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Several item response models have been proposed
for fitting Likert-type data. Thissen & Steinberg (1986)
classified most of these models into difference models
and divide-by-total models. Although they have differ-
ent mathematical forms, divide-by-total and difference
models with the same number of parameters seem to
provide very similar fit to the data. The ideal observer
method was used to compare two models with the same
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credit model (a divide-by-total model)—to investigate
whether difference models or divide-by-total models
should be preferred for fitting Likert-type data. The
models were found to be very similar under the condi-
tions investigated, which included scale lengths from 5
to 25 items (five-option items were used) and calibra-
tion samples of 250 to 3,000. The results suggest that
both models fit approximately equally well in most
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number of parameters—Samejima’s (1969) graded re-
sponse model (a difference model) and Thissen &
Steinberg’s (1986) extension of Masters’ (1982) partial

Although several item response theory (IRT) models for ordered polychotomous items have been proposed
(e.g., Andrich, 1978a, 1978b; Masters, 1982; Samejima, 1969), relatively little is known about how well
cach of these models fits Likert scale items (see Dodd, 1984; Koch, 1983; Maydeu-Olivares, 1991, 1993;
Reise & Yu, 1990). In this paper, some of the most commonly used IRT models for ordered polychotomous
data are described using Thissen & Steinberg’s (1986) taxonomy as a framework. The existing literature is
reviewed on how well these models fit actual and simulated data. Finally, an empirical study is reported that
investigated the degree to which two models with different mathematical forms are distinguishable in their
predictions under identical experimental conditions (e.g., number of parameters per model, estimation method,
size of calibration sample, number of items, number of options per item).

Models for Ordered Polychotomous Items

Thissen & Steinberg (1986) proposed a taxonomy for unidimensional parametric item response models
that consists of binary models and complex models. Binary models are “... models for free-response binary
test items” (p. 569) and can be used in the analysis of dichotomously scored responses; they also are used as
the building blocks for complex models. The normal ogive model, the one- and two-parameter logistic
models, and various spline models (Ramsay, 1988; Winsberg, Thissen, & Wainer, 1984) are examples of
binary models.

Thissen & Steinberg’s (1986) taxonomy for complex models consists of (1) difference models; (2) divide-
by-total models; (3) left-side-added models; and (4) left-side-added divide-by-total models. The assumption
that there is no guessing or similar psychological phenomenon underlying ordered polychotomous responses
(i.e., Likert scale items) suggests option response functions (ORFs) with zero lower asymptotes. Because of
that assumption, the difference and the divide-by-total categories of Thissen and Steinberg’s taxonomy are
of primary interest.
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Samejima’s Graded Response Model

The best known example of a difference model is Samejima’s (1969) graded response model (GRM),
which has its origins in Thurstone’s law of categorical judgment (see Thurstone, 1959). The GRM divides the
m categories of an item into m — 1 blocks. Each of these blocks can be thought of as an item response
function modeling a dichotomous process: selecting options 1, 2, ..., k versus optionk+ 1, k + 2, ..., m. Each
of'these blocks (e.g., option 1 versus option 2 or above, option 2 or below versus option 3 or above) is denoted
by the probability P*(u, > k + 116 =1). In general, any binary model can be used to model this probability.
Samejima (1969) suggested using normal ogives or two-parameter logistic functions for this purpose. Logis-
tic functions were used here to model the conditional probabilities for the m — 1 blocks. Consequently
P*(u, 2 k+ 1|0 =1) can be expressed as:

1

*(y > b=1)= ’
Pz k+118=1) 1+exp[—af(f_bf~k+l)] (l)

where
u, denotes the polychotomously scored response to item i,
6 is the latent trait random variable,
¢t denotes a specific value of 6,
a, 1s the single discrimination parameter of the item, and
b, ., is the difficulty parameter for selecting option & + 1 or above.
In the GRM, the probability of selecting option k, given the latent trait © = ¢, is computed as

Plu, =k|0=1)=P*(u; 2 k|8 = )= P*u, 2 k+1|6=1) . 2

An important characteristic of the GRM is that @ must be equal for all options of an item. That is, there must
be a common g, parameter for all P* within an item. Otherwise, the P*(u,2 k + 1|6 =) will cross and
negative probabilities would be obtained for some ORFs, P(u,= k|0 =1). The GRM uses a single @ parameter
for all options of a particular item but allows different a parameters across items. Takane & de Leeuw (1987)
showed that the GRM with P* modeled by normal ogives is equivalent to factor analysis models for categori-
cal variables described by Christoffersson (1975) and Muthén (1983, 1984).

Thissen and Steinberg’s Extension of Masters’ Partial Credit Model

Masters’ (1982) partial credit model (PCM) is a divide-by-total model. Masters proposed using one-
parameter logistic functions in each of the m — 1 blocks in order to obtain a model with Rasch properties (see
Rasch, 1960, 1961). Thus, in the PCM, a one-parameter logistic function is used to model the probability that
an individual selects option 2 given that he/she has selected option 1 or 2. A one-parameter logistic function
also is used to model the probability that an individual selects option 3 given that he/she has selected options
2 or 3, and so forth. One-parameter logistic functions are fit to all m — 1 dichotomies obtained from subsamples
who select option & + 1 rather than k. Masters showed that using one-parameter logistic functions produced
sufficient statistics for the @ parameter and b parameters (i.c., “parameter separability;” therefore, “specifi-
cally objective” measurement was achieved).

The conditional probabilities of responses for the m — 1 subpopulations are denoted by P°(u,=k+ 1|6 =1,
u,=kork+1). For increased flexibility, Thissen & Steinberg (1986) suggested using two-parameter logistic
functions to model these conditional probabilities:

1
1+€Xp[_ai.k+l<r—bi‘k+])} | i

Py, =k+10=ru,=koru, =k+1)=
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Note that the introduction of a category a parameter increases flexibility in modeling conditional probabili-
ties, but destroys the parameter separability that is central to Rasch models. Andrich (1978a) also considered
a mode! with varying a parameters for the conditional probabilities given in Equation 3 (see his Equations
8a and 8b), but Rasch model considerations led him to impose restrictions on the a parameters.

In Thissen & Steinberg’s (1986) model,

Plu,=k+1|0=tu =k =k+1)= My ol 102
u = =tu =koru = = P(Lti=k!9:[)+P(Mi:k+1‘e:t) : G

Solving for P(u,= k +1/6=1) in the system of m —1 equations of the form given by Equation 4 with the
restriction that

m

ZP(ui:k|6:t)=1 (5)

results in

exp{ i ai.k'(’ -b, k):‘

P(u,.:k|6=t)= =
m i (6)
Z exp{ Z a; ¢ (t —b, )}

k=1

for k=1, 2, ..., m, with the convention that @, =0 and b, =0. Note that the denominator in Equation 6 is
the sum of the numerators for the m option probabilities, which is the defining characteristic of Thissen &
Steinberg’s (1986) “divide-by-total” models.

With the restriction that @ is constrained to be equal across options & = 1, ..., m within an item, but not
across items, Thissen & Steinberg’s (1986) model has the same number of parameters as the GRM. Thissen
and Steinberg therefore suggested that the revised model was “... a more direct competitor to Samejima’s
graded model” (p. 571). The model defined in Equation 6 with the restriction of common discrimination
within items but not across items is an extension of Masters’ (1982) pcM and will be referred to as Thissen
and Steinberg’s ordinal model (TSOM).

Thissen & Steinberg (1986) showed that the TsoM and models described by Masters (1982), Andrich
(1978a, 1982, 1985), and Masters & Wright (1934), are constrained versions of Bock’s (1972) nominal
model. Thus, Bock’s nominal model is a more flexible model for polychotomous data than any of the above-
mentioned constrained versions. The constrained models impose structure on the ORFs, which seems reason-
able given the task of responding to Likert scale items. Furthermore, some of the constrained models have
Rasch properties—sufficient statistics for item and person parameters. Finally, note that the GRM is not a
Rasch-type model even when its a parameters are constrained to be equal across items (Masters, 1982).

Selecting an IRT Model for Likert-Type Data

Very few studies have compared how these different models fit actual or simulated data under different
calibration procedures, sample sizes, test length, and violations of model assumptions. A much more exten-
sive literature has examined some of these issues in the context of models for dichotomous responses (Drasgow,
1989; Hulin, Lissak, & Drasgow, 1982; Swaminathan & Gifford, 1982, 1985, 1986), and researchers have
begun only recently to conduct paralle! studies for polychotomous models. However, examining the fit of
polychotomous models is more complex than studying the fit of a dichotomous model. For example, many
studies have correlated estimated b and a parameters with the simulation parameters for two- and three-
parameter logistic models (Swaminathan & Gifford, 1982, 1985, 1986). Polychotomous models can have
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several @ and b parameters for each item; consequently, evaluating item parameter recovery is more difficult.
Moreover, in the divide-by-total models, the meaning of one item parameter can depend on the values of
other parameters for that item; therefore, simply correlating estimated and simulated parameters may be
inadequate in a polychotomous context.

Reise & Yu (1990) studied item and person parameter recovery in the GRM as estimated by marginal
maximum likelihood using MULTILOG 5 (Thissen, 1988), simulating response patterns to 25-item unidimen-
sional tests composed of five-point scaled items. Under these conditions, they concluded that adequate item
parameter recovery was obtained with samples of 500 people.

Dodd (1984) used joint maximum likelihood calibration with actual and artificial data to compare the
GRM, a simplified version of the GRM in which all as were constrained to be equal, and the PcM. The
differences among the models were evaluated by correlating the item and person parameter estimates across
models and by inspecting the test information functions yielded by each model. Both the item and person
parameter estimates correlated highly across methods. However, the inspection of relative efficiency infor-
mation plots revealed that the simplified GRM yielded considerably less information than the other two
models.

Despite having fewer parameters, the PCM with actual data yielded more information than the GRM except
at very high 9 levels (6 > 3) (Dodd, 1984). Dodd also showed that with simulated data, the GRM yielded more
information than the PCM throughout the © continuum, but only noticeably at its extremes (/6] > 1.5). The
high relative efficiency of the PCM around the center of the 6 continuum was attributed to the fact that
although all items contributed equally to the test information function (all items had the same ), their item
information functions (TIFs) provided more information at 6 levels that fell in the range of the b parameter
estimates, and were more peaked when the range of an item’s estimated b parameters was small. In the GRM,
the shape of the 1IF depends on the a parameters. When the as were forced to be equal, Dodd observed that
the resulting IIFs were rather flat.

Maydeu-Olivares (1993) assessed how well several IRT models fit the responses of 1,053 people to five
Likert-type scales consisting of between five and 20 five-option items. Among the models studied were the
GRM, the PCM, the TSOM, and Bock’s nominal model. Parameters of all models were estimated using mar-
ginal maximum likelihood as implemented in MULTILOG 6 (Thissen, 1991). A normal ogive version of the
GRM estimated by generalized least squares as implemented in LISCOMP (Muthén, 1987), and Levine’s (1984)
nonparametric multilinear formula score model for polychotomous data estimated by marginal maximum
likelihood as implemented in ForScore (Williams & Levine, 1993) also were fit to these data. Goodness-of-
fit was determined by %° goodness-of-fit statistics computed for each item, for pairs of items, and triples of
items within inventories. In addition, fit plots were constructed to compare empirical proportions selecting
each option to estimated ORFs,

The inspection of the ¥ statistics for item pairs and triples revealed that, across all five inventories (1) the
full information version of the GRM (as implemented in MULTILOG) slightly outperformed the limited infor-
mation version of the GRM (as implemented in LISCOMP); (2) the GRM (regardless of estimation method)
slightly outperformed the divide-by-total models (the PCM, the TSOM, and Bock’s nominal model); (3) among
the divide-by-total models, the models with more parameters slightly outperformed the models with fewer
parameters (i.e., Bock’s model outperformed the TSOM, which in turn outperformed the PCM); (4) Levine’s
model clearly outperformed all other models. The model with the smallest single-item % statistics across all
five inventories was the GRM as implemented in LISCOMP. Of special relevance is the fact that Bock’s nomi-
nal model was not able to outperform the GRM with respect to the item pair and item triple fit statistics
despite its larger number of parameters. The differences observed when using one parametric model or
another were not large, however, and thus it seemed legitimate to ask the question of how large the differ-
ences are between these models, and how relevant they are for applications.
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Measuring the Difference Between Two Models
The kdeal Observer Index

The ideal observer index (101; Levine, Drasgow, Williams, McCusker, & Thomasson, 1992) was used
here to study some of the properties of two of the most promising models for Likert scale items—the GRM
and the TSOM. The 101 is designed to facilitate comparisons of IRT models that may vary in any of a number
of ways. In fact, this method may be applied whenever there are two statistical models for the # items in a
scale. More specifically, the 101 can be used if there are two ways of computing the probability of each of the
m'" response patterns for # items with m options.

The 101 has its roots in signal detection theory (Green & Swets, 1966) in which the two-alternative
forced-choice experiment provides an important means for quantifying the discrirninability of two stimuli—
Stimulus A and Stimulus B. This experiment consists of a set of trials. On each trial, one stimulus is
presented first, and then the other stimulus is presented. The observer knows that there is an equal probabil-
ity (i.e., .5) of each stimulus being presented first. After the two stimuli have been presented, the observer is
asked to decide whether the stimuli were presented in the order AB or BA. If the stimuli are impossible to
differentiate, the observer should be correct 50% of the time. As the observer’s ability to correctly identify
the two stimuli increases, the correct classification rate increases to a maximum of 100%.

The 101 is an extension of the two-alternative, forced-choice experiment to the context of IRT in which two
statistical models for response patterns are compared. Here, “Stimulus A” is a randomly sampled response
pattern from Model A, and “Stimulus B” is a randomly sampled response pattern from Model B. If the
Model A probability is virtually identical to the Model B probability for each of the m" response patterns,
then it is nearly impossible to differentiate between the models, and a correct classification rate close to .5
will be obtained. If the two models have substantially different probabilities for the response patterns, an
observer would be able to use this information and achieve a classification rate above .5.

The 101 is based on an ideal observer, namely an observer who uses a most powerful test for differentiating
between the two statistical models. Specifically, a response pattern, u,, is randomly sampled from Model A
and another response pattern, u,, is randomly sampled from Model B. After the response patterns have been
sampled, the task is to classify one pattern as the Model A pattern and the other pattern as the Model B
pattern. An ideal observer bases this decision on likelihood ratios

)= ™
and
M) = ;%; . ®)

Levine et al. (1992) showed that the most accurate classification is based on the decision rule
Classify u, as a Model A pattern and u, as a Model B pattern if M(u,) > A(u,); otherwise classify u, as a
Model B pattern and u, as a Model A pattern.

The 101 is defined as the correct classification rate of this rule.

The 101 is closely related to Akaike’s information criterion (AIC; Akaike, 1987; Bozdogan, 1987; Takane,
1994). The AIC differs from the IOl in that the AIC is a function of the likelihood of a single model fit to the
data; the 101 is based on a likelihood ratio of two models, as shown in Equations 7 and 8. However, it may be
possible to develop connections between the two approaches to fit by considering the theory underlying the
AIC (see Bozdogan, 1987, for a description of this theory). In addition, application of the AIC to the problem
of model fit in IRT appears to be an interesting area for future research.
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The value of the 10! has a relatively straightforward interpretation. An 10T near 1.0 means that response
patterns from the two models are easily differentiated: The ideal observer is almost always correct in classi-
fication decisions. Alternatively, an 10! value slightly above .5 means that the models are virtually indistin-
guishable in that an optimal classification procedure does little better than a classification decision based on
arandom event (e.g., the toss of a coin). In this case, almost every response pattern must have almost exactly
the same probability for both models. Values less than .5 are impossible for an optimal decision maker.

Uses of the 101

The 101 can be used for a wide variety of comparisons. Levine et al. (1992), for example, used the 101 to
gauge how well BILOG (Mislevy & Bock, 1989), LOGIST (Wingersky & Lord, 1982}, and ForScore (Williams
& Levine, 1993) estimated three-parameter logistic item response functions. They found 101 values ranging
from approximately .55 to .65 when calibration samples of N =3,000 were used. A study in progress exam-
ines how calibration accuracy—as indexed by the 10l—improves as sample size increases. Comparisons of
other pairs of models could include the following: a model obtained from an analysis of a sample of majority
group members and a model obtained from a minority group, in the analysis of differential item functioning;
a model defined by the parameter estimates after j stages of an iterative calibration algorithm and a model
defined by the estimates after j +1 stages, to determine whether the iterative calibration procedure con-
verged; and a unidimensional model versus a multidimensional model for a given dataset.

In this study, the 101 was used to compare a model obtained by one particular mathematical representation
of ORFs to a model defined by an alternative mathematical formulation. Using simulation data allowed
multiple replications per cell of the experimental design, and should increase the sensitivity of the compari-
sons. Use of the 101 as the measure of model fit was intended to improve the power and accuracy of model
comparisons.

A second issue examined in this paper concerned the minimum sample sizes needed to analyze Likert
scale items with an appropriate IRT model for varying scale lengths. In contrast to ability tests, in which it is
often possible to obtain large datasets from archival sources, attitude and self-report inventory data ordi-
narily must be collected by the researcher, in some cases through individual interviews.

Method
Simulation Design

Three scale lengths (n =135, 15, and 25 items) and four sample sizes (N=250, 500, 1,000, and 3,000
simulated respondents) were examined. For each of the 24 sets of items (two models x three ns x four Ns),
three samples were generated independently using a standard normal distribution. 25 items and 3,000 re-
spondents was selected as the largest combination of N and » because: (1) unidimensional attitude scales and
self-report inventories are not usually longer than 25 items, and (2) a sample of 3,000 is very large for an
attitude scale or a self-report inventory. Small Ns and »s also were selected because it was expected that these
conditions would show the largest calibration errors. Moreover, the purpose was to study calibration errors
under circumstances that are likely to be encountered in practice.

Simulation Item Parameters

To increase realism, simulation item parameters were based on actual data. Specifically, the set of 25 item
parameters used in this study was obtained by merging the parameters of the Positive Problem Orientation
and Rational Problem Solving scales of the Social Problem Solving Inventory—Revised (D’ Zurilla & Maydeu-
Olivares, 1993). The five-point Likert type items of this inventory had been calibrated in a previous study
(Maydeu-Olivares, 1993) with MULTILOG 6 (Thissen, 1991) using the GRM and the TSOM. These estimates
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subsequently were used as simulation parameters.

The 5-, 15-, and 25-item parameter sets used were hierarchically nested. That is, the 15 items were a
subset of the 25 items described above, and the 5 items were a subset of the 15 items. The items to be
included in the 5- and 15-item subsets were selected (1) by distributing the 25 items into five, 5-item clusters
so that each cluster would contain items with similar IIFs; and (2) by sampling without replacement one item
from each cluster to obtain the 5-item set, and three items from each cluster to obtain the 15-item set.

Data Analysis

The 72 resulting datasets were analyzed by both the GRM and the TSOM using MULTILOG 6 (Thissen,
1991). Thus, data generated by the GRM, for example, were calibrated with both the model used to generate
the data and the TSOM. Consequently, it could be determined how well the GRM and the TSOM reproduced
probabilities of response patterns from data generated by their own model, and how well these models
reproduced response pattern probabilities from data generated by the alternative model. The analysis was
concerned with determining (1) if one model was better than the other in describing response probabilities
when it was used to analyze data that satisfied its assumptions, and (2) if one model was better in describing
response probabilities when item parameters were estimated from data generated by the alternative model.
MULTILOG default specifications were used (i.e., marginal maximum likelihood calibration assuming a stan-
dard normal 8 distribution), except for the maximum number of EM cycles, which was incremented to 100 to
ensure CONVergence.

Following each MULTILOG run, the “estimated” model (i.e., the statistical model defined by the estimated
parameters and the functional form of the ORFs used during parameter calibration) was compared to the
simulation model (i.e., the simulation item parameters and the parametric form of the ORFs used to generate
the data input to MULTILOG) by means of the IOL

The Criterion for Evaluating Calibration Accuracy

The 101 method indicated the extent to which it was possible to differentiate response patterns generated
by the simulation model from response patterns generated by the estimated model. If it was difficult to dif-
ferentiate response patterns (i.e., if the 101 correct classification rate was only slightly above .50), then
the estimated model was “close” to the simulation model. In such a case, use of the estimated model in
place of the true model would be justified. Alternatively, if the 101 classification rate was large, then the
estimated model is a poor approximation of the simulation model and the two models should not be used
interchangeably.

In the next step of the analysis, 101 was computed by the following process (see Levine et al., 1992, for
additional details). First, random samples of the specified number of response patterns were generated using
the estimated model and the same number of response patterns were generated using the simulation model.
The likelihood ratios in Equations 7 and 8 then were computed for each response pattern and a likelihood
ratio for a response pattern generated by the estimated model (Model A) was compared to a likelihood ratio
for a response pattern from the simulation model (Model B); Levine et al.’s decision rule for classifying
patterns then was applied. Because simulated data were used, it could be determined whether the classifica-
tion decision was correct. Aggregating over the Model A and Model B response patterns provided a sample
estimate of the 101 correct classification rate.

Because some sampling fluctuation in estimates of 101 classification rates was expected due to the par-
ticular random sample of response patterns, 10 replications of the above process were performed each time
two models were compared. Then the 10 sample estimates of the 101 classification rate were averaged to
control for the variability of random samples. The estimated standard error of the 101 for a fixed set of item
parameter estimates across 10 replications was generally between .001 and .003.
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Results

The means of the 101 and its standard errors from the three replications performed on each on the 48
different experimental conditions (two simulation models x two estimated models X three ns x four Ns) are
presented in Table 1. The 101 values in Table 1 range from approximately .527 to approximately .714,
indicating that in some cases the estimated models were virtually indistinguishable from the simulation
model and in other cases the estimated models were substantially different from the simulation model. The
101 values increased as » increased for calibration samples of a given size. This occurred because a longer
scale provides more information to a decision maker, and thereby facilitates differentiation between true and
estimated models. Thus, to use the 101 as a measure of calibration accuracy, rather than a measure of classi-
fication accuracy, some transformation of the 101 to a constant scale length is needed.

Table 1
Means and Estimated Standard Errors (SEs) of IO Based on Scale Calibrations by MULTILOG for n =35, 15,
and 25 Items for Data Simulated by the GRM and TSOM and Estimated by the GRM (Graded) and
TSOM (Ordinal), for N=250, 500, 1,000, and 3,000

Data Simulated by GRM Data Simulated by TSOM

N and Graded Ordinal Graded Ordinal
Statistic 5 15 25 5 15 25 5 15 25 5 15 25
N=250

Mean 576 653 687 579 668  .708 588 678 714 583 664 .699

SE 002 .004 .004 002 005  .008 003 .007 .012 .003  .009 .013
N=500

Mean 559 610 643 565 631 671 570 633 677 564 620 655

SE .006 .003 .003 .005 .005 .003 002 .002 .004 002 .003  .006
N=1,000

Mean 540 571 .6l5 548 600 .647 555 602 659 547 577 629

SE .004 005 .008 .004 .003 .007 .003  .004 .006 .004 .005 .010
N=3,000 :

Mean 527 550 573 536 585 615 544 600  .634 543 572 594

SE .00l 0.000 .003 003 001 .002 .003 .003  .003 .004 .004 .004

The effects of NV are also clear in Table 1: The 101 decreased as /N increased. This means that the pattern
probabilities computed from estimated item parameters became more similar to the simulation model pat-
tern probabilities as larger samples were used to estimate item parameters. Thus, differentiation between
simulation model response patterns and estimated model response patterns became more difficult as the size
of the calibration sample increased. Table 1 also shows that a model fits data generated by itself somewhat
better than data generated by the alternative model. '

Regression Analyses

Method. To provide a quantitative model for the trends observed in Table 1, a series of regression
analyses were conducted. In these analyses, the 101 logit—In[IOI/(1 — IOI)]—was used as the dependent vari-
able, and logarithmic transformations of calibration sample size, number of items, and their interaction—
In(NV), In(n), and In(N) x In(n)—were used as independent variables.

Three types of regression analyses were conducted.

1. A separate regression was run for each combination of the model used to generate data and the model
used for test calibration. This resulted in four models—(1) the data were simulated by the GRM and
estimated by the GRM, (2) the data were simulated by the GRM and estimated by the TSOM, (3) the data
were simulated by the TSOM and estimated by the TSOM, and (4) the data were simulated by the TSOM
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and estimated by the GRM. The regression model was
In[I0L/(1-101)] = b, + b)In(n) + b,ln(N) + byIn(n) X In(N). 9

2. A regression was run for each model used to generate data, which included a dummy variable for the
model used for estimation (i.e., two models). The regression model was

In[IOY/(1 - 101)] = b, +b,In(n)+ byIn{N) + byIn(n) X In(N) + b, (estimation model). (10)

3. A regression was run for a single overall model, which included dummy variables indicating the model
used to simulate data and the model used for estimation. The regression model was

In[101/(1- I01)] = b, + b,In(n) + b,In(N) + byln(1) X In(N) + b, (estimation model)
+ by(data simulation model)+ b, (estimation model x data simulation model) .

(1D

All regression models were constructed by a hierarchical procedure. That is, in the first stage all indepen-
dent variables were entered in the equation. Then interaction terms were examined to determine whether
they could be omitted from the regression equation without significantly reducing the squared multiple
correlation (R%). Finally, main effects were examined to determine whether they could be omitted.

A related set of significance tests was performed for each regression equation, and consequently the Bon-
ferroni correction was applied to maintain an overall o level of .05 per equation. Thus, because the separate
regression equations for each combination of data simulation model and estimation model contained three
terms, o, =.05/3 =.0167 was used for the individual significance tests. Significance tests for Regressions 2
and 3 (Equations 10 and 11, respectively) used o =.05/4 =0125 and .05/6 =.0083, respectively.

Results.  Table 2 presents the results of the regression analyses. Only those parameter estimates signifi-
cant at an overall o = .05 are reported. All regression equations resulted in R>> 91. All regression weights
reported in this table were very large compared to their standard errors. As shown in Table 2 for Regres-
sion 1, the regression models for the logit transformation of 101 values obtained by fitting a model to itself
(i.e., the model used to estimate item parameters for a scale was the same as the model used to simulate
the data) included a test length main effect and a sample size x test length interaction.

Fitting separate regression equations of the form in Equation 10 (Regression 2) for the data generated
according to the GRM and the TSOM allowed for a comparison of whether a model fit its own data (i.e.,
generated according to its assumptions) better than data generated according to the alternative model. In
both cases, the regression coefficient for the estimation model dummy variable was significant (¢ = —.044/
.006 = =73, p < .0001 for the GRM and 7 =.037/.008 =4.6, p < .0001 for the TSOM). Thus, both models
better fit data generated according to their assumptions than data generated by the alternative model.

When a single overall model was fit (Regression 3), the nonsignificant effects included the estimation
model main effect (|7 =.723, p = .471) and the N main effect (jf| = 1.223, p = .223). All other terms were
highly significant (p < .0001). The strong interaction obtained between the estimation and simulation
models reflects the fact that both models fit themselves better than the alternative parametric model. The
simulation model main effect found to be significant was due to the fact that a slightly better fit was
obtained for samples generated by the GRM.

Discussion

Using logarithmic transformations of scale length and sample size, the logit transformations of the 101
were predicted very accurately. The regression equations obtained can be used to interpolate 101 values
within the range of Ns and #s studied here. For example, the 101 for the GRM with 15 items and a calibration
sample of 1,500 respondents could be estimated for a set of items similar to the one studied.

Similar regression equations were found to be appropriate under all conditions. Specifically, the regres-
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Table 2
Significant Regression Coefficients (b) and their SEs from Regression Models Predicting IOT Values
From Estimation Sample Size and Test Length for Data Generated by the GRM and TSOM and Estimated
by the GRM (Graded) and TSOM (Ordinal) and by an Overall Model

Model, GRM TSOM
Coefficient, Graded Ordinal Graded Ordinal Overall Model
and R? b SE b SE b SE b SE b SE
1. Combinations of Simulation and Estimation Models
b, -.127 .030 —-.206 .029 -.197 .040 —-.121 .042
b, .599 024 .605 .024 582 .032 .585 .035
b
bj —.060 .003 —-.051 .003 —~.046 .004 -.055 .005
R? 95 96 93 91
2. Dummy Variable for the Estimation Model
b, —.167 .023 -.160 .030
b, .602 .019 583 .025
b
b, ~055 002 ~050 003
b, —.044 .006 037 .008
R? 95 91
3. Overall Regression Model
b, -.163 019
b, .593 016
b,
b, -.040 002
b4
b, —-.022 .005
b, —.040 .005
: .93

sion equations included a scale length main effect and a scale length x sample size interaction. Thus, the
degree of similarity between the simulation mode! and estimated model depended on the size of the calibra-
tion sample through its interaction with scale length. Of course, in a simulation study that held scale iength
constant a sample size main effect would be expected.

Not surprisingly, both models studied here provided a better fit to data generated by the same parametric
model rather than the alternative parametric model. However, neither model was found to be uniformly
superior in modeling data generated by its own parametric form, and in modeling data generated by the
alternative model. Thus, which model is better could not be determined; each model provided a slightly
better fit (in samples used to compute the 101 statistic) when its assumptions were satisfied.

Conclusions

Researchers and practitioners alike are interested in the question of which logistic model should be used
given a set of Likert-type items written to assess a psychological construct. This question was studied by
considering the degree to which the response probabilities of a model fit to a dataset approximated the
response probabilities of a simulation model. The ideal observer method and its computational procedures
provide one approach (Levine et al., 1992). The 101 gives the accuracy of a most powerful statistical test for
classifying response patterns in the two-alternative, forced-choice experiment.

Thissen & Steinberg (1986) presented a taxonomy of existing unidimensional parametric IRT models that
helped to delimit the question. According to their taxonomy, there are two sets of IRT models that are most
suitable for fitting Likert-type data: difference models and divide-by-total models. The 101 was used to
compare two parametric models for Likert-type data with identical numbers of parameters—the GRM and
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the TsoM—under identical estimation conditions (marginal maximum likelihood). Under the conditions
used in this study, these models proved to be very similar, thus suggesting that either model would be equally

appropriate in most practical applications.
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