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Maydeu-Olivares and Joe (J. Am. Stat. Assoc. 100:1009–1020, 2005; Psychometrika 71:713–732,
2006) introduced classes of chi-square tests for (sparse) multidimensional multinomial data based on low-
order marginal proportions. Our extension provides general conditions under which quadratic forms in
linear functions of cell residuals are asymptotically chi-square. The new statistics need not be based on
margins, and can be used for one-dimensional multinomials. We also provide theory that explains why
limited information statistics have good power, regardless of sparseness. We show how quadratic-form
statistics can be constructed that are more powerful than X2 and yet, have approximate chi-square null
distribution in finite samples with large models. Examples with models for truncated count data and binary
item response data are used to illustrate the theory.
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1. Introduction

Goodness-of-fit testing under multinomial sampling becomes increasingly difficult as the
number of multinomial categories C increases. The empirical variance of Pearson’s X2 and its
variance under its reference asymptotic distribution differ by a term that depends on the inverse of
the category probabilities (Cochran, 1952). As the number of categories increases with category
probabilities becoming smaller, the discrepancy between the empirical and asymptotic variances
of X2 can be large; and the type I error for X2 will be larger than the α level based on its
asymptotic critical value. However, for C fixed, the accuracy of the asymptotic p-values for
X2 depends also on sample size N . As N becomes smaller, some of the observed proportions
increasingly become more poorly estimated (their estimates can be zero) and the empirical Type I
errors of X2 will become inaccurate. The degree of sparseness N/C summarizes the relationship
between sample size and model size.

For categorical data from multinomial samples that may be summarized in n-dimensional
tables, Maydeu-Olivares and Joe (2005, 2006) introduced classes of quadratic-form goodness-of-
fit statistics in low-order marginal cell residuals: quadratic forms in univariate cell residuals only,
quadratic forms in univariate and bivariate residuals only, in univariate, bivariate and trivariate
residuals only, and so forth. They also showed that Pearson’s X2 is a special case of these classes,
in which residuals up to order n, the number of categorical variables, are employed. As a way to
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handle sparsity, they suggested using quadratic forms in low-order marginal cell residuals. They
used these quadratic forms to test item response theory (IRT) models, showing empirically that
when only low-order margins are used in the quadratic form, accurate p-values can be obtained
even in tables of more than 107 cells with as few as 300 observations. Also, when only low-order
margins were used, the statistics were shown empirically in some cases to have better power in
nonsparse tables than statistics based on higher order residuals (including X2).

Maydeu-Olivares and Joe’s approach is based on linear maps of the cell residuals taking
advantage of the multidimensional structure of the data. Although very large models can be
tested with their approach, it is limited in three important aspects: (1) it cannot be used with
unidimensional tables, (2) it can not be used for models for multidimensional tables that can not
be identified from margins, and (3) there is a computational limit in the size of the models for
multidimensional tables that can be tested due to the need to store very large matrices.

To overcome these limitations, in this article we extend Maydeu-Olivares and Joe’s approach
by providing conditions for quadratic forms in arbitrary linear combinations of cell residuals to
be asymptotically chi-square under simple null and composite null hypotheses. These results can
be applied not only to multidimensional tables, but also to unidimensional ones. For multidimen-
sional tables, univariate, bivariate, and higher-order marginal residuals are special cases of these
linear combinations. These results enable researchers to construct test statistics that may be well
approximated by asymptotic methods even in sparse tables based on summary statistics that are
not necessarily marginal residuals.

Given that for any given application there will be a number of candidate statistics within this
family that could be used, we also provide a number of properties for these test statistics that may
be used to choose the most suitable statistic within this class. As a special case, these properties
may also be used to choose among the statistics originally introduced in Maydeu-Olivares and
Joe (2005, 2006). Consider two statistics within this class, T2 and T1, with T2 based on a further
reduction of the data than T1 (for example, univariate and bivariate residuals versus univariate,
bivariate, and trivariate residuals). We show that the statistic based on a further reduction of the
data (i.e., T2) is algebraically smaller than or equal to the other statistic (i.e., T1). Thus, if the
non-centrality parameter of T2 is the same or slightly smaller than that for T1 while having fewer
degrees of freedom, T2 will be asymptotically more powerful than T1. Because Pearson’s X2

statistic is a member of this class of statistics, these results explain why one can obtain statistics
based on limited information (linear maps of the cell residuals) with much better power than X2.

The present extension of Maydeu-Olivares and Joe’s framework to quadratic forms in arbi-
trary linear combinations of cell residuals enables us to relate their original family of test statistics
to the test statistics proposed by Glas (1988) and Glas and Verhelst (1989). Also, we can relate
limited information statistics based on margins to the literature (a) on statistics for directional
tests (i.e., tests with a specified alternative hypothesis; see, e.g., Rayner & Best, 1989, 1990), and
(b) on the concept of dilution (expending degrees of freedom that are not helpful in detecting the
alternative; see, e.g., Eubank, 1997). In particular, for testing simple nulls, our present extensions
and Rayner and Best’s (1989) score tests for smooth alternatives lead to the same family of sta-
tistics, except we do not require an orthonormality condition. For composite nulls, our approach
and that of Rayner and Best are different. But for some choices of statistics in the quadratic form,
the difference between our family and theirs reduces to a choice of weight matrix in the quadratic
form.

The remainder of this paper is as follows. In Section 2, the classes of quadratic-form statistics
are introduced and a subsection has theorems that show how the statistics compare under different
sets of summaries of the data. The proofs of the theorems are deferred to the Appendix. Section 3
applies the theorems to power comparisons under sequences of local alternatives. Section 4 has
two examples. The first example involves truncated count data (a form of multinomial data). We
compare the performance of different test statistics within our family in testing a null hypothesis
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of Poisson when the true model involves zero-inflation or overdispersion. In the second example,
we consider a log-linear model for binary item response data and compare different statistics for
testing exchangeability among the items. Section 5 discusses in detail the relationships between
our statistics and related ones, such as the quadratic-form statistics of Glas (1988) and Glas
and Verhelst (1989), as well as to the smooth tests of Rayner and Best (1989). In particular,
we provide advantages of the present approach over existing approaches, such as the theoretical
results for power comparisons. Section 6 provides some concluding remarks and directions for
future research.

2. Quadratic-form Statistics for Multinomial Data

In this section, we introduce classes of quadratic-form statistics for testing the goodness-
of-fit of a model for discrete multinomial data with a finite number of categories. There are
two classes: one for a simple null hypothesis and one for a composite null. For the latter, we
assume there is a parametric model and that maximum likelihood estimation has been used (the
latter is used for ease of exposition—see Section 5). Hence, we assume that the usual regularity
assumptions for maximum likelihood estimation apply. In practice, the composite null hypothesis
is the more useful one, but the results for the simple null help in understanding the results for the
composite null.

Let C denote that set of categories and let C denote its cardinality; this set might be multidi-
mensional. The probability distribution is denoted as {πc} for c ∈ C . Assuming that the categories
have been indexed linearly, the vector of all probabilities is denoted as the column vector π . If
there is a parametric family for the probability distribution, we let θ be the parameter vector and
assume that it is q-dimensional and belongs to a set Θ . For a parametric model, the probability
vector is denoted π = π(θ) = {πc(θ) : c ∈ C}. Other notation used below are the following: 0
denotes a zero column vector or matrix, with dimension clear from context, and 1 is a column
vector of 1s with the dimension shown as a subscript if necessary for clarity.

The goodness-of-fit test statistics are based on a random multinomial sample of size N . Let p
be the vector of sample proportions. For a simple null hypothesis H0 : π = π0, Pearson’s statistic
is

X2 = N(p − π0)
′D−1(p − π0),

where D = diag(π0). The asymptotic null distribution of X2 is χ2
C−1. For a composite null hy-

pothesis H0 : π = π(θ) for some θ , we use ̂X2 for Pearson’s statistic to indicate that it involves
the maximum likelihood estimate (MLE) ̂θ :

̂X2 = N
(

p − π(̂θ)
)′[D(̂θ)

]−1(p − π(̂θ)
)

,

where D(θ) = diag(π(θ)). The asymptotic null distribution of ̂X2 is χ2
C−1−q .

We introduce and discuss properties of two general classes of quadratic-form statistics based
on a vector of summary statistics κ . Each element of κ is a linear combination of the probabilities
in π . That is, κ = Tκπ , where Tκ is an s × C matrix with full row rank, and 1 ≤ s ≤ C − 1.
Correspondingly, κ̂ = Tκp is the sample version for a random sample, and if estimation with a
parametric model is used, κ(̂θ) = Tκπ(̂θ) is the model-based summary based on estimator̂θ . The
subscript on T and other variables is mainly needed to compare two different summary vectors
such as κ1 and κ2. The subscript will be suppressed if no confusion results.

Examples of summaries that could be elements of the vector κ are (a) κS = ∑

c∈S πc , a
pooling of the cells in S where S is a proper subset of C ; (b) κ1 = ∑

j∈C jπj , the mean ordinal
score with index set C = {0, . . . ,C − 1} representing scores of an ordinal variable, and (c) with a
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3-dimensional index set of ordinal categories or scores C = {(i1, i2, i3) : ij = 0, . . . ,K − 1, j =
1,2,3}, a bivariate probability for the first two variables has the form κ12:i1,i2 = ∑

j3
πi1,i2,j3

and a bivariate moment of the scores has the form κ12 = ∑

j1,j2,j3
j1j2πj1,j2,j3 . Each summary

would be matched to a row of the matrix Tκ . In another example, studied in Maydeu-Olivares
and Joe (2006), κ consists of the vector of all bivariate marginal probabilities in an n-dimensional
discrete distribution with support on {0,1, . . . ,K − 1}n. This corresponds to a case of pooling
categories with overlap that make use of the multidimensional structure.

The first class of statistics, Lκ , is suitable for testing simple null hypotheses. The second
class of statistics, Mκ , is suitable for testing composite null hypotheses. The quadratic form
goodness-of-fit statistics proposed by Maydeu-Olivares and Joe (2005, 2006) for multidimen-
sional tables are special cases of Lκ and Mκ , respectively, as are X2 and ̂X2.

A statistic of the form Lκ is well defined if Tκ satisfies Condition T, and a statistic of the
form Mκ is well defined if Tκ satisfies Conditions T and D. These conditions are given next.

Condition T. The matrix Tκ has full row rank and 1′
C is not in its row span.

Condition D. With a parametric model π(θ) with q-dimensional θ , the matrix Tκ has row di-
mension s > q and leads to

�κ = �κ (θ) = ∂κ

∂θ ′ = Tκ

∂π

∂θ ′ (1)

being an s × q matrix with full column rank q .

Consequently, Condition T is verified if

rank(Tκ ) = s �= rank

(

1′
C

Tκ

)

,

and Condition D is verified if (1) is of full column rank. Also, the covariance matrix of√
N [p−π] is � = diag(π)−ππ ′, so that the covariance matrix of

√
N (κ̂ −κ) is �κ = Tκ�T′

κ .
Condition T ensures that �κ is positive definite (see Appendix A.1). Condition D ensures the
identifiability of the parametric model π(θ) from the summary vector κ(θ), that is, if θ1 �= θ2,
then Tκπ(θ1) �= Tκπ(θ2).

We next present the quadratic-form statistics, first for the simple null hypothesis and then
for the composite null hypothesis.

2.1. Statistics for Testing Simple Null Hypotheses: The Lκ Family

The simple null hypothesis is H0 : π = π0. Let Tκ be an s × C matrix, κ0 = Tκπ0 be the
transform of the probability vector, and κ̂ = Tκp be the sample counterpart.

The quadratic form statistic, denoted as Lκ , is:

Lκ = N(κ̂ − κ0)
′�−1

κ (κ̂ − κ0), (2)

where �κ = Tκ�T′
κ , � = diag(π) − ππ ′, and Tκ satisfies Condition T. The matrix of the

quadratic form �−1
κ is an s × s matrix. From standard results for multivariate normal distrib-

utions, the asymptotic null distribution of Lκ is χ2
s . Note that if s = 1 and T has C − 1 0s and

one 1, then Lκ is just the square of the z-statistic for testing a population proportion.
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2.2. Statistics for Testing Composite Null Hypotheses: The Mκ Family

We assume a parametric family {π(θ) : θ ∈ Θ}, where the dimension of θ is q ≥ 1. The
composite null hypothesis is H0 : π = π(θ) for some θ ∈ Θ .

Let � = ∂π/∂θ ′ be the C × q matrix of derivatives of the probabilities with respect to the
parameters, and let κ be a s-dimensional vector of statistics that satisfies Conditions T and D.
Then from (1), �κ = �κ (θ) = Tκ�, is an s × q matrix.

With ̂θ being the MLE, κ(̂θ) = Tκπ(̂θ) is based on the model-based estimated proportions
and κ̂ = Tκp is based on the sample proportions. The quadratic-form statistic, denoted as Mκ , is

Mκ = N
(

κ̂ − κ(̂θ)
)′ Uκ(̂θ)

(

κ̂ − κ(̂θ)
)

, (3)

where

Uκ = Uκ(θ) = �(c)
κ (θ)

[(

�(c)
κ (θ)

)′
�κ (θ)�(c)

κ (θ)
]−1(

�(c)
κ (θ)

)′
, (4)

�κ(θ) = Tκ�(θ)T′
κ , �(θ) = diag(π(θ)) − π(θ)π ′(θ), and �(c)

κ is an orthogonal complement

of �κ (satisfying �(c)
κ

′
�κ = 0), with dimension s × (s − q). Note that Uκ is an s × s matrix.

The orthogonal complement is nonunique but Mκ is invariant to the choice of the orthogonal
complement. Also, according to an identity of Khatri (1966)—see problem 33 of Section 1f of
Rao (1973), we can write (4) as

Uκ = �−1
κ − �−1

κ �κ

(

�′
κ�−1

κ �κ

)−1
�′

κ�−1
κ . (5)

The asymptotic null distribution of Mκ is χ2
s−q . This follows from standard results for

quadratic forms in normal random variables, based on the following construction of Mκ :
Consider the (s − q)-dimensional vector

Zκ = √
N �(c)

κ

′[
κ̂ − κ(̂θ)

] = √
N �(c)

κ

′
Tκ

[

p − π(̂θ)
]

,

that has asymptotic covariance matrix equal to

�(c)
κ

′
Tκ�T′

κ�(c)
κ , (6)

where � = � − �I−1�′ and I = �′D−1(θ)� is the q × q Fisher information matrix (see
Appendix A.2 for some standard background results for maximum likelihood that are relevant to
Pearson’s ̂X2). Let

�κ = Tκ�T′
κ . (7)

Then with the above definitions of �κ and �κ , (6) is the same as

�(c)
κ

′
�κ�(c)

κ = �(c)
κ

′
�κ�(c)

κ − �(c)
κ

′
�κI−1�′

k�
(c)
κ = �(c)

κ

′
�κ�(c)

κ .

Note that Mκ is just the quadratic form

Mκ = Z′
k

[

�(c)
κ

′
(̂θ)�κ(̂θ)�(c)

κ (̂θ)
]−1Zk,

and this is asymptotically χ2
s−q under the null hypothesis. Also, note that �κ is a generalized

inverse of Uκ , but in general Uκ is not a generalized inverse of �κ . That is, it is straightforward
to show that

Uκ = Uκ�κUκ = Uκ�κUκ .



398 PSYCHOMETRIKA

We will be comparing two different Mκ ’s, based on κ1,κ2, in the next section. To do this,
we next define the notion of κ2 being a reduction of κ1, and then introduce two examples to
make the idea more concrete.

Definition (Reduction). For j = 1,2, let κj = Tκj
π with dimension sj , where Tκ1,Tκ2 satisfy

Condition T. Suppose s1 > s2. Then κ2 is a further summary reduction of κ1 if there is a full
row-rank transform matrix T21 of dimension s2 × s1 such that κ2 = T21κ1.

Examples. (a) Suppose there are 6 categories indexed as 0,1,2,3,4,5. Let κ1 with s1 = 4 cor-
respond to the individual categories 1, 2, 3 and the pooling of categories 4, 5. Let κ2 with s2 = 2
correspond to a pooling of categories 1, 2, 3 and a second pooling of categories 4, 5. Then

Tκ1 =

⎛

⎜

⎜

⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

⎞

⎟

⎟

⎠

, Tκ2 =
(

0 1 1 1 0 0
0 0 0 0 1 1

)

,

T21 =
(

1 1 1 0
0 0 0 1

)

.

(b) Consider an n-way table with dimension n > 3 and m categories per dimension, la-
beled 0, . . . ,m − 1. Let κ1 be vector of dimension s1 = (

n
3

)

(m − 1)3 from all 3-dimensional
margins with category indices (j1, j2, j3), 1 ≤ j1, j2, j3 ≤ m, and let κ2 be vector of dimension
s2 = (

n
2

)

(m − 1)2 from all 2-dimensional margins with category indices (j1, j2), 1 ≤ j1, j2 ≤ m.
Then κ2 is a summary reduction of κ1. The matrices Tκ1 , Tκ2 and T21 depend on the linear
arrangement of the s1 bivariate and s2 trivariate category vectors.

For j = 1,2, let κj = Tκj
π have dimension sj , and let κ̂j = Tκj

p. Suppose κ2 is a reduction
of κ1 with transform matrix T21 and notice that T21 = T2T′

1(T1T′
1)

−1. With the above definition,
we can express Mκ2 in terms of T21 and κ1, and this is a key to comparing Mκ1 and Mκ2 . Let
Uκj

, j = 1,2, be the matrices of the quadratic forms, with the dependence on̂θ suppressed. Then
κ̂2 − κ2(̂θ) = T21[κ̂1 − κ1(̂θ)],

Mκ1 = N
(

κ̂1 − κ1(̂θ)
)′Uκ1

(

κ̂1 − κ1(̂θ)
)

,

Mκ2 = N
(

κ̂2 − κ2(̂θ)
)′Uκ2

(

κ̂2 − κ2(̂θ)
) = N

(

κ̂1 − κ1(̂θ)
)′T′

21Uκ2T21
(

κ̂1 − κ1(̂θ)
)

.

Then

Mκ1 − Mκ2 = N
(

κ̂1 − κ1(̂θ)
)′
(Uκ1 − T′

21Uκ2T21)
(

κ̂1 − κ1(̂θ)
)

.

Several theorems will be proved in the next section with the main ones concerning the matrix of
the quadratic form in the difference Mκ1 − Mκ2 , i.e., Uκ1 − T′

21Uκ2T21.
We end this subsection with a comment on the numerical computation of the orthogonal

complement. Suppose �κ has dimension s×q with q < s. Using a singular value decomposition,

�κ = (

W1 W2
)

(

D1
0

)

V′ = W1D1V′,

where W1 is s × q , W2 is s × (s − q), W′
2W1 = 0, D1 is a diagonal q × q matrix of singular

values, the 0 matrix is (s − q) × q and V is q × q . Then an orthogonal complement of �κ is
�(c)

κ = W2 since W′
2�κ = W′

2W1D1V′ = 0.
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2.3. Some Theorems on the Lκ and Mκ Families of Statistics

This subsection has some theoretical results on the relations between different members of
the Lκ and Mκ family of statistics. In particular, we prove some theorems that (a) cover special
cases of the T matrix leading to X2 or ̂X2, and (b) show that Lκ2 ≤ Lκ1 and Mκ2 ≤ Mκ1 when κ2
is a summary reduction of κ1 and Conditions T and D (for composite nulls) are satisfied. Proofs
are given in Appendix A.3. Theorems 5 and 7 are used for the power comparisons in Section 3.
Throughout this subsection, Im denotes an m × m identity matrix.

Theorem 1. Let Tκ = (0 IC−1) be a (C − 1) × C matrix. Then Lκ = X2 and Mκ = ̂X2 if ML
estimation is used.

Thus, our first result states that when the summary statistics κ̂ consists of the set of all C

cell proportions except one, Lκ = X2 and, for the MLE, Mκ = ̂X2. Our next result states that
if two sets of statistics, κ1 and κ2, are linearly related and their relationship is one-to-one, then
Lκ2 = Lκ1 and Mκ2 = Mκ1 .

Theorem 2. Let Tκ1 and Tκ2 be s × C matrices satisfying Condition T. If there exists an s × s

invertible matrix B and an s × 1 vector β such that κ2 = Bκ1 + β and Tκ2�T′
κ2

= BTκ1�T′
κ1

B′,
then Lκ2 = Lκ1 . If further, �κ2 = B�κ1 and Condition D is satisfied for both Tκj

, then
Mκ2 = Mκ1 .

Together, Theorems 1 and 2 imply Theorem 3, which states that any Lκ and Mκ based on a
proper set of statistics κ of dimension C − 1 equals X2 and ̂X2, respectively.

Theorem 3. Let Tκ be a (C−1)×C matrix satisfying Condition T. Then Lκ = X2. If in addition
Condition D is satisfied by Tκ , then Mκ = ̂X2 for the MLE.

For the remaining theorems that compare two different Lκ or Mκ , the following are as-
sumed: the vector κ2 = Tκ2π = T21κ1 is a reduction of κ1 = Tκ1π , where Tκ1 and Tκ2 satisfy
Condition T, Tκj

has row dimension sj , j = 1,2, with s1 > s2, and T21 is a s2 × s1 matrix with
full row rank.

Theorem 4. The matrix

L21 = �−1
κ1

− T′
21�

−1
κ2

T21 (8)

is non-negative definite with rank s1 − s2.

Using the above, the next theorem states that Lκ2 ≤ Lκ1 with equality possible.

Theorem 5.

Lκ1 − Lκ2 = (κ̂1 − κ1)
′L21(κ̂1 − κ1) ≥ 0.

Equality occurs if L21(κ̂1 − κ1) = 0.

The next two theorems establish that Mκ2 ≤ Mκ1 with equality possible.

Theorem 6. Assume that Condition D is satisfied for both Tκj
. The matrix

M21 = Uκ1 − T′
21Uκ2T21 (9)

is non-negative definite with rank s1 − s2.
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Theorem 7.

Mκ1 − Mκ2 = (

κ̂1 − κ1(̂θ)
)′M21

(

κ̂1 − κ1(̂θ)
) ≥ 0.

Equality occurs if M21(κ̂1 − κ1(̂θ)) = 0.

Our results imply the following corollary.

Corollary 8. If Tκ satisfies Condition T, then Lκ ≤ X2. If Tκ satisfies Conditions T and D, then
Mκ ≤ ̂X2.

3. Asymptotic Power under a Sequence of Local Alternatives

In this section, we apply Theorems 4 and 6 to obtain results to compare the noncentrality
parameters of the asymptotic distributions Lκ1,Lκ2 and Mκ1,Mκ2 when κ2 is a reduction of
κ1, assuming there is a sequence of local alternatives indexed by the sample size N . Also, in
Section 3.1 we state some results on the form of the limiting direction δ of the sequence of local
alternatives, when there is a nesting of the null model into a larger parametric model. Then in
Section 3.2, a condition is established for the limiting direction δ. A reference for the noncentral
chi-square distribution under sequence of local alternatives is Bishop, Fienberg, and Holland
(1975).

For a simple null hypothesis with H0 : π = π0, a sequence of local alternatives is H1N :
πN = π0 + δ/

√
N , where δ is a directional vector such that δ′1C = 0. With δκ = Tκδ, the

limiting nonnull distribution of Lκ is noncentral χ2
sκ

with noncentrality parameter ncp(Lκ) =
δ′
κ�κδκ = δ′T′

κ�κTκδ, where sκ is the dimension of κ . Under the assumptions of Theorem 4,
the difference of two noncentrality parameters for Lκ1 versus Lκ2 , is

ncp(Lκ1) − ncp(Lκ2) = δ′
κ1

�−1
κ1

δκ1 − δ′
κ1

T′
21�

−1
κ2

T21δκ1 = δ′
κ1

L21δκ1,

with L21 as in (8). Theorem 4 implies that ncp(Lκ1) − ncp(Lκ2) ≥ 0 with equality possible if
L21δκ1 = 0.

For a composite null hypothesis H0 : π = π(θ), we assume that the sequence of local al-
ternatives {πN } gets closer to {π(θ) : θ ∈ Θ} at a rate N−1/2. More specifically, let ̂θN be the
parameter such that π(̂θN) is closest to πN = (πNc) in Kullback–Leibler divergence (see White,
1982), i.e., ̂θN maximizes L(θ) = ∑

c∈C πNc logπc(θ) over θ ∈ Θ . Further suppose that ̂θN ap-
proaches a θ0 ∈ Θ at a rate N−1/2. We define δ = limN→∞

√
N [πN −π(̂θN)], so that δ is the lo-

cal direction of the sequence of alternatives. The vector δ satisfies δ′1C = 0 and another condition
(introduced later as Equation (11) in Section 3.2). With δκ = Tκδ, the limiting nonnull distribu-
tion of Mκ is noncentral χ2

sκ−q with noncentrality parameter ncp(Mκ) = δ′
κUκδκ = δ′T′

κUκTκδ.
Under the assumptions of Theorem 6, the difference of two noncentrality parameters for Mκ1

versus Mκ2 is

ncp(Mκ1) − ncp(Mκ2) = δ′
κ1

[Uκ1 − T′
21Uκ2T21]δκ1 = δ′

κ1
M21δκ1 ,

with M21 as in (9). Theorem 6 implies that ncp(Mκ1) − ncp(Mκ2) ≥ 0 with equality possible if
M21δκ1 = 0.

The comments below are for the Mκ family of test statistics, but similar comments could be
made for the Lκ family. For Mκ , based on Tκ with row dimension q < s < C −1, it is possible to
have a direction δ from the null, with π not belonging to {π(θ) : θ ∈ Θ}, but with κ belonging to
{κ(θ) : θ ∈ Θ}. In this case Mκ has power equal to the size of the test for this direction δ. If δ is
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such that ncp(Mκ1) − ncp(Mκ2) = 0, then Mκ2 with fewer degrees of freedom is more powerful
in this direction. This follows because if χ2

1−α,ν is the upper α quantile of the χ2
ν distribution

and Fχ2(·;ν,λ) is the noncentral chi-square distribution function with ν degrees of freedom
and noncentrality parameter λ, then 1 − Fχ2

(

χ2
1−α,ν;ν,λ

)

is decreasing as ν increases for a
constant λ. More generally, Mκ2 could be more powerful than Mκ1 in local directions δ such that
ncp(Mκ2)/ncp(Mκ1) is sufficiently large (e.g., exceeding 0.9). Hence, it would not surprising to
find Mκ statistics that are more powerful than ̂X2 over a variety of local directions.

Below in Section 3.1, we say more about the calculation of δ for Mκ for local directions
arising from nesting {π(θ)} in a larger parameter family. In Section 4, these results are used in
power comparisons for some multinomial goodness-of-fit situations.

3.1. Sequence of Local Alternatives: Derivation of δ

We derive δ under a sequence of local alternatives that follows from the special case of
embedding {π(θ)} into a larger parametric family {π(θ ,η)} with another parameter η. Suppose
η is r-dimensional, and the composite null corresponds to a specified second parameter η = η0
and unspecified θ . The derivation in this case is similar to that given in Maydeu-Olivares and Joe
(2005) (in which the derivation was for the case of a null hypothesis consisting of a subset of the
parameters set equal), so we will just state the final result and interpret it. Note that although the
null hypothesis allows an arbitrary θ , the power will generally depend on the value of θ , which
we denote as θ0.

For a nested model, consider the sequence of local alternatives with parameters (θ0,η0 +
N−1/2ε) where ε is an r-dimensional column vector. Then the limit of

√
N [π(θ0,η0 +

N−1/2ε) − π(̂θN,η0)] leads to

δ = ∂π(θ0,η0)

∂η′ ε − ∂π(θ0,η0)

∂θ ′ · [I(θ0)
]−1 ∑

c∈C

logπc(θ0, η0)

∂θ
· ∂πc(θ0,η0)

∂η′ ε, (10)

where

I(θ) =
∑

c∈C

∂πc(θ ,η0)

∂θ

∂πc(θ ,η0)

∂θ ′
/

πc(θ ,η0)

is the Fisher information matrix for the null model, and̂θN is defined above. The expression (10)
is a form that is useful for computations, especially when C is a multidimensional set. In matrix
form, (10) can be written as

δ = ∂π(θ0,η0)

∂η′ ε − ∂π(θ0,η0)

∂θ ′
[

I(θ0)
]−1

[

∂π(θ0,η0)

∂θ ′
]′

[

diag
(

π(θ0,η0)
)]−1 ∂π(θ0,η0)

∂η′ ε.

To compute δ, what are needed are the first order derivatives of the probabilities with respect to
(a) parameters in the null model and (b) additional parameters in the nonnull model that nests the
null model.

3.2. Condition Satisfied by a Limiting Direction Vector δ for Composite Null

We show that the δ vector for a composite null satisfies another condition besides δ′1C = 0.
This result is needed for generating random local directions δ from the composite null hypothesis
for comparing noncentrality parameters of different Mκ . That is, Mκ can be analyzed as an
omnibus goodness-of-fit statistic without embedding {π(θ)} into a larger parametric family.

With the sample of proportions pN from distribution πN , δ = δ(θ0) essentially comes from
a limit of the expectation of

√
N [pN − π(̂θN)] = √

N eN , where ̂θN is the maximum likelihood
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estimate based on assuming the null model. Therefore, from a result in Appendix A.2,

�′(̂θN)
[

D(̂θN)
]−1eN = 0,

and, as N → ∞, δ must satisfy

�′(θ0)
[

D(θ0)
]−1

δ(θ0) = 0. (11)

An alternative proof of the condition is based on the noncentrality parameter of ̂X2 and Mκ0

with Tκ0 = (0 IC−1). Because ̂X2 = Mκ0 for this Tκ0 , with D = diag(π(θ0)),

ncp
(

̂X2) = δ′D−1δ = δ′T′
κ0

Uκ0Tκ0δ = δ̌
′
Uκ0 δ̌,

with the partitioning δ = (δ0

δ̌

)

. Using (5), this is the same as

δ̌
′
�−1

κ0
δ̌ − δ̌

′
�−1

κ0
�κ0

(

�′
κ0

�−1
κ0

�κ0

)−1
�′

κ0
�−1

κ0
δ̌. (12)

From the proof of Theorem 1, 1′δ̌ = −δ0 and δ′D−1δ = δ̌
′
�−1

κ0
δ̌. Therefore, the second term in

(12) must be zero or

�′
κ0

�−1
κ0

δ̌ = �D−1δ = 0,

evaluated at θ0 ∈ Θ .

4. Examples

The primary application of the theory presented above is for developing new goodness-
of-fit statistics, particularly for sparse high-dimensional tables for which summaries are based
on low-order margins. For high-dimensional tables, there are generally no good alternatives
for goodness-of-fit besides quadratic-form statistics in summary statistics (see Cai, Maydeu-
Olivares, Coffman, & Thissen, 2006; Mavridis, Moustaki, & Knott, 2007; Reiser, 1996), but for
univariate data there are other classes of statistics that could be considered. Applications of this
theory to models for high-dimensional tables will be presented in separate reports.

Here, instead, we present two simple examples that do not involve sparse data to illustrate
the theory. Both examples involve a composite null. In each of the examples, we (1) describe the
model of interest (i.e., the null model), (2) describe the alternative models of interest, (3) con-
struct a series of test statistics within the Mκ family that could be used to test the null with
the alternative models in mind (the set always includes X2 for comparison), and (4) compute
the asymptotic power of each test statistic under consideration for each alternative of interest to
determine which test statistic yields higher power.

The first example involves a unidimensional multinomial. The model of interest is a trun-
cated Poisson model. The alternatives of interest are (a) the zero inflated Poisson model, and
(b) the generalized Poisson model allowing for overdispersion. The second example involves a
multidimensional multinomial. The null model is the log linear counterpart of Rasch’s (1960)
model with additional constraints leading to the exchangeability of the items. The alternative of
interest is the same model without the exchangeability constraints. For this example, in addition
to (1) to (4) above, we also (5) perform simulation studies to investigate the small sample null
distributions of the statistics considered under conditions of increasing sparseness, and (6) fit the
models of interest to the well known LSAT6 data of Bock and Lieberman (1970) to illustrate the
theory.
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4.1. Count Data: Poisson Versus Zero-Inflation and/or Overdispersion

In modeling count data using a Poisson model, often zero-inflation (greater presence of
zeros) or overdispersion (greater variability) than expected under a Poisson model is encountered.
In recent years, there has been a number of papers on models for count data with either zero-
inflation or overdispersion relative to Poisson. For example, see Böckenholt (1999), Van Duijn
and Jansen (1995), Lee, Wang, and Yau (2001), Joe and Zhu (2005) and references therein.

In this subsection, we examine the performance of various Mκ statistics in testing a com-
posite null hypothesis of truncated Poisson. That is, we consider count data with heavy tails with
some small counts so the categories in the tail need to be pooled or weighted if one is to do
goodness-of-fit tests.

The null model is πy = e−θ yθ/y! for y = 0, . . . ,C − 2 and πC−1 = ∑∞
j=C−1 e−θ j θ /j !.

Power of several Mκ statistics is examined for three sets of local alternatives: (a) generalized
Poisson, (b) zero-inflated Poisson, and (c) random δ’s in (10).

The generalized Poisson (GP) distribution (see Consul, 1989; Joe & Zhu, 2005) is a two-
parameter family allowing for overdispersion. With parameters θ > 0 and η ≥ 0, the GP proba-
bility distribution is

fGP(y; θ, η) = θ(θ + ηy)y−1e−θ−ηy/y!, y = 0,1, . . . .

The parameter η for GP is the overdispersion parameter. For the truncated GP distribution, we
use πy(θ, η) = fGP(y; θ, η) for y = 0, . . . ,C − 2 and πC−1(θ, η) = ∑∞

y=C−1 fGP(y; θ, η).
The zero-inflated Poisson (ZIP) distribution (see Lee et al., 2001) is a mixture of a Poisson

and a degenerate distribution at zero. With parameters θ > 0 and 0 ≤ η ≤ 1, the ZIP probability
distribution is

fZIP(y; θ, η) =
{

η + (1 − η)e−θ , y = 0,

(1 − η)θye−θ /y!, y > 0.

The parameter η for ZIP is the extra probability mass at 0. For the truncated ZIP distribution,
we use πy(θ, η) = fZIP(y; θ, η) for y = 0, . . . ,C − 2 and πC−1(θ, η) = ∑∞

y=C−1 fZIP(y; θ, η).
Results similar to those presented here were obtained for the negative binomial distribution,
another overdispersed Poisson distribution.

In both cases, η = η0 = 0 leads to the Poisson distribution, so that the null model is nested
within alternatives (a) and (b) above as specified in (10). For (c), random δ’s based on a perturba-
tion of a Geometric(p) distribution with 1/p random in the interval (1,2.2) were used. For ran-
dom δ, from Section 3.2, conditions to satisfy are

∑C−1
c=0 δc = 0 and

∑C−1
c=0 [∂ logπc(θ)/∂θ ]δc = 0

(latter from �′D−1δ = 0 with q = 1). So for the random δ, we start with random δc for c ≥ 2,
and then solve for δ0, δ1 (these are not too much different for θ0 ∈ [1,5]).

For the GP probability distribution and 0 ≤ y < C − 1, functions needed for the calculation
of δ are:

(i) (θ, η;y) = logπy(θ, η) = log θ + (y − 1) log(θ + ηy) − θ − ηy − log(y!).
(ii) ∂

∂θ
(θ, η;y) = θ−1 + (y − 1)/(θ + ηy) − 1, which becomes y/θ − 1 for η = 0.

(iii) ∂
∂η

(θ, η;y) = y(y − 1)/(θ + ηy) − y, which becomes y(y − 1)/θ − y for η = 0.
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For the ZIP probability distribution and 0 ≤ y < C − 1, functions needed for the calculation
of δ are

(θ, η;y) = logπy(θ, η) =
{

log[η + (1 − η)e−θ ] for y = 0,

log(1 − η) + y log θ − θ − log(y!) for y > 0;
∂

∂θ
(θ, η;y) =

{

−(1 − η)e−θ /[η + (1 − η)e−θ ] for y = 0,

y/θ − 1 for y > 0;
∂

∂η
(θ, η;y) =

{

[1 − e−θ ]/[η + (1 − η)e−θ ] for y = 0,

−(1 − η)−1 for y > 0.

Finally, for the Poisson null model, the derivatives of πy for 0 ≤ y < C − 1 needed for
the power computations are ∂πy/∂θ = πy[∂(θ, η)/∂θ ] and ∂πy/∂η = πy[∂(θ, η)/∂η]. The
derivatives for πC−1 are obtained from one minus the sum of the other probabilities.

For the results reported in this example, we assume that the sample size is such that we can
consider C = 15 categories (0,1, . . . ,13,14+), that is, C = {0,1, . . . ,14} with the last category
indicating truncation to 14. With the above categorization, we are not expecting a large expected
count, and we will do some power comparisons for θ in the range of 0 to 5. The null probabilities
of exceeding 10 for θ ∈ [1,5] are virtually zero, but these probabilities are not negligible with
some overdispersion.

The Tκi
(i = 1, . . . ,7) that will be compared are based on the following operations.

(1) Pooling categories 10–14; categories for 1, . . . ,9 separate; s = 10.
(2) Pooling 10–14, 7–9; 1, . . . ,6 separate; s = 8.
(3) Pooling 10–14, 7–9, 4–6; 1, . . . ,3 separate; s = 6.
(4) Pooling 10–14, 7–9, 4–6, 1–3; s = 4.
(5) Pooling 3–14; 1,2 separate; s = 3.
(6) Pooling 2–14, 1 separate; s = 2.
(7) Category 0, mean, second moment; s = 3.

For example,

Tκ4 =

⎛

⎜

⎜

⎝

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎞

⎟

⎟

⎠

,

Tκ7 =
⎛

⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 4 9 16 25 36 49 64 81 100 121 144 156 196

⎞

⎠ .

A priori, we think that Tκ7 and some of the others Tκi
with poolings of neighboring cate-

gories might provide good power to detect a heavier tail than Poisson (overdispersion) and zero
inflation (larger zero count than expected under a Poisson model).

Table 1 summarizes some results on ratios of noncentrality parameters and power from the
three sets of local alternatives, (a), (b), and (c) above. In order that the values of power are not all
close to 0.05 or 1, we scale the ε in (10) so that the power is 0.5 for ̂X2 with a 0.05 significance
level. For (c), the power depends on the actual δ and Table 1 shows the average over 10 different
random δ’s. It follows from results in Section 3 that if ncp(Mκ)/ncp(̂X2) = 1, then Mκ is more
powerful than ̂X2 in the given local direction δ, and if this ratio is large, the same conclusion can
be expected to hold.
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TABLE 1.
Ratio of noncentrality parameters and power relative to ̂X2 for Mκi

, i = 1, . . . ,7.

Ratio of ncp(Mκi ) with ncp(̂X2)

Alternative θ0 ncpr1 ncpr2 ncpr3 ncpr4 ncpr5 ncpr6 ncpr7

GP 1 1.000 0.999 0.911 0.770 0.662 0.291 1.000
GP 2 1.000 0.982 0.817 0.735 0.321 0.094 1.000
GP 3 0.994 0.938 0.852 0.674 0.143 0.032 1.000
GP 4 0.967 0.891 0.879 0.710 0.061 0.011 1.000
GP 5 0.902 0.843 0.836 0.719 0.026 0.004 0.999

ZIP 1 1.000 1.000 0.994 0.458 0.962 0.810 1.000
ZIP 2 1.000 1.000 0.986 0.848 0.925 0.757 1.000
ZIP 3 1.000 0.999 0.988 0.958 0.914 0.755 1.000
ZIP 4 1.000 0.999 0.993 0.987 0.918 0.772 1.000
ZIP 5 1.000 0.999 0.996 0.995 0.930 0.797 1.000

random 1 0.64 0.63 0.63 0.05 0.59 0.47 0.45
random 2 0.99 0.99 0.99 0.30 0.97 0.87 0.71
random 3 1.00 1.00 1.00 0.43 0.99 0.89 0.66
random 4 1.00 1.00 1.00 0.51 0.99 0.90 0.63
random 5 1.00 1.00 1.00 0.57 0.99 0.91 0.63

Power of Mκi when ε chosen to achieve power of 0.5 for ̂X2 at 0.05 significance level

Alternative θ0 power1 power2 power3 power4 power5 power6 power7

GP 1 0.576 0.626 0.641 0.647 0.640 0.407 0.825
GP 2 0.576 0.617 0.587 0.624 0.348 0.166 0.825
GP 3 0.573 0.593 0.608 0.583 0.174 0.089 0.825
GP 4 0.559 0.567 0.623 0.607 0.100 0.063 0.825
GP 5 0.523 0.539 0.598 0.613 0.070 0.055 0.824

ZIP 1 0.576 0.626 0.686 0.415 0.809 0.821 0.825
ZIP 2 0.576 0.626 0.682 0.694 0.793 0.795 0.825
ZIP 3 0.576 0.626 0.683 0.752 0.787 0.794 0.825
ZIP 4 0.576 0.626 0.685 0.766 0.790 0.803 0.825
ZIP 5 0.575 0.625 0.687 0.769 0.794 0.815 0.824

random 1 0.38 0.41 0.45 0.08 0.52 0.51 0.43
random 2 0.57 0.62 0.68 0.29 0.81 0.83 0.65
random 3 0.58 0.63 0.69 0.39 0.82 0.85 0.62
random 4 0.58 0.63 0.69 0.46 0.82 0.85 0.61
random 5 0.58 0.63 0.69 0.50 0.82 0.86 0.61

Note in Table 1 that Mκ5 and Mκ6 pool too many categories together to be useful for overdis-
persion, but they do fine for zero inflation. Over the two given local directions of overdispersion
and zero inflation, Mκ7 has the best power. Similar results were obtained for the negative bino-
mial distribution, another overdispersed Poisson distribution. Thus, our results suggest that when
fitting a (possibly truncated) Poisson model, the Mκ7 is the statistic of choice if the alternatives
of interest are overdispersion and zero-inflation.

These results should not be taken to imply that Mκ7 is the best statistic over all possible
alternatives. Indeed, we included condition (c) precisely to show that this is not the case. Table 1
shows that Mκ7 does less well over random local directions, and indeed its power would be much
lower for directions corresponding to bimodal count distributions with a variance to mean ratio
of 1 and the same ratio of mean to zero proportion as for Poisson distributions. In closing this
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example, note that on average over random local directions, none of the Mκi
dominates ̂X2 for

all θ0 in the interval [1,5].

4.2. Binary Item Response Data: Testing for Exchangeability

In this section, we apply the theory to a log linear item response theory (IRT) model for
binary data. The null model under consideration is so highly constrained that it is not of interest
in applications. However, it was chosen because (a) its simplicity allows us to illustrate the theory
rather easily, and (b) it can not be tested with the statistics based on low-order margins proposed
in Maydeu-Olivares and Joe (2005).

Consider an n-dimensional binary random vector Y = (Y1, . . . , Yn) with joint distribution:

πy = Pr(Yk = yk, k = 1, . . . , n), y = (y1, . . . , yn), yk ∈ {0,1}. (13)

For a parametric model with parameter vector θ , we write πy(θ) for an individual probability
and π(θ) for the vector of C = 2n joint probabilities (with the y’s ordered lexicographically).

Consider the following parametric (exponential-family) model

πy = α−1 exp
{

μy(θ)
}

, (14)

μy(θ) = γy1+···+yn +
∑

j

yjσj , θ = (γ1, . . . , γn, σ1, . . . , σn), (15)

where α = ∑

y exp{μy(θ)}. Because of the normalizing via α, we assume γ0 = 0 without loss
of generality. Also, for identification, we take γn = 0 since σ ′

k = σk + γn/n (k = 1, . . . , n), γ ′
k =

γk −γn/k (k = 1, . . . , n−1) and γ ′
n = 0 lead to exactly the same probabilities. Therefore, for the

null model (14) with (15) and n = 3, the binary response patterns (in lexicographic order) and
μy(θ) are given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
γ1 + σ1
γ1 + σ2
γ1 + σ3

γ2 + σ1 + σ2
γ2 + σ1 + σ3
γ2 + σ2 + σ3
σ1 + σ2 + σ3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Tjur (1982) showed that this model is equivalent to Rasch’s (1960) latent trait model (provided
the log of the gamma parameters be the first moments of a positive random variable, see Cressie
& Holland, 1983).

The null model we consider in this example assumes that items are exchangeable. This
is obtained by introducing the constraint σ1 = · · · = σn = σ in the above model, so that (15)
becomes:

μy(θ) = γ�j yj
+ σ

∑

j

yj , θ = (γ1, . . . , γn−1, σ ) (16)

where θ has dimension q = n.
We shall examine the performance of a series of Mκ statistics when fitting the null model

given by Equations (14) and (16) when the alternative of interest is model (14) with (15).
Different sets of statistics κ may be used for testing this null model. For instance, Maydeu-
Olivares and Joe (2005) proposed testing multivariate binary models using the vector of joint
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moments of the multivariate Bernoulli distribution up to order r ≤ n. For summaries from low-
order margins of (13), we let π r = (π̇ ′

1, . . . , π̇
′
r )

′, where π̇ ′
1 = (π̇1, . . . , π̇n)

′ consists of the
E (Yk) = Pr(Yk = 1), π̇2 is the

(

n
2

)

-dimensional vector of bivariate non-central moments with
elements E (YkY) = Pr(Yk = 1, Y = 1) = π̇k, k < , π̇3 is the

(

n
3

)

-dimensional vector of trivari-
ate noncentral moments with elements E (Yk1Yk2Yk3) = Pr(Yk1 = 1, Yk2 = 1, Yk3 = 1) = π̇k1k2k3 ,
k1 < k2 < k3 and so on. Yet, the Mκ statistics of Maydeu-Olivares and Joe (2005) based on
π r (for r = 2,3) may not be used to test the null model, because Condition D is not satis-
fied. For these summary statistics, �κ is not of full rank. This is because under this null model
E (Y1) = · · · = E (Yn), E (Y1Y2) = · · · = E (Yn−1Yn), etc.

In discrete exponential family or log linear models (14),

� = ∂π(θ)

∂θ ′ = �X′

where X′ is a C × q matrix such that the (i, j) element of X′ is the coefficient of θj in μyi
(θ)

in the ith probability in π . X′ has full column rank when the model is identified. Therefore,
κx = Xπ provides a minimal set of statistics that identify the model. For the null model (14)
with (16), X is an n × C matrix. In particular, for n = 3,

X =
⎛

⎝

0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 1 1 1 2 2 2 3

⎞

⎠ .

Thus, the summary statistics in κx for this null model are E (Y+) and Pr(Y+ = z), z = 1, . . . ,

n − 1, where Y+ = ∑n
k=1 Yk is the sum score. Testing may not proceed solely on κx as in this

case there are zero degrees of freedom. However, s′ = s − q linear combinations, κa = Taπ , can
be added to κx such that Txa = ( X

Ta

)

satisfies Conditions T and D. Thus, a test statistic with s′
degrees of freedom is obtained.

One way to proceed in constructing κa is to compute a basis for the null space of X, say Nx ,
that satisfies NxX′ = 0. For the null model (14) with (16) and n = 3,

Nx =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −1 0 1 0
0 0 0 0 −1 1 0 0
0 −1 0 1 0 0 0 0
0 −1 1 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

Then by construction, any subsets of rows of Nx can be added to X to yield a Txa such that
Conditions T and D are satisfied. Another way to proceed in constructing κa is to select simple
summaries that are not redundant to κx .

For the null model under consideration, any of the sets π̇1 to π̇3 is spanned by the row space
of Nx provided the first element within each set is removed. Therefore, they constitute a suitable
set κa . Four statistics, Mκ1, . . . ,Mκ4 , obtained in this fashion were compared for testing (14)
satisfying (16), with (14) satisfying (15) as the alternative. The statistics are based on summaries
obtained by adding to κx ,

(1) π̇1 without its first element. In this case, s = n + (n − 1) = 2n − 1.
(2) π̇2 without first element. In this case, s = n + (

n
2

) − 1 = 1
2 (n2 + 3n − 4).

(3) π̇3 without first element. In this case, s = n + (

n
3

) − 1 = (n3 − 3n2 + 8n − 6)/6.
(4) π̇2 and π̇3 without their first elements. In this case, s = n + (

n
2

) + (

n
3

) − 2 = (n3 +
5n − 12)/6.

The Tκi
(i = 1, . . . ,4) matrices and corresponding Mκi

are based on the above.
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TABLE 2.
Ratio of noncentrality parameters and power relative to ̂X2 for Mκi

, i = 1, . . . ,4; some examples for
n = 5 and 8. For n = 5, γ = (−1,−1.3,−1.2,−0.9) and ε ∝ (−0.5,−0.25,0,0.25,0.5). For n = 8, γ =
(−1,−1.3,−1.2,−0.9,−0.8,−0.7,−0.6) and ε ∝ (−0.5,−0.3,−0.2 − 0.1,0.1,0.2,0.3,0.5). The multiplying factor
for ε was chosen so that the asymptotic power of X2 is 0.5. σ0 is the common σ for the null model (15).

Ratio of ncp(Mκi ) with ncp(̂X2)

n = 5 2n − 1 = 31 s = 9 s = 14 s = 14 s = 23
n σ0 ncpr1 ncpr2 ncpr3 ncpr4

5 0.00 1.000 0.732 0.396 0.835
5 0.45 1.000 0.824 0.540 0.917
5 0.90 1.000 0.888 0.670 0.962
5 1.35 1.000 0.930 0.773 0.984
5 1.80 1.000 0.957 0.849 0.993

n = 8 2n − 1 = 255 s = 15 s = 35 s = 63 s = 90
n σ0 ncpr1 ncpr2 ncpr3 ncpr4

8 0.00 1.000 0.875 0.624 0.961
8 0.45 1.000 0.918 0.724 0.983
8 0.90 1.000 0.945 0.803 0.993
8 1.35 1.000 0.963 0.864 0.997
8 1.80 1.000 0.976 0.909 0.999

Power of Mκi

n σ0 power1 power2 power3 power4

5 0.00 0.859 0.566 0.306 0.489
5 0.45 0.859 0.629 0.421 0.537
5 0.90 0.859 0.670 0.521 0.564
5 1.35 0.859 0.695 0.595 0.576
5 1.80 0.859 0.710 0.645 0.581

8 0.00 0.999 0.946 0.635 0.795
8 0.45 0.999 0.957 0.727 0.808
8 0.90 0.999 0.963 0.789 0.814
8 1.35 0.999 0.967 0.830 0.816
8 1.80 0.999 0.970 0.856 0.817

Table 2 provides some representative results for asymptotic powers and noncentrality para-
meter ratios for n = 5 and 8 items. The patterns are similar for other choices of γ , ε and σ0. Note
that all four statistics generally have better asymptotic power than ̂X2, because of getting only a
slighter smaller noncentrality parameter with fewer degrees of freedom. For the cases in Table 2,
only Mκ1 and Mκ2 are more powerful than ̂X2 for all of the listed parameter vectors. Combining
bivariate and trivariate information to κx to get Mκ4 leads to reduced power compared to when
only bivariate information is added to κx to get Mκ2 , because not a lot is gained for the extra
degrees of freedom.

Because the null model assumes exchangeable items, it makes sense that Mκ1 , which has a
small value for s, has the most power for some alternatives. Generally, lack of exchangeability
is most easily discovered with a few “summary” statistics concerning univariate margins. For an
exchangeable null model with directional alternatives where univariate but not bivariate margins
are all the same, then something like Mκ2 and Mκ3 should be more powerful.

However, test statistics should not only be chosen based on power. One important factor
should be accuracy of empirical p-values to the reference asymptotic distribution. A simulation
study was performed to investigate the performance of the small sample null distributions of
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TABLE 3.
Maximum likelihood estimates and SEs for model (15) applied to LSAT6 dataset.

Parameter Estimate SE

γ1 −0.99 0.51
γ2 −1.33 0.37
γ3 −1.21 0.25
γ4 −0.85 0.14
σ1 2.18 0.16
σ2 0.44 0.14
σ3 −0.32 0.13
σ4 0.75 0.14
σ5 1.54 0.14

TABLE 4.
Mκ statistics for model (16).

Statistic Value df Value/df

̂X2 575.1 26 22
Mκ1 490.6 4 123
Mκ2 503.0 9 56
Mκ3 384.6 9 43
Mκ4 553.0 18 31

the statistics considered. Consistent with the results reported in Maydeu-Olivares and Joe (2005,
2006), all four Mκ considered maintained their nominal rates as model size increased and sample
size decreased (to 100 for n = 5 and to 250 for n = 8, for example). X2 maintained its nominal
rates only in nonsparse conditions. In very sparse conditions, only the statistics where low order
marginal statistics are added to κx are well approximated by the asymptotic null distribution.
Among them, κ1 performed best in the most extreme sparse conditions considered. Taking to-
gether the simulation results for the small sample behavior of the statistics and the power results,
we conclude that among the Mκ considered, Mκ1 is the best choice for testing the null (14) with
(16) when the alternative hypothesis of interest is (14) with (15).

In closing this section, we point out that in applications, more powerful statistics show higher
statistics to degrees of freedom ratios. To illustrate this point, we shall use the well-known LSAT6
dataset of Bock and Lieberman (1970). These data consist of 1000 observations on five binary
variables. Model (14) with (15) (i.e., the log-linear version of Rasch’s model) fits these data well:
X2 = 17.77 on 22 degrees of freedom, p = 0.72. The MLEs and standard errors (SE’s) for this
example are shown in Table 3, and do not suggest exchangeability of the items. Indeed, model
(14) with (16) assumes that items are exchangeable, and it fits rather poorly, as shown in Table 4;
the MLEs are (γ̂1, γ̂2, γ̂3, γ̂4, σ̂ ) = (−0.63,−0.80,−0.69,−0.51,0.92). The statistics ̂X2 and
Mκi

reported in this table are all large with extremely small p-values. Table 4 lists also the test
statistics to degrees of freedom ratios (df = s − 5), to show that order of the ratios is comparable
to the ordering of power in Table 3. That is, appropriately chosen Mκ statistics can have quadratic
form values that are almost as large as ̂X2 but with much fewer degrees of freedom (Theorems 1
and 7). Thus, if in any given application several Mκi

statistics have been applied and previous
evidence (obtained via simulations) suggests that finite sample behavior of the statistics is closely
approximated by asymptotic methods, the theory presented here suggests that the statistic Mκi

,
which is the highest after dividing by the degrees of freedom, is likely to be the most powerful.
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5. Some Alternatives to the Lκ and Mκ Families of Statistics

The classical procedures for assessing goodness-of-fit in multinomial models via asymptotic
methods are Pearson’s X2 statistic and the asymptotically equivalent likelihood ratio test G2.
However, the asymptotic approximations to the sampling distributions of these procedures break
down when the variances of the residual cell proportions involve small cell probabilities. This
problem may be overcome by pooling cells, because pooled cells must have higher expected
probabilities.

Pooling cells amounts to performing a linear transformation on the residual cell proportions
before the analysis. Indeed, the classical procedure of using X2 with pooled cells amounts to
using a quadratic form in summary statistic of the type κ = Tπ , where T linearly maps the
original C categories into a set of disjoint C′ pooled categories. Because the categories of κ
are disjoint, the asymptotic covariance matrix of

√
N (κ̂ − κ) is simply �κ = Dκ − κκ ′, where

Dκ = diag(κ). As a result, D−1
κ is a generalized inverse for �κ , and for simple nulls the quadratic

form X2 = N(κ̂ − κ)′D−1
κ (κ̂ − κ) is asymptotically χ2

C′−1. For composite nulls, if the pooling is
done before data are seen, and if the maximum likelihood estimation is based on the C′ pooled
categories and not the original categories, then the asymptotic null distribution of the resulting
Pearson statistic is χ2

C′−1−q
.

Yet, there is a limit in the amount of pooling into disjoint categories that can be performed
without distorting the purpose of the analysis. To overcome this problem, and for n-dimensional
contingency tables, Maydeu-Olivares and Joe (2005, 2006) proposed pooling cells into their
marginals. This amounts to pooling cells with overlap. The idea of goodness-of-fit tests based on
merging neighboring categories with overlap has been studied in Hall (1985) for univariate dis-
tributions. Because the variance of a marginal residual of order r depends on expected marginal
probabilities of order min(2r, n), the distribution of quadratic forms in low order marginal resid-
uals are well approximated by asymptotic methods even in very large models, assuming these
marginal probabilities are not too small.

In this paper, we have extended these quadratic forms of linear transforms of multinomial
cell residuals by considering linear transforms that are not necessarily marginal residuals. Thus,
we have provided general conditions for quadratic forms in linear transforms of the type κ = Tπ ,
with T a fixed matrix, to be asymptotically chi-square. These results may be applied not only to
multidimensional tables, but also to unidimensional ones, and include cases of pooling cells with
overlap and/or into disjoint categories.

Related ideas are given in Glas (1988) and Glas and Verhelst (1989). Glas (1988) proposed
a statistic, R1, aimed at testing the one-parameter logistic model (i.e., a Rasch model with a
normally distributed trait) for binary item responses Y = (Y1, . . . , Yn). This model has n item-
specific parameters and one random effect parameter for a total of q = n + 1 parameters. The
summaries used in R1 are linear functions of the πy corresponding to the 2 + (n − 1)n aggregate
probabilities Pr(Y+ = 0),Pr(Y+ = n), Pr(Y+ = z,Yj = 1) for j = 1, . . . , n, z = 1, . . . , n − 1,
where Y+ = Y1 + · · · + Yn. Because these summary statistics are disjoint, their asymptotic co-
variance matrix has a simple form.

Yet, it can be shown that R1 can be rewritten as an Mκ statistic based on a κ of dimension
s = 1 + (n − 1)n. To do so, the last category for {Y+ = n} is omitted in order for �κ to be of full
column rank. Then the Mκ has s − q = 1 + (n − 1)n − (n + 1) = n(n − 2) degrees of freedom.

In Glas and Verhelst (1989; see also Glas & Verhelst, 1995), the theory of Glas (1988) is
extended by considering more general linear transforms of the πy’s that are similar to our Tκ .
The distinctions with our theory are the following: (a) their quadratic form matrix only depends
on Tκ and the probability vector π , (b) in contrast, there is a strong condition that depends on
� and Tκ required for an asymptotic chi-square distribution. That is, our theory works for more
general κ , but in contrast our weight matrix does not have the simple form of Glas and Verhelst
(1989).
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Glas and Verhelst (1989) statistic can be written as

N
[

κ̂ − κ(̂θ)
]′(TκD(̂θ)T′

κ

)−[

κ̂ − κ(̂θ)
]

, (17)

where A− denotes a generalized inverse of a matrix A, that is A− satisfies AA−A = A. For the
MLE and under the conditions set forth by Glas and Verhelst (1989), this statistic is asymptoti-
cally chi-square with degrees of freedom equal to rank(TκD(̂θ)T′

κ ) − q − 1.
A related statistic for testing composite null hypotheses is

N
[

κ̂ − κ(̂θ)
]′
�−

κ (̂θ)
[

κ̂ − κ(̂θ)
]

, (18)

where recall that �κ , given in (7), is the asymptotic covariance matrix of
√

N [κ̂ − κ(̂θ)]. This
quadratic form is asymptotically chi-square distributed with degrees of freedom less than or
equal than the minimum of s and C − q − 1 (see Appendix A.2). Therefore, use of (18) requires
determining the rank of �(θ) analytically for the model of interest. This is usually feasible for
simple models. Alternatively, the degrees of freedom available for testing may be determined
empirically by evaluating the rank of �(̂θ) numerically. If the model requires numerical integra-
tion to obtain the pattern probabilities, as in many IRT models, it may be difficult to determine
the rank of �(̂θ) numerically (for an example, see Maydeu-Olivares & Joe, 2008). Nevertheless,
simulation results by Mavridis et al. (2007) suggest that even in this situation statistics of the type
(18) work well in practice. Reiser (1996) used statistics of this type for testing IRT models for
binary data using univariate and bivariate marginal residuals, Reiser and Lin (1999) used bivari-
ate marginal residuals to test latent class models, and in Reiser (2008) an extension of the results
of Reiser (1996) for binary data is introduced that allows the inclusion of marginals of any order
where the statistic is decomposed into a sum of orthogonal components.

The results presented here are also related to previous work by Rayner and Best (1989) who
considered the problem of obtaining score tests for smooth alternatives to multinomial models.
For simple nulls H0 : π = π0, they considered embedding π0 within the parametric family

πc(η) = [

B(η)
]−1

π0c exp{η1t1c + · · · + ηstsc}, c ∈ C, η = (η1, . . . , ηs), (19)

where B(η) is a normalizing constant. For testing null hypotheses against the directional alterna-
tive (19) they proposed the class of statistics

Sκ = N(p − π0)
′T′

κ�−1
κ Tκ (p − π0), (20)

and this is the same as Lκ given in (2). Thus, Rayner and Best (1989) showed that Lκ = Sκ is
the score test for testing η = 0 when the null is embedded within the parametric family (19).
Also, note that Theorem 5.1.2 in Rayner and Best (1989) has a special case of the first part of
Theorem 3 with Lκ since their conditions for Tκ are (i) orthonormal rows and (ii) 1′

C not in its
row span.

For composite nulls, H0 : π = π(θ), Rayner and Best (1989) considered obtaining score
tests for smooth alternatives to multinomial models by embedding π(θ) within the parametric
family

πc(θ ,η) = [

B(θ ,η)
]−1

πc(θ) exp
{

η1t1c(θ) + · · · + ηstsc(θ)
}

, (21)

where [B(θ ,η)]−1 is again a normalizing constant and η is a vector of nuisance parameters. For
testing composite nulls against the directional alternative (21) they proposed the class of statistics

Ŝκ = N(p − π̂)′̂T′
κ
̂�

−1
κ

̂Tκ(p − π̂), (22)
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with π̂ = π(̂θ), ̂Tκ = Tκ(̂θ), and ̂�κ = �κ(̂θ). Ŝκ is a score test for H0 : η = 0 for models
embedded within (21).

Differences between their approach and ours are due to different motivations. Rayner and
Best suggest choosing Tκ , which may depend on model parameters, so that �κ be of full rank.
Conditions for �κ to be nonsingular are given on pp. 111–115 of Rayner and Best (1989). When
�κ is not of full rank, they suggest employing a generalized inverse, in which case the rank of
�κ needs to be determined to obtain the degrees of freedom. In contrast, in our approach Tκ is
a matrix of constants, we provide conditions for Mκ to be asymptotically chi-square with known
degrees of freedom regardless of whether �κ is of full rank, and our alternative is omnibus. Also,
we emphasize selecting Tκ based on robustness to sparseness, and we provide theoretical results
for choosing among members of Mκ based on power to detect alternatives of interest.

In closing this section, when omnibus alternatives are considered, and Tκ is a fixed matrix,
not necessarily leading to a �κ of full rank, Rayner and Best’s approach leads to the family of
statistics (18). Clearly, further research should investigate via simulation which weight matrix,
�−

κ or Uκ , yields better results for power and null chi-square approximation in small samples.
Our use of Uκ in the quadratic form is standard in covariance structure analysis (see Browne,
1984; Yuan & Bentler, 1997). Also, Theorems 6 and 7, which are used in the power comparisons
in Section 3, depend on Uκ as weight matrix in the quadratic form. We have checked numeri-
cally for a simple case that these results do not hold with Moore–Penrose generalized inverses
�−

κj
in place of Uκj

for j = 1,2. In addition, we have focused for ease of exposition on the
maximum likelihood estimator. However, quadratic forms in summary statistics satisfying Con-
ditions T and D are asymptotically chi-square more generally, for Fisher-consistent estimators.
That is, it is straightforward to show that the asymptotic chi-square distribution of Mκ holds for
any Fisher-consistent estimator (see Maydeu-Olivares & Joe, 2005). This is true as well for the
statistic (18). Yet, (3) with (4) or (5) remains invariant to the choice of estimator. One implemen-
tation suits all Fisher-consistent estimators. In contrast, �κ depends on the estimator used (for
details see Maydeu-Olivares & Joe, 2005, 2008; Maydeu-Olivares, 2001, 2006) and as a result
in implementing (18) each estimator needs its own programming. That is, the main advantages
of using Uκ over the generalized inverse �−

κ are: (a) known degrees of freedom, (b) theoretical
results for power comparisons, and (c) one implementation suits any Fisher-consistent estimator.

6. Concluding Remarks

Maydeu-Olivares and Joe (2005, 2006) introduced classes of goodness-of-fit statistics for
sparse multidimensional multinomials. They showed by simulation that very large models can
be tested with their approach via asymptotic methods, even in extraordinarily sparse tables. Their
approach is based on linear maps of the cell residuals taking advantage of the multidimensional
structure of the data. Yet, their approach is limited in three important aspects: (1) it can not be
used with unidimensional tables, (2) it can not be used for models for multidimensional tables
that can not be identified from margins, (3) there is a computational limit in the size of the models
for multidimensional tables that can be tested due to the need to store very large matrices. To
overcome these limitations, in this paper we have described two general families of test statistics
for multinomial data. Lκ is to be used for simple nulls (no parameters being estimated), and Mκ

for composite nulls (estimated parameters). The theory provided here can be used to propose
new test statistics for a null model that effectively overcome the limitations of their existing
approach. Thus, in our first example, we applied the theory to a unidimensional multinomial. In
our second example, we applied the theory to a multidimensional model that is not identified
from low order (univariate, bivariate, . . .) margins. In a separate report, we will apply the theory
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to propose test statistics that can overcome the computational limitations of current proposals for
extremely large multidimensional models.

The test statistics described here “concentrate” the information available in the multinomial
cells into some summaries so that the resulting statistic is better approximated in small samples
by large sample theory methods. Also, when interest lies in testing the null with some competing
models in mind, the summary statistics may be selected so that the test statistic is more powerful
than classical tests such as X2. In this respect, the present paper also provides completely gen-
eral theory that explains why, for testing purposes, in most cases one wants to concentrate the
information available as much as possible.

The theory and methods presented here are closely related to previous theory. Kendall and
Stuart (1979, Chapter 30) provide a review of some of the relevant theory. Eubank (1997) ex-
plains that the X2 test expends additional degrees of freedom on components that are not helpful
in detecting the alternative. Also, in the context of smooth tests of goodness-of-fit for exponential
family models, Rayner and Best (1989) describe a test statistic termed Sκ for simple nulls of the
same form of Lκ (see their Chapter 5); for composite nulls, they describe the test statistics Ŝκ

given in (22) that are related to Mκ (see their Chapter 7). Also, the merging of cells along with
a test on certain cells as used in Example 4.1 is known as a cell-focusing test in the literature on
directional tests. Notice, however, that the test statistics proposed here are omnibus tests.

How to choose which summary statistics to use? We have provided two conditions, Con-
ditions T and D, that must be satisfied in the case of composite nulls and they are not difficult
to check. For simple nulls, only Condition T must be satisfied. There are of course many sum-
mary statistics that satisfy these conditions. A general recommendation based on the theory is to
choose the statistics that summarize as much as possible, but not too much, in such a way that
potential models can be discriminated by the summaries. On the other hand, if the summaries
are insufficient, such as with only first and second order univariate moments and second order
mixed moments for multidimensional multinomial data, then power might only be roughly equal
to the significance level in many local directions of alternatives. Also, for composite nulls, if the
summaries are insufficient, the model may be (locally) identified but nearly nonidentified, i.e.,
�κ may have singular values near zero. In this case, �(c)

κ is not “stable,” since the selection of
the columns for �(c)

κ can come from the singular vectors associated with q zero singular values
or from the singular vectors of singular values that are near zero. For this case, our experience is
that with small changes to the maximum likelihood estimatêθ , Mκ can change a lot. In looking at
the second form of Uκ in (5), when �κ has singular values near zero, �′

k�k�κ is nearly singular
so that its inverse is “large” and Uκ can have many elements near zero. Hence, the noncentrality
parameter is typically smaller and such κ will not have good power. To avoid this problem, we
recommend that the singular values of ̂�κ be checked, and if there are small singular values,
then another statistic within the Mκ family be used that does not concentrate the information so
much.

The theory and examples show that it is possible to construct Mκ statistics with a small
number s of summary statistics to have good power against potential (realistic) alternatives. The
primary applications are for sparse high-dimensional tables for which summaries are based on
low-order margins. In this regard, note that the calculation of Mκ does not require Tκ explicitly
or the calculation of π . Rather, κ̂ , κ(̂θ), �κ , �κ should be computed directly without involving
the large matrix Tκ . In closing, in most applications, no Mκ can be expected to be uniformly
most powerful over all possible directions of alternatives. But with some thought, as shown in
our examples, one can come up with Mκ statistics that are much more powerful than Pearson’s
̂X2 and also avoid the low cell count or sparsity that affects the adequacy of the asymptotic χ2

distribution as an approximation for small samples and/or large models.



414 PSYCHOMETRIKA

Appendix

A.1. Some Remarks on Condition T

For the theory presented in this paper, �κ must be invertible and this means that 1′
C cannot

be in the row span of Tκ , or equivalently 1C cannot be in the column span of T′
κ . Note that �

has rank C − 1 and �1C = 0. This is one reason for s ≤ C − 1. If 1C is in the column span of
T′

κ , then there is an s × 1 vector x such that T′
κx = 1C and x′Tκ�T′

κx = 1′
C�1C = 0; that is,

�κ = Tκ�T′
κ has a zero eigenvalue and is singular.

For the converse, if �κ is not of full rank then 1′
C is in the row span of Tκ . The proof is as

follows. � has rank C − 1 and the eigenspace for the zero eigenvalue is {b1C : b is real}. If �κ

is not of full rank, then there is a vector z such that z′�z = 0 or z′Tκ�T′
κz = 0. Then T′

κz is in
the eigenspace of the zero eigenvalue of � so that T′

κz is a multiple of 1C , or 1C is in the column
span of T′

κ .
As an example, suppose one is considering the merging of neighboring categories with

overlap, using a Tκ = T = (Tic) of dimension (C − 1) × C that satisfies Ti,i = Ti,i+1 = 1,
i = 1, . . . ,C − 1, and Ti,j = 0 otherwise. This T satisfies Condition T only if C is odd; if C

is even, T′x = 1C for the (C − 1)-dimensional column vector x that has xi = I (i odd) and the
last row of T is redundant.

If 1′
C is in the row span of T, and T has full row rank, then one of the components of κ is

redundant (that is, it can be derived from the others). The redundancy might be easier to see after
eliminating one of the probabilities, for example, πd = 1 − ∑

c∈C,c �=d πc .
For some results, it might be convenient to suppose that κ has been reexpressed so that

we can assume that Tκ can have a zero column (say in the first column denoted with index 0).
The reasoning is as follows. If T = (Tic) is an s × C matrix, then the ith linear function of
the probabilities is

∑

c∈C Ticπc = Ti0[1 − ∑

c �=0 πc] + ∑

c �=0 Ticπc = Ti0 + ∑

c �=0(Tic − Ti0)πc .
The constant Ti0 does not affect the difference κ̂i − κi or the variance of κ̂i . Hence, we can use
κ = Tκπ where for c �= 0, the (i, c) element is Tic − Ti0. If Tκ is such that the first column is
a zero vector, then Condition T is the same as Tκ having full row rank (since the condition of
1′
C not in row span of Tκ is satisfied). The requirement of Tκ having a zero column is mainly

useful for proving some results. We show in the example of Section 4.1 one instance where we
are better off using a statistic, named Tκ7 in that example, where the first column does not consist
of all zeros.

A.2. Results for the Maximum Likelihood Estimate, ̂X2, and �κ

We use the notation ̂� = �(̂θ), π̂ = π(̂θ), ̂D = D(̂θ), ̂� = �(̂θ), Î = I(̂θ), when the MLE
̂θ is substituted as an argument.

Any equation below with the vector of sample proportions p depends on the MLE of θ .
Otherwise, equations and identities are valid over all θ in the parameter space.

• Fisher information matrix: I = �′D−1�, a q × q matrix.
• Equation for MLE: ̂�

′
̂D−1p = 0. Since �′D−1π = 0 is an identity for any θ , the MLE

equation can be written as ̂�
′
̂D−1(p − π̂) = 0.

• Covariance matrix of
√

N (p − π̂): � = � − �I−1�′.
• Rank of �: �D−1 is idempotent with trace or rank C − 1 − q; therefore, � = (�D−1)D

has rank C − 1 − q .
• D−1 is a generalized inverse of � and �.
• Rank of �κ : � can be written as � = LL′, with L a C × (C − q − 1) matrix of rank

C −q −1. Therefore, the rank of �κ = TκLL′T′
κ equals rank(TκL) ≤ min{s,C −q −1}.
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A.3. Proofs of Theorems

If not given, then θ is implicitly an argument of all relevant vectors and matrices for ̂X2,
Mκ , Mκ1 and Mκ2 ,

Proof of Theorem 1: We use 0 as the index for the first category and consider the Mκ statistic
with this category omitted. Let 1 denote a (C − 1)-dimensional column vector of 1’s. Write

p = (p0
p̌

)

, π = (π0
π̌

)

, and e = p−π(̂θ) = (e0
ě

)

. �′ = (�′
0

̂�
′
), � = ( γ00 γ ′

γ Ď−π̌ π̌ ′
)

, and �̌ = Ď− π̌ π̌ ′.

Let Ď = diag(π̌) and D0 = π0. Then �κ = Tκ� = ̂�, �κ = Tκ�T′
κ = �̌ and �−1

κ = �̌
−1 =

Ď−1 + 1D−1
0 1′, and Tκe = ě.

Since 1′ě = −e0, then

N ě′[�κ(̂θ)
]−1ě = N ě′{[Ď(̂θ)

]−1 + 1
(

D0(̂θ)
)−11′}ě

= N ě′[Ď(̂θ)
]−1ě + Ne0

(

D0(̂θ)
)−1

e0 = Ne′[D(̂θ)
]−1e = ̂X2. (23)

Using the second form of Uκ in (5), Mκ = ̂X2 if �′
κ(̂θ)[�κ(̂θ)]−1ě = 0. From the above,

[

�κ(̂θ)
]−1ě = [

Ď(̂θ)
]−1ě − 1

(

D0(̂θ)
)−1

e0

and

�′
κ(̂θ)

[

�κ(̂θ)
]−1ě = ̂�

′
(̂θ)

[

Ď(̂θ)
]−1ě − ̂�

′
(̂θ)1

(

D0(̂θ)
)−1

e0

= ̂�
′
(̂θ)

[

Ď(̂θ)
]−1ě + �′

0(
̂θ)

(

D0(̂θ)
)−1

e0 = �′(̂θ)
[

D(̂θ)
]−1e = ̂�

′
̂D−1e = 0,

from the likelihood score equation (see Appendix A.1).
The result for X2 = Lκ follows from (23) with e = p − π = (e0

ě

)

and ̂θ omitted. �

Proof of Theorem 2: We will prove the second result Mκ2 = Mκ1 since the first part of its proof
covers the first result. From the given assumptions,

κ̂2 − κ2(̂θ) = Bκ̂1 + β − Bκ1(̂θ) − β = B
[

κ̂2 − κ2(̂θ)
]

,

�κ2 = Tκ2�T′
κ2

= B�κ1 B′.

From (5), it follows that Uκ2 = (B′)−1Uκ1B−1. Hence, the conclusion follows. �

Proof of Theorem 3: Let Tκ0 = (0 IC−1) as used in Theorem 1. Because of Condition T,
(1′

C

Tκ

)

and
( 1′

C

Tκ0

)

are invertible C ×C matrices. Hence, there is a nonsingular C ×C matrix B∗ such that

(

1′
C

Tκ

)

= B∗
(

1′
C

Tκ0

)

.

Partition B∗ as
( b0 b′

2
b1 B

)

, where B is a (C −1)× (C −1) matrix, and b1,b2 are (C −1)×1 vectors.
Hence,

Tκ = b11′ + BTκ0 .

We next show that the conditions of Theorem 2 hold, and then the conclusion follows from
Theorem 1.
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(i) κ = Tκπ = [b11′ + BTκ0 ]π = b1 + Bπ̌ , with π̌ = κ0.
(ii) Tκ�T′

κ = b11′�1b′
1 +b11′�T′

κ0
B′ +BTκ0�1b′

1 +BTκ0�T′
κ0

B′ = 0+B�̌B′, with �̌ =
�κ0 , since �1 = 0.

(iii) �κ = Tk� = b11′� + BTκ0� = 0 + B�κ0 , since �′1 = 0. �

Proof of Theorem 4: The covariance matrix of
√

N
(κ̂1−κ1
κ̂2−κ2

)

is

(

Tκ1�T′
κ1

Tκ1�T′
κ2

Tκ2�T′
κ1

Tκ2�T′
κ2

)

.

This is a square matrix with dimension s1 + s2 and rank s1. The assumptions imply that Tκj
�T′

κj
,

j = 1,2, is non-singular, so that

Tκ1�T′
κ1

− Tκ1�T′
κ2

[Tκ2�T′
κ2

]−1Tκ2�T′
κ1

= Tκ1�T′
κ1

− Tκ1�T′
κ1

T′
21(Tκ2�T′

κ2
)−1T21Tκ1�T′

κ1

= Tκ1�T′
κ1

[

(Tκ1�T′
κ1

)−1 − T′
21(Tκ2�T′

κ2
)−1T21

]

Tκ1�T′
κ1

is a nonnegative definite (conditional covariance) matrix with rank s1 − s2. Hence, the s1 × s1
matrix

L21 = (Tκ1�T′
κ1

)−1 − T′
21(Tκ2�T′

κ2
)−1T21 = �−1

κ1
− T′

21�
−1
κ2

T21

is non-negative definite, and its rank is s1 − s2. �

Proof of Theorem 5: From Theorem 4,

Lκ1 − Lκ2 = (κ̂1 − κ1)
′[�−1

κ1
− T′

21�
−1
κ2

T21
]

(κ̂1 − κ1) = (κ̂1 − κ1)
′L21(κ̂1 − κ1) ≥ 0.

Equality occurs if κ̂1 − κ1 is in the null space of (8) or L21(κ̂1 − κ1) = 0. �

Proof of Theorem 6: For j = 1,2, let

�κj
= Tκj

�T′
κj

= �κj
− �κj

I −1�′
κj

.

By the definition of �(c)
κj

, for j = 1,2,

�(c)
κj

′
�κj

�(c)
κj

= �(c)
κj

′
�κj

�(c)
κj

. (24)

Also,

�(c)
κ1

′
�κ1T′

21�
(c)
κ2

= �(c)
κ1

′
�κ1 T′

21�
(c)
κ2

(25)

because �(c)
κ1

′
�κ1 I −1�′

κ1
T′

21�
(c)
κ2

= 0. The covariance matrix of

√
N

(

�(c)
κ1

′[κ̂1 − κ1(̂θ)]
�(c)

κ2

′[κ̂2 − κ2(̂θ)]

)

= √
N

(

�(c)
κ1

′[κ̂1 − κ1(̂θ)]
�(c)

κ2

′
T21[κ̂1 − κ1(̂θ)]

)

is
(

�(c)
κ1

′
�κ1�

(c)
κ1

�(c)
κ1

′
�κ1T′

21�
(c)
κ2

�(c)
κ2

′
T21�κ1�

(c)
κ1

�(c)
κ2

′
�κ2�

(c)
κ2

)

=
(

�(c)
κ1

′
�κ1�

(c)
κ1

�(c)
κ1

′
�κ1T′

21�
(c)
κ2

�(c)
κ2

′
T21�κ1�

(c)
κ1

�(c)
κ2

′
�κ2�

(c)
κ2

)

,
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with the equalities in the matrices coming from (24) and (25). This is a square matrix with
row dimension (s1 − q) + (s2 − q). The assumptions imply that �(c)

κj

′
�κj

�(c)
κj

is non-singular
(j = 1,2). Hence,

�(c)
κ1

′
�κ1�

(c)
κ1

− �(c)
κ1

′
�κ1T′

21�
(c)
κ2

(

�(c)
κ2

′
�κ2�

(c)
κ2

)−1
�(c)

κ2

′
T21�κ1�

(c)
κ1

= �(c)
κ1

′
�κ1[Uκ1 − T′

21Uκ2T21]�κ1�
(c)
κ1

(26)

is a nonnegative definite (conditional) covariance matrix. Let its rank be m, where 1 ≤ m ≤
s1 − q; the actual value of m is s1 − s2 and this is shown in a remark below. The dimension of
�(c)

κ1

′
�κ1 is (s1 − q) × s1, and its rank is s1 − q (because of Condition D).
Let

M21 = Uκ1 − T′
21Uκ2T21;

this is an s1 × s1 matrix. Note that M21y = 0 for any y in the column span of �κ1 , due to the
following argument. If y is in the column span of �κ1 , then there exists a x such that �κ1x = y.

Hence, �(c)
κ1

′
y = 0 and, therefore, Uκ1y = 0. Also Uκ2T21y = Uκ2T21�κ1x = Uκ2�κ2 x = 0 since

Uκ2�κ2 = 0 from the form of Uκ2 in (4).
Next, write (26) as B′M21B, where B = �κ1�

(c)
κ1

, an s1 × (s1 − q) matrix. Consider

(�κ1 B) = (�κ1 �κ1�
(c)
κ1

). This is an s1 × s1 matrix. We claim that it is nonsingular (its columns

are linearly independent). Suppose �κ1 a1 +�κ1�
(c)
κ1

a2 = 0 where a1,a2 are respectively column
vectors of dimensions q and (s1 − q). Then

�(c)
κ1

′
�κ1a1 + �(c)

κ1

′
�κ1�

(c)
κ1

a2 = 0 + �(c)
κ1

′
�κ1�

(c)
κ1

a2 = 0.

Since �(c)
κ1

′
�κ1�

(c)
κ1

is positive definite, a2 = 0. Then since �κ1 has full column rank, a1 = 0.
This establishes the claim.

Let Z = (z1 · · · zs1−q) be a matrix of orthogonal (s1 − q)-dimensional eigenvectors of
B′M21B with the last s1 − q − m corresponding to zero eigenvalues and the first m corre-
sponding to positive eigenvalues, denoted as ω1, . . . ,ωm. With a similar argument to above,
(�κ1 �κ1�

(c)
κ1

Z) is nonsingular.
Since M21�κ1 = 0 and M21Bzj = 0 for j = m + 1, . . . , s1 − q , we have exhibited a

null space of dimension q + (s1 − q − m) = s1 − m for M21. Hence, rank(M21) ≤ m. From
rank(B′M21B) = m ≤ s1 − q , rank(M21) ≥ m. The two inequalities imply rank(M21) = m.

Finally, we show that M21 is nonnegative definite. From the above, Bzj = �κ1�
(c)
κ1

zj (j =
1, . . . ,m) is a basis for the nonzero eigenvectors of M21. An arbitrary s1-dimensional vector y
can be written as

∑m
j=1 aj Bzj + z0 where z0 is in the null space of M21. Then

y′M21y =
[

z′
0 +

m
∑

i=1

aiz′
iB

′
]

M21

[

z0 +
m

∑

j=1

aiBzj

]

=
m

∑

i=1

m
∑

j=1

aiaj z′
iB

′M21Bzj

=
m

∑

i=1

m
∑

j=1

aiajωj z′
izj =

m
∑

i=1

a2
i ωiz′

izi ≥ 0,

since the zi ’s are orthogonal.
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Remark. We outline a proof that the value of m, defined above, is s1 − s2. From the orthogonal

complements,
( �

(c)
κ1

′

�
(c)
κ2

′
T21

)

�κ1 = 0, so that

⎛

⎜

⎜

⎝

�(c)
κ1

′

�(c)
κ2

′
T21

�′
κ1

⎞

⎟

⎟

⎠

is a (s1 +s2 −q)×s1 matrix with rank s1, the same as the rank of
(�

(c)
κ1

′

�′
κ1

)

. Since �′
κ1

and �(c)
κ1

′
have

respective ranks q and s1 − q , the above orthogonality implies that
( �

(c)
κ1

′

�
(c)
κ2

′
T21

)

has rank s1 − q , and

there is an (s2 −q)× (s1 −q) matrix H of rank (s2 −q) such that �(c)
κ2

′
T21 = H�(c)

κ1

′
. Therefore,

the conditional covariance matrix of
√

N �(c)
κ1

′[κ̂1 − κ1(̂θ)] given
√

N �(c)
κ2

′
T21[κ̂1 − κ1(̂θ)] has

rank (s1 − q) − (s2 − q) = s1 − s2.
�

Proof of Theorem 7: Since M21 is nonnegative definite,

Mκ1 − Mκ2 = (

κ̂1 − κ1(̂θ)
)′M21

(

κ̂1 − κ1(̂θ)
) ≥ 0.

Equality occurs if κ̂1 − κ1(̂θ) is in the null space of M21 or M21(κ̂1 − κ1(̂θ)) = 0. �

Proof of Corollary 8: Referring to the discussion at the beginning of Section 2, we assume
that Tκ has been converted to any equivalent Tκ2 that has zeros in its first column. Let Tκ1 be
the matrix in Theorem 1 that leads to either X2 or ̂X2. To apply Theorem 5, take T12 be the
s × (C − 1) matrix that derives from Tκ2 by omitting the first column. �
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