P 2 1) £ 2P upper triangular matrix M of full row rank such that _p ¼ Mp. We show an

example of this mapping for P ¼ 3:

_p1

_p2

_p3

0
BB@

1
CCA ¼

_p1

_p2

_p3

_p12

_p13

_p23

_p123

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

pð0;0;0Þ
pð1;0;0Þ
pð0;1;0Þ
pð0;0;1Þ
pð1;1;0Þ
pð1;0;1Þ
pð0;1;1Þ
pð1;1;1Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

M resembles a design matrix, as it consists onlyof 0s and 1s. The first column ofM is always

a zero vector, so we can partition M as (0 Ṁ). Note that Ṁ is a full-rank square matrix.
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Hence, its inverse exists. Also notice that _p ¼ _M �p, with p ¼
pð0· · ·0Þ

�p

� �
,

where pð0· · ·0Þ ¼ 1 2 10 �p. Therefore �p ¼ _M21 _p, and there exists a one-to-one

inverse mapping from the (2P 2 1)-vector _p of moments to the 2P-vector p of joint

probabilities,

p ¼
1 2 10 �p

_M21 _p

0
@

1
A ¼

1 2 10 _M21

_M21

0
@

1
A _p: ð3Þ

A more revealing way of partitioning M is to break it into parts according to the

partitioning of _p, i.e.

_p1

_p2

..

.

_pr

..

.

_pP

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

_M1

_M2

..

.

_Mr

..

.

_MP

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
p; ð4Þ

where M�
P
r

� is a
�
P
r

�
£ 2P matrix containing the appropriate rows of M to obtain the

r-variate joint moments of the MVB distribution,

_pr ¼ M�P
r

�p: ð5Þ

For convenience, we write the vector of joint moments of the MVB distribution up to

order r (r # P ) as pr ¼ ð _p0
1; : : : ; _p

0
rÞ0. To obtain pr directly from p, we assemble a

matrix, M r, in the following form

pr ¼ Mrp ¼

_M1

..

.

_Mr

0
BBBBB@

1
CCCCCAp: ð6Þ

Then Mr is an s £ 2P matrix, where

s ¼ sðrÞ ¼
Xr
i¼1

�
P
i

�
: ð7Þ

Note also that pP ; _p and MP ; M, by definition.

Now, let p be a 2P-dimensional vector of observed cell proportions for a random

sample of size N. Also, let e ¼ p 2 p be the corresponding vector of cell residuals.
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We can write ffiffiffiffi
N

p
ðpr 2 prÞ ¼

ffiffiffiffi
N

p
er ¼ Mr

ffiffiffiffi
N

p
e;

ffiffiffiffi
N

p
ð _pr 2 _prÞ ¼

ffiffiffiffi
N

p
_er ¼ _Mr

ffiffiffiffi
N

p
e;

ffiffiffiffi
N

p
ð _p2 _pÞ ¼

ffiffiffiffi
N

p
_e ¼ M

ffiffiffiffi
N

p
e:

ð8Þ

It is well known (see Bishop, Fienberg, & Holland, 1975) thatffiffiffiffi
N

p
e

L
!Nð0;VÞ; ð9Þ

where V ¼ diag(p) 2 pp0, and
L
! indicates convergence in law (also called weak

convergence or convergence in distribution). This result, along with (8), implies thatffiffiffiffi
N

p
er

L
!Nð0;JrÞ;

ffiffiffiffi
N

p
_er

L
!Nð0; _JrÞ;

ffiffiffiffi
N

p
_e

L
!Nð0;JÞ; ð10Þ

where Jr ¼ MrVM0
r;

_Jr ¼ _MrV _M0
r, and J ¼ MVM0.

3. Goodness-of-fit statistics for simple null hypothesis in MVB notation

For full-information tests, we consider a simple null hypothesis, H0: p ¼ p(b0), for

parameter values b0 determined in advance.

3.1. Pearson’s X2

Usually X
2 is written as

X 2 ¼ Ne0ðdiagðpÞÞ21e: ð11Þ

Maydeu-Olivares (1997) showed that X 2 can be equivalently written as

X 2 ¼ N _e0J21 _e: ð12Þ

A proof is outlined in the Appendix.
Writing Pearson’s X

2 as in (12) reveals some facts easily overlooked if the

multinomial characterization is used. First, the null hypothesis can be equivalently

stated in terms of joint moments instead of probabilities, i.e. H0 : _p ¼ _pðb0Þ. Next, the

quadratic form X
2 is a weighted sum of squares in the difference between the sample

moments and the expected moments of the MVB distribution, including higher-order

joint moments such as the 2Pth-order moment in _pP . When only a small sample is

available, the higher-order sample moments become very unstable, and we should not

expect X 2 to behave like a chi-squared variable. Finally, the MVB characterization using
joint moments also facilitates the proof of the asymptotic chi-squared distribution of X 2

(and similar statistics). As the asymptotic covariance matrix of
ffiffiffiffi
N

p
_e is J, the

chi-squaredness of N _e0J21 _e is obvious because J21J ¼ I2P21 is idempotent, and the

degrees of freedom are then simply rankðI2P21Þ ¼ 2P 2 1 (Rao, 1973).

3.2. Some limited-information statistics
Instead of using the full vector _e of all the joint MVB moments in the construction of a

quadratic form, we may use the vector er containing only MVB moments up to order

r # P and the matrix Jr to obtain a limited-information goodness-of-fit statistic proposed
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by Maydeu-Olivares (1997),

Lr ¼ Ne0rJ
21
r er:

For tests using Lr , the null hypothesis is H0: p r ¼ p r ðb0Þ. Alternatively, we could also

consider using _er and _Jr in a quadratic form,

_L r ¼ N _e0r _J
21

r _er:

For tests using _Lr, the null hypothesis is H0 : _pr ¼ _prðb0Þ. It follows directly from

results in (10) that Lr is asymptotically distributed as a chi-squared variable with s

degrees of freedom, where s is defined in (7), and _Lr also has an asymptotic chi-squared

distribution with
�
P
r

�
degrees of freedom. When r is small, only the lower-order joint

moments enter into the computation of Lr or _Lr, and the chi-squared approximation

should be more accurate for Lr or _Lr than for X 2 in small samples. We only mention these

limited-information statistics to motivate the discussions about Bartholomew and

Leung’s (2002) Y statistic. We do not examine the properties of Lr or _Lr further.

3.3. Bartholomew and Leung’s (2002) Y
Bartholomew and Leung (2002) considered a test statistic, Y, using only bivariate MVB

moments, for the simple hypothesis of H0: _p2 ¼ _p2ðb0Þ. It can be written using the

MVB notation as

Y ¼ N _e02 _D
21
2 _e2; ð13Þ

where _D2 ¼ Dgð _J2Þ and the operator Dg(·) sets the off-diagonal elements of _J2 to zero.

It can be verified that _D2 ¼ diagð _p2ÞðI2 diagð _p2ÞÞ, and the operator diag(·) creates a

diagonal matrix from a vector. Y is a quadratic form in bivariate residuals, just as _L2 is,

except that only the diagonal elements of _J2 are used in the weight matrix, instead of

the full covariance matrix.

The Y statistic is not asymptotically distributed as a chi-squared variable under a

simple null hypothesis. Rather, it is asymptotically distributed as a mixture of one-degree-

of-freedom chi-squared variates (Box, 1954). Bartholomew and Leung (2002) suggested

approximating its distribution using a central chi-squared variable by matching moments.

Because the vector of bivariate residuals is asymptotically normally distributed with mean

zero and covariance matrix _J2, the first three asymptotic moments ofY are (see Mathai &

Provost, 1992, p. 53)

m1ðY Þ ¼ trð _D21
2

_J2Þ; m2ðY Þ ¼ 2trð _D21
2

_J2Þ2; m3ðY Þ ¼ 8trð _D21
2

_J2Þ3: ð14Þ

These expressions are the same as those in Bartholomew and Leung (2002). Given these

moments, Bartholomew and Leung (2002) equated them to those of a linear
transformation of a chi-squared variable.3 They considered two- and three-moment

adjustments for Y.

To obtain a p-value using a two-moment adjustment, we assume that Y can be

approximated by bx2
c, where x2

c stands for a chi-squared distribution with c degrees of

freedom. Solving for the two unknown constants b and c using the first two asymptotic

3 In Bartholomew and Leung’s (2002) original derivations, both the exact moments and the asymptotic moments were used.
However, because ‘the exact moments rapidly approach their limits’, we only use the asymptotic moments here for ease of
exposition (Bartholomew & Leung, 2002, p. 5).
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moments of Y yields

b ¼ m2ðY Þ
2m1ðY Þ ; c ¼ m1ðY Þ

b
: ð15Þ

For the three-moment adjustment, we assume that Y can be approximated by aþ bx2
c :

Solving for the three unknown constants a, b, and c using the first three asymptotic

moments of Y yields

b ¼ m3ðY Þ
4m2ðY Þ ; c ¼ m2ðY Þ

2b2
; a ¼ m1ðY Þ2 bc: ð16Þ

A p-value for the two-moment adjusted statistic is obtained using

Pr ðx2
c . Y=bÞ; ð17Þ

and for the three-moment adjusted statistic using

Pr ðx2
c . ðY 2 aÞ=bÞ: ð18Þ

In the structural equation modelling literature, mean-adjusted test statistics are

popular (Satorra & Bentler, 1994), so in addition to the two- and three-moment

approximations considered above, we also consider here a one-moment approximation.
Again, we assume that Y can be approximated by bxd

2, where d is equal to the degrees of

freedom available for testing. In this case, since no parameters are estimated, we

conjecture that the number of degrees of freedom simply equals the number of

moments used in the computation of Y, d ¼ P(P 2 1)/2. Solving for b, we have

b ¼ m1ðY Þ
d

; ð19Þ

and the p-value for the first-moment adjusted statistic is given by

Pr ðx2
d . Y=bÞ: ð20Þ

4. Limited-information testing of composite null hypotheses

So far our discussion has been limited to the case of simple null hypotheses, but in

practice we are most often interested in composite hypotheses, where the parameters

are estimated from the data. In this section, we consider the asymptotic distribution of

goodness-of-fit statistics when the model parameters are estimated by ML. That is, for
full-information tests, we consider H0: p2 pðbÞ ¼ 0 for some b vs. H1: p2 pðbÞ – 0
for any b. The adaptation of the null to limited-information tests is straightforward. For

example, if only second-order joint moments are used, H0 becomes _p2 2 _p2ðbÞ ¼ 0,

and if moments up to the second order are used, H0 becomes p2 2 p2ðbÞ ¼ 0
(see Reiser, 1996, p. 521, for an equivalent statement of the null). Note that the zero

vectors used above have different dimensions.

Let b̂ be the MLE of the q-dimensional parameter vector b. We assume the necessary

regularity conditions on the model (Bishop et al., 1975) to ensure the consistency and
asymptotic normality of the MLE. In particular, we assume that the 2P £ q Jacobian

matrix J ¼ ›pðbÞ=›b0 is of full column rank so that the model is identified. Thus, b̂ is

consistent, that is, b̂
P
!b, where

P
! indicates convergence in probability. The estimator

is asymptotically normally distributed
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ffiffiffiffi
N

p
ðb̂2 bÞ L

!Nð0; I21Þ; ð21Þ

where I ¼ J0{diag½pðbÞ�}21
J is the information matrix. The cell residuals ê ¼ p2 pðb̂Þ

are also asymptotically normally distributedffiffiffiffi
N

p
ê

L
!Nð0;�Þ; ð22Þ

where � ¼ V2 JI21J0:
Because the marginal residuals defined in (8) are simply linear combinations of the cell

residuals, their asymptotic distribution under ML estimation of the model parameters

follows immediately:

Mr

ffiffiffiffi
N

p
ê ¼

ffiffiffiffi
N

p
ðpr 2 prðb̂ÞÞ ¼

ffiffiffiffi
N

p
êr

L
!Nð0;FrÞ;

_Mr

ffiffiffiffi
N

p
ê ¼

ffiffiffiffi
N

p
ð _pr 2 _prðb̂ÞÞ ¼

ffiffiffiffi
N

p
_̂er

L
!Nð0; _FrÞ;

M
ffiffiffiffi
N

p
ê ¼

ffiffiffiffi
N

p
ð _p2 _pðb̂ÞÞ ¼

ffiffiffiffi
N

p
_̂e

L
!Nð0;FÞ; ð23Þ

where

Fr ¼ MrVM0
r 2MrJI21J0M0

r ¼ Jr 2 JrI21J0r; ð24Þ

F_r ¼ _MrV _M0
r 2

_MrJI21J0 _M0
r ¼ _Jr 2 _JrI21_J0r; ð25Þ

F ¼ MVM0 2MJI21J0M0 ¼ J2 _JI21_J0: ð26Þ

Equations (23), (24), and (25) give us the machinery to study the properties of Y under

ML parameter estimation.

4.1. The distribution of Y under ML estimation
Consider the Y statistic given in (13) when the model parameters are estimated

using ML,

Y ¼ N _̂e02 _̂D
0
2
21 _̂e02; ð27Þ

where _̂D2 ¼ diagð _p2ðb̂ÞÞðI2 diagð _p2ðb̂ÞÞÞ. By the consistency of the MLE and the usual

regularity conditions assumed for the model (Bishop et al., 1975, pp. 509–511),
especially those pertaining to the continuity of the mapping p(·) and the compactness

of the parameter space, we can show that _̂D2
P
! _D2:

When ML estimates are used, the Y statistic is also asymptotically distributed as a

mixture of one-degree-of-freedom chi-squared variates (Box, 1954). Following

Bartholomew and Leung (2002), we can approximate its distribution using a central

chi-square by matching moments. Since the vector of bivariate residuals is asymptotically

normally distributed with mean zero and covariance matrix _F2 (see (25)), the first

three asymptotic moments of Y are similar in form to those given in (14), with _F2

replacing _J2:
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m1ðY Þ ¼ trð _D21
2

_F2Þ; m2ðY Þ ¼ 2trð _D21
2

_F2Þ2; m3ðY Þ ¼ 8trð _D21
2

_F2Þ3: ð28Þ

Given these expressions for the asymptotic moments of the Y statistic, approximate

p-values can be obtained using a two-moment adjustment via (15) and (17), when the

moments in (28) are consistently estimated by evaluating the matrices involved in

(25) and (28) at the ML estimates. For example, we can write the estimated first

moment as

m̂ðY Þ ¼ tr
�

^_D21
2

_F2

���
b¼b̂

�
:

Similarly, we write m̂2(Y) and m̂3(Y) to stand for the estimated second and third

moments. Approximate p-values can also be obtained using a three-moment adjustment

via (16) and (18). For the one-moment adjustment we heuristically use as degrees of

freedom d ¼ P(P 2 1)/2 2 q since q parameters are estimated. That is, we use a chi-

squared distribution with d ¼ P(P 2 1)/2 2 q degrees of freedom in (19) and (20) to
obtain the p-value for the first-moment adjusted statistic.

However, Bartholomew and Leung (2002) used _J2 in (10) rather than _F2 in (25) as

the covariance matrix of the residual moments for the composite null hypothesis. For

example, their method gives the first moment as

~m1ðY Þ ¼ tr
�
_̂D21

2
_J2

���
b¼b̂

�0
and we write ~m2ðY Þ and ~m3ðY Þ for the second and third moments obtained using their

method. We use the symbol , to denote the moments obtained ignoring ML parameter

estimation.

Upon examining the covariance matrix in (25), we can see that _F2 is in general

not equal to _J2, because the second term _J2I21_J02 is not negligible. In our

experience, Bartholomew and Leung’s (2002) method often leads to substantial

overestimation of the moments. Bartholomew and Leung (2002) assumed that the

behaviour of Y under the composite null hypothesis is similar to that under

the simple null hypothesis when the number of parameters q is much smaller than

the number of cells C ¼ 2P. We report simulations below showing that the

distribution of Y under the composite null hypothesis is much more constrained

than under the simple null hypothesis.

4.2. An extension using both univariate and bivariate moments
In its current form, Y uses only the bivariate moments. Tollenaar and Mooijaart (2003)

suggested that using both univariate and bivariate moments often results in a test

statistic that is more powerful, because the lowest-order margin is the best-filled.

Following their recommendation, we constructed a statistic, provisionally called Y2,

based on Y but including univariate moments in the formulation. Instead of using

P(P 2 1)/2 moments in Y, we are now using P(P þ 1)/2 moments in Y2. Again, Y2 is not
chi-squared distributed under the simple or composite null hypothesis, so we follow the

same moment approximation technique outlined in the previous section. With the

distributional results given in the preceding sections, it is easy to find the moments of Y2

by assembling an appropriate design matrix M2, as defined in (6). In the MVB notation,

Y2 is given by
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Y 2 ¼ Ne02D
21
2 e2; ð29Þ

for the simple null hypothesis, where e2 is defined in (8) and D2 ¼ diag(p2)(I 2
diag(p2)). For the composite null, we simply use the ML parameter estimates b̂ to obtain

Y 2 ¼ N ê02D̂
21

2 ê2; ð30Þ

where ê2 is defined in (23) and D̂2 ¼ diagðp2ðb̂ÞÞðI2 diagðp2ðb̂ÞÞÞ.
Under ML parameter estimation, the asymptotic moments of Y2 are

m1ðY 2Þ ¼ trðD21
2 F2Þ; m2ðY 2Þ ¼ 2trðD21

2 F2Þ2; m3ðY 2Þ ¼ 8trðD21
2 F2Þ3: ð31Þ

These moments can be estimated consistently by evaluating the matrices at the ML

parameter estimates, e.g.

m̂1ðY 2Þ ¼ tr D̂
21

2 F2

���
b¼b̂

� �
:

We also write m̂2ðY 2Þ and m̂3ðY 2Þ for the second and third moments. The approximate

p-values can be obtained using the same methods as in (15)–(20).

5. Simulations

In this section, we describe simulations that illustrate the difference between our
method of approximating the distribution of Yunder ML parameter estimation, and that

of Bartholomew and Leung (2002). A secondary goal is to show that Y, together with our

new moment approximations, offers a goodness-of-fit test that can keep the type I error

rate at the nominal significance level when the contingency table is sparse. We also

investigate how many moments are needed in order to achieve an acceptable degree of

approximation. Lastly, we gauge the performance of Y2 under sparseness by pitting it

against Y and the full-information statistics G
2 and X

2.

5.1. Models in the simulation
We used the 2PL IRT model (also called the logit/normit model by Bartholomew &

Knott, 1999) in our simulations to assess the empirical type I error rates of the
goodness-of-fit statistics, and the three-parameter logistic (3PL) model to evaluate the

power and sensitivity of the test statistics against model misspecification. Using notation

that is consistent with the MVB characterization, the 2PL model relates the probability of

correctly responding to a test item given a continuous latent variable u through a 2PL

function,

pðUi ¼ 1jbi; uÞ ¼
1

1 þ exp ½2Daiðu2 biÞ�
;

where Ui ¼ 1 represents the correct response to the ith item, bi ¼ (ai, bi)
0 is a vector of

parameters for that item, and D is a constant that puts the logistic model on the normal

metric, usually taken to be 1.7. It follows that the response ui ¼ 1 or 0 has probability

pðUi ¼ uijb; uÞ ¼ pðUi ¼ 1jbi; uÞui ½1 2 pðUi ¼ 1jbi; uÞ�12ui ;
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where b is a 2P-dimensional vector containing all the item parameters of the model.

Since the ‘person parameters’ u are incidental, the estimation of the item parameters is

usually carried out by assuming that the latent trait is distributed normally with mean

zero and variance one, so the marginal probability for response pattern u ¼ (u1, : : : ,
ui, : : : , uP) is

puðbÞ ¼
ð1
21

YP
i¼1

pðUi ¼ uijb; uÞfðuÞdu; ð32Þ

where f (u ) is the standard normal density function. The estimator of b derived from

the solution to the marginal likelihood equations (Bock & Aitkin, 1981; Bock &

Lieberman, 1970) is consistent, asymptotically efficient, and asymptotically normal.

The 3PL model adds a ‘guessing’ parameter to the response function, making it

pðUi ¼ 1jbi; uÞ ¼ gi þ
1 2 gi

1 þ exp ½2Daiðu2 biÞ�
;

where gi is the guessing parameter. When gi is set to 0, the 3PL model reduces to the 2PL

model. Except for a change in the dimensions of the parameter vector, everything else

remains basically the same for the 3PL model. We use the 3PL model only as the data

generating model for power evaluations, so only the 2PL model is fitted to the simulated

data sets.

5.2. Data generation
We simulated the null distribution of the goodness-of-fit statistics using the following

configuration of 2PL item parameters:

b0 ¼
0:5 0:5 0:5 0:5 1:0 1:0 1:0 1:0 1:5 1:5 1:5 1:5

21:5 0:0 1:5 2:0 21:5 0:0 1:5 2:0 21:5 0:0 1:5 2:0

 !
: ð33Þ

There are 12 items in this hypothetical test. We varied the sample size (N ¼ 250,
N ¼ 1000, and N ¼ 4000) to investigate the effect of different levels of sparseness on

the type I error rates of the goodness-of-fit test statistics. The number of replications

was set to 1000 in each sample size condition. For each sample, a 2PL model was fitted

using MULTILOG (Thissen, 2003).4

For power evaluations, we need to simulate under the non-null condition so that the

2PL model does not fit perfectly in the population. This is done by changing the

population generating model to a 3PL with a non-zero guessing parameter. The ai and bi

are the same as those in (33), while all the gi are fixed to 0.25. Therefore the population

model probably reflects a test with 12 multiple choice items each having 4 response

options. When 2PL models are fitted to random samples generated from test items with

a non-zero lower asymptote, they are clearly misspecified, so in this condition the

empirical rejection rates of goodness-of-fit tests provide some rough estimates of the

4 For all iterative algorithms, non-convergence always poses a problem in simulations. For the larger sample sizes (N ¼ 1000
and N ¼ 4000) all 1000 replications converged. For the N ¼ 250 condition, 35 out of 1000 replications did not converge
after 500 E-step iterations. These non-convergent cases were removed from the analysis based on recommendations given in
Paxton, Curran, Bollen, Kirby, and Chen (2001). However, due to the smaller number of replications (965 as opposed to
1000), the results for N ¼ 250 are subject to more sampling variability than the other conditions.
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power of the test against model misspecification. We investigated power only for

N ¼ 1000 as an illustration.

5.3 Test statistics
Using the new results in (28) and (31), we matched one, two and three moments for

both Y and Y2. As a comparison, we also matched one, two and three moments for Y

using the moments given by Bartholomew and Leung (2002). Altogether, we included

the following 11 goodness-of-fit statistics in the simulations:

. two full-information statistics5 – G
2 and X

2;

. YBL1, YBL2, YBL3 – the one-, two- and three-moment adjustments to the quadratic
form in bivariate residuals Y using Bartholomew and Leung’s (2002) moments;

. YC1, YC2, YC3 – the one-, two- and three-moment adjustments to Y using corrected

moments that take ML estimation into account;

. Y2C1, Y2C2, Y2C3 – the one-, two- and three-moment adjustments to the quadratic

form in univariate and bivariate residuals Y2 using moments that take ML estimation

into account.

The p-values for both X
2 and G

2 were obtained in each replication with reference to
their limiting chi-squared distribution with 2P 2 2P 2 1 ¼ 4071 degrees of freedom.

For methods based on moment approximations, the p-values were obtained in each

replication by matching the estimated moments with those of a scaled chi-square, but

because the first three moments have to be estimated from sample data, the degrees of

freedom in the chi-squared approximation vary from replication to replication.

However, this is consistent with the standard practice in both structural equation

modelling (Satorra & Bentler, 1994), and variance components (Satterthwaite, 1946),

wherein the adjusted degrees of freedom are also estimated. Once the p-values are
obtained, hypothesis tests are conducted for all statistics at various significance levels,

and the number of rejections recorded.

6. Simulation results

The main results from the simulations are summarized in Tables 1–5. Tables 1–3 contain

the observed type I error rates for tests conducted at five significance levels: .01, .05, .10,

.20, and .25, at N ¼ 250, 1000, and 4000. We report limited power results in Table 4 for

sample size 1000. Because our main focus is on corrections to the null distribution, we

leave a more thorough investigation of power to future research. In Table 5 we show the

effect of ignoring parameter estimation on the quality of moment approximations. The
entries in Table 5 are for N ¼ 1000, but they are representative of the situations in other

sample size conditions.

6.1 Type I error rates
For sample size N ¼ 250, the sparseness is very severe. The usual full-information
statistics become invalid.6 First, the type I error rates of G2 are grossly inaccurate at any

5G2 is computed as G2 ¼ 2N
u

P
pu log (pu=puðb̂ÞÞ (see Bishop et al., 1975, p. 513).

6We define the validity of a test according to the liberal criterion suggested by Bradley (1978), e.g. if the nominal significance
level is .05, a test is deemed valid if its type I error rate is in [.025, .075].
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of the significance levels considered. It is simply too conservative. On the other hand,

X
2 can be too liberal or too conservative depending on the nominal significance level,

but note that its type I error rates are almost constant across all significance levels. This

is an indication that the null distribution of X
2 is not well approximated by the

reference chi-squared distribution. Next, we look at the tests involving moment-based

approximations. It does not matter how many moments are matched for YBL1–YBL3,

because as long as Bartholomew and Leung’s (2002) moments are used, the null

hypothesis is almost never rejected at any of the significance levels specified. In contrast,
YC3 has type I error rates that are reasonably close to the nominal significance levels.

This indicates a good agreement between the true null distribution of Yand the moment

Table 1. Type I Error rates for N ¼ 250

Significance level

.01 .05 .10 .20 .25

YBL1 .000 .002 .002 .002 .002
YBL2 .000 .000 .000 .002 .002
YBL3 .000 .000 .000 .002 .002
YC1 .038 .092 .135 .222 .265
YC2 .028 .077 .114 .209 .245
YC3 .026 .075 .114 .211 .251
Y2C1 .055 .107 .167 .243 .280
Y2C2 .027 .078 .114 .212 .245
Y2C3 .027 .076 .112 .214 .252
X 2 .092 .092 .093 .095 .095
G 2 .000 .000 .000 .000 .000

Note. The numbers are based on 965 fully converged replications. The test statistics are described in
Section 5.3.

Table 2. Type I error rates for N ¼ 1000

Significance level

.01 .05 .10 .20 .25

YBL1 .000 .000 .000 .000 .000
YBL2 .000 .000 .000 .000 .000
YBL3 .000 .000 .000 .000 .000
YC1 .017 .051 .111 .226 .269
YC2 .008 .040 .090 .205 .252
YC3 .008 .040 .089 .209 .258
Y2C1 .024 .083 .141 .247 .289
Y2C2 .008 .041 .094 .208 .256
Y2C3 .008 .040 .093 .211 .261
X 2 .102 .106 .107 .108 .110
G 2 .000 .000 .000 .000 .000

Note. The numbers are based on 1000 fully converged replications. The test statistics are described in
Section 5.3.
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approximations based on our corrected moments in (28). The same description also

applies to Y2C3.
For N ¼ 1000, the performance of X 2, G2 and YBL1–YBL3 does not improve. On the

other hand, the increased sample size has a clear impact on the quality of moment

approximations for YC2, YC3, Y2C2 and Y2C3. All of them performed better as

compared to the N ¼ 250 condition, especially at the extreme tails of the distributions.

For example, when sample size increased from 250 to 1000, the empirical rejection

rates of YC2 and YC3 for the .01 significance level dropped from being more than twice

the nominal level to a uniform .008. We observe essentially the same phenomenon for

N ¼ 4000, but we also notice that some of the limited-information tests seem to be

Table 3. Type I error rates for N ¼ 4000

Significance level

.01 .05 .10 .20 .25

YBL1 .000 .000 .000 .000 .000
YBL2 .000 .000 .000 .000 .000
YBL3 .000 .000 .000 .000 .000
YC1 .026 .092 .152 .253 .307
YC2 .017 .069 .129 .236 .286
YC3 .014 .066 .127 .239 .293
Y2C1 .046 .129 .191 .300 .344
Y2C2 .019 .078 .134 .253 .308
Y2C3 .016 .075 .133 .254 .313
X2 .147 .152 .154 .157 .158
G2 .000 .000 .000 .000 .000

Note. The numbers are based on 1000 fully converged replications. The test statistics are described in
Section 5.3.

Table 4. Power for N ¼ 1000

Significance level

.01 .05 .10 .20 .25

YBL1 .000 .000 .000 .000 .000
YBL2 .000 .000 .000 .000 .000
YBL3 .000 .000 .000 .000 .000
YC1 .124 .276 .380 .541 .583
YC2 .116 .270 .376 .533 .582
YC3 .106 .263 .375 .536 .583
Y2C1 .188 .331 .451 .575 .615
Y2C2 .120 .273 .390 .544 .588
Y2C3 .110 .271 .386 .548 .591
X2 .849 .875 .886 .898 .901
G2 .000 .000 .000 .000 .000

Note. The numbers are based on 1000 fully converged replications. The test statistics are described in
Section 5.3.
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somewhat liberal.7 However, given the rather small number of replications (1000), fine

distinctions about the pattern of type I error rates cannot be made. More research is

certainly warranted.

6.2 Power to detect misspecification
Table 4 presents the observed rejection rates of the 11 tests when the population

generating model is a 3PL model with non-zero guessing parameters. Thus the

rejection rates reflect the sensitivity of the test statistics to model misspecification.

Among the statistics considered, the rejection rates for X
2 under model

misspecification are the largest. This is to be expected, as it simply rejects the

null hypothesis too often, even when the model fits perfectly in the population (see

Tables 1–3). G
2 and YBL1–YBL3, on the other hand, continue to be extremely

conservative. We also see that tests using univariate moments (Y2C1–Y2C3) are

slightly more powerful than tests that do not use univariate moments (YC1–YC3),

but the power advantage is small.

6.3 Quality of moment approximations
Table 5 demonstrates how ignoring the effect of parameter estimation can have a

dramatic impact on the quality of moment approximations. The first line contains
some basic descriptive statistics for the simulated null distribution of Y. We see that

it ranges from 4.08 to 23.81, with mean 9.16 and variance 4.61. Using Bartholomew

and Leung’s (2002) moment approximations ignoring ML estimation, we would find

the mean to be 66, and the variance to be about 1116.61, when averaged over

the 1000 replications. Both the mean and the variance are grossly overestimated.

On the other hand, the moments we derived under ML estimation closely match the

simulated null distribution. Specifically, the average of the estimated means of Y is

9.05 (compare with 9.16), and the average of the estimated variances is 4.77
(compare with 4.61). These comparisons indicate that a much better approximation

to the null distribution of Y can be obtained if our corrected moments are used,

Table 5. A comparison of different moment estimation methods for N ¼ 1000

Descriptives

Min Max Mean Variance

Y 4.080 23.810 9.162 4.613

~m2ðYÞ 911.834 1306.011 1116.609 3989.944
m̂1ðYÞ 7.866 10.779 9.050 0.181
m̂2ðYÞ 3.632 6.933 4.773 0.203

Note. This table presents the simulated null distribution of Ŷ under the composite null hypothesis. The
numbers are based on 1000 converged replications; Bartholomew and Leung’s (2002) first moment,

~m1ðYÞ, is always equal to 66; m̂1ðYÞ and m̂2ðYÞ are computed from (28).

7 This is a purely numerical problem caused by the number of quadrature points used in the estimation. With a larger number
of quadrature points, the liberal bias would be reduced.

Li Cai et al.188



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

and indeed we find support for this claim from the type I error rates reported in

Tables 1–3.

7. A worked example

We apply the 11 statistics discussed in the preceding sections to a real data set in order

to demonstrate the utility of the moment approximations we proposed in practical
situations, where the parameters are estimated by ML. The data set was the Social Life

Feelings (SLF) survey taken from Bartholomew (1998). The SLF data are in the form of

a five-question scale with dichotomous items. The number of respondents was 1490. We

fitted a 2PL model by ML to these data using MULTILOG (Thissen, 2003). The results for

the different test statistics considered are reported in Table 6.

As can be seen in this table, the two full-information statistics have p-values roughly

equal to .01, suggesting a significant lack of fit. Bartholomew and Leung (2002) reported

similar results for these two statistics after pooling cells with small expected

probabilities. Given the large N-to-C ratio, these full-information test statistics should be

trusted to have good approximations to their limiting distributions.

For limited-information testing, we first essentially replicated Bartholomew and

Leung’s (2002) analyses. The value of Y is 4.3. Applying Bartholomew and Leung’s

(2002) moment approximations, we find ~m1ðY Þ ¼ 10; ~m2ðY Þ ¼ 54; and ~m3ðY Þ ¼ 813:

The one-moment approximation (YBL1) with our heuristic for the degrees of freedom

cannot be computed in this case, because the number of bivariate moments entering

into the computation of Y is 10, and a 2PL model fitted to 5 items has 10 free

parameters, so there are no degrees of freedom left for testing. For the two-moment

approximation (YBL2) we compute b ¼ ~m2ðY Þ=½2 ~m1ðY Þ� ¼ 2:7; and c ¼ ~m1ðY Þ/b ¼ 3.7

using (15). Then, the two-moment adjusted statistic (YBL2) is Y/b ¼ 1.59. This statistic

is referred to a chi-squared distribution with c ¼ 3.7 degrees of freedom. For the three-

moment approximation (YBL3) we compute b ¼ ~m3ðY Þ=½4 ~m2ðY Þ� ¼ 3:77; c ¼
~m2ðY Þ=ð2b2Þ ¼ 1:89; and a ¼ ~m1ðY Þ 2 bc ¼ 2.87 using (16). Then the three-moment

adjusted statistic is (Y 2a)/b ¼ 0.38. This statistic is referred to a chi-squared

Table 6. Analysis of social life feelings data

Value Degrees of freedom p-value

YBL1 – – –
YBL2 1.59 3.70 0.770
YBL3 0.38 1.89 0.810
YC1 – – –
YC2 19.55 4.45 ,0.001
YC3 19.00 3.42 ,0.001
Y2C1 23.21 5.00 ,0.001
Y2C2 20.05 4.47 ,0.001
Y2C3 17.16 3.42 0.001
X 2 38.96 21.00 0.010
G 2 39.09 21.00 0.010

Note. Y ¼ 4.3, Y2 ¼ 4.41, but YBL1 and YC1 cannot be computed because there are no degrees of
freedom left for testing. The test statistics are described in Section 5.3.

Goodness of fit in 2P tables 189



Copyright © The British Psychological Society
Reproduction in any form (including the internet) is prohibited without prior permission from the Society

distribution with c ¼ 1.89 degrees of freedom. As shown in Table 6, YBL2 and YBL3

yield very large p-values, 0.77 and 0.81, respectively. These large p-values would suggest

that the 2PL model fits well for the SLF data, but when our moment approximations are

used, the conclusion is completely reversed.

Taking the effect of ML estimation into account, we find the first three central

moments of Y to be m̂1ðY Þ ¼ 0:972; m̂2ðY Þ ¼ 0:424; and m̂3ðY Þ ¼ 0:423. Again, the
one-moment approximation (YC1) cannot be computed. For YC2, again using (15), we

find b ¼ 0.22 and c ¼ 4.45. So YC2 ¼ 19.55 on 4.45 degrees of freedom, p , .001. For

YC3, by (16), b ¼ 0.25, c ¼ 3.42 and a ¼ 0.12, so YC3 is equal to 19 on 3.42 degrees of

freedom, p , .001, as well. As we have pointed out in the preceding sections, such a

large discrepancy in the p-values between YBL3 and YC3, as well as the size of the

estimated moments, is attributable to the fact that _J2I21_J02 is not trivial enough to be

ignored.

When both univariate and bivariate moments are included, and our new
approximations (see (31)) are invoked, we draw the same conclusion: as far as the

univariate and bivariate margins are concerned, the 2PL model does not fit very well.

Y2 is found to be 4.41, and its moments under ML estimation are m̂1ðY 2Þ ¼
0:974; m̂2ðY 2Þ ¼ 0:425, and m̂3ðY 2Þ ¼ 0:423: For the one-moment adjustment to Y2,

heuristically there are c ¼ 5(5 þ 1)/2 2 10 ¼ 5 degrees of freedom left for testing. Using

(19) we compute b ¼ m̂1ðY 2Þ=c ¼ 0:19. Then the one-moment adjusted statistic is

Y2C1 ¼ Y2/b ¼ 23.21, which is referred to a chi-squared distribution with 5 degrees of

freedom, p , .001. For Y2C2, again using (15), b ¼ 0.22 and c ¼ 4.47. So Y2C2 is 20.05 on
4.47 degrees of freedom, p , .001. For Y2C3, by (16), b ¼ 0.25, c ¼ 3.42 and a ¼ 0.12, so

Y2C3 equals 17.16 on 3.42 degrees of freedom, p ¼ .001.

In sum, in a non-sparse table for which the p-values of X 2 and G
2 are likely to be

trustworthy, the moment adjustments to Y and Y2 yield p-values similar to those of the

full-information statistics when the effect of parameter estimation is taken into account.

When it is ignored, the p-values become erroneously large. The latter finding is

consistent with the simulation results presented in the previous section.

8. Discussion and conclusions

Psychological researchers often wish to model large 2P contingency tables in which

there are many empty cells. In modelling these tables, most often the cell probabilities

depend on parameters that are estimated from the data. Testing the overall goodness of

fit of these models is a challenge because the distributions of the usual goodness of fit

statistics (X 2 and G
2 in particular) are not well approximated by their asymptotic

distributions. Three alternatives have been proposed to overcome this problem:

resampling methods, pooling cells, and limited-information statistics. Resampling

methods are computationally intensive, whereas pooling cells does not make the best

use of the data and may yield statistics with unknown sampling distributions. Limited-

information statistics are not only simpler computationally, but also have tractable

asymptotic distributions even under severe sparseness.

Bartholomew and Leung (2002) proposed an appealing limited-information statistic,

Y, based on bivariate MVB residual moments. They also proposed obtaining p-values for
Y by matching either its first two or three moments with those of a scaled chi-squared

distribution. Bartholomew and Leung (2002) provided the first three moments of Y for

testing models whose parameters were known in advance. They conjectured that

accurate p-values could be obtained using these equations when the parameters were
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estimated from the data. Here, we have investigated their conjecture for models

estimated using maximum likelihood. To do so, we have provided the asymptotic

moments of Y for ML estimation. We have also considered an alternative test statistic Y2

which differs from Y simply in that both univariate and bivariate MVB residual moments

are used. For Y2, the asymptotic moments under ML estimation have also been provided.

By means of a simulation study we have compared the Type I error rates of Yand Y2 with

moment adjustments of different orders (1, 2, 3) in testing a 2PL model. Our results

suggest the following:

(1) When parameter estimation is taken into account, the null distribution of Y and Y2

can be well approximated using two- or three-moment adjustments, where

the three-moment match usually gives a more accurate level of approximation.

The one-moment adjustment based on a heuristic argument, borrowed from the

structural equation modelling literature, does not perform nearly as well. Thus, it

seems that the two-moment approximation suffices to obtain accurate p-values for

these statistics.

(2) When parameter estimation is not taken into account (as in Bartholomew & Leung,
2002) an extremely conservative test is obtained.

(3) Finally, of the two statistics considered, Y2 is slightly more powerful than Y. Thus,

the use of Y2 is recommended.

In summary, we have shown that the test statistic proposed by Bartholomew and

Leung (2002) can be used to obtain accurate p-values for MVB models such as the IRT

models considered here, provided that the effects of parameter estimation are taken into

account. For increased power, we suggest that the test statistic based on both univariate

and bivariate moments, Y2, be used instead of Y. Two obvious drawbacks of Y and Y2 are

that they have no power to distinguish among models with the same expected lower-

order marginal moments but different higher-order moments. Also, they cannot be

employed with models that fit the marginals perfectly (such as log-linear models with all

bivariate terms).

It should be noted that the equations provided here for the asymptotic moments of

the statistics considered are only valid for models estimated using ML or other

asymptotically minimum variance estimators such as minimum chi-squared that are

asymptotically equivalent to ML. For other estimators, different expressions for the

asymptotic moments of the statistics are needed. It is interesting to point out that

Maydeu-Olivares (2001a) proposed a statistic similar to Y2 for testing the two-parameter

normal ogive model (and related models). His statistic is simply

T ¼ N ê02ê2:

To obtain p-values for his statistic he suggested using one- and two-moment

approximations to a central chi-squared distribution. Maydeu-Olivares (2001a) provided

the asymptotic mean and variance of T when the model parameters were estimated

using the three-stage limited-information estimator implemented in LISREL ( Jöreskog &
Sörbom, 2001) and MPLUS (Muthén & Muthén, 2001), and in Maydeu-Olivares (2001b)

for the two-stage limited-information estimator implemented in NOHARM (Fraser &

McDonald, 1988). Remarkably, Maydeu-Olivares (2001a) reports a simulation study with

a 221 contingency table where N ¼ 100 observations sufficed to obtain accurate p-values

when the two-moment adjustment was employed.
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Further research is needed to compare the empirical behaviour of the unweighted

test statistic T versus the weighted test statistic Y2. However, preliminary research

suggests that the differences may be minimal. Also, for ML estimates the computation of

the asymptotic moments of Yand Y2 becomes very intensive for large P. Further research

is needed to manage the computations within available computer memory for large

models. Also, the MVB framework and moment-based approximations for Y and Y2 may

be readily extended to sparse multidimensional tables in which the categorical variables

take more than two values.

In conclusion, we believe that the limited-information framework presented here

may be a fruitful avenue for evaluating goodness of fit of ML estimated models in

large and sparse binary contingency tables. On the one hand, the Y and Y2 family

of statistics enable researchers to determine the overall adequacy of their hypothesized

models. On the other hand, the individual marginal residuals may be used to identify the

source of the misfit for poorly fitting models. The use of these marginal residuals may be

much more informative than the use of cell residuals (see Reiser, 1996).
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Appendix

We claimed in (12) that Pearson’s X 2 can be equivalently written as a quadratic form in

residual MVB moments. To show the equivalence, we first consider the inverse of J.

From (10) and the partitioning of M and p given earlier in (3), it can be shown that
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J ¼ MðdiagðpÞ2 pp0ÞM0 ¼ _Mðdiagð �pÞ2 �p �p0Þ _M:

Using a result in Rao (1973), J21 is given by

J21 ¼ ð _M0Þ21ððdiagð �pÞÞ21 þ p21
ð0· · ·0Þ11

0Þ _M21: ð34Þ

Next, recall that e ¼ p 2 p, _e ¼ _p2 _p, �e ¼ �p2 �p, and e can be partitioned into

e ¼ ðeð0· · ·0Þ; �e
0Þ0, where eð0· · ·0Þ ¼ 210 �e. It can be verified that _e ¼ _M�e, and (12) can be

written as

N _e0J21 _e ¼ N �e0 _M0ð _M0Þ21ððdiagð �pÞÞ21 þ p21
ð0· · ·0Þ11

0Þ _M21 _M�e

¼ Nð�e0ðdiagð �pÞÞ21 �eþ p21
ð0· · ·0Þ �e

0110 �eÞ

¼ Nð�e0ðdiagð �pÞÞ21 �eþ p21
ð0· · ·0Þe

2
ð0· · ·0ÞÞ

¼ Ne0ðdiagðpÞÞ21e;

which is the same as (11).
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