
PSYCHOMETRIKA—VOL. 78, NO. 1, 116–133
JANUARY 2013
DOI: 10.1007/S11336-012-9293-1

HOW SHOULD WE ASSESS THE FIT OF RASCH-TYPE MODELS?
APPROXIMATING THE POWER OF GOODNESS-OF-FIT STATISTICS

IN CATEGORICAL DATA ANALYSIS
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We investigate the performance of three statistics, R1, R2 (Glas in Psychometrika 53:525–546,
1988), and M2 (Maydeu-Olivares & Joe in J. Am. Stat. Assoc. 100:1009–1020, 2005, Psychome-
trika 71:713–732, 2006) to assess the overall fit of a one-parameter logistic model (1PL) estimated by
(marginal) maximum likelihood (ML). R1 and R2 were specifically designed to target specific assump-
tions of Rasch models, whereas M2 is a general purpose test statistic. We report asymptotic power rates
under some interesting violations of model assumptions (different item discrimination, presence of guess-
ing, and multidimensionality) as well as empirical rejection rates for correctly specified models and some
misspecified models. All three statistics were found to be more powerful than Pearson’s X2 against two-
and three-parameter logistic alternatives (2PL and 3PL), and against multidimensional 1PL models. The
results suggest that there is no clear advantage in using goodness-of-fit statistics specifically designed for
Rasch-type models to test these models when marginal ML estimation is used.
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1. Introduction

Broadly speaking, item response theory (IRT) refers to the class of latent trait models for
discrete multivariate data obtained by coding the responses to a set of questionnaire items, such
as those found in educational tests, personality inventories, etc. Rasch-type models are a subset
of IRT models, so named after the pioneering work of Rasch (1960). Rasch-type models are
characterized by two properties (McDonald, 1999): (a) the sum score is a sufficient statistic
for the latent traits, and (b) comparisons of subpopulations are made independently of the item
or items used for the comparison (the so-called specific objectivity property). Although only
highly restrictive IRT models can satisfy these properties, their mathematical potential has led
some researchers to prefer them to all other IRT models. Thus, we may distinguish between two
traditions in IRT modeling: a model-based tradition and a data-based tradition. In the model-
based tradition, a model with appealing mathematical properties is selected first (a Rasch-type
model) and tests are designed to fit the model. By contrast, in a data-based tradition, different
models within the IRT family are explored to find the best fitting model for the available data.

Because of the availability of sufficient statistics for the latent traits that do not depend on
item parameters, estimation methods (conditional maximum likelihood, or CML) and goodness-
of-fit testing procedures have been developed specifically for Rasch-type models (for an overview
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of Rasch modeling, see Fischer & Molenaar, 1995). However, for Rasch-type models, it is not
clear whether there is any advantage in using the procedures specifically designed for these tests
or if, on the other hand, those general procedures applicable to other IRT models that do not
possess sufficient statistics can actually yield more accurate results.

For item parameter estimation techniques and after Thissen’s (1982) pioneering work
(1982), there seems to be a consensus (Pfanzagel, 1993; see also De Leeuw & Verhelst, 1986)
that the more general marginal maximum likelihood estimation procedure (MML or simply ML)
generally implemented via the EM algorithm (see Bock & Aitkin, 1981) is preferable to the
CML procedure originally favored by Rasch modelers. However, many Rasch modelers still pre-
fer CML because no distribution needs to be assumed for the latent traits. Finally, the reader
should also note that MML estimation is sometimes referred to in the literature as full informa-
tion maximum likelihood (FIML) (e.g., Jöreskog & Moustaki, 2001).

However, no such consensus has emerged regarding the use of goodness-of-fit testing pro-
cedures. Indeed, there is a large number of goodness-of-fit statistics specifically proposed for
Rasch-type models (see Andersen, 1973; van den Wollenberg, 1982; Suárez-Falcon and Glas,
2003; and the excellent review by Glas & Verhelst, 1995), in addition to the general procedures
proposed available for testing multivariate discrete data models, and particularly IRT models;
see the reviews by Mavridis, Moustaki, and Knott (2007), Swaminathan, Hambleton, and Rogers
(2007), and Maydeu-Olivares and Joe (2008). The purpose of this article is to compare the per-
formance of certain goodness-of-fit statistics to test Rasch-type models. To do so, we concentrate
on models for binary data. More specifically, we use the one-parameter logistic model, that is,
the random effects version of Rasch’s 1960 model. The statistics being compared are R1, R2,
and M2. The statistics R1 and R2 were proposed by Glas (1988) to assess the fit of the one-
parameter logistic model, and M2 was proposed by Maydeu-Olivares and Joe (2005, 2006) for
testing general composite null hypotheses in multivariate discrete data

The remaining sections of this article are divided as follows. Sections 2 and 3 provide the-
oretical background. The R1, R2, and M2 test statistics are described and the details of their
asymptotic distribution are provided for composite nulls, and also under a sequence of local
alternatives. Section 3 describes a procedure first used by Reiser (2008) to approximate asymp-
totically the power of the statistics for specific alternatives without having to use simulations.
In many ways, this procedure is the categorical data counterpart to the procedure proposed by
Satorra and Saris in structural equation modeling (1985). Section 4 compares the performance
of the statistics. We report asymptotic power rates under some interesting violations of model
assumptions (different item discrimination, presence of guessing, and multidimensionality) as
well as empirical rejection rates for correctly specified models and some misspecified models.
Finally, Section 5 provides two numerical examples using real data.

2. Rasch-Type Models for Binary Data

Consider n binary items Yi , whose categories have been coded as 0 or 1. Rasch (1960)
proposed the following model:

P(Yi = 1|ξ) = ξ

ξ + δi

, (1)

where ξ denotes the latent trait, and δi denotes the item difficulty parameter. The model can be
reparameterized using ξ = exp(η) and δi = exp(bi) to yield

P(Yi = 1|η) = exp(η)

exp(η) + exp(bi)
= 1

1 + exp[−(η − bi)] , (2)
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which is a special case of the three parameter logistic (3PL) model,

P(Yi = 1|η) = ci + (1 − ci)
1

1 + exp[−(ai(η − bi))] , (3)

introduced in Lord and Novick (1968). In (2), η and bi denote the (reparameterized) latent trait
and item difficulty parameter, respectively. In turn, the item parameters ai and ci in (3) may be
interpreted as discrimination and guessing parameters, respectively.

Rasch (1960) treated the latent trait parameters ξ (or equivalently η) as fixed effects, so that
the distribution of ξ (or equivalently η) is not specified. He proposed identifying the model by
introducing the constraint

n∑

i=1

bi = 0 (4)

and estimating the mean and variance of the latent trait. The model can be equivalently identified
by fixing the mean and variance of the latent trait to some constants, say 0 and 1, estimating the
bi without the constraint (4), and rewriting (2) as

P(Yi = 1|η) = 1

1 + exp[−a(η − bi)] . (5)

Note that the discrimination parameter a in (5) is common to all items.
In recent times, the latent trait η in (5) has most often been treated as a random effect, gener-

ally by specifying a standard normal distribution for η. To distinguish between the two variants
of the model, we shall refer to the fixed-effects version of the model (i.e., Equation (2) with the
constraint (4) and latent trait mean and variance to be estimated) as the Rasch model; and we
shall refer to the random-effects version (given by Equation (5) with mean zero and unit variance
for η), as the one-parameter logistic model or the 1PL. A parametric latent trait distribution need
not be assumed for the 1PL, as the latent trait density can be estimated nonparametrically. How-
ever, in this article, we shall assume that the latent trait follows a standard normal distribution for
all the models considered, meaning the 1PL, the 3PL model (3), and in the special case where all
ci parameters are equal to zero, the two-parameter logistic model, 2PL. Readers should also note
that regardless of whether we assume the Rasch model or the 1PL (i.e., regardless of whether the
latent trait is treated as fixed- or random-effect), the specific objectivity property holds. In other
words, for any item the log-odds value of two subpopulations is equal to the difference in their
trait values; see Irtel (1995) for a less restrictive definition of specific objectivity that applies to
the 2PL.

3. Goodness-of-Fit Assessment in Binary IRT Models

Consider modeling N observations on n binary random variables. The observed responses
can then be gathered in an n-dimensional contingency table with C = 2n cells. Let πc be the prob-
ability of one such cell, c = 1, . . . ,C, and let pc be the observed proportion. Also, let π(θ) be the
C-dimensional vector of model probabilities expressed as a function of q model parameters θ to
be estimated from the data. Then the (composite) null hypothesis to be tested is H0 : π = π(θ)

against H1 : π �= π(θ).
The two standard goodness-of-fit statistics for discrete data are Pearson’s statistic, X2 =

N
∑C

c=1(pc − π̂c)
2/π̂c , and the likelihood ratio statistic G2 = 2N

∑C
c=1 pc ln(pc/π̂c), where

π̂c = πc(θ̂) denotes the probability of cell c under the model. Asymptotic p-values for both
statistics can be obtained using a chi-square distribution with C −q −1 degrees of freedom when
maximum likelihood estimation is used. However, these asymptotic p-values are only reliable
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when all expected frequencies are large (>5 is the usual rule of thumb). Unfortunately, as the
number of cells in the table increases, the expected frequencies must be small (Bartholomew &
Tzamourani, 1999) because the sum of all C probabilities must be equal to 1. As a result, in
multivariate discrete data analysis the asymptotic p-values for these statistics can hardly ever be
used.

To overcome these limitations, a number of authors (e.g., Christoffersson, 1975; Reiser,
1996, 2008; Bartholomew & Leung, 2002; Maydeu-Olivares & Joe, 2005, 2006; Cai, Maydeu-
Olivares, Coffman, & Thissen, 2006) have proposed testing using limited information, that is,
pooling cells of the contingency table a priori so that the resulting statistics have a known asymp-
totic null distribution.

3.1. M2 and the Mr Family of Test Statistics

Maydeu-Olivares and Joe (2005) proposed testing using a quadratic form in residual mo-
ments of the multivariate Bernoulli distribution (Teugels, 1990) up to the smallest order at which
the model is identified. The family of statistics they proposed is

Mr = N
(
pr − π r (θ̂)

)′Ĉr

(
pr − π r (θ̂)

)
, (6)

Cr = �−1
r − �−1

r �r

(
�′

r�
−1
r �r

)−1
�′

r�
−1
r = �(c)

r

(
�(c)′

r �r�
(c)
r

)−1
�(c)′

r , (7)

where Ĉr denotes Cr evaluated at θ̂ . In (6), π r denotes the s = ∑r
i=1

(
n
i

)
vector of moments

of the multivariate Bernoulli distribution up to order r , and pr denotes its sample counterpart.
In (7), �r = ∂π r (θ)

∂θ ′ , and �r denotes the asymptotic covariance matrix of
√

N(pr − π r ). Also,

�
(c)
r is the s × (s − q) orthogonal complement of �r (i.e., it satisfies �

(c)′
r �

(c)
r = 0).

Mr is a family of statistics comprising M1,M2, . . . ,Mn. In M1 only univariate information
is used, in M2 only univariate and bivariate information is used, and so forth up to Mn, a full
information statistic that is algebraically equal to Pearson’s X2 when ML estimation is used.
For the chi-square approximation to the distribution of Mr to be accurate, only the expected
frequencies of the moments of order min (2r, n) need to be large. Thus, the smaller the r used
for testing, the more accurate the asymptotic approximation in small samples. Because most
IRT models are identified from univariate and bivariate information, M2 is the statistic of choice
within this family for testing IRT models. Note that only expected frequencies for sets of four
variables are involved in the computation of M2.

Actually, the moments of the multivariate Bernoulli distribution are simply marginal proba-
bilities obtained by a linear transformation of the cell probabilities, πn = Tπ , or

⎛

⎜⎜⎜⎝

π̇1
π̇2
...

π̇n

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

Ṫ1

Ṫ2
...

Ṫn

⎞

⎟⎟⎟⎠π ,

where π̇ r is the
(
n
r

)
-dimensional vector of r th order moments. This transformation is illustrated

here for n = 3 variables:
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Note that �r = Tr� = Tr
∂π(θ)

∂θ ′ , where Tr = (Ṫ′
1 . . . Ṫ′

r )
′ is an s × C matrix, and �r = Tr�T′

r ,

where � is the asymptotic covariance matrix of
√

N(p − π), � = D − ππ ′, with D = diag(π).
Thus, Mr may be written as

Mr = N
(
p − π(θ̂)

)′T′
r ĈrTr

(
p − π(θ̂)

)
. (8)

Maydeu-Olivares and Joe (2005) showed that if the model is identified from π r , and if θ̂ is
an

√
N -consistent and asymptotically normal estimator (not just for the ML estimator), Mr is

asymptotically distributed as a chi-square with s − q degrees of freedom under the null hypoth-
esis. This follows from the asymptotic normality of the vector of cell residuals and by noting,
using (7), that

�r = Cr�rCr . (9)

Also, note that M2 is simply a quadratic form in residual means and cross-products, since the
elements of π2 = (π̇ ′

1 π̇ ′
2)

′ are of the type π̇i = Pr(Yi = 1), and π̇ij = Pr(Yi = 1, Yj = 1). The
degrees of freedom available for testing when using M2 are n(n + 1)/2 − q .

3.2. R1, R2, and the Family of Generalized Pearson Statistics

The statistic R1 proposed by Glas (1988) has a similar form to Mr as given in (8),

R1 = N
(
p − π(θ̂)

)′T′
R1ĈR1TR1

(
p − π(θ̂)

)
, CR1 = (

TR1DT′
R1

)−1
, (10)

with ĈR1 denoting CR1 evaluated at θ̂ , but TR1 is an (n(n − 1) + 2) × C block diagonal matrix,
TR1 = diag(T(0)

R1, . . . ,T(n)
R1), and CR1 has a much simpler form than Cr . Furthermore,

�R1 = �R1CR1�R1, (11)

and �R1 = TR1�TR1. The relationship πR1 = TR1π is illustrated below for n = 3 items

, (12)

with T′
R1 = (T(0)′

R1 ,T(1)′
R1 , . . . ,T(n)′

R1 ) being block diagonal.
In (12), π1|x=k is used to denote the n-dimensional vector of probabilities of endorsing

each of the n items, given that the sum score X = Y1 + · · · + Yn is k, that is, π1|x=k =
(Pr(Y1 = 1,X = k), . . . ,Pr(Yn = 1,X = k))′. Also, π0 is the probability of obtaining a sum
score of zero, and πn of obtaining a sum score of n.

Let ê = (p − π(θ̂)). Because TR is block diagonal, the R1 statistic may be written as

R1 = N
(
p − π(θ̂)

)′TR1
(
TR1D̂T′

R1

)−1TR1
(
p − π(θ̂)

)

= N

{
(p0 − π̂0)

2

π̂0
+

n−1∑

k=1

ê′T(k)′
R1

(
T(k)

R1D̂kT(k)′
R1

)−1T(k)
R1ê + (pn − π̂n)

2

π̂n

}
. (13)

Glas (1988) showed that for the 1PL the asymptotic distribution of R1 under the null hypothesis
for the ML estimator is chi-square with n(n − 2) degrees of freedom. This follows from the
asymptotic normality of TR1(p − π̂) and that (11) is satisfied for this model.
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R1 was developed to assess the assumptions of monotone increasing and parallel item re-
sponse functions of the 1PL model when the item parameters are estimated by marginal max-
imum likelihood. The assumption of monotone increasing and parallel item response functions
is not the only assumption underlying the 1PL. Another is unidimensionality of the latent trait.
van den Wollenberg (1982) showed that tests based on the univariate moments conditional on
sum score such as R1 are relatively insensitive to multidimensionality. Therefore, Glas (1988)
introduced the R2 statistic, which like M2 is based on bivariate moments. More specifically, the
R2 statistic is based on π0, Pr(Yi = 1,X = 1) for i = 1, . . . , n, Pr(Yi = 1, Yj = 1,2 ≤ X ≤ n−1)

for i = 1, . . . , n − 1 and j = i + 1, . . . , n, and πn.
Thus, for R2 TR2 = diag(T(0)

R2, . . . ,T(n)
R2) is an (n(n+1)/2+2)×C 4-block diagonal matrix.

The relationship πR2 = TR2π is illustrated in the appendix for n = 4 items; for n = 3 items TR2
is an identity matrix. The statistic can be written as (13) except that in this case, since TR2 only
consists of 4 blocks regardless of the number of items, we write

R2 = N
(
p − π(θ̂)

)′TR2
(
TR2D̂T′

R2

)−1TR2
(
p − π(θ̂)

)

= N

{
(p0 − p̂0)

2

p̂0
+ ê′T(1)′

R2

(
T(1)

R2D̂T(1)′
R2

)−1T(1)
R2ê + ê′T(2)′

R2

(
T(2)

R2D̂T(2)′
R2

)−1T(2)
R2ê

+ (pn − p̂n)
2

p̂n

}
. (14)

When testing the fit of the 1PL model, the statistic follows asymptotically a chi-square distribu-
tion with (n(n − 2) + 2)/2 degrees of freedom (Glas, 1988).

For the 1PL, R1 belongs to the family of generalized Pearson statistics introduced by Glas
and Verhelst (1989) and R2 has the same form as statistics within this family. The family of
generalized Pearson statistics is defined as

Q = N
(
p − π(θ̂)

)′U′ĈU U
(
p − π(θ̂)

)
, CU = (

UDU′)−
, (15)

with ĈU denoting CU evaluated at θ̂ . U denotes a g × C matrix of constants so as to choose g

linear combinations of the cell residuals such that (a) they show specific model violations, and
(b) their expected probabilities are sufficiently large for applying asymptotic theory. They show

that if (a) the columns of D− 1
2 � belong to the linear manifold of the columns of D− 1

2 U′, and
(b) there exists a vector of constants c such that U′c = 1, then Q is asymptotically distributed as a
chi-square with degrees of freedom equal to rank(UDU′)−q − 1. Note that in (15) a generalized
inverse is used, allowing the rows of U to be linearly dependent. Condition (a) is verified if

rank(D− 1
2 U′) = rank ; condition (b) is verified if rank(U′) = rank .

4. Estimating the Power of the Statistics

The asymptotic distribution of R1, R2, and Mr under a sequence of local alternatives can
be derived from the asymptotic distribution of the cell residuals. Consider a sequence of local
alternatives

πN = π0 + δ√
N

, (16)

where π0 = π(θ0) denotes the probability vector specified under the null hypothesis. Assuming
(16), and provided δ is not too large, the asymptotic distribution of the cell residuals for the ML
estimator is

√
N(p − π̂0)

d→ N(δ,�), � = �0 − �0
(
�′

0D−1
0 �0

)−1
�′

0. (17)
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Equation (17) follows from assuming that
√

N(p − πN)
d→ N(0,�0), or equivalently that√

N(p − π0)
d→ N(δ,�0), where �0 = D0 − π0π

′
0. For the ML estimator θ̂ of θ0, we have

θ̂ − θ0
a= (�′

0D−1
0 �0)

−1�′
0D−1

0 (p − πN) = B0(p − πN), where
a= denotes asymptotic equality

and �0 = ∂π0
∂θ ′ . Now, π̂0

a= π0 +�0(θ̂ − θ0)
a= π0 +�0B0(p−πN). Equation (17) follows from

(p − π̂0)
a= (I − �0B0)(p − πN) + δ√

N
, where we have used (16).

Thus, under the sequence of local alternatives (16), Pearson’s X2 is asymptotically dis-
tributed as a noncentral chi-square with df = C − q − 1 and noncentrality parameter

λ = δ′D−1
0 δ = N(πN − π0)

′D−1
0 (πN − π0), (18)

since (16) implies δ = √
N(πN − π0).

Similarly, assuming (16) and (17), Mr is asymptotically noncentral chi-square with df =
s − q and noncentrality parameter

λr = δ′T′
rCrTrδ. (19)

This result follows from (9) and standard results in quadratic forms of normal random variables

(e.g., Mathai & Provost, 1992) since Tr

√
N(p − π̂0)

d→ N(Trδ,�r ).
For the 1PL, using similar arguments and (11), R1 and R2 are asymptotically noncentral

chi-square with df = n(n− 2) and (n(n− 2)+ 2)/2, respectively, and non-centrality parameters

λR = δ′T′
RCRTRδ. (20)

Now, given a vector πN and a null model π0 = π(θ0), we estimate the non-centrality pa-
rameters λ in (18), λr in (19), and λR in (20) as follows: θ̂0 is obtained by minimizing the
Kullback–Leibler (1951) discrepancy function

DKL
(
πN,π(θ0)

) = π ′
N ln

(
πN/π(θ0)

) = π ′
N

[
ln(πN) − ln

(
π(θ0)

)]
(21)

and the noncentrality parameters are estimated by evaluating δ and D0, δ and Cr , and δ and CR

at π̂0 = π(θ̂0) for X2, Mr and R1, R2, respectively. Note that the minimizer of (21) is the same
as the maximizer of the maximum likelihood function between a “true” model πN and a null
model π(θ0) (e.g., Jöreskog, 1994). For categorical data analysis, this procedure to estimate the
noncentrality parameter was first used by Reiser (2008), and it is analogous to the procedure used
by Satorra and Saris (1985) in structural equation modeling (SEM), except that in Satorra and
Saris the function minimum (multiplied by sample size) yields an estimate of the noncentrality
parameter. By contrast, here the noncentrality parameter needs to be computed given θ̂0.

In the next section, we shall assess the accuracy of these asymptotic approximations to the
distribution of the statistics R1, R2 and M2 under the null, and also under sequences of local
alternatives.

5. An Empirical Comparison of R1, R2 and M2

5.1. Accuracy of the Asymptotic p-Values Under Correct Model Specification

Table 1 reports the results of a simulation comparing empirical Type I error rates. Data
were generated using the 1PL model (5) with a standard normal latent trait. Parameter es-
timation was performed using marginal maximum likelihood. The true value of the dis-
crimination parameter was set to 1 and the true values of the difficulty parameters were
b′ = (−2.7,−2.1,−1.5,−0.9,−0.3,0.3,0.9,1.5,2.1,2.7). Three sample sizes were consid-
ered: N = 300, 500, and 1,000. A total of 1,000 replications per condition were used. All repli-
cations converged. Table 1 gives the empirical mean, variance, and rejection rates for R1, R2,
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TABLE 1.
Empirical mean, variance, and rejection rates of R1, R2, and M2 for correct model specification.

Stat df N Mean Var α = 0.01 α = 0.05 α = 0.10

R1 80 300 78.6 432.6 0.07 0.11 0.14
500 80.2 349.7 0.06 0.11 0.14

1000 79.3 216.1 0.02 0.07 0.11

R∗
1 20 300 23.4 62.72 0.04 0.14 0.23

500 23.7 54.04 0.04 0.13 0.24
1000 23.5 47.93 0.04 0.12 0.22

R2 45 300 46.6 248.1 0.05 0.10 0.15
500 46.6 336.1 0.04 0.10 0.17

1000 46.5 129.6 0.03 0.08 0.13

M2 44 300 44.1 86.5 0.01 0.05 0.11
500 44.0 79.2 0.01 0.05 0.09

1000 44.2 86.5 0.01 0.05 0.10

Notes: n = 10; The true parameters were a = 1 and b′ = (−2.7,−2.1,−1.5,−0.9,−0.3,0.3,0.9,1.5,2.1,

2.7). The sum score levels used in R1 are {0,1,2,3,4,5,6,7,8,9,10} (no grouping of sum scores); in R∗
1

they are {0,1–3,4–6,7–9,10}.

and M2 at selected nominal rates (α = 0.01, 0.05, and 0.10). The sample means of the statistics
should be close to the degrees of freedom, and the sample variance close to twice the degrees of
freedom. As we can see in this table, M2 provides accurate empirical rates, whereas R1 and R2
tend to reject slightly more often than they should.

More extensive simulations comparing the empirical Type I rejection rates of R1 and M2 are
reported in Montaño (2009), including model sizes from n = 10 to 20 and three levels of the true
discrimination parameter a (0.5, 1, 1.5). M2 was found to be very accurate across all conditions
and more accurate than R1. The accuracy of the p-values for R1 was found to improve with
decreasing model size and increasing discrimination. The highest empirical rejection rate for R1
across all conditions was 17 % at the 5 % level, so the discrepancies between the empirical and
asymptotic rates were not large.

The discrepancies between the empirical and asymptotic rejection rates for R1 and R2 oc-
cur because their empirical variances are much larger than those expected under their asymp-
totic distribution. For the asymptotic p-values of R1 to be accurate, the expected frequencies of
N Pr(Yi = 1,X = k), should be large, say larger than 20 (Glas, 2009). This can be accomplished
by grouping the sum scores in triplets of scores, quads, etc. That is, for the case of n = 10 items
instead of using X = 1,2, . . . ,9, one can use the sum score ranges X = 1–3,4–6,7–9. This is the
statistic R∗

1 shown in Table 1. Thus, the sum scores are grouped in blocks of three scores. Glas
(1988) points out that the asymptotic theory also applies if score ranges are used and that only
the degrees of freedom need to be adjusted. They are now n times the number of score levels
−1 − q . Unfortunately, when grouping sum scores in uniform blocks the discrepancy between
observed and expected rejection rates reported in Table 1 appears larger than for the ungrouped
R1 statistic because the empirical mean of R∗

1 is larger than the expected mean.
We considered alternative groupings of score levels and the results are provided in Table 2.

For this configuration of item parameters, it appears that grouping the sum scores in uniform
blocks of three scores as we did in Table 1 is the worst choice. In all the cases shown in Table 2,
grouping the scores reduces the number of degrees of freedom; and, as a result, the discrepancy
between the empirical and asymptotic variance of the statistic is also reduced, particularly in
small samples. Also, grouping of sum scores can be performed using an iterative procedure after
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TABLE 2.
Empirical mean, variance, and rejection rates of R∗

1 with alternative sum score groupings.

Sum score grouping df N Mean Var α = 0.01 α = 0.05 α = 0.10

{0,1–3,4–5,6–7,8–10} 30 300 30.24 71.70 0.02 0.06 0.12
500 30.42 63.64 0.02 0.06 0.11

1000 30.25 59.51 0.01 0.06 0.11

{0,1–2,3–4,5,6–7,8–9,10} 40 300 40.53 101.39 0.02 0.07 0.12
500 40.67 91.44 0.02 0.07 0.13

1000 40.86 88.11 0.01 0.06 0.12

{0,1–3,4,5,6,7–9,10} 40 300 40.00 75.57 0.01 0.04 0.09
500 40.33 76.95 0.01 0.05 0.10

1000 40.49 84.44 0.02 0.05 0.11

Notes: The number of items and true parameters are the same as in Table 1.

observing the parameter estimates (for details, see Suárez-Falcon and Glas, 2003) leading to more
accurate empirical Type I errors. Thus, when appropriate score ranges are used, the empirical
rejection rates of R1 should closely match the theoretical rejection rates. A similar grouping of
the sum scores for the univariate moments in R2 could be used to reduce the discrepancy between
empirical and theoretical rejection rates, but this was not attempted here.

5.2. Power to Reject a 2PL

In this subsection, we use the asymptotic approximation to the power of the test statistics
described in the previous section without having to use simulations for each condition of interest.
For some of the conditions investigated, we provide simulation results in the next subsection to
gauge the performance of the asymptotic approximation to the power of the statistics.

Power was approximated using asymptotic methods for three levels of average slopes (0.5,
1, and 1.5), two model sizes (n = 10 and 15), and three levels of sample size (N = 300, 500, and
1,000). The actual a values used were for n = 10 and ā = 0.5, a′ = (0.35,0.25,0.8,0.5,0.6,0.6,

0.5,0.8,0.25,0.35); for ā = 1, a′ = (1.05,0.85,1.5,0.6,1.0,1.0,0.6,1.5,0.85,1.05); and
for ā = 1.5, a′ = (2.0,1.35,1.65,1.0,1.5,1.5,1.0,1.65,1.35,2.0). For n = 15 and ā = 0.5,
a′ = (0.6,0.35,0.25,0.8,0.5,0.6,0.4,0.5,0.4,0.6,0.5,0.8,0.25,0.35,0.6); for ā = 1, a′ =
(1.1,1.05,0.85,1.5,0.6,1.0,0.9,1.0,0.9,1.0,0.6,1.5,0.85,1.05,1.1); and for ā = 1.5, a′ =
(1.6,2.0,1.35,1.65,1.0,1.5,1.4,1.5,1.4,1.5,1.0,1.65,1.35,2.0,1.6). Results are given in Ta-
ble 3 for R1, R∗

1 , R2, and M2. In R∗
1 the sum scores are grouped {0,1–3,4–6,7–9,10} for n = 10;

and {0,1–3,4–6,7–8,9–11,12–14,15} for n = 15. We see in Table 3 that the expected rejection
rates for R1, R2, and M2 increase with increasing discrimination and decrease with increasing
model size. Obviously, they also increase with increasing sample size. None of these statistics
has power to distinguish a 1PL from a 2PL when the average slope is 0.5 even at N = 1,000.
When ā ≥ 1, all statistics have acceptable power (>50 %) only when N = 1,000; and N = 500
if ā = 1.5 and n = 10. We also see in this table that power is uniformly higher for M2 than for
R1, R∗

1 , and R2.
For the purposes of comparison, Table 3 also includes results for Pearson’s X2. We see in

this table that R1, R∗
1 , R2, and M2 are considerably more powerful than X2 in distinguishing a

1PL from a 2PL. For X2, expected power often increases only slightly with increasing sample
size and it did not reach 30 % for any of the conditions investigated.
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TABLE 3.
Asymptotic power rates of R1, M2, and Pearson’s X2 at α = 0.05 when the true model is a two-parameter logistic model.

āi n N R1 R∗
1 R2 M2 X2

0.5 10 300 0.08 0.09 0.08 0.10 0.06
500 0.11 0.12 0.10 0.14 0.06

1000 0.19 0.22 0.17 0.27 0.08

15 300 0.08 0.08 0.07 0.09 0.05
500 0.10 0.10 0.09 0.13 0.05

1000 0.17 0.17 0.15 0.24 0.06

1.0 10 300 0.24 0.26 0.20 0.34 0.09
500 0.44 0.45 0.36 0.61 0.12

1000 0.85 0.82 0.74 0.95 0.24

15 300 0.18 0.18 0.16 0.26 0.06
500 0.32 0.32 0.28 0.47 0.06

1000 0.71 0.69 0.63 0.89 0.07

1.5 10 300 0.29 0.28 0.26 0.40 0.09
500 0.53 0.50 0.46 0.69 0.14

1000 0.93 0.87 0.86 0.98 0.29

15 300 0.23 0.22 0.20 0.30 0.06
500 0.44 0.40 0.36 0.56 0.06

1000 0.87 0.80 0.77 0.94 0.08

Notes: No grouping of sum score levels is used in R1. In R∗
1 , the sum scores are grouped {0,1–3,

4–6,7–9,10} for n = 10; and {0,1–3,4–6,7–8,9–11,12–14,15} for n = 15.

5.3. Power to Reject a 2PL: Accuracy of the Asymptotic p-Values Under Model
Misspecification

We performed a simulation study to investigate how well the asymptotic procedure used in
the previous subsection approximates the empirical rejection rates under model misspecification.
Empirical rejection rates for R1, R∗

1 , R2, and M2, n = 10 and ā = 1 are shown in Table 4.
They are not adjusted for differential empirical Type I errors. A comparison of empirical and
asymptotic rejection rates across a much larger number of conditions, but only for R1 and M2,
is reported in Montaño (2009) where on average and across conditions the absolute deviation at
α = 0.05 is 0.06 for R1 and 0.04 for M2.

A comparison of the results of Tables 3 and 4 shows that the proposed asymptotic procedure
approximates fairly well the empirical rejection rates of R1, R2, and M2, but not of R∗

1 . Results
are not shown for X2 in this table because it is well known that asymptotic rates of X2 are only
accurate in very small models (Koehler & Larntz, 1980; Agresti & Yang, 1987). For models that
are not so small, p-values based on asymptotic methods almost invariably lead X2 to reject the
model, even for correctly specified models.

5.4. Power to Reject a 3PL

In this subsection, we use asymptotic methods to approximate the power of R1, R∗
1 , R2,

M2 and X2 to reject a 3PL model. The setup was identical to the setup in the previous section
except that now c = 0.1 or 0.25, whereas in the previous subsection, c = 0. Table 5 lists the
asymptotic power at α = 0.05 for these statistics when fitting a 1PL to these 3PL models. Table 3
lists the asymptotic power when c = 0 (the 2PL model) at the same parameter values. We see in
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TABLE 4.
Empirical power rates of R1, R2, and M2 when the true model is a two-parameter logistic model.

Stat df N α = 0.01 α = 0.05 α = 0.10

R1 80 300 0.15 0.26 0.35
500 0.26 0.44 0.55

1000 0.68 0.84 0.90

R∗
1 20 300 0.16 0.40 0.52

500 0.36 0.62 0.73
1000 0.76 0.92 0.96

R2 45 300 0.12 0.25 0.33
500 0.22 0.39 0.51

1000 0.53 0.76 0.85

M2 44 300 0.16 0.32 0.47
500 0.38 0.61 0.73

1000 0.86 0.95 0.98

Notes: n = 10; The true parameters are a′ = (1.05,0.85,1.5,0.6,1.0,1.0,0.6,1.5,0.85,1.05) and b′ =
(−2.7,−2.1,−1.5,−0.9,−0.3,0.3,0.9,1.5,2.1,2.7).

TABLE 5.
Asymptotic power rates of R1, M2, and Pearson’s X2 at α = 0.05 when the true model is a three-parameter logistic
model.

āi n N c = 0.1 c = 0.25

R1 R∗
1 R2 M2 X2 R1 R∗

1 R2 M2 X2

0.5 10 300 0.08 0.09 0.08 0.10 0.06 0.07 0.08 0.07 0.09 0.06
500 0.11 0.11 0.10 0.14 0.06 0.09 0.10 0.08 0.12 0.06

1000 0.20 0.21 0.17 0.29 0.08 0.15 0.16 0.13 0.23 0.07

15 300 0.08 0.07 0.07 0.09 0.05 0.07 0.07 0.06 0.09 0.05
500 0.10 0.09 0.08 0.12 0.05 0.09 0.08 0.07 0.12 0.05

1000 0.16 0.15 0.13 0.23 0.06 0.14 0.12 0.10 0.22 0.06

1.0 10 300 0.23 0.24 0.14 0.29 0.09 0.21 0.22 0.10 0.29 0.09
500 0.41 0.42 0.22 0.52 0.12 0.37 0.37 0.15 0.52 0.12

1000 0.82 0.80 0.48 0.91 0.23 0.78 0.73 0.32 0.90 0.23

15 300 0.24 0.24 0.13 0.29 0.06 0.27 0.24 0.11 0.38 0.06
500 0.44 0.44 0.21 0.54 0.07 0.50 0.43 0.18 0.68 0.07

1000 0.87 0.85 0.46 0.93 0.09 0.92 0.84 0.38 0.98 0.10

1.5 10 300 0.39 0.44 0.18 0.35 0.12 0.21 0.22 0.10 0.29 0.09
500 0.69 0.72 0.31 0.62 0.19 0.37 0.37 0.15 0.52 0.11

1000 0.98 0.98 0.66 0.96 0.44 0.78 0.73 0.32 0.90 0.23

15 300 0.55 0.63 0.15 0.35 0.07 0.68 0.66 0.15 0.56 0.08
500 0.87 0.91 0.26 0.64 0.09 0.95 0.93 0.26 0.87 0.11

1000 1.00 1.00 0.59 0.97 0.15 1.00 1.00 0.59 1.00 0.22

Notes: No grouping of sum score levels is used in R1. In R∗
1 the sum scores are grouped {0,1–3,

4–6,7–9,10} for n = 10; and {0,1–3,4–6,7–8,9–11,12–14,15} for n = 15.
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TABLE 6.
Asymptotic power rates of R1, M2, and Pearson’s X2 at α = 0.05 when the true model is a two-dimensional one-
parameter logistic model, n = 10.

a N ρ = 0 ρ = 0.5 ρ = 0.9

R1 R∗
1 R2 M2 X2 R1 R∗

1 R2 M2 X2 R1 R∗
1 R2 M2 X2

0.5 300 0.06 0.07 0.36 0.22 0.07 0.05 0.08 0.07 0.08 0.06 0.05 0.05 0.05 0.05 0.05
500 0.06 0.08 0.45 0.39 0.09 0.05 0.09 0.10 0.11 0.06 0.05 0.05 0.05 0.05 0.05

1000 0.07 0.12 0.85 0.78 0.16 0.06 0.12 0.20 0.19 0.07 0.05 0.05 0.05 0.05 0.05

1.0 300 0.30 0.45 0.95 0.99 0.65 0.10 0.52 0.68 0.43 0.10 0.05 0.06 0.05 0.06 0.05
500 0.54 0.65 0.98 1.00 0.95 0.15 0.82 0.93 0.72 0.15 0.05 0.06 0.05 0.06 0.05

1000 0.93 0.95 1.00 1.00 1.00 0.30 0.99 1.00 0.99 0.34 0.06 0.08 0.05 0.08 0.06

1.5 300 0.95 0.95 0.98 1.00 1.00 0.32 0.62 0.55 0.87 0.34 0.06 0.08 0.08 0.07 0.05
500 1.00 1.00 1.00 1.00 1.00 0.59 0.90 0.85 0.99 0.64 0.06 0.11 0.11 0.08 0.06

1000 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.99 1.00 0.99 0.07 0.19 0.19 0.12 0.06

Notes: No grouping of sum score levels is used in R1. In R∗
1 the sum scores are grouped {0,1–3,

4–6,7–9,10}.

these tables that the main determinant of power, in addition to sample size, is the average item
discrimination. The larger the average discrimination, the higher the power. The value of the
guessing parameter only influences the power of these tests through its interaction with model
size. Also, usually there is more power to distinguish a 3PL from a 1PL than a 2PL from a 1PL.
Furthermore, power need not be higher at c = 0.25 than at c = 0.1. Again, the power of X2 is
low and does not reach 30 % for any of the conditions investigated. Also, power for R2 is lower
than for R1, R∗

1 , and M2. When distinguishing a 1PL from a 3PL, the power of M2 is slightly
higher than for R1 and R∗

1 except for most conditions involving ā = 1.5, where the reverse is
true.

All in all, neither R1 nor M2 show a high power to detect the presence of guessing. Thus,
power is unacceptable (<50 %) for ā = 0.5, even at N = 1,000. Even for ā ≥ 1 a sample of size
500 is needed to ensure the detection of the presence of guessing.

5.5. Power to Reject a Multidimensional Model

In this subsection, we used asymptotic methods to compute the power of R1, R∗
1 , R2, M2,

and X2 to reject a two-dimensional 1PL model for n = 10. More specifically, we let the density
of the latent traits be standard normal with correlation coefficient ρ = 0, 0.5, or 0.9. Also, now

P(Yi = 1|η1, η2) = 1

1 + exp[−a1iη1 − a2iη2 + di] (22)

with a′
1 = a 	 (1,1,1,1,1,0,0,0,0,0), a′

2 = a 	 (0,0,0,0,0,1,1,1,1,1), a = 0.5, 1, or 1.5,
d = a 	 b, and 	 denotes a Hadamard (elementwise) product. The same b parameters used
throughout were also used here. Table 6 provides the asymptotic power at α = 0.05 for the three
statistics when fitting a one-dimensional 1PL (i.e., assuming that ρ = 1) but the true ρ = 0, 0.5,
or 9. As can be seen in this table, for all the statistics considered power is roughly equal to the
significance level when the correlation between the traits is 0.9; but it is at least 95 % when the
correlation between the traits is zero and ā = 1.5. For the remaining conditions, power for R2

and M2 is higher than for R1, R∗
1 , and X2.
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TABLE 7.
Results of fitting a 1PL model and a 2PL model to the LSAT 7 data and asymptotic power at α = 0.05 for distinguishing
between a 1PL model and a 2PL model.

1PL Power at α = 0.05

Value df p Value/df Non-centrality df Power

R1 31.95 15 0.01 2.13 12.92 15 0.59
R2 34.65 10 <0.01 3.47 24.69 6 0.98
M2 23.17 9 0.01 2.57 13.13 9 0.71
X2 44.15 25 0.01 1.77 13.24 25 0.49

6. Numerical Examples

In this section, we provide two numerical examples. In both examples, a 1PL model was
fitted by maximum likelihood. In the first example we fit the model to the well-known LSAT
7 data of Bock and Lieberman (1970). These data consist of N = 1,000 observations on n = 5
variables. Because the data are not sparse, we expect R1, R2, and M2 to lead to the same conclu-
sions as X2. We also fit a 2PL model to these data and give details on how to approximate the
power of R1, R2, M2, and X2 to distinguish a 1PL from a 2PL.

In the second example, we fit a 1PL to n = 15 variables. In this sparse situation, we expect
the likelihood ratio statistic to yield a p-value of 1 and Pearson’s X2 a p-value of 0, suggesting
that the asymptotic approximations to the distribution of these statistics are inappropriate. By
contrast, the simulation results reported in Montaño (2009) suggest that the p-values of M2

should be right on target and that the p-values of R1 should be slightly inflated. In sparse settings
like these, the accuracy of the p-values of R1 can be improved by judicious grouping of the sum
scores. We use R∗

1 to refer to R1 based on grouped sum scores. An extrapolation of the results
presented in Tables 1 and 2 would suggest that the p-values of R2 should be also slightly inflated
in sparse settings, although in this case a grouping of the sum scores could also be used to obtain
more accurate p-values.

6.1. LSAT 7 Data

Table 7 lists the values of the statistics R1, R2, M2, and X2, their degrees of freedom, and
ratios of the test statistics to their degrees of freedom. Also provided in the table is the power of
the statistics to reject a 1PL at the α = 0.05 nominal level if the true model is a 2PL.

The power of the statistics is easily computed using the asymptotic approximation described
previously. All that is needed is a program for ML estimation that computes R1, M2, and X2

and that allows the input of response patterns, sample proportions, and sample size. First, the
alternative model is estimated (in this case a 2PL). The estimated cell probabilities under the
alternative model are then used as if they were sample proportions for estimating the null model
(in this case a 1PL model) by ML with sample size equal to the actual sample size (in this case
1,000). This amounts to minimizing the Kullback–Leibler divergence (21). The R1, M2, and
X2 statistics estimated in this fashion are the estimated noncentrality parameters (18), (19), and
(20). Then power for statistic t = R1, R2, M2, or X2 is computed as 1 − F(kt ;νt , λt ), where
F(•;νt , λt ) is the noncentral chi-square distribution function with νt degrees of freedom and
non-centrality parameter λt , and kt is the upper α quantile of a chi-square distribution with νt

degrees of freedom.
Because these data are not sparse, the asymptotic p-values and power values of X2 are

accurate in this case. Table 7 reveals an extremely high agreement among the p-values for all
the statistics. A 1PL should be rejected at the α = 0.05 significance level. However, there are
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TABLE 8.
Results of fitting a 1PL to the Chilean mathematical achievement data: Estimated difficulty parameters and goodness-of-
fit tests.

Item Value SE

1 4.08 0.10
2 3.31 0.08
3 2.98 0.08
4 2.19 0.07
5 1.67 0.06
6 0.82 0.06
7 0.44 0.06
8 −0.35 0.06
9 −1.47 0.06

10 −1.85 0.07
11 −2.50 0.07
12 −3.37 0.09
13 −3.91 0.10
14 −4.32 0.11
15 −4.84 0.13

Stat Value df p-value Value/df

R1 227.69 195 0.054 1.17
R∗

1 70.41 60 0.168 1.17
R2 149.27 105 0.003 1.42
M2 130.66 104 0.040 1.26
X2 7,324,094.30 32,751 0 223.63
G2 1,420.90 32,751 1 0.04

Notes: N = 2,810, â = 1.81, SE = 0.03.

differences in power in the statistics considered, with R2 being more powerful than M2, which in
turn is more powerful than R1, and X2 being the least powerful statistic to distinguish between a
1PL and a 2PL.

Notice the agreement in ordering the models between the value/df ratios for the 1PL with
the power to distinguish a 1PL from a 2PL. Joe and Maydeu-Olivares (2010) introduced a very
general family of test statistics that includes R1, M2 and X2 as members. It remains to be seen
whether R2 is a member of this family. For their family of statistics, Joe and Maydeu-Olivares
provide theory that explains why statistics with a higher value/df ratio are generally more pow-
erful to distinguish the fitted model from alternatives of interest.

6.2. Chilean Mathematical Proficiency Data

We fitted a 1PL model to the responses of a 15-item test aimed at measuring mathematical
proficiency in Chilean adults. The sample size was 2,810, ages ranged from 17 to 77 years, and
56.6 % of the respondents were women. Table 8 lists the estimated parameters and their standard
errors, as well as goodness-of-fit results.

These data are very sparse and, as expected, the G2 statistic yields a p-value of 1 and Pear-
son’s X2 a p-value of 0. The asymptotic approximation to the distribution of these statistics is
completely useless in this case. In contrast, the simulation results presented earlier reveal that
the asymptotic p-values for M2 are very accurate and that the p-values for R1, R∗

1 and R2 are
somewhat optimistic. As this example reveals, however, the p-values for R1 may be quite close
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to those of M2. Indeed, in this example R1 and M2 yield quite similar p-values suggesting that
the fit of the model is reasonable given the restrictiveness of the model, the number of items
involved, and sample size. In contrast, R∗

1 suggests a better fit than R1 and M2, whereas R2

suggests that the model’s fit is poorer.
Note that the value/df ratio for R2, M2, and R1 suggest that R2 is the most powerful of the

three to detect misspecifications from the 1PL model. Also note that the value/df ratio for X2 in
this case (over 200) is much larger. This should not be taken to mean that X2 is the most powerful
statistic in this case because X2 always rejects a model of this size, regardless of whether it is
correct. Comparing the power of statistics is only meaningful when they have the same null
empirical rejection rates.

7. Discussion and Concluding Remarks

We have compared two overall test statistics specifically designed to target specific assump-
tions of Rasch-type models, namely R1 and R2 (Glas, 1988), with a general purpose test statistic,
M2 (Maydeu-Olivares & Joe, 2005). All three are quadratic form limited information statistics,
meaning they do not use all the information available for testing. Rather, they concentrate the in-
formation available in the contingency table cells in some summaries with large expected counts
so that the resulting statistic is better approximated by asymptotic methods in small samples:
M2 uses as summaries univariate and bivariate moments, i.e., means and cross-products. For n

variables, there is a one-to-one map between the set of means and cross-products used in M2 and
the set of all bivariate probabilities (Maydeu-Olivares & Liu, 2012). Thus, M2 can alternatively
be described as a quadratic form goodness-of-fit statistic in all bivariate tables. By contrast, R1

uses as summaries univariate moments for each sum score. Finally, R2 uses as summaries the
univariate moments corresponding to a sum score of one and bivariate moments excluding the
perfect score.

The distribution of M2 is more closely approximated using asymptotic methods than the
distributions of R1 and R2. The reason for this is that as the number of items grows, some of the
univariate probabilities involved in R1 and R2 will become small, hindering the asymptotic ap-
proximation. For R1, this problem can be overcome (Glas, 1988) by breaking down the univariate
moments by sum score ranges, so that the resulting summaries have larger expected probabili-
ties. It may be difficult to determine how to best group the sum scores into ranges before the
data is seen, and grouping the sum score ranges in equidistant ranges does not seem to be a good
choice; but, however the sum score ranges are grouped, our simulation results suggest that the
discrepancies between the empirical distributions of R1 and R2 and their reference asymptotic
distributions are not large and are in any case very much smaller than for full information statis-
tics such as X2. Then the choice between R1, R2, and M2 could be based largely on the power of
each statistic to detect model misspecification. Examining the power of test statistics using simu-
lations is time-consuming and in this paper we have used a procedure that enables researchers to
approximate the power of test statistics for categorical data analysis using asymptotic methods.
Our simulation results suggest that the procedure yields a good approximation to the distribution
of the statistics under model misspecification. That is, if the distribution of the statistic is well
approximated by asymptotic methods under the null, it is likely that it is also well approximated
by our procedure under model misspecification.

Armed with this asymptotic approximation to the power of the statistics, when a 1PL model
is fitted we have examined the power of R1, R2, and M2 to detect (a) unequal slopes (the true
model is a 2PL), (b) the presence of guessing and unequal slopes (the true model is a 3PL), and
(c) multidimensionality (the true model is a multidimensional 1PL). When fitting a 1PL model,
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R1 was designed to target response function misspecification and R2 to target multidimension-
ality. By contrast, M2 was designed as an omnibus test statistic, with neither a null model nor
an alternative model in mind. We found that M2 is more powerful than R1 and R2 to distinguish
a 1PL from a 2PL, and also to distinguish a 1PL from a 3PL except when the slopes are high
(ā = 1.5), in which case R2 is most powerful. M2 is also the most powerful statistic to distin-
guish a 1PL from a multidimensional 1PL except when the slopes are low (ā = 0.5), in which
case R2 is most powerful. All three statistics are asymptotically more powerful than X2 to distin-
guish a 1PL from a 2PL, a 3PL and a multidimensional 1PL. This should not be taken to imply
that limited information statistics are always more powerful than X2 as Reiser (2008) has shown
that statistics based on univariate and bivariate information are less powerful than X2 if the true
model contains three-way associations. In practical applications involving the fit of a 1PL, the
true model is unknown. Fortunately, Joe and Maydeu-Olivares (2010) have shown that for the
members of the family of statistics they describe (which includes R1, M2 and X2) the statistic
with the highest value/df ratio will be most powerful against most alternatives.

On a final note, the reader should bear in mind that we have compared just four of the
test statistics that can be used to assess the goodness-of fit of Rasch-type models: R1, R2, M2,
and X2. Many others could be used, some specifically proposed for Rasch-type models (see Glas
& Verhelst, 1995), others being omnibus tests (see, for example, Reiser, 1996, 2008; Cai et al.,
2006); and the asymptotic approximation described enables researchers to assess their power.
However, the limited results presented here suggest that there is no clear advantage in using
goodness-of-fit statistics specifically designed for Rasch-type models to test these models when
marginal ML estimation is used. However, if Rasch models are estimated using conditional ML
estimation, then different statistics are needed and there are counterparts of the R1 and R2 test
statistics which can be used in this case but which do not exist in the case of the M2 statistic.

Appendix

Relationship πR2 = TR2π for n = 4 items

πR2 = TR2π =

⎛

⎜⎜⎝

π0
π1|x=1

π2|2≤x≤4
π4

⎞

⎟⎟⎠

= .
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