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The comparative format used in ranking and paired comparisons tasks can sig-

nificantly reduce the impact of uniform response biases typically associated with

rating scales. Thurstone’s (1927, 1931) model provides a powerful framework for

modeling comparative data such as paired comparisons and rankings. Although

Thurstonian models are generally presented as scaling models, that is, stimuli-

centered models, they can also be used as person-centered models. In this article,

we discuss how Thurstone’s model for comparative data can be formulated as item

response theory models so that respondents’ scores on underlying dimensions can

be estimated. Item parameters and latent trait scores can be readily estimated using

a widely used statistical modeling program. Simulation studies show that item

characteristic curves can be accurately estimated with as few as 200 observations

and that latent trait scores can be recovered to a high precision. Empirical examples

are given to illustrate how the model may be applied in practice and to recommend

guidelines for designing ranking and paired comparisons tasks in the future.

Presenting items in a single-stimulus fashion, using, for instance, rating scales,

often can lead to uniform response biases such as acquiescence and extreme

responding (e.g., Van Herk, Poortinga, & Verhallen, 2004) or lack of differ-

entiation commonly referred to as “halo” effects (Murphy, Jako, & Anhalt,

1993). One approach to overcome this problem is to model such bias (e.g.,
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936 MAYDEU-OLIVARES AND BROWN

Maydeu-Olivares & Coffman, 2006). Another approach is to present test items

instead in a comparative or forced-choice format. This approach can significantly

reduce the impact of numerous uniform response biases (Cheung & Chan,

2002). Thurstone’s (1927, 1931) model provides a powerful framework for

describing the response process to comparative data such as paired comparisons

and rankings. Although Thurstonian models are generally presented as scaling

models, that is, stimuli-centered models, they can also be used as person-centered

models. For instance, in a ranking task, respondents may be presented with a

set of behavioral statements and asked to order them according to the extent

that the statements describe their personality. Or, respondents may be asked

to order a set of attitudinal statements according to the extent they represent

their own attitudes. In a paired comparison task, pairs of statements are selected

from a set of available items, and respondents are instructed to select the item

that best describes them from each pair. In these applications, the focus is

not on the items under comparison and their relationships but rather on the

individuals’ personality traits, attitudes, and so on. When used in this fashion,

Thurstonian models for comparative data are item response theory (IRT) models

(Maydeu-Olivares, 2001). The aim of this article is to describe the properties

and characteristics of Thurstonian models for comparative data as IRT models.

This article is structured into seven sections. In the first section, we describe

how to code rankings and paired comparisons using binary outcome variables.

This binary coding allows straightforward estimation of models for compara-

tive data using standard statistical software. Section two describes Thurstonian

models for comparative data. In this section we provide the response model for

ranking tasks and for paired comparisons tasks. We also describe embedding

common factors in these models. Thurstonian factor models are second-order

normal ogive models with some special features. Section three introduces the

Thurstonian IRT model. This is simply a reparameterization of the Thurstonian

factor model as a first-order model, again with special features. The Thurstonian

IRT model provides some valuable insights into the features of Thurstonian

models as person-centered models and it enables straightforward estimation

of latent trait scores for ranking data, something that is not possible with the

Thurstonian factor model. Section four discusses item parameter estimation of

Thurstonian models for paired comparisons and rankings. Section five provides

a detailed account of the Thurstonian IRT model. In this section we (a) provide

the item characteristic function for these models, (b) discuss how to estimate the

latent traits, and (c) provide the information function and discuss how to estimate

test reliability. Because in today’s IRT applications unidimensional models are

most often used, in this article we focus mostly on unidimensional models.

Section five reports the results of simulation studies to investigate the accuracy

of item parameter estimates and their standard errors, goodness of fit tests, and

latent trait scores. The widely used statistical modeling program Mplus (L. K.
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IRT OF PAIRED COMPARISONS AND RANKINGS 937

Muthén & Muthén, 1998–2009) is used throughout the article to estimate the

item parameters models and to obtain latent trait scores. Section six includes

two applications to illustrate our presentation, one involving ranking data and

one involving paired comparisons data. We conclude with a summary of the

main points of this article and a discussion of extensions of the work presented

here.

BINARY CODING OF COMPARATIVE DATA

This section discusses how to code the observed paired comparison and ranking

data in a form suitable for estimating Thurstonian choice models when using

standard software packages for IRT modeling. This section relies heavily on

Maydeu-Olivares and Böckenholt (2005).

Paired Comparisons

In a paired comparison task, respondents are presented with pairs selected from

an item set and are instructed to select the more preferred item from each pair.

With n items there are Qn D n.n�1/

2
pairs of items. For instance, Qn D 6 pairs can

be constructed with n D 4 items. If the n D 4 items are labeled {A, B, C, D},

the following pairs can be constructed: {{A,B}, {A,C}, {A,D}, {B,C}, {B,D},

{C,D}}. A presentation of the pairs in this order may result in strong carry-over

effects. To control for this effect, it is important to randomize the presentation

order of the pairs as well as the order of items within each pair (Bock & Jones,

1968). The observed paired comparison responses can be coded as follows:

yl D
(

1 if item i is preferred over item k

0 if item k is preferred over item i
; (1)

where l indicates the pair fi; kg. Thus, we obtain a pattern of Qn binary responses

from each respondent.

Two types of response patterns can be obtained in a paired comparison task,

and it is important to distinguish between them. A response pattern consistent

with an ordering of the items is called transitive pattern, and it is intransitive

otherwise. As an example of a transitive pattern consider a set of items {A, B,

C}. A respondent may choose B when given the pair {A,B}, A when given the

pair {A,C}, and B when given the pair {B,C}. These choices are consistent with

a {B,A,C} ordering of the items, and the pattern of paired comparisons is said

to be transitive. In contrast, an intransitive pattern results when choosing B for

the pair {A,B}, A for the pair {A,C}, but C for the pair {B,C}.
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938 MAYDEU-OLIVARES AND BROWN

Ranking Tasks

In a ranking task, all items are presented at once (in a randomized order) and

respondents are asked to either assign ranks or order them. For instance, for

the n D 4 items {A, B, C, D}, a ranking task consists of assigning ranking

positions—numbers from 1 (most preferred) to 4 (least preferred).

Ranking

A B C D

— — — —

Alternatively, an ordering for these items is obtained when the ranking positions

(1st, 2nd, 3rd, and 4th) have to be filled with the given items {A, B, C, D}.

Ordering

1st 2nd 3rd 4th

— — — —

Any ordering or ranking of n items can be coded equivalently using Qn paired

comparisons. Thus, to continue our example, the ordering {A,D,B,C} (or its

equivalent ranking) can be coded using the following paired comparisons:

Ranking Ordering Pairwise Outcomes

A B C D 1st 2nd 3rd 4th {A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

1 3 4 2 A D B C 1 1 1 1 0 0

The converse is not true because not all paired comparison outcomes can be

transformed into rankings or orderings. Intransitive paired comparisons cannot

be converted into an ordering of the items. In a paired comparisons task 2Qn

binary patterns may be observed but in a ranking task only nŠ binary patterns

may be observed.

In the following, we analyze rankings and orderings after transforming them

into binary outcomes. Although both paired comparisons and rankings can be

coded using binary outcome variables, we show later that the two data types

require slightly different IRT models and that needs to be taken into account in

a data analysis.
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IRT OF PAIRED COMPARISONS AND RANKINGS 939

THURSTONIAN MODELS FOR RANKING AND PAIRED

COMPARISON DATA

To model comparative data, such as the data arising from a ranking or paired

comparisons task, Thurstone (1927) proposed the so-called Law of Comparative

Judgment. He argued that in a comparative task, (a) each item elicits a utility

as a result of a discriminal process, (b) respondents choose the item with the

largest utility value at the moment of comparison, and (c) the utility is an

unobserved (continuous) variable and is normally distributed in the population

of respondents. Thus, Thurstone’s (1927) approach may be viewed as a latent

variable model where each latent variable corresponds to each of the items

(Maydeu-Olivares, 2002; Takane, 1987). Although he focused initially on paired

comparisons, Thurstone (1931) recognized later that many other types of choice

data, including rankings, could be modeled in a similar way.

Response Model for Ranking Tasks

Consider a random sample of respondents sampled from the population of

interest. According to Thurstone (1927, 1931), when a respondent is confronted

with a ranking task, each of the n items to be ranked elicits a utility. We

denote by ti the utility (a latent variable) associated with item i . Therefore, in

Thurstone’s model there are exactly n such latent variables when modeling n

items. A respondent prefers item i over item k if her or his latent utility for

item i is larger than for item k and consequently ranks item i before item k.

Otherwise, he or she ranks item k before item i . The former outcome is coded

as “1” and the latter as “0.” That is,

yl D
(

1 if ti � tk

0 if ti < tk
; (2)

where the equality sign is arbitrary as the latent utilities are assumed to be

continuous and thus by definition two latent variables can never take on exactly

the same value.

The response process can be alternatively described by computing differences

between the latent utilities. Let

y�
l D ti � tk (3)

be a variable that represents the difference between utilities of items i and k.

Because ti and tk are not observed, y�
l

is also unobserved. Then, the relation-

ship between the observed comparative response yl and the latent comparative
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940 MAYDEU-OLIVARES AND BROWN

response y�
l is

yl D
(

1 if y�
l � 0

0 if y�
l < 0

: (4)

It is convenient to write the response process in matrix form. Let t be the

n � 1 vector of latent utilities and y� be the Qn � 1 vector of latent difference

responses, where Qn D n.n�1/

2
. Then we can write the set of Qn equations (3) as

y� D At; (5)

where A is an Qn � n design matrix. Each column of A corresponds to one of

the n items, and each row of A corresponds to one of the Qn paired comparisons.

For example, when n D 2, A D .1 � 1/, whereas when n D 3, n D 4, and

n D 5,

A D
"

1 �1 0

1 0 �1

0 1 �1

#

; A D

2

6

6

6

6

6

4

1 �1 0 0

1 0 �1 0

1 0 0 �1

0 1 �1 0

0 1 0 �1

0 0 1 �1

3

7

7

7

7

7

5

; A D

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 �1 0 0 0

1 0 �1 0 0

1 0 0 �1 0

1 0 0 0 �1

0 1 �1 0 0

0 1 0 �1 0

0 1 0 0 �1

0 0 1 �1 0

0 0 1 0 �1

0 0 0 1 �1

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

(6)

respectively. For instance, in the design matrix for n D 4 items, each column

corresponds to one of the four items {A, B, C, D}. The corresponding rows

give the six possible paired comparisons {{A,B}, {A,C}, {A,D}, {B,C}, {B,D},

{C,D}}. Row 4 indicates that B is compared to C, and Row 6 indicates that C

is compared to D.

Thurstone’s (1927, 1931) model assumes that the utilities t are normally

distributed in the population of respondents. Thus, we can write

t � N.�t ; †t/; (7)

where �t and †t denote the mean vector and covariance matrix of the n latent

variables t. When interest lies in scaling the items, two popular models within

this class are the so-called Case III model, where †t D ‰2, a diagonal matrix,

and its special case, the so-called Case V model, where †t D §2I. However,

when interest lies in assessing respondents, items serve as indicators of some
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IRT OF PAIRED COMPARISONS AND RANKINGS 941

latent factors (personality traits, motivation factors, attitudes, etc.). Therefore we

need to take an extra step and express the latent variables t as indicators of a

set of m common factors (latent traits):

t D �t C ƒ˜ C ©: (8)

In this equation, �t contains the n means of the latent variables t (i.e., the

utilities’ means), ƒ is an n�m matrix of factor loadings, ˜ is an m-dimensional

vector of common factors (latent traits in IRT terminology), and © is an n-

dimensional vector of unique factors. This factor model assumes that the com-

mon factors have mean zero unit variance and are possibly correlated (their

correlation matrix is ˆ). The model also assumes that the unique factors have

mean zero and are uncorrelated so that their covariance matrix, ‰2, is diago-

nal. In concordance with the distributional assumptions of Thurstonian choice

models, the common and unique factors are assumed to be normally distributed.

Response Model for Paired Comparison Tasks

In a paired comparison task, respondents need not be consistent in their pairwise

choices, possibly yielding intransitive patterns. Inconsistent pairwise responses

can be accounted for by adding an error term el to the difference judgment (3),

y�
l D ti � tk C el : (9)

This random error el is assumed to be normally distributed with zero mean and

variance ¨2
l
, uncorrelated across pairs and uncorrelated with the latent utilities.

The error term accounts for intransitive responses by reversing the sign of the

difference between the utilities ti and tk . For example, suppose that for a given

respondent, ti D 3 and tk D 2. Then, whenever el � 1, y�
l � 0 and the

respondent will choose item i over item k. But if el > 1, y�
l < 0 and he or she

will choose item k over item i , resulting in an intransitivity because ti > tk .

As in the case of ranking data, the relationship between the observed com-

parative response yl and the latent difference judgment y�
l is given by Equation

(4). Similarly, the response process can be written in matrix form as

y� D At C e; (10)

where e is an Qn � 1 vector of random errors with covariance matrix �2, which

is a diagonal matrix with elements ¨2
1; � � � ; ¨2

Qn
.

When the common factor model (8) is embedded in Equation (10) we obtain

y� D A.�t C ƒ˜ C ©/ C e: (11)
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942 MAYDEU-OLIVARES AND BROWN

Also, the mean vector and covariance matrix of the latent differences y� are

�y� D A�t ; and †y� D A.ƒˆƒ0 C ‰2/A0 C �2: (12)

The model for ranking data can be seen as a special case of the model for

paired comparisons. The smaller the diagonal elements of the error covariance

matrix �2, the more consistent the respondents are in evaluating the items. In the

extreme case, when all the diagonal elements of �2 are zero, no intransitivities

would be observed in the data and the paired comparison data are effectively

rankings. A more restricted model that is often found to be useful in applications

involves setting the error variances to be equal for all pairs (i.e., �2 D ¨2I/.

This restriction implies that the number of intransitivities is approximately equal

for all pairs provided the elements of �t are not too dissimilar (Maydeu-Olivares

& Böckenholt, 2005).

Thresholds and Tetrachoric Correlations Implied by

the Model

Because all random variables (˜, ©, and e) are normally distributed, the latent

difference responses y� are also normally distributed. Because the outcome bi-

nary variables y are obtained by dichotomizing the y� variables, the correlations

among the y� variables are tetrachoric correlations.

To obtain the tetrachoric correlations implied by Thurstone’s (1927, 1931)

model we standardize the latent difference responses y� using

z� D D.y� � �y�/; D D .Diag.†y�//� 1
2 ; (13)

where z� are the standardized latent difference responses and D is a diagonal

matrix with the reciprocals of the model implied standard deviations of y� in the

diagonal. The standardized latent difference responses are multivariate normal

with a 0 mean vector and tetrachoric correlation matrix Pz� , where

Pz� D D.†y�/D: (14)

Using (12), in the special case where a common factor model is assumed to

underlie the utilities, (14) becomes

Pz� D D.†y�/D D D.A.ƒˆƒ0 C ‰2/A0 C �2/D: (15)

The standardized latent difference responses z� are related to the observed

comparative responses y via the threshold relationship

yl D
(

1 if z�
l � £l

0 if z�
l < £l

; (16)
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IRT OF PAIRED COMPARISONS AND RANKINGS 943

where the Qn � 1 vector of thresholds £ has the following structure (Maydeu-

Olivares & Böckenholt, 2005):

£ D �D�y� D �DA�t : (17)

Identification of Thurstonian Factor Models for

Comparative Data

Identification restrictions for these models were given by Maydeu-Olivares and

Böckenholt (2005) and they are the same for ranking and paired comparisons

models. Consider an unrestricted (exploratory) factor model. It is well known

(e.g., McDonald, 1999, p. 181) that this model applied to continuous data can

be identified by setting the factors to be uncorrelated and by setting the upper

triangular part of the factor loading matrix equal to 0. This amounts to setting

œij D 0 for i D 1; : : : ; m � 1; j D i C 1; : : : ; m. For example, with these

constraints the factor loading matrix for a three-factor model has the following

form:

ƒ D

0

B

B

B

B

B

@

œ11 0 0

œ21 œ22 0

œ31 œ32 œ33

:::
:::

:::

œn1 œn2 œn3

1

C

C

C

C

C

A

: (18)

The resulting solution can then be rotated (orthogonally or obliquely) to obtain

a more interpretable solution.

For Thurstonian factor models additional constraints are needed to obtain the

initial solution because of the comparative nature of the data. Thus, in addition to

the constraints on the loading matrix given by the pattern (18), Maydeu-Olivares

and Böckenholt (2005) suggested (a) fixing all factor loadings involving the last

item to 0, œni D 0, i D 1; : : : ; m, and (b) fixing the unique variance of the last

item to one, §2
n D 1. These identification constraints define the scales of the

factor loadings and the unique factor variances, respectively. As an illustration,

the identification restrictions needed to estimate a Thurstonian two-factor model

for paired comparisons and ranking data are

ƒ D

0

B

B

B

B

B

@

œ11 0

œ21 œ22

:::
:::

œn�1;1 œn�1;2

0 0

1

C

C

C

C

C

A

; and ‰2 D

0

B

B

B

B

@

§2
1 0 � � � 0

0
: : :

:::
::: §2

n�1 0

0 � � � 0 1

1

C

C

C

C

A

: (19)
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944 MAYDEU-OLIVARES AND BROWN

The necessary identification constraints imply that at least n D 5; 6; 8, and

9 items are required to estimate Thurstonian factor models with m D 1; 2; 3,

and 4 common factors, respectively, in both paired comparisons and ranking

data. Factor models with smaller number of items can also be estimated, but

additional constraints are needed to estimate them.

Regarding the means of the utilities, �t , these parameters can be estimated

by fixing one of the means to some constant, for instance, �n D 0.

Thurstonian Models for Ranking and Paired Comparison
Data as IRT Models

In the previous section, we showed that Thurstonian factor models for ranking

and paired comparisons data are indeed a second-order factor model for binary

data with some special features: (a) the number of first-order factors t is fixed by

design; it is n, the number of items; (b) the first-order factor loading matrix, A,

is a matrix of constants—see Equation (6); (c) the uniquenesses of the first-order

factors can be estimated (except for one) because the first-order factor loading

matrix is a matrix of constants; (d) one row of the second-order factor matrix

needs to be fixed to identify the model—see Equation (19); (d) the first-order

factor means may be estimated (these are the mean utilities in Thurstonian

terms); and (e) if the binary outcomes arise from a ranking experiment, the

uniquenesses of the latent response variables must be fixed to zero.

Because factor models for binary data are equivalent to the normal ogive IRT

model (see Takane & de Leeuw, 1987), in this section we exploit this relationship

and present Thurstonian models for comparative data as IRT models. First, we

introduce a Thurstonian factor model with unconstrained thresholds that it is

likely to yield a better fit in applications. Then, we show how the Thurstonian

factor model (which is a second-order model) can be equivalently expressed as

a first-order model with structured correlated errors. We refer to this model as

the Thurstonian IRT model.

Thurstonian Factor Models With Unrestricted Thresholds
(Unrestricted Intercepts)

Recall that Thurstonian factor models are defined by Equations (8) and (10),

which we repeat here for convenience:

y� D At C e; t D �t C ƒ˜ C ©; (20)

where for ranking data e D 0, and recall that the n parameters �t are the means

of the utilities, that is, the means of the latent variables underlying each item. In

IRT applications, the utilities t (and in particular, the parameters �t ) will seldom
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IRT OF PAIRED COMPARISONS AND RANKINGS 945

be of interest. Rather, in IRT applications, the main focus is on estimating the

latent traits ˜. When the mean utilities are not of interest, we can use instead

of (20)

y� D �” C At C e; t D ƒ˜ C ©: (21)

Model (21) is a Thurstonian factor model with unrestricted intercepts. The

original model—given by Equation (20)—is simply a constrained version of

Equation (21), where the Qn intercepts �” are constrained to be a function of the

n parameters �t ,

” D �A�t D ��y� : (22)

That is, the intercepts are also the means of the latent difference judgments y�

with a sign change. We refer to Model (21) as a Thurstonian factor model with

unrestricted thresholds because for this model the threshold structure Equation

(17) becomes

£ D D”: (23)

Thus, the threshold structure £ becomes unconstrained because ” is simply a

rescaling of £ by the matrix D.

In applications where the parameters �t are not of interest, we recommend

fitting Thurstonian models with unrestricted thresholds Equation (21) as it leads

to a considerably less constrained model.

Thurstonian IRT Model for Comparative Data

If indeed the latent utilities t are not of interest, as in most typical IRT appli-

cations, we can go one step further and reparameterize the Thurstonian factor

model with unrestricted thresholds as a first-order factor model so that the latent

utilities t effectively disappear from the model:

y� D �” C A.ƒ˜ C ©/ C e D �” C Aƒ˜ C A© C e D �” C Mƒ˜ C M©: (24)

with M© D A© C e, and cov.M©/ D M‰2
, where

Mƒ D Aƒ; M‰2 D A‰2A0 C �2; (25)

are an Qn � m matrix and an Qn � Qn matrix, respectively.
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946 MAYDEU-OLIVARES AND BROWN

However, the matrices Mƒ and M‰2
are patterned. For instance, in the case of

n D 3, and assuming a single latent trait,

Mƒ D

0

@

œ1 � œ2

œ1 � œ3

œ2 � œ3

1

A ; (26)

and M‰2
is patterned as follows: For n D 3

M‰2 D

0

B

B

@

§2
1 C §2

2 C ¨2
1

§2
1 §2

1 C §2
3¨2

2

�§2
2 §2

3 §2
2 C §2

3 C ¨2
3

1

C

C

A

; (27)

whereas for n D 4

M‰
2

D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

§2

1
C §2

2
C ¨2

1

§2

1
§2

1
C §2

3
C ¨2

2

§2

1
§2

1
§2

1
C §2

4
C ¨2

3

�§2

2
§2

3
0 §2

2
C §2

3
C ¨2

4

�§2

2
0 §2

4
§2

2
§2

2
C §2

4
C ¨2

5

0 �§2

3
§2

4
�§2

3
§2

4
§2

3
C §2

4
C §2

6

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

(28)

where recall that all ¨2
l

D 0 in the case of ranking data. Notice that M‰2
is not

a diagonal matrix and that its pattern does not depend on the number of latent

traits but on the number of items. Also, M‰2
is not of full rank. Its rank is the

same as the rank of A, n � 1.

We refer to Model (24) with the constraints of Equation (25) as the Thursto-

nian IRT model for comparative data. It is simply a reparameterization of

the Thurstonian factor model with unrestricted thresholds. Both models are

equivalent. They have the same number of parameters and lead to the same

threshold structure—given by Equation (23)—and model-implied tetrachoric

correlation matrix Pz� :

Pz� D D.Aƒˆƒ0A0 C A‰2A0 C �2/D D D. Mƒˆ Mƒ0 C M‰2
/D: (29)

The Thurstonian factor model is a second-order factor model, where the first-

order factors are the latent utilities, and the second-order factors are the latent

traits. As a result, in this model, there are n C m latent variables. In contrast,

the Thurstonian IRT model is a first-order factor model involving only m latent

variables, the latent traits.
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Item Parameter Estimation of Thurstonian Models for

Paired Comparisons and Rankings

IRT models are most often estimated using full information maximum likelihood

(FIML—often referred to in the IRT literature as marginal maximum likelihood;

see Bock & Aitkin, 1981). To obtain parameter estimates using FIML, the

probabilities of observing each response pattern are obtained by integrating the

product of the item characteristic curves (ICCs) over the density of the latent

traits, assuming local independence. For the models under consideration, this

assumption does not need to hold. Consider the joint covariance matrix of y�,

t, and ˜. This is

cov.y�; t; ˜/ D

0

@

A.ƒˆƒ0 C ‰2/A0 C �2 A.ƒˆƒ0 C ‰2/ Aƒˆ

ƒˆƒ0 C ‰2 ƒˆ

ˆ

1

A : (30)

From Equation (30), we obtain

cov.y�jt; ˜/ D �2; (31)

cov.y�j˜/ D A‰2A0 C �2 � M‰2
: (32)

Equation (32) reveals that the latent difference responses y� are not indepen-

dent when conditioning only on the latent traits, regardless of whether paired

comparisons or ranking data is involved, because M‰2
is not a diagonal matrix.

On the other hand, Equation (31) reveals that the latent difference responses y�

are independent when conditioning on the utilities and latent traits for paired

comparisons data (by the diagonal assumption on �2). For ranking data, where

�2 D 0, conditioning on both the utilities and the latent traits leads to a

degenerate distribution (see Maydeu-Olivares, 2001, p. 215).

This implies that in Thurstonian factor models, where both the n latent utilities

t and the m latent traits ˜ are involved, the ICCs are conditionally independent,

but to estimate this model by FIML n C m dimensional integration is needed.

It is well known that FIML is only computationally feasible when a few latent

traits are involved. In practice, FIML is seldom performed with more than three

latent dimensions. On the other hand, in Thurstonian IRT models, where only

the m latent traits ˜ are involved, the ICCs are conditionally dependent. If

standard FIML estimation is used (i.e., assuming local independence), only m

dimensional integration is needed, but it would result in biased estimates because

of the violation of the local independence assumption. Thus, FIML estimation

is ill suited to estimate either model.

Fortunately, the item parameters of Thurstonian models can be straightfor-

wardly estimated using limited information methods as follows: First, the sample
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948 MAYDEU-OLIVARES AND BROWN

thresholds O£ and the sample tetrachoric correlations O¡ are estimated. Then, the

item parameters of the model are estimated from the first stage estimates by

unweighted least squares (ULS; B. Muthén, 1993) or diagonally weighted least

squares (DWLS; B. Muthén, du Toit, & Spisic, 1997). Limited information

methods and FIML yield very similar IRT parameter estimates and standard

errors (Forero & Maydeu-Olivares, 2009). Also, differences between using ULS

or DWLS in the second stage of the estimation procedure are negligible (Forero,

Maydeu-Olivares, & Gallardo-Pujol, 2009). Furthermore, a test of the restrictions

imposed on the thresholds and tetrachoric correlations is available, with degrees

of freedom equal to the number of thresholds plus the number of tetrachoric

correlations, Qn. QnC1/=2, minus the number of estimated item parameters (say q).

However, care is needed when testing the model with ranking data. This is

because Maydeu-Olivares (1999) showed that when ranking data is used, there

are

r D n.n � 1/.n � 2/=6 (33)

redundancies among the thresholds and tetrachoric correlations estimated from

the binary outcome variables. Hence, the correct number of degrees of freedom

when modeling ranking data is df D Qn. Qn C 1/=2 � r � q. This means that the p

value for the chi-square test statistic needs to be recomputed using the correct

number of degrees of freedom. Also, goodness of fit indices involving degrees

of freedom in their formula, such as the root mean square error of approximation

.RMSEA/ D
q

T �df

df �N
, where T denotes the chi-square statistic and N denotes

sample size, also need to be recomputed using the correct degrees of freedom

for ranking data.

THE THURSTONIAN IRT MODEL

In this section, we provide the item characteristic and information function for

the model and discuss item parameter estimation, latent trait estimation, and

reliability estimation. We conclude this section providing some remarks about

the impact of the choice of identification constraints on item parameter estimates.

Item Characteristic Function (ICC)

The ICC for binary outcome variable yl involving items i and k is

Pr.yl D 1j˜/ D ˆ

0

B

@

�”l C Mœ0

l˜
q

M§2
l

1

C

A
; (34)
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IRT OF PAIRED COMPARISONS AND RANKINGS 949

where ˆ.x/ denotes a standard normal distribution function evaluated at x, ”l ,

is the threshold for binary outcome yl , Mœ0

l is the 1 � m vector of factor loadings,

and M§2
l

is the uniqueness for binary outcome yl .

Equation (34) is simply the ICC of a normal ogive model for binary data

except that (a) Mœ0

l is structured, (b) M§2
l is structured, and (c) the ICCs are not

independent (local independence conditional on the latent traits does not hold).

Rather, there are patterned covariances among the unique factors; see Equations

(27) and (28) for the case of three and four items, respectively.

Indeed, when only a single trait is involved the ICC for Thurstonian IRT

models can be written using Equations (26) and (27) as

Pr.yl D 1j˜/ D ˆ

0

B

@

�”l C Mœl ˜
q

M§2
l

1

C

A
D ˆ

0

B

@

�”l C .œi � œk/˜
q

§2
i C §2

k
C ¨2

l

1

C

A
: (35)

With n items being compared, Qn binary outcome variables are used, and the

number of parameters being estimated is Qn thresholds ”l , n � 1 factor loadings

œi , n � 1 uniquenesses §2
i , and Qn paired-specific error variances ¨2

l . Models

for ranking data involve Qn fewer parameters as ¨2
l D 0 for all variables. This

corresponds to a model with unrestricted thresholds. A model with restrictions

on the threshold structure amounts to setting ”l D ��i C �k for all binary

outcome variables. Thus, n � 1 item means �i are estimated instead of the Qn
thresholds ”l .

Equation (35) expresses the model using a threshold/factor loading parame-

terization. Letting

’l D �”l
q

§2
i C §2

k
C ¨2

l

and “l D œi � œk
q

§2
i C §2

k
C ¨2

l

(36)

the ICC for unidimensional Thurstonian IRT models can be written in an inter-

cept ’l and slope “l form as

Pr.yl D 1j˜/ D ˆ.’l C “l ˜/: (37)

Note that ’l and “l are not standardized parameters because M§2
l D §2

i C§2
k C¨2

l

is not the variance of y�
l . Also, note that the Qn intercepts and Qn slopes are not

free parameters to be estimated. Rather, they are functions of the fundamental

parameters of the model (thresholds, factor loadings, uniquenesses, and paired-

specific error variances).
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950 MAYDEU-OLIVARES AND BROWN

Latent Trait Estimation, Information Functions, and

Reliability Estimation

After the item parameters have been estimated, latent trait scores can be es-

timated by treating the estimated parameters as if they were known. This is

reasonable if item parameters have been accurately estimated. One approach

to estimate the latent trait scores is by maximum likelihood (ML). Two other

alternative approaches are (a) computing the mean of the posterior distribution

of the latent traits and (b) computing the mode of that distribution. The former is

known as expected a posteriori estimation, and the latter maximum a posteriori

(MAP) estimation (see Bock & Aitkin, 1981). Here, we focus on the MAP

estimator, as it is the method implemented in the software used throughout this

article, Mplus. In passing, we also provide results for the ML estimator.

Now, recall that in Thurstonian models, the latent traits ˜ are assumed to be

normally distributed with mean zero, that is, �˜ D 0, and covariance matrix

†˜ D ˆ, a correlation matrix, and let Pl .˜/ D Pr.yl D 1j˜/. For normally

distributed traits and assuming local independence, MAP scores can be obtained

by minimizing

F.˜/ D 1

2
.˜ � �˜/0†�1

˜ .˜ � �˜/ �
Qn

X

lD1

Pl .˜/yl .1 � Pl .˜//1�yl (38)

whereas ML scores are obtained by simply minimizing the second term in

Equation (38). In what follows, we just consider an IRT model with a single

trait, in which case, Equation (38) simplifies to

F.˜/ D 1

2
˜2 �

Qn
X

lD1

Pl .˜/yl .1 � Pl .˜//1�yl (39)

The standard error of the ML latent trait estimate is given by SE. Õ / D
q

1=I�1. Õ/, a function that depends on the latent trait. I.˜/ denotes the test

information function, which, under local independence, can be written as the

sum of the item information functions, that is, I.˜/ D
P

l Il.˜/.

In turn, the ML item information for the binary outcome l is obtained as

Il .˜/ D ŒP 0
l .˜/�2

Pl .˜/Œ1 � Pl .˜/�
D Œ“l¥.’l C “l ˜/�2

ˆ.’l C “l ˜/Œ1 � ˆ.’l C “l ˜/�
(40)

where P 0
l .˜/ denotes the derivative of Equation (35) with respect to the latent

trait ˜, and ¥.z/ denotes a standard normal density function evaluated at z.

Equation (40) shows that the information provided by an item depends on the

magnitude of the slope “l but Equation (36) reveals that, for one-dimensional
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models, the slope “l linearly depends on the difference between the factor

loadings œi and œk of the two items involved in the comparison. Also, the

slope “l will be higher the smaller the §2
i and ¨2

l parameters. But when factor

loadings œi and œk are similar, the slope “l will be close to zero, and the binary

outcome will not discriminate well among respondents. In applications, unless

items are chosen so that the loadings œi vary widely in their magnitudes, the item

slopes in the one-dimensional Thurstonian IRT model are likely to be low in

applications and a large number of items will be needed to accurately estimate

the latent trait. Equation (36) also reveals that whenever œi < œk , the slope

“l will be negative for one-dimensional models. Thus, in applications negative

estimates for “l will be commonly found. However, it is the magnitude of the

slope parameters “l that matters, not their sign.

Now, the standard error of the MAP latent trait estimate is given by

SE. Õ / D
q

1=I�1
P . Õ / (41)

where IP .˜/ denotes the test information function of the posterior distribution

of the latent trait. For a single latent trait, which is assumed to be normally

distributed with mean zero and variance 1, the MAP test information function

is

Ip.˜/ D I.˜/ C @2¥.˜/

@˜2
D I.˜/ C 1: (42)

In applications, it may be convenient to offer a single index of the precision

of measurement of the latent trait instead of the standard error function Equation

(41), which is a function of the latent trait. Provided the squared standard error

function is relatively uniform, a single index of the precision of measurement

can be obtained using the reliability coefficient (e.g., Bock, 1997)

¡ D ¢2 � ¢2
error

¢2
: (43)

There are two ways to estimate this coefficient.

One way, referred to as theoretical reliability (du Toit, 2003) involves esti-

mating the average error of measurement as

¢2
error

D
Z 1

�1

I
�1
P .˜/¥.˜/d˜; (44)

and using ¢2 D 1 in Equation (43) as this is the assumed value for the variance of

the latent trait. In the case of multiple traits, this procedure becomes unattractive

because it involves integrating a multivariate normal distribution.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
y
d
e
u
-
O
l
i
v
a
r
e
s
,
 
A
l
b
e
r
t
]
 
A
t
:
 
1
7
:
1
9
 
2
0
 
D
e
c
e
m
b
e
r
 
2
0
1
0



952 MAYDEU-OLIVARES AND BROWN

An alternative way to estimate Equation (43), referred to as empirical relia-

bility, involves estimating ¢2 using the sample variance of the estimated MAP

scores and estimating ¢2
error

using the mean of the squared standard errors of the

estimated MAP scores. That is, given a sample of N respondents, and letting

Õ j be the estimated MAP score for respondent j , we compute

O¢2 D 1

N

X

j

. Õ j � Õ/2; O¢2
error

D 1

N

X

j

.SE. Õ j //2 D 1

N

X

j

1

IP . Õ j /
: (45)

In our experience, for long tests, the theoretical and empirical reliabilities are

quite close to each other. In short tests, MAP estimates may shrink toward the

mean, and O¢2 computed using Equation (45) may be low, in which case the

empirical estimate will underestimate the reliability.

In either case, given the estimated reliability, we can estimate the correlation

between the true latent trait and the estimated scores using

corr.˜; Õ / D p
¡: (46)

In closing this subsection, we emphasize that the aforementioned standard

results for unidimensional IRT models do not hold if local independence does not

hold. In particular, when local independence does not hold the test information

cannot be decomposed into the sum of item information functions. Thus, we

shall investigate the extent to which the aforementioned expressions (using the

simplifying assumption that the ICCs of Thurstonian IRT models are locally

independent) provide a sufficiently accurate approximation in applications. Note

that this simplifying assumption is only employed for latent trait estimation, not

for item parameter estimation.

Some Remarks About Parameterizations and the Choice
of Identification Constraints

Here we have followed Maydeu-Olivares and Böckenholt’s (2005) suggestions

regarding the choice of identification constraints, perhaps the most striking of

which is to fix one of the factor loadings to zero. In this subsection we examine

the implications of these identification choices. For ease of exposition, we focus

on a set of items that substantively are assumed to be positively related to a

single latent trait.

Statistically, the choice of identification constraints has no impact whatsoever.

In the previous subsection we have shown that it is the intercepts and slopes (i.e.,

the ICC) that govern item information and consequently latent trait recovery.

Intercepts and slopes are invariant to the choice of identification constraints.

This is shown in Appendix A.
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IRT OF PAIRED COMPARISONS AND RANKINGS 953

Substantively, it is unappealing to fix a factor loading to 0 because it suggests

that one particular item is unrelated to the latent trait. From this point of view, it

may be better to fix one of the loadings to 1 instead or to estimate all loadings

using a sum constraint (e.g.,
P

i œi D 1), which would enable computing

standard errors for all loadings. We prefer to fix a factor loading because it is

easier to implement, to remind researchers that there is a constraint among the

loadings, and because using a sum constraint will lead to some factor loadings to

be negative. If one factor loading is fixed to some constant for identification some

factor loading estimates may be negative as well. If item n is fixed for identifi-

cation and a negative factor loading for item i is obtained, this indicates that the

absolute value of œi is smaller than œn. It should not be interpreted as a negative

relationship between item i and the trait. With comparative data, the usual

interpretation of the signs of factor loadings does not hold. This is because when

comparative data is modeled, the scale origin is arbitrary (Böckenholt, 2004), and

there are many sets of thresholds and factor loadings that are consistent with any

given model and a researcher is free to choose the most substantively meaningful

model among the set of equivalent models (Maydeu-Olivares & Hernández,

2007). In fact, one can change the signs of one or more factor loadings to ease

the interpretation of the model according to the substantive theory simply by

changing the identification constraints. The formula presented in Appendix A

can be used to explore the set of thresholds and factor loadings that are equivalent

to those estimated in a given application. The important point is that the chosen

constraints will not alter the binary outcomes’ intercepts and slopes.

SIMULATION STUDIES

It is of interest to know how well the fundamental parameters of the Thurstonian

IRT model (”, œ, §2, and in the case of paired comparisons models, ¨2) can be

estimated. These parameters are difficult to interpret substantively because of the

existence of equivalent models. Thus, it is also of interest to know how well the

intercepts ’ and slopes “ are estimated as these parameters are invariant to the

choice of identification constraints and the ICCs and information function are a

direct function of them. The ’ and “ parameters are obtained as a function of the

parameters ”, œ, §2, and ¨2. Finally, it is also of interest to investigate latent trait

recovery. To address these issues, we performed a number of simulation studies.

Item Parameter Recovery and Goodness of Fit Tests

We considered 12 conditions by crossing three sample sizes (200, 500, and

1,000 respondents), two model sizes (6 and 12 items), and 2 model conditions

(paired comparison models with equal and unequal paired specific variances
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954 MAYDEU-OLIVARES AND BROWN

¨2). One thousand replications were used in each condition. Estimation of the

Thurstonian IRT model was performed via tetrachoric correlations using Mplus.

ULS estimation was used to estimate the fundamental model parameters from

the tetrachoric correlations. The intercepts and slopes were computed in Mplus

from the model parameters and their standard errors obtained using the delta

method.

For 6 items, the true parameters used were œ0 D .1:5; 1; 0; 0; �1; �1:5/,

�0
t D .�0:2; 0:2; �:7; :7; 0:2; �0:2/, §20 D .1; � � � ; 1/, ¨20 D .0:3; : : : ; 0:3/. For

12 items, this setting was simply duplicated. Table 1 provides the minimum and

maximum relative bias, expressed as a percentage, of the parameter estimates

and standard errors. If we use 10% as cutoff for good performance, the results

shown in Table 1 reveal that a sample size of 1,000 observations is needed

for good recovery of the fundamental parameters of the model (i.e., ”, œ, §2,

and ¨2) when 6 items are used. Item parameter recovery improves dramatically

with increasing model size. As few as 200 observations provide accurate item

parameters when the paired specific variances are equal with 12 items. Five

hundred observations are needed to accurately estimate the thresholds, factor

loadings, and uniquenesses when the paired specific variances are unequal. Much

larger sample sizes are needed to estimate the unequal paired specific variances.

Most interestingly, the intercepts and slopes (i.e., the ICCs) are very ac-

curately estimated in all conditions even when the fundamental parameters

themselves are extraordinarily poorly estimated. This is shown in Table 2, which

TABLE 1

Minimum and Maximum Relative Bias (in %) of Estimates and Standard Errors

for Fundamental Parameters

O” Oœ O§
2

Ö
2

n N ¨2
Bias Est. Bias SE Bias Est. Bias SE Bias Est. Bias SE Bias Est. Bias SE

6 1,000 Common 1; 2 �2; 5 �1; 4 �3; �1 3; 5 �3; 1 4 �2

6 500 Common 3; 6 �15; 3 �4; 12 �17; �14 12; 18 �34; �30 13 �32

6 200 Common 11; 16 47; 86 �12; 41 79; 85 71; 107 178; 192 78 183

6 1,000 Unequal 1; 3 �2; 5 �1; 5 �4; �2 4; 5 �3; 1 4; 14 �4; 4

6 500 Unequal 3; 6 �9; 4 �4; 12 �9; �7 12; 9 �22; �17 12; 23 �14; 3

6 200 Unequal 11; 16 15; 35 �11; 40 30; 32 53; 76 65; 72 38; 137 29; 72

12 1,000 Common �1; 2 �4; 6 0; 1 �5; 0 1; 2 �1; 7 1 2

12 500 Common �1; 2 �4; 6 �1; 2 �4; 1 2; 3 �4; 2 2 �3

12 200 Common 0; 4 �5; 5 �2; 4 �4; 4 3; 5 �8; 0 3 4

12 1,000 Unequal �1; 2 �4; 6 �1; 1 �5; 1 1; 2 �2; 6 0; 13 �5; 4

12 500 Unequal �1; 3 �4; 7 �1; 3 �5; 1 1; 3 �4; 2 1; 22 �11; 5

12 200 Unequal 0; 5 �7; 6 �3; 7 �5; 2 3; 34 �8; 0 3; 54 �13; 5

Note. One thousand replications per condition. For 6 items, œ0
D .1:5; 1; 0; 0;�1; �1:5/, �0

t
D

.�0:2; 0:2;�:7; :7; 0:2;�0:2/, §2
0

D .1; � � � ; 1/, ¨2
0

D .0:3; : : : ; 0:3/. For 12 items, this setting was duplicated.

When ¨2 elements are constrained to a common value, the minimum and maximum coincide.
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provides the minimum and maximum relative bias of the intercept and slope

estimates as well as of its standard errors. This is a very important and surprising

finding as latent trait estimation and the goodness of fit of the model depend on

how well the ICCs are estimated, not on how well each fundamental parameter

is estimated.

Turning to the results for goodness of fit tests, Table 3 provides the empirical

rejection rates of the mean corrected goodness of fit test of the model to the

tetrachoric correlations. As this table shows, the test maintains its nominal rates

for all the small models considered, whereas it is slightly too conservative for

12 items (it rejects slightly less than it should), particularly when sample size

is 200.

In the aforementioned simulations we investigated item parameter recovery

for the Thurstonian IRT model (i.e., a first-order model with correlated residuals

and restrictions on the parameters). In terms of item parameters, this model

and the Thurstonian factor model with unconstrained thresholds (i.e., a second-

order model) are equivalent. Nevertheless we also run some conditions using the

Thurstonian factor model to investigate whether the choice of parameterization

affected in any way the results. It did not; results were absolutely identical in

all replications and conditions. Nevertheless, the IRT model runs considerably

faster than the Thurstonian factor model. However, the Thurstonian IRT model

TABLE 2

Minimum and Maximum Relative Bias (in %) of Estimates and Standard Errors

for Derived Parameters

O’ O“

n N ¨2 Bias Est. Bias SE Bias Est. Bias SE

6 1,000 Common 0; 1 �2; 5 0; 1 �5; 2

6 500 Common 0; 1 �2; 2 1; 2 �4; 3

6 200 Common 1; 3 �6; 4 2; 5 �4; 1

6 1,000 Unequal 0; 1 �2; 5 0; 1 �4; 3

6 500 Unequal 0; 2 �2; 3 1; 3 �6; 4

6 200 Unequal 1; 5 �6; 4 2; 7 �8; 1

12 1,000 Common �2; 1 �5; 6 �1; 1 �7; 3

12 500 Common �2; 2 �4; 7 �1; 1 �5; 3

12 200 Common �2; 3 �4; 5 �1; 3 �6; 4

12 1,000 Unequal �2; 1 �5; 6 �1; 1 �7; 2

12 500 Unequal �2; 2 �4; 8 �1; 1 �7; 3

12 200 Unequal �2; 4 �5; 5 0; 3 �11; 4

Note. One thousand replications per condition. For 6 items, œ0 D .1:5; 1; 0; 0; �1; �1:5/,

�0

t D .�0:2; 0:2; �7; :7; 0:2; �0:2/, §20

D .1; � � � ; 1/, ¨20

D .0:3; : : : ; 0:3/. For 12 items, this

setting was duplicated.
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956 MAYDEU-OLIVARES AND BROWN

TABLE 3

Empirical Rejection Rates of the Chi-Square Test of Exact Fit

Across 1,000 Replications

Rejection Rates

n N ¨2 1% 5% 10% 20%

6 1,000 Common 1.3 4.6 10.3 19.1

6 500 Common 0.8 5.2 9.9 16.8

6 200 Common 0.7 3.7 8.8 19.8

6 1,000 Unequal 1.4 5.2 10.3 18.9

6 500 Unequal 0.8 5.6 9.7 18.4

6 200 Unequal 1.3 4.1 8.8 18.7

12 1,000 Common 0.1 3.1 7.6 16.9

12 500 Common 0.1 1.4 4.4 14.8

12 200 Common .0 1.1 3.5 12.2

12 1,000 Unequal 0.5 2.8 7.1 15.8

12 500 Unequal 0.2 1.3 5.3 15.9

12 200 Unequal 0 0.8 3.4 11.8

and the Thurstonian factor model are not equivalent when used to score the

latent traits as in the former we use the simplifying assumption that ICCs are

locally independent.

Latent Trait Recovery

To investigate how well MAP scores can recover the true latent trait scores

we performed additional simulations. Fourteen conditions were considered. The

conditions were obtained by crossing two model sizes (6 and 12 items), four

values of the paired specific error variances (0, 0.1, 0.3, and 0.5), and two models

(the Thurstonian factor model and the Thurstonian IRT model). The ICC for the

Thurstonian factor model and details on how to estimate MAP scores under

this model are given in Appendix B. The same values for the factor loadings,

thresholds, and uniquenesses used in the previous simulations were used here.

Here, however, we varied the value of the common paired specific error variance

to investigate if it affected in any way latent trait recovery. All simulations were

performed using Mplus. In all cases, item parameters were treated as known and

true latent trait scores were generated using the Thurstonian factor model. Hence,

the use of the Thurstonian IRT model for scoring assuming local independence

involves the use of a misspecified model. MAP estimates cannot be computed

for the Thurstonian factor model when ¨2 D 0 (i.e., for ranking data). Hence,

only 14 conditions were investigated (rather than 16). For each of the conditions,

100 data sets of 1,000 respondents were used.
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TABLE 4

Average Correlations Between True Latent Trait Scores and MAP Scores

Across 100 Sets of 1,000 Respondents

Correlations Between

Items ¨2

True Scores

and MAP

Scores

True Scores and MAP

Scores Assuming Local

Independence

MAP Scores and MAP Scores

Assuming Local

Independence

6 0 — 0.873 —

6 0.1 0.872 0.871 0.997

6 0.3 0.871 0.870 0.998

6 0.5 0.871 0.869 0.998

12 0 — 0.936 —

12 0.1 0.937 0.935 0.997

12 0.3 0.936 0.932 0.997

12 0.5 0.934 0.928 0.997

Note. MAP D maximum a posteriori. Item parameters are assumed to be known. For 6 items,

œ0 D .1:5; 1; 0; 0; �1; �1:5/, �0

t D .�0:2; 0:2; �:7; :7; 0:2; �0:2/, §20

D .1, � � � , 1/. For 12 items,

this setting was duplicated. ¨2 D 0 implies ranking data; in this case MAP scores cannot be

computed easily without assuming local independence.

Table 4 provides the average correlation between true and recovered scores

for each of the conditions. One clear result from this table is that the value of

the paired specific error variance has negligible impact on latent trait recovery.

In particular, latent trait recovery is very similar for ranking data .¨2 D 0/ and

paired comparisons data .¨2 > 0/. Another clear result apparent in this table

is the negligible impact of ignoring local dependencies in latent trait estimation

for these models. As can be seen in this table, the correlation between MAP

scores obtained with or without a local independence assumption are in all

cases around 0.998. Using the simplifying assumption of local independence

only negligibly affects MAP scores. The only factor that has a clear impact on

latent trait recovery is test length: the correlation between true and estimated

scores is around 0.935 with 12 items but only around 0.872 with 6 items. This is

because MAP scores are biased toward the mean, particularly in small models,

which leads to a small variance of the estimated MAP scores.

Numerical Examples

We provide two empirical applications to illustrate the features of the model

introduced here. The first one involves assessing vocational interests using a

paired comparison task, whereas the second one involves assessing work moti-

vation using a ranking task. We provide the modeling results, selected ICCs
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958 MAYDEU-OLIVARES AND BROWN

and information functions, and estimations of true score recovery for these

applications.

Example 1: Modeling vocational interests using a paired comparisons

task. Elosua (2007) collected data from 1,069 adolescents in the Spanish

Basque Country using the 16PF Adolescent Personality Questionnaire (APQ;

Schuerger, 2001). The Work Activity Preferences section of this questionnaire

includes a paired comparisons task involving the six types of Holland’s RIASEC

model (see Holland, 1997): Realistic, Investigative, Artistic, Social, Enterprising,

and Conventional. For each of the 15 pairs, respondents were asked to choose

their future preferred work activity. Typically, one would be interested in the

actual utilities of vocational interests in this paired comparison task (first-order

latent variables), but other higher order vocational factors might also be of

interest. Factorial representations of the RIASEC model have been extensively

researched and discussed in the literature. Rounds and Tracey (1993) examined

77 published RIASEC correlation matrices and concluded that, taken together,

these studies suggested the presence of a general factor with equal loadings

on all specific interests, which they interpreted as bias. However, this uniform

biasing factor would not be observed here due to the comparative nature of

the task (Cheung & Chan, 2002). The remaining variance, Rounds and Tracey

(1993) suggested, is best explained by the original theory-based circumplex.

In Hogan’s (1983) interpretation, for instance, one of the two orthogonal axes

on the circumplex was Conformity, with Conventional at the positive pole and

Artistic at the negative pole, Enterprising and Realistic loading positively, and

Social and Investigative negatively. For the purposes of illustration we will fit

a unidimensional Thurstonian IRT model here with the latent trait representing

Conformity.

Thus, we fitted a one-dimensional model with unrestricted thresholds. The

model yields a chi-square of 102.427 on 80 df, p D :046, RMSEA D 0.016.

The model fits rather well. Next, we consider obtaining a more parsimonious

model. One way to do this is to set all the variances of the paired comparison

specific errors ¨2
l equal. In so doing, we obtain a chi-square of 155.940 on 94

df, RMSEA D 0.025. Clearly, this model fits more poorly, suggesting that the

number of intransitivities may not be approximately equal across pairs. Another

way to obtain a more parsimonious model is to constrain the thresholds ”l

by estimating the mean utilities �i . In this case, we obtain a chi-square of

150.873 on 90 df, RMSEA D 0.025. Therefore, this model also fits more poorly

that our initial model. The best fitting unidimensional model for these data is

the unrestricted one-dimensional model. We provide in Table 5 the parameter

estimates and standard errors for this model.

It can be seen that an arbitrary choice of identification constraints in this case

yielded a set of parameters that match well with the substantive theory. In line
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TABLE 5

One-Dimensional Thurstonian IRT Model for Paired Comparisons Data,

Vocational Interests Example, Parameter Estimates, and Standard Errors

l D i,j ”l ¨2

l
i œi §2

i

1,2 0.742 (0.093) 1.003 (0.302) 1 �0.026 (0.089) 1.692 (0.226)

1,3 0.421 (0.081) 1.146 (0.296) 2 �0.284 (0.083) 0.892 (0.132)

1,4 0.055 (0.063) 0.464 (0.189) 3 �0.898 (0.143) 0.464 (0.154)

1,5 0.807 (0.103) 1.213 (0.358) 4 0.511 (0.120) 0.224 (0.178)

1,6 �0.035 (0.067) 0.346 (0.193) 5 �0.636 (0.106) 1.534 (0.253)

2,3 �0.35 (0.068) 0.778 (0.233) 6 0 (fixed) 1 (fixed)

2,4 �0.644 (0.084) 0.831 (0.256)

2,5 0.172 (0.07) 0.572 (0.252)

2,6 �0.858 (0.084) 0.505 (0.215)

3,4 �0.517 (0.079) 0.639 (0.219)

3,5 0.329 (0.067) 0.521 (0.222)

3,6 �0.48 (0.072) 0.639 (0.209)

4,5 0.768 (0.106) 1.799 (0.444)

4,6 0.079 (0.07) 1.815 (0.483)

5,6 �1.45 (0.14) 2.523 (0.560)

Note. IRT D item response theory. Standard errors in parentheses. The items are 1 D Realistic,

2 D Investigative, 3 D Artistic, 4 D Conventional, 5 D Social, 6 D Enterprising.

with the definition of Conformity, the scale Conventional has the highest positive

loading and Artistic has the lowest negative loading on the common factor.

However, these estimates are not unique. The results presented in Appendix A

imply that alternative sets of parameters can be obtained that yield the same

fit to the data. For instance, using Equation (A9) we find out that if instead of

fixing the last factor loading to 0 we were to fix it to 1, we would obtain the

following factor loadings estimates: 0.974, 0.716, 0.102, 1.511, 0.363, 1 (i.e.,

this particular change of identification constraint simply amounts to adding 1

to the estimates shown in Table 5). The standard errors are unaffected by the

choice of identification constraint. Goodness of fit tests, intercepts and slopes,

information functions, and latent trait estimates are also unaffected by the choice

of identification constraints.

Estimated intercepts ’ and slopes “ computed using Equation (36) are shown

in Table 6. Notice that about half of the slopes in the table are negative,

whereas the other half are positive. Also, we notice that the magnitudes of the

estimated slopes are in general very low. The only large slope in this example

(�1.223) is for pair {3,4}. Not surprisingly, this slope relates to the pair {Artistic,

Conventional}, two interests serving as the main negative and positive indicators

for the latent trait, Conformity. The rest of the paired comparisons do not provide

much information about the latent trait.
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TABLE 6

Intercepts and Slopes for the Vocational Interests

Example, Parameter Estimates, and Standard Errors

l D i,k ’l “l

1,2 �0.392 (0.057) 0.136 (0.047)

1,3 �0.232 (0.048) 0.480 (0.079)

1,4 �0.036 (0.041) �0.347 (0.092)

1,5 �0.383 (0.056) 0.290 (0.051)

1,6 0.020 (0.038) �0.015 (0.051)

2,3 0.240 (0.052) 0.421 (0.090)

2,4 0.461 (0.078) �0.569 (0.112)

2,5 �0.099 (0.041) 0.204 (0.054)

2,6 0.554 (0.063) �0.184 (0.053)

3,4 0.448 (0.087) �1.223 (0.152)

3,5 �0.207 (0.046) �0.165 (0.079)

3,6 0.331 (0.055) �0.620 (0.107)

4,5 �0.407 (0.068) 0.608 (0.084)

4,6 �0.045 (0.040) 0.293 (0.081)

5,6 0.645 (0.077) �0.284 (0.047)

Note. The items are 1 D Realistic, 2 D Investigative,

3 D Artistic, 4 D Conventional, 5 D Social, 6 D Enterprising.

Given the little information about the latent trait contained in the binary

outcome variables in this example it is not surprising that the MAP test in-

formation function is rather low and the latent trait standard errors are high

(see Figure 1). The standard error function is relatively uniform, which justifies

FIGURE 1 Maximum a posteriori test information function and standard error function

for the vocational interests example.

Note. The dotted line is the standard error function.
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computing a single reliability index to summarize the precision of measure-

ment across the latent trait continuum. Using Equation (44), the estimated

average error of estimation of MAP scores is 0.38, which yields a theoretical

estimate of reliability of 1 � 0:38 D 0:62. The empirical estimated average

error of estimation, computed using Equation (45), is 0.36, quite close to the

theoretical estimate. However, the MAP estimates in this application are quite

shrunken toward the mean and the sample variance of the estimated MAP

scores, computed using Equation (45), is only 0.64, which leads to a very low

empirical estimate of reliability, 0.43. Thus, in this application the empirical

estimate of reliability underestimates quite markedly the theoretical reliability.

In either case, we conclude that although the model appears to fit well, the

precision of measurement obtained is unacceptable. However, this particular

paired comparisons task was used as an illustration as it was not designed

to measure a single underlying trait. Instead, the parameters of the utilities

(vocational interests) would be of interest here.

Example 2: Modeling work motivation using a ranking task. This em-

pirical example is based on ranking data collected as part of a research in

the area of work motivation (Yang, Inceoglu, & Silvester, 2010). Nine broad

features of the work environment that are positively related to employee well-

being, for example “personal development,” were developed from ideas found in

the literature on person-environment fit and the vitamin model of Warr (2007).

1. Supportive Environment.

2. Challenging Work.

3. Career Progression.

4. Ethics.

5. Personal Impact.

6. Personal Development.

7. Social Interaction.

8. Competition.

9. Work Security.

A hypothesized common factor underlying these generally desirable work fea-

tures is general work motivation, that is, having strong drive for working and

achieving. One thousand eighty volunteers were asked to rank these job features

“according to how important it is for you to have these in your ideal job.”

Extended descriptions of the job features were presented to the participants, for

example, “The opportunity to develop your knowledge and skills and to get

feedback on what you do well and less well.”

After transforming the observed ranks into binary outcomes, we fitted a

unidimensional Thurstonian IRT model. Using DWLS estimation Mplus yielded
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962 MAYDEU-OLIVARES AND BROWN

a mean corrected chi-square of 3121.126 on 614 df, RMSEA D 0.062. However,

because the binary outcomes arise from rankings the degrees of freedom (and

the RMSEA) need to be adjusted using Equation (33). The correct number

of degrees of freedom is 594 but the RMSEA is still 0.062. The model fits

acceptably. Table 7 displays the estimated factor loadings and uniquenesses. As

we can see in this table, the job characteristic that is more strongly related to

general work motivation is having a challenging work environment followed by

career progression and supportive environment. Interestingly, the characteristic

that is least strongly related to work motivation is having work security.

Figure 2 shows the MAP information function (and the SE function) for this

example. Interestingly, individuals scoring low on work motivation are measured

with higher precision than individuals high on work motivation. Also, we ob-

tain smaller standard errors in this application than in the vocational interest

application (there are more binary outcomes in this application). The standard

error function is not too uniform, but we compute the reliability estimate for

this example. Using Equation (44), the estimated average error of MAP scores is

0.26. Thus, the theoretical estimate of reliability is 0.74. The empirical estimated

average error of estimation, computed using Equation (45), is 0.27, quite close to

the theoretical estimate, and the sample variance of the estimated MAP scores,

computed using Equation (45), is 1.09, which leads to an empirical estimate of

reliability of 0.76. Thus, in this application both estimates of reliability suggest

TABLE 7

One-Dimensional Thurstonian IRT Model for Ranking

Data, Work Motivation Example, Factor Loading, and

Uniqueness Estimates and Their Standard Errors

i œi §2

i

1 1.028 (0.158) 1.330 (0.222)

2 1.313 (0.157) 0.851 (0.167)

3 1.104 (0.154) 1.123 (0.193)

4 0.931 (0.145) 0.998 (0.164)

5 0.882 (0.136) 0.878 (0.144)

6 0.908 (0.143) 0.566 (0.092)

7 0.539 (0.122) 0.613 (0.108)

8 0.330 (0.120) 10.346 (0.249)

9 0 (fixed) 1 (fixed)

Note. Standard errors in parentheses. The thresholds are

not shown. The paired specific errors are fixed to zero. The

items are 1 D Supportive Environment, 2 D Challenging

Work, 3 D Career Progression, 4 D Ethics, 5 D Personal

Impact, 6 D Personal Development, 7 D Social Interaction,

8 D Competition, 9 D Work Security.
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FIGURE 2 Maximum a posteriori test information function and standard error function

for the work motivation example.

Note. The dotted line is the standard error function.

an adequate level of measurement across the latent trait continuum. Also, the

empirical estimate is very close to the theoretical estimate.

DISCUSSION

Item response modeling is generally applied to single-stimulus or Likert-type

items. However, it can also be applied to items presented in a comparative

manner, for instance, using paired comparisons or ranking. Thurstonian models

for comparative data become IRT models when the latent utilities (discriminal

processes) in these models depend on a set of latent traits (Maydeu-Olivares,

2001; Maydeu-Olivares & Böckenholt, 2005). In this article we have deepened

our understanding of Thurstonian IRT models, with a particular emphasis on

unidimensional models (models with a single latent trait underlying the items).

Unidimensional Thurstonian IRT models are simply normal ogive models

with structured factor loadings Mœl D œi � œk , structured uniquenesses M§2
l D

§2
i C §2

k C ¨2
l , and structured local dependencies (i.e., local independence does

not hold). These features of Thurstonian IRT models have important implications

for item parameter estimation, latent trait estimation, and test construction. We

discuss each of these topics in turn.

Full information maximum likelihood (FIML; also called marginal maxi-

mum likelihood) is ill suited for item parameter estimation in these models.

For full information estimation, Markov Chain Monte Carlo (MCMC; Tsai &

Böckenholt, 2001) may be better suited than FIML, but MCMC estimation is

computationally very intensive. On the other hand, limited information estima-
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964 MAYDEU-OLIVARES AND BROWN

tion via thresholds and tetrachoric correlations is computationally very efficient

and can be implemented using existing software. Here we used Mplus to this

aim. Thurstonian models for comparative data can be specified in two equivalent

ways: as a second-order factor analysis model for binary data or as a first-order

model with structured correlated errors. To distinguish them, we refer to the

first approach as Thurstonian factor model and to the latter as Thurstonian IRT

model. It is simpler to write scripts for the Thurstonian factor model than for

the Thurstonian IRT model as in the latter case one needs to impose constraints

on the model parameters shown in Equations (26) and (27). Also, when fitting

the Thurstonian IRT model, Mplus warns that the Qn by Qn covariance matrix of

residuals, M‰2
, is not of full rank. We have pointed out that this matrix is of rank

n � 1. Mplus input files for the examples in this article are available from the

authors upon request.

Mplus also yields MAP trait scores as a side product of the parameter

estimation process. However, it does so using the simplifying assumption of local

independence for latent trait estimation. This has no effect when the Thurstonian

factor model is used as in this case local independence holds. Hence, one can

obtain “correct” latent trait estimates using the Thurstonian factor model but

only for paired comparisons models. No latent trait estimates can be obtained

for ranking data. On the other hand, when the Thurstonian IRT model is used

one obtains latent trait estimates for both paired comparisons and ranking data,

but in this case local independence does not hold. However, as our simulation

studies show, the use of this simplifying assumption has negligible effect on the

quality of the latent trait estimates.

Our simulation studies also show that model size (i.e., the number of items

being compared) has a major impact on the accuracy of the item parameter

estimates. Thresholds, factor loadings, and uniquenesses are well estimated in

large models (i.e., 12 items) even in small samples (200 observations) but very

poorly estimated in small models (6 items). Very large samples (larger than 1,000

observations) are needed to accurately estimate paired specific error variances (in

paired comparisons models). Perhaps the most interesting finding is that the item

characteristic curves (i.e., intercept and slopes) are very accurately estimated in

these models even when individual parameters are not. We found that in all

cases considered a sample of size 200 sufficed to estimate very accurately the

ICCs. This is important as latent trait recovery, information functions, even the

goodness of fit tests depend on how well the ICCs are estimated and not on how

well individual parameters are estimated.

No simulation studies have been presented comparing the standard errors

for latent trait scores obtained using the Thurstonian IRT model versus the

Thurstonian factor model because in the latter the standard errors also depend

not only on the value of the latent trait but also on the values of the utility

errors. This is discussed in Appendix B.
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CONCLUDING REMARKS

Test design when comparative tasks are used is a different endeavor than in

the case of single-stimulus or rating tasks. In rating tasks, items are selected

so that their factor loadings are as high as possible because test information is

a function of the loadings’ magnitudes. In contrast, in comparative tasks, test

information is a function of differences of factor loadings when one latent trait

is measured. Hence, maximum information is obtained when these differences

are largest, that is, when factor loadings are of widely different magnitudes.

If all items to be compared are highly related to the latent trait, as in rating

applications, test information will be low and latent traits will be estimated so

poorly as to make the application useless. The problem with low discrimination

when items have factor loadings that are too similar to each other is easy to

illustrate if one considers comparing two equally discriminating statements from

the same trait. Utilities for the two statements are likely to be very similar

for the respondent and preference for one of them, therefore, will be random.

Conversely, if items with varying discriminations are compared (particularly

when one item is positively keyed and the other is negatively keyed), making a

choice is easy because the utilities for the items are likely to be very different.

Thus, it is important in comparative data applications with one underlying latent

trait to select items with widely different expected factor loadings. Also, it is

not important if the signs of factor loadings estimates are of the “wrong” sign

according to theory, as the sign of the loading depends on the values used

to identify the model. Furthermore, intercepts and slopes are invariant to the

choice of identification constraints and so are information functions, reliability

estimates, and latent trait scores.

Sufficient consideration has also to be given to the pairwise intercepts. In

comparative tasks, intercepts are a function of differences of the utilities’ means

of the items. The intercepts will influence the test information function, and

to obtain sufficient information along the whole latent trait continuum, it is

recommended to combine items so that the differences in their utilities’ means

are widely varying.

The aforementioned considerations are important for designing ranking and

paired comparison tasks involving a single trait. Most often, however, ranking

and paired comparison tasks are used to assess multiple traits. In multidimen-

sional applications the number of items is much larger and it becomes unfeasible

to present all items in a single block as in the examples shown in this article.

Rather, an incomplete paired comparisons design or a ranking task where items

are presented in multiple blocks of rankings, typically triplets or quads, is called

for. Multidimensional tests involving multiple blocks of rankings are generally

referred to in the literature as forced-choice tests, and they may involve as many

as 30 latent traits. The extension of the present setup to applications presented
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966 MAYDEU-OLIVARES AND BROWN

in these forms is straightforward: the two items in a paired comparison belong

to different traits, the item characteristic function becomes a two-dimensional

normal ogive model, and the item information involves computing directional

derivatives (Brown & Maydeu-Olivares, 2009). These models have similarities to

and differences from the one-dimensional models described here. For instance, in

the multidimensional case the consideration of widely varying factor loadings

does not apply to the same extent, whereas other considerations such as the

number of traits assessed become more important for efficient trait estimation. A

detailed account of multidimensional Thurstonian IRT models for forced-choice

tests is given in Brown and Maydeu-Olivares (in press).
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968 MAYDEU-OLIVARES AND BROWN

APPENDIX A

Relationship Between Item Parameters in Equivalent
One-Dimensional Thurstonian IRT Models

Consider a Thurstonian model with parameter matrices �t , †t , and �2. Any

model with parameter matrices Q�t ,
Q†t , and Q�2

satisfying

DA Q�t D DA�t ; (A1)

Q†t D c†t C d10 C 1d0; (A2)

and

Q�2 D c�2; (A3)

is equivalent to the estimated model (Tsai, 2003; Corollary 1). That is, it yields

the same fit to the data. In Equations (A2) and (A3) c is a positive constant and

d is an n � 1 vector of constants. These constants are arbitrary as long as Q†t

and Q�2
are positive definite.

Assume ‰2 and �2 are diagonal matrices. Given a set of population item

parameters of a unidimensional Thurstonian IRT model �t , œ, ‰2, and �2, we

can use Equations (A1) to (A3) to obtain another set of population parameters,

say Q�t ,
Qœ, and Q‰2

, that will yield the same fit to the data. With �t , œ, ‰2,

and �2 the true and unknown population parameters, the following results can

be used to determine the population parameters that will be estimated when the

f th element of Q�t ,
Qœ, and Q‰2

is fixed for identification (we fix the nth element

throughout this article). Or with �t , œ, ‰2, and �2 the parameter estimates

obtained with a given set of identification constraints, the following results can

be used to determine the parameter estimates that will be obtained when a

different set of identification constraints involving the f th element of Q�t ,
Qœ,

and Q‰2
is used.

To establish relationships between Q‰2
and ‰2, and between Qœ and œ, we use

Equation (A2). By fixing œf to Qœf , and §2
f to Q§2

f , we obtain an equivalent model

if and only if Q†t D c†t C d10 C 1d0, which for one-dimensional Thurstonian

models implies that

Qœ Qœ0 C Q‰2 D c.œœ0 C ‰2/ C d10 C 1d0 D Œcœœ0 C d10 C 1d0� C c‰2: (A4)

The rightmost part of Equation (A4) is the only way to present the utilities

covariance structure as a sum of two matrices, one of which is diagonal (the
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uniqueness component). Therefore we can write

Q‰2 D c‰2; (A5)

Qœ Qœ0 D cœœ0 C d10 C 1d0: (A6)

The diagonal matrix of uniquenesses for the model where §2
f is fixed to Q§2

f

contains n�1 elements Q§2
i D c§2

i . It means that the ratio between any diagonal

element in this matrix and the corresponding diagonal element in the matrix

containing “true” uniquenesses is equal to c. It then follows that the equality

c D Q§2
i

§2
i

D
Q§2

f

§2
f

holds for any i , and therefore any uniqueness parameter in the

equivalent model can be expressed through its “true” value multiplied by the

ratio of the fixed parameter to its “true” value:

Q§2
i D §2

i

Q§2
f

§2
f

: (A7)

Now, it follows from Equation (A6) that for any i the following equations

also hold:

Qœ2
i D cœ2

i C 2di

Qœ2
f D cœ2

f C 2df

Qœi
Qœf D cœiœf C di C df :

(A8)

Adding the first and the second equations, and subtracting the third multiplied

by 2, we derive the following equality: Qœ2
i C Qœ2

f �2 Qœi
Qœf D c.œ2

i Cœ2
f �2œi œf /,

or . Qœi � Qœf /2 D c.œi � œf /2. It then follows that

Qœi D Qœf C

v

u

u

t

Q§2
f

§2
f

.œi � œf /: (A9)

It can be similarly shown that the relationship between the utilities’ means is

Q�i D Q�f C

v

u

u

t

Q§2
f

§2
f

.�i � �f /: (A10)

And finally, it follows straight from Equation (A3) that

Q̈ 2
i D ¨2

i

Q§2
f

§2
f

: (A11)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
y
d
e
u
-
O
l
i
v
a
r
e
s
,
 
A
l
b
e
r
t
]
 
A
t
:
 
1
7
:
1
9
 
2
0
 
D
e
c
e
m
b
e
r
 
2
0
1
0



970 MAYDEU-OLIVARES AND BROWN

In models with unrestricted thresholds, Equation (A1) is replaced by

D Q” D D”; (A12)

and the relationship between the true thresholds and the estimated thresholds is

Q”i D ”i

v

u

u

t

Q§2
f

§2
f

: (A13)

For example, consider a model for paired comparison data involving n D 5

items with true parameters

œ0 D .1:5; 0:6; 1; 0:8; 1:5/;

§20 D .0:5; 1:2; 0:8; 1; 0:7/;

�0
t D .1:3; 0:4; �0:2; 0:4; 0:5/;

¨20 D .0:2; 0:1; 0:3; 0:2; 0:1; 0:9; 0:3; 0:5; 0:3; 0:5/:

(A14)

To estimate the model with a threshold structure we arbitrarily fix Qœ5 D 0,
Q§2

5 D 1, and Q�5 D 0. Using Equations (A7), (A9), (A10), and (A11) the

population factor loadings that would be estimated are

Qœ0 D .0; �1:076; �0:598; �0:837; 0�/;

Q§20 D .0:714; 1:714; 1:143; 1:43; 1�/;

Q�0
t D .�0:956; 0:084; 0:837; 0:120; 0�/;

Q̈ 20 D .0:14; 0:07; 0:21; 0:14; 0:07; 0:63; 0:21; 0:35; 0:21; 0:35/;

(A15)

where we have marked using an asterisk the parameters fixed for identification.

If a model with unrestricted thresholds is estimated, then the true thresholds

are ”0 D (0.9, 1.5, 0.9, 0.8, 0.6, 0, �0.1, �0.6, �0.7, �0.1) and the population

thresholds that would be estimated are Q”0 D (1.040, 1.793, 1.08, 0.956, 0.753,

0.036, �0.084, �0.717, �0.837, �0.120).

This example shows why in applications one can get estimated factor loadings

with the wrong sign according to substantive theory. If a solution with all

loadings being positive is desired, all that is needed is to reestimate the model

fixing at zero the loading with smallest negative estimate instead of the last one.
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Indeed, Equations (A7), (A9), (A10), and (A11) show that if Qœ2 D 0 is used to

identify the model instead of Qœ5 D 0, we would estimate

Qœ0 D .1:076; 0�; 0:478; 0:239; 1:076/; (A16)

and the remaining parameters shown in Equation (A15).

In closing, for equivalent models, slopes and intercepts are invariant to the

choice of identification constraints Q�f , Qœf , and Q§2
f . This is because

Q“l D
Qœi � Qœk

q

Q§2
i C Q§2

k

D
.œi � œk/

v

u

u

t

Q§2
f

§2
f

q

Q§2
i C Q§2

k

D œi � œk
v

u

u

t

§2
f

Q§2
f

q

Q§2
i C Q§2

k

D œi � œk
q

§2
i C §2

k

D “l ;

(A17)

Q’l D Q�i � Q�k
q

Q§2
i C Q§2

k

D
.�i � �k/

v

u

u

t

Q§2
f

§2
f

q

Q§2
i C Q§2

k

D �i � �k
v

u

u

t

Q§2
f

§2
f

q

Q§2
i C Q§2

k

D �i � �k
q

§2
i C §2

k

D ’l :

(A18)
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APPENDIX B

Information Function for the Thurstonian Factor Model for

Paired Comparisons Data

Letting ˜� D .t; ˜/0, from Equation (24), the Thurstonian factor model with

unrestricted thresholds can be written as

y� D �” C .A 0/

�

t

˜

�

C e D �” C ƒ�˜� C e; (B1)
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with �˜� D 0 and

cov.˜�/ � ˆ� D
�

ƒˆƒ0 C ‰2 ƒˆ

ˆƒ0 ˆ

�

(B2)

and we obtain MAP scores by minimizing Equation (38) where

ˆ��1 D
�

‰�2 �‰�2ƒ

�ƒ0‰�2 ˆ�1 C ƒ0‰�2ƒ

�

(B3)

Thus, for paired comparisons models, the ICC is

Pl .˜
�/ D ˆ

0

B

@

�”l C œ�0

l ˜�

q

¨2
l

1

C

A
D ˆ

0

B

@

�”l C ti � tk
q

¨2
l

1

C

A
; (B4)

because recall that for ranking models ¨2
l D 0 and the following discussion is

not applicable. We note that the ICC does not depend on the latent traits, ˜. It

only depends on the utilities, t.

From here on we concentrate, for ease of exposition, on models with a single

latent trait. In this case,

cov.˜�/ � ˆ� D
�

œœ0 C ‰2 œ

œ0 1

�

; (B5)

ˆ��1 D

0

B

B

B

B

B

B

B

B

@

1

§2
1

0 0 � œ1

§2
1

0
:: : 0

:::

0 0 1
§2

n
� œn

§2
n

� œ1

§2
1

� � � � œn

§2
n

1 C œ0‰2œ

1

C

C

C

C

C

C

C

C

A

: (B6)

Now, akin to Equation (42) the information function about the latent trait ˜

is

I
˜
P .˜�/ D I

˜.˜�/ � @2 ln.¥.˜�//

@˜2
D I

˜.˜�/ C Œˆ��1�˜;

D
X

l

I
˜

l .˜�/ C 1 C œ0‰2œ

(B7)

where Œˆ��1�˜ denotes the diagonal element of ˆ��1 corresponding to the

latent trait. Also, when conditioning on the utilities and the latent trait, local
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independence holds, so the information function is additive. The ML item

information about ˜ is

I
˜

l .˜�/ D ŒO˜Pl .˜
�/�2

Pl.˜�/Œ1 � Pl .˜�/�
; (B8)

where

O˜Pl .˜
�/ D

nC1
X

iD1

�

@Pl.˜
�/

@˜�
i

corr.˜�
i ; ˜/

�

D @Pl.˜
�/

@ti
corr.ti ; ˜/ C @Pl.˜

�/

@tk
corr.tk ; ˜/;

(B9)

is the derivative in the direction of the latent trait (see Reckase, 2009) and from

Equation (B5)

corr.ti ; ˜/ D œi
q

œ2
i C §2

i

: (B10)

Finally, with zl D �”l Cti �tkp
¨2

l

,
@Pl .˜

�/

@ti
D ¥.zl /p

¨2
l

and
@Pl .˜

�/

@tk
D � ¥.zl /p

¨2
l

, the item

information function for the Thurstonian factor model is

I
˜

l .˜�/ D

0

B

@

œi
q

œ2
i C §2

i

� œk
q

œ2
k C §2

k

1

C

A

2

¨2
l

� Œ¥.zl /�
2

ˆ.zl /Œ1 � ˆ.zl /�
; (B11)

This is to be compared with the item information function for the Thurstonian

IRT Model (40), which using the threshold/factor loading parameterization and

xl D �”l C.œi �œk /˜p
§2

i C§2
k C¨2

l

is

Il.˜/ D .œi � œk/2

§2
i C §2

k C ¨2
l

� Œ¥.xl /�
2

ˆ.xl /Œ1 � ˆ.xl /�
; (B12)

where recall that Mœl D œi � œk.

We did not perform a simulation study comparing the standard errors for the

MAP scores of the latent trait obtained using the Thurstonian factor model and

the Thurstonian IRT model because in the former standard errors for the latent

trait estimates depend on the utilities, that is, on the value of the latent trait, but

also on the values of the utility errors ©; see Equation (8). In other words, in a
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FIGURE B1 Maximum a posteriori (MAP) standard error function for the Thurstonian

item response theory (IRT) model and average MAP standard error function for the

Thurstonian factor model: 12-item condition with ¨2 D 0:3.

Note. The dotted line is the standard error function for the Thurstonian IRT model; the

solid line is the average standard error function for the Thurstonian factor model.

Thurstonian factor model with a single trait, the standard error of a MAP latent

trait estimate is not unique because it depends also on the values of the utility

errors. In contrast, in the Thurstonian IRT model the standard error for a MAP

latent trait estimate is unique.

However, we can compare the standard error function Equation (B12) for

the Thurstonian IRT model with the average standard error function for the

Thurstonian factor model. This is Equation (B11) with the utility errors ©

evaluated at their mean, 0. As an illustration, we provide the Figure B1 both

functions for the 12-item condition described earlier with ¨2 D 0:3. As can be

seen in this figure, the standard error obtained for the Thurstonian IRT model

(under the simplifying assumption of local independence) is very close to the

average of the “correct” standard errors (those obtained for the Thurstonian factor

model) in the latent trait range (�3, 3). Outside this range, the Thurstonian IRT

model standard error is larger. Also, note the “bump” in the average standard

error function for the Thurstonian factor model, which we believe is the result

of being a second-order model.
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