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Abstract

Local dependence (LD) for binary IRT models can be diagnosed using Chen and
Thissen’s bivariate X2 statistic and the score test statistics proposed by Glas and
Suárez-Falcón, and Liu and Thissen. Alternatively, LD can be assessed using general
purpose statistics such as bivariate residuals or Maydeu-Olivares and Joe’s Mr statis-
tic. The authors introduce a new general statistic for assessing the source of model
misfit, R2, and compare its performance to the above statistics using a simulation
study. Results suggest that the bivariate and trivariate X2 statistics have unacceptable
Type I error rates. As for the remaining statistics, if their computation involves the
information matrix (bivariate residuals and score tests), they show good power; if
not (Mr and R2), they lack power. Of course, the performance of the bivariate resi-
duals and score tests depends on how the information matrix is approximated.
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Introduction

Item response theory (IRT) refers to a set of models for discrete data that are widely

used in educational, psychological, and medical assessment applications (Thissen &

Steinberg, 2009). In particular, these models posit that the observed responses to a set

of discrete items can be accounted for by a small number of latent traits (i.e.,
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unobserved continuous underlying variables). In this article, we shall restrict our-

selves to IRT models for binary data involving a single underlying latent trait.

One of the defining assumptions of IRT models is the conditional independence

assumption (also known as local independence; see McDonald, 1982). This assump-

tion states that the conditional probability of observing a response pattern given a par-

ticular latent trait value equals the product of the items’ conditional probabilities.

The violation of this assumption is generally referred to as local dependence (LD)

and cannot be tested directly because the latent trait is not observed. Furthermore,

violations of the local independence assumption cannot be isolated from the other

model assumptions. Rather, all the model assumptions (local independence, dimen-

sionality, specification of the item characteristic curve, and specification of the latent

trait density) are tested simultaneously when using an overall goodness-of-fit statistic

for multivariate discrete data such as Pearson’s X2, or the likelihood ratio test statis-

tic. Due to data sparseness, these statistics can only be used with very small models

(i.e., consisting of a few items; Bishop, Fienberg, & Holland, 1975). Fortunately, the

overall limited information test statistics Mr proposed recently (Maydeu-Olivares &

Joe, 2005, 2006; usually r = 2 or 3) are able to overcome the problem of data sparse-

ness and can be used in realistic size applications.

When a particular model shows misfit using an overall goodness-of-fit test, and

LD is the suspected culprit, researchers are interested in locating the source of misfit

to take remedial action, for instance, by removing certain items or by modifying the

model. A number of statistics have been proposed to provide information about local

dependencies among item subsets (usually pairs or triplets; e.g., Chen & Thissen,

1997; Glas & Suárez-Falcón, 2003; Liu & Thissen, 2012; Yen, 1984). Alternatively,

one can use general purpose statistics to assess the model misfit to subsets of items

(e.g., Maydeu-Olivares & Joe, 2006; Reiser, 1996).

In this article, the performance of some of these statistics in detecting LD in IRT

models for binary data is evaluated under a variety of simulated conditions. More

specifically, the statistics considered are the following: (a) Pearson’s X2 (Chen &

Thissen, 1997) statistic for pairs of items; (b) Glas and Suárez-Falcón’s (2003) score

test statistic for pairs of items; (c) Liu and Thissen’s (2012) score test statistic for

pairs of items; (d) Maydeu-Olivares and Joe’s (2006) M3 statistic for triplets of items;

(e) Pearson’s X2 statistic for triplets of items; (f) standardized bivariate residuals

(Maydeu-Olivares & Joe, 2005; Reiser, 1996); and (g) a new sum-score-based statis-

tic for pairs of items, R2, inspired in previous work by Glas (1988) and Thissen and

Orlando (2000).

The remaining part of this article is organized as follows: First, we describe each

of these statistics. Next, we examine their behavior under the null hypothesis (i.e.,

when the fitted model holds in the population). This is the most important condition,

as we do not want to remove well-fitting items since developing items is in general

expensive. Next, we examine the behavior of these statistics under two different alter-

natives that involve violations of local independence: (a) a bifactor structure and (b)

independent clusters multidimensional structure. For the ease of exposition, the fitted
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model is in all cases the 2-parameter logistic (2PL) model. Also, note that we restrict

ourselves to parametric methods. There are nonparametric procedures for detecting

LD such as DIMTEST (see Stout, 1987) that we do not consider here.

A Review of Existing Parametric LD Diagnostics

Consider a set of J binary items Y = (Y1, . . . , YJ ) of which the test is composed;

Yj = yj = f0, 1g for all j. For any unidimensional (i.e., single latent trait) IRT model,

the probability of observing one of the possible 2J response patterns y = (y1, . . . , yJ )

is

py = Pr(Y1 = y1, . . . , YJ = yJ ) =

ð‘

�‘

YJ

j = 1

Pr(yjju)f(u)du: ð1Þ

In Equation 1, u denotes the latent trait, and f(u) its density, which is often assumed

to be standard normal. The conditional probability of endorsing the item given a par-

ticular latent trait value, Pr(yj = 1ju), is generally referred to as the item characteristic

curve (ICC), and it is generally assumed to be monotonically increasing. One com-

monly used ICC is the 2PL model (Lord & Novick, 1968),

Pr(yj = 1ju) =
1

1 + exp (�aj � bju)
: ð2Þ

In Equation 2, the intercept aj and slope bj are related to the item’s difficulty and dis-

crimination, respectively.

The conditional independence assumption is embedded in Equation 1. It is given

by

Pr(y1, . . . , yJ ju) =
YJ

j = 1

Pr(yjju): ð3Þ

One of the earliest test statistics specifically proposed to diagnose LD (i.e., the viola-

tion of Equation 3) is Yen’s (1984) Q3 statistic. Let N denote sample size. Also, let

rij = yij � Pr(yij = 1jûi) be the residual of subject i (i = 1, . . . , N ) on item j conditional

on some estimated latent score, where yij is the actual response, and ûi is the esti-

mated latent score for subject i. Then Yen’s Q3 statistic is the correlation between

these residuals for items j and k. That is,

Q3, jk =

PN
i = 1 (rij � �rj)(rik � �rk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i = 1 (rij � �rj)
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 (rik � �rk)2

q , ð4Þ

in which �rj and �rk denote the average of rij and rik across subjects.
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Yen (1984) suggested treating the residuals rij as normally distributed and apply

Fisher’s r-to-z transformation to obtain an approximate p-value for Q3. However, a

simulation study performed by Chen and Thissen (1997) revealed that the suggested

reference distribution does not work well.

As an alternative, Chen and Thissen (1997) proposed applying Pearson’s X2 statis-

tic to each pair of items j and k:

X 2
jk = N

X1

yj = 0

X1

yk = 0

(pyjyk
� p̂yjyk

)2

p̂yjyk

: ð5Þ

In Equation 5, pyjyk
= Pr Yj = yj, Yk = yk

� �
denotes a bivariate cell probability under

the model, and pyjyk
denotes its corresponding sample proportion. In the case of uni-

dimensional IRT models,

pyjyk
=

ð‘

�‘

Pr(Yj = yjju)Pr(Yk = yk ju)f(u)du: ð6Þ

As reference distribution for this statistic, Chen and Thissen suggested a x2 distri-

bution with the degrees of freedom corresponding to an independence test. For binary

data, this amounts to using a x2
1 reference distribution. However, in a simulation study

using 2PL model, Liu and Thissen (2012) had shown that the empirical distribution

of the bivariate X2 is stochastically smaller than a x2
1 distribution; in other words, the

use of Chen and Thissen’s suggested reference distribution led to underrejecting the

model when it is correctly specified.

Pearson’s X2 statistic is closely related to the Wald test (Bishop et al., 1975). As

an alternative to the Wald test, one can use Rao’s score test (e.g., Lehmann, 1999)—

also known as the Lagrange multiplier test. Score tests require the specification of an

alternative model; for detecting LD, Glas and Suárez-Falcón (2003) proposed the use

of a threshold shift model. Suppose we suspect that LD might exist with the pair of

items (j, k), the ICC for one item (k as shown here, usually the one that appears later

in the test) can be written as

Pr(yk = 1ju) =
1

1 + exp (�ak � bku� djkyj)
, ð7Þ

while all other items, including item j, still have 2PL ICC. It is not hard to see that

the threshold shift model only has one more parameter than the 2PL model, the shift

parameter djk: Indeed, the model reduces to the locally independent 2PL model when

djk = 0:
Assume again we have an N-observation sample of binary item responses fyig

N
i = 1,

and let h = (a, b, djk), where a is the vector of all intercepts and b the vector of all

slopes. The likelihood function for the threshold shift model can be written as
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L(h; y1, . . . , yN ) =
YN
i = 1

pyi
, ð8Þ

Then the null hypothesis H0 : djk = 0, corresponding to local independence, can be

tested via the score test statistic

S =
1

N
g(ĥ0)0II ( ĥ0)�1g( ĥ0 ): ð9Þ

In Equation 9, g( ĥ0 ) and I ( ĥ0 ) denote the score vector and Fisher’s information

matrix of all item parameters under the alternative model (i.e., threshold shift model),

but evaluated at ĥ0—the item parameters estimated under the 2PL model. Therefore,

the score test statistic with the aforementioned threshold shift alternative has an

asymptotic x2
1 distribution when the locally independent 2PL model is true. In prac-

tice, the Fisher information matrix for the full set of item parameters is often replaced

by its consistent estimator—the cross-product approximation (see Kendall & Stuart,

1961) evaluated at the estimated 2PL parameters (Liu & Thissen, 2012).

Liu and Thissen (2012) proposed to use another alternative for the bivariate score

test—a bifactor LD model. For candidate pair (j, k), their model is specified as

following:

Pr(yj = 1ju, j) =
1

1 + exp (�aj � bju� bjkj)
, ð10Þ

Pr(yk = 1ju, j) =
1

1 + exp (�ak � bku6bjkj)
: ð11Þ

In these equations, j is a secondary latent variable only related to items j and k,

which leads to conditional dependence between the responses, and bjk is the second-

ary slope parameter, which is constrained to be equal in the two ICCs for identifica-

tion purpose. Again, we assume that the 2PL holds for all remaining items. The

corresponding score test statistic also has approximately x2
1 distribution under local

independence, since the bifactor LD model reduces to a 2PL when bjk = 0 and they

only differ by one parameter for each pair of items.

In the sequel, to distinguish the two score test statistics, we denote by St the score

statistic that uses the threshold shift model as alternative, and by Sb the score statistic

that uses the bifactor model as alternative.

Recently, Maydeu-Olivares and Joe (2005, 2006) have introduced a general frame-

work for goodness-of-fit testing in multivariate discrete data. For assessing the source

of misfit in poorly fitting models, they proposed two methods: (a) using Mr statistics

for marginal subtables (single items, pairs of items, triplets of items); (b) following

Reiser (1996), using standardized bivariate residuals. One question that remains to be

addressed is whether statistics specifically designed to assess LD are needed, or

whether general all-purpose test statistics such as those proposed in Maydeu-Olivares
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and Joe (2005, 2006) suffice. Using the simulation results and a numerical example,

the current article aims at providing a preliminary answer to this question.

Using All-Purpose Goodness-of-Fit Statistics to Diagnose LD

First, we review some of the relevant theory. Throughout this section, a notation sim-

ilar to that of Maydeu-Olivares and Joe (2005, 2006) is adopted. Let p be the column

vector containing the probability of all 2J possible response patterns, p be the vector

of observed cell proportions, and N be the sample size. We assume the response vec-

tor Y;Multinomial(1, p): By the central limit theorem (Bishop et al., 1975),ffiffiffiffi
N
p

(p� p)!d N (0, G), where G = D� pp0, with D = Diag(p):
Now, we assume 2PL model holds, and let q denote the number of parameters to

be estimated (i.e., slopes and intercepts). The overall null hypothesis that the 2PL

model holds can be written as H0 : p = p(a, b) versus H1 : p 6¼ p(a, b): Under the

null hypothesis, and if maximum likelihood estimation is used, the residual vector

ê = p� p(â, b̂) has the following asymptotic distribution:

ffiffiffiffi
N
p

ê!d N (0, G� DII�1D0), ð12Þ

where II = D0D�1D is the Fisher information matrix for the 2PL model parameters,

and D = (∂p
∂a0,

∂p
∂b0

) is the 2J 3 q Jacobian matrix of derivatives of the cell probabilities

with respect to the item parameters.

Equation 12 describes the asymptotic distribution of all the cell residuals under

maximum likelihood estimation. Now, consider a t 3 2J matrix of constants Tk

(t � 2J � 1): Tk can be for instance a 22 3 2J matrix of 1s and 0s that yields the

bivariate marginal probability vector for item pair (j, k), say T(jk); or it can be 23 3 2J

matrix yielding the trivariate marginal probability vector for item triplet (j, k, l), say

T(jkl): Then,
ffiffiffiffi
N
p

(pk � pk)!d N (0, Ξk) is the asymptotic distribution of the sample

statistics where pk = Tkp, pk = Tkp, and Ξk = TkGT0k: Similarly,

ffiffiffiffi
N
p

êk ¼
def ffiffiffiffi

N
p

(pk � pk(â, b̂))!d N (0, Sk), ð13Þ

where

Sk = Ξk � DkII�1D0k ð14Þ

is the asymptotic distribution of the residuals with Dk = TkD being the t 3 q matrix

of derivatives of pk with respect to the item parameters.

Notice that terms in Equation 14 depend on the true values of parameters that we

do not know in most cases. To get an estimate of Sk, one needs to replace the true

parameter values by their consistent estimates (e.g., MLE); the convergence results

remains unchanged by Slutsky’s theorem. For the rest of this article, we denote the

elements computed with MLE of item parameters by a hat caret (e.g., D̂k = Dk(â, b̂)).
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Standardized Bivariate Residuals

Maydeu-Olivares and Joe (2006) considered a special case of this general framework

in which Tk maps the vector of cell probabilities into the set of all moments up to

order r. There are J univariate moments _pj = Pr Yj = 1
� �

, j = 1, . . . , J ;
J

2

� �
= n(n�1)

2

bivariate moments _pjk = Pr Yj = 1, Yk = 1
� �

, j, k = 1, . . . , J ; and
J

3

� �
= n(n�1)(n�2)

6
tri-

variate moments _pjkl = Pr Yj = 1, Yk = 1, Yl = 1
� �

, and so forth.

Consider the set of all univariate and bivariate residual moments (i.e., r = 2).

There are t = n(n + 1)
2

such moments. Let T2 be the n(n + 1)
2

3 2J transformation matrix

that maps the cell residuals (Equation 12) onto the univariate and bivariate residual

moments, which we shall denote by _̂e2 = _p2� _p2(â, b̂): By Equation 13, the asymp-

totic distribution of the vector of univariate and bivariate residual moments isffiffiffiffi
N
p

_̂e2!
d

N (0, S2), with S2 being their asymptotic covariance matrix, which is of

the type given by Equation 14.

In particular, consider a single bivariate residual moment _̂ejk = _pjk � _̂pjk belonging

to _̂e2: Its asymptotic variance is the corresponding term in the diagonal of S2, which

we can denote by _s2
jk : We can use these bivariate residuals in a fashion analogous to

bivariate residual covariances in factor analysis. More specifically, the standardized

bivariate residual

Zjk =

ffiffiffiffi
N
p

_̂ejk

_̂sjk

ð15Þ

is asymptotically distributed as a N (0, 1), or equivalently Z2
jk!

d
x2

1, under the null

hypothesis. Large absolute values of the Zjk statistic indicate model misfit, which

could be due to violations of local independence.

The General Family of Test Statistics Mk and Its Special Case, the Overall
Goodness-of-Fit Statistic M2

For the general linear transformation of cell residuals êk = Tkê, Joe and Maydeu-

Olivares (2010) showed that if (a) Tk has full row rank t and the one vector 12J is

not in its row span (condition T) and (b) Dk = TkD has full column rank q \ t (condi-

tion D), the statistic Mk

Mk = N ê0k Ûk êk ð16Þ

follows an asymptotic chi-squared distribution with t 2 q degrees of freedom under

H0, where

Ûk = Ξ̂�1
k � Ξ̂�1

k D̂k(D̂0kΞ̂
�1
k D̂k)�1D̂0kΞ̂

�1
k : ð17Þ
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A special case of this family of statistics is M2 statistic implemented in IRTPRO

(Cai, Thissen, & du Toit, 2011) to assess the overall goodness-of-fit of IRT models.

The M2 is the statistic within this family with the Tk = T2 transformation matrix

described earlier. For binary data, this statistic

M2 = N ê02 Û2 ê2!
d

x2
n(n + 1)=2�q ð18Þ

under H0, where Û2 is of the form (17).

Assessing the Source of Misfit Using M3 Statistic on Trivariate Subtables

The general setup outlined above can be readily employed to assess the source of the

misfit in marginal subtables. Let Tjkl be the 7 3 2J matrix (i.e., t = 7) that maps the

2J-dimensional vector of multinomial probabilities into the 7-dimensional vector of

three univariate, three bivariate and one trivariate residual moments involving vari-

ables Yj, Yk, and Yl:

_pjkl = ( _pj , _pk , _pl , _pjk , _pjl , _pkl , _pjkl )0: ð19Þ

Furthermore, let _̂ejkl = Tjklê, and Ûjkl is of the form given by Equation 17. Then, as a

special case of the general theory presented above,

Mjkl = N _̂e0jklÛjkl _̂ejkl!
d

x2
1 ð20Þ

under the 2PL model. This is because for three items there are three intercepts and

three slopes under 2PL model (i.e., q = 6). Hence, degrees of freedom of Mjkl are

t � q = 7� 6 = 1: Values of Mjkl larger than the critical value of its reference distribu-

tion provides evidence for the misfit of locally independent 2PL model in trivariate

subtables. It should be pointed out that Mjkl is simply the M3 statistic proposed by

Maydeu-Olivares and Joe (2005) applied to a subset of three variables after the model

parameters have been estimated using all J variables.

There is a one-to-one relationship between the seven moments involved in three

binary variables _pjkl and the 23 cell probabilities in the marginal subtable of three bin-

ary variables, which we shall denote by p(jkl) = T(jkl)p: As a result, the trivariate Mjkl

statistic can be alternatively written as a function of the cell probabilities as follows:

Mjkl = N ê0(jkl)Û(jkl)ê(jkl), ð21Þ

where ê(jkl) = T(jkl)ê is the vector of trivariate cell residuals, and

Û(jkl) = D̂�1
(jkl) � D̂�1

(jkl)D̂(jkl)(D̂
0
(jkl)D̂

�1
(jkl)D̂(jkl))

�1D̂0(jkl)D̂
�1
(jkl), ð22Þ

where D̂(jkl) = Diag(p̂(jkl)), and D̂(jkl) is the matrix of derivatives of the trivariate mar-

ginal cell probabilities with respect to slope and intercept parameters for items j, k,

and l.
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Notice that Equation 21 is equivalent to

Mjkl = X 2
jkl � N ê0(jkl)D̂

�1
(jkl)D̂(jkl)(D̂

0
(jkl)D̂

�1
(jkl)D̂(jkl))

�1D̂0(jkl)D̂
�1
(jkl)ê(jkl), ð23Þ

where X 2
jkl simply denotes Pearson’s X 2 statistic applied to triplet (j, k, l): Equation

23 implies that X 2
jkl rejects more than Mjkl (the difference term is nonnegative), and

because the latter follows asymptotically a chi-squared distribution with 1 degree of

freedom when 2PL is the true model, the use of X 2
jkl will then lead to incorrectly

rejecting well fitting items (Maydeu-Olivares & Joe, 2006).

An obvious drawback of the Mjkl statistic is that triplets of variables need to be

used in order to get enough degrees of freedom. This makes more difficult to draw

conclusions as to which items do not fit the model, than if fit could be assessed two

items at a time. To overcome this difficulty, in the next subsection we propose a new

bivariate statistic R2, jk :

Sum-Score-Based Bivariate R2 Statistic

Since the 2PL model is not identified in bivariate marginal tables (i.e., q = 4 while

t � 1 = 3), additional information should be incorporated into the test statistic to

enable inferences about the pairwise fit of the model. One convenient solution is to

consider the joint probability of univariate and bivariate margins with sum-score lev-

els. Thissen and Orlando (2000) applied the same idea and derived an item-fit statis-

tic; however, they only provided a conjecture of its reference distribution under the

null hypothesis. To avoid this problem, in the present article we construct a statistic

inspired by Thissen and Orlando, but that belongs to the Mk family. This enables us

to establish the asymptotic null distribution of our statistic.

The statistic we proposed, called R2, jk , is based on a transformation matrix TR2, jk

such that

pR2, jk = TR2, jkp =

Pr(Yj = 1, S = 1)

..

.

Pr(Yj = 1, S = J � 1)

Pr(Yk = 1, S = 1)

..

.

Pr(Yk = 1, S = J � 1)

Pr(Yj = Yk = 1, S = 2)

..

.

Pr(Yj = Yk = 1, S = J � 1)

Pr(S = J )

2
666666666666666664

3
777777777777777775

, ð24Þ

where S is the sum score. See Appendix A for an example of this matrix involving

J = 4: The resulting statistic, like the Thissen and Orlandos (2000) statistic and

Glas’s (1988) R2 statistic, conditions the bivariate marginal subtables on the observed
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summed score, thereby removing the undesirable dependence on latent trait estimates

in Yen’s Q3 statistic.

It can be checked that the transformation matrix TR2, jk satisfies conditions T and

D of Joe and Maydeu-Olivares (2010) and, therefore, the bivariate R2, jk can be com-

puted as an Mk statistic by Equations 16 and 17 using this transformation matrix. For

a pair of binary items, the number of statistics involved in the computation of R2, jk is

t = 2(J � 1) + (J � 2) + 1 = 3(J � 1): Thus, R2, jk follows asymptotically a chi-squared

distribution with 3(J � 1)� q degrees of freedom, where q is the number of all item

parameters; in particular, for the 2PL, q = 2J : This is because the joint probabilities of

univariate and bivariate margins with the sum-score patterns depend on all item para-

meters. As one of the reviewers pointed out, when the number of items is large and

the computation of all response patterns is infeasible, some iterative algorithm (e.g.,

Lord & Wingersky, 1984) should be used to compute the model-implied probability

vector pR2, jk :
The statistic R2, jk is also similar to the R2 statistic proposed by Glas’s (1988) to

assess the overall goodness-of-fit of the Rasch model. The differences between his

statistic and ours are that our statistic only considers a pair of items and that it

excludes the term Pr(S = 0) from the computations. The former renders it a pairwise

diagnostic statistic; the latter ensures that the resulting statistic satisfies the condi-

tions to be an Mk statistic, which further enables us to establish its asymptotic

distribution.

There is one potential problem with this new sum-score-based statistic: when the

number of items is large, the summary statistics given by Equation 24 might still suf-

fer from sparseness, which may result in flawed asymptotic behavior (Joe & Maydeu-

Olivares, 2010). When this occurs, one should use sum score ranges instead of levels

(Glas, 1988). This reduces the number of summary statistics and as a result each of

them has larger expected probabilities. However, the number of sum score groups is

to be chosen such that the number of statistics is greater than the number of all item

parameters. Otherwise, R2, jk will have negative degrees of freedom.

Simulation Study

The empirical distribution of a number of LD statistics was investigated first under

correct model specification and also under model violations that lead to local depen-

dencies. In all cases the fitted model was the 2PL model. The first simulation study

involved fitting a 2PL to data generated using this model. Ten items were used with

two conditions of sample size (300 and 1,000 respondents). One thousand replications

per condition were used. The true parameter values were

b = (1:28, 1:67, 2:27, 1:67, 1:28, 1:28, 1:67, 2:27, 1:67, 1:28)0, ð25Þ

a = (0, 1:19, 2:84, �1:19, 0, �2:13, 0, 1:42, 0, 2:13)0: ð26Þ
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These parameters correspond to the following factor loading (λ) and threshold (t)

values on a normal ogive scale (Forero & Maydeu-Olivares, 2009; Wirth & Edwards,

2007):

λ = (0:6, 0:7, 0:8, 0:6, 0:7, 0:8, 0:6, 0:7, 0:8, 0:6)0, ð27Þ

t = (0, 0:5, 1, � 0:5, 0, � 1, 0, 0:5, 0, 1)0: ð28Þ

The second simulation study involved generating data under two different alterna-

tive models: (a) a bifactor LD triplet model and (b) a 2-factor independent cluster

model (with factor intercorrelation r = 0:3). Only 1,000-observation condition was

used for power runs. For both models, the same intercepts as in equation (26) were

used. The true slope values for the two models were, respectively,

b1 =
1:28 1:67 2:27 1:67 1:28 1:28 1:67 2:27 1:67 1:28

0:98 �0:98 0 0:98 0 0 0 0 0 0

� �
,

ð29Þ

b2 =
1:28 1:67 2:27 1:67 1:28 0 0 0 0 0

0 0 0 0 0 1:28 1:67 2:27 1:67 1:28

� �
: ð30Þ

In all cases, parameter estimation was performed using IRTPRO (Cai et al., 2011),

and the statistics were computed using R (R Development Core Team, 2010) from

the IRTPRO output.

The statistics compared were: (a) for pairs: Chen-Thissen X 2, standardized bivari-

ate residuals Z (i.e., Zjk) using expected information, two score test statistics St and Sb

using observed information, and R2 (i.e., R2, jk); (b) for triplets: M3 (i.e., Mjkl), and X 2

(i.e., X 2
jkl).

The Chen-Thissen X 2 and X 2
jkl are the same statistic, Pearson’s X 2 statistic, except

that the former is applied to pairs of variables, whereas the latter is applied to triplets

of variables. Also, the reference distribution, x2
1, employed in both cases is the same

but based on different rationales: for bivariate X 2, x2
1 is the reference for an indepen-

dence model; for trivariate X 2, x2
1 is the reference for M3, which can be regarded as

an adjustment to the trivariate X 2 (see Equation 23), and hence its inclusion enables

us to gauge the need for such adjustment. The bivariate X 2 with an independence ref-

erence distribution (i.e., Chen and Thissen’s proposal) is probably the most widely

used statistic to assess LD.

As mentioned, Mjkl is simply Maydeu-Olivares and Joe’s (2005) M3 statistic

applied to a triplet of variables, whereas R2, jk is only inspired, but should not be con-

fused with Glas’s (1988) R2 statistic. Finally, St and Sb are both score test statistic

(i.e., Equation 9), but computed under different alternative hypotheses.

All statistics considered but X 2 have known asymptotic chi-squared distributions

under the null hypothesis. Degrees of freedom is 1 for the score tests St and Sb,

the bivariate residuals Z, and the M3 statistic; degrees of freedom for the R2 statistic

are 7.
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Results: Correctly Specified 2PL

Some descriptive statistics and empirical rejection rates based on a sample of size

300 are shown in Table 1. For succinctness, only results for item pairs (1, 2), (3, 4),

and (3, 6), and triplets (1, 2, 3), (3, 4, 5), and (3, 6, 7) are shown.

We see in this table that the empirical distributions of M3 and of the standardized

residual Z closely match their reference distribution even at this small sample size.

In contrast, we see that the empirical distribution of R2 statistics deviates from its ref-

erence x2
7 for most pairs indicating inadequate small sample performance. This is

probably due to small counts (sparseness) in the summary statistics employed when

the sample size is not large enough. Also, we see in this table that the score test sta-

tistics Sb and St tend to reject more often than they should for some pairs but not for

others, depending on the true intercept values. We conjecture that the differences

found between the performance of the standardized residual and the score statistics

are due to how the information matrix is approximated: For residuals we used the

expected information matrix, for score statistics the observed, which may not behave

well in small samples. To assess our conjecture, in Appendix B we provide addi-

tional simulation results for St using both the observed and expected Fisher informa-

tion under the same small sample condition.

Table 1. Simulation Results Under a 2PL Model: N = 300.

Statistic Subtable Mean Variance Reference

Rejection Rate

0.01 0.05 0.1 0.25

Z (1, 2) 20.032 0.922 N(0, 1) 0.010 0.040 0.090 0.225
(3, 4) 20.011 1.000 0.010 0.057 0.106 0.253
(3, 6) 0.017 1.046 0.011 0.047 0.098 0.273

R2 (1, 2) 7.059 15.881 x2
7 0.016 0.063 0.120 0.245

(3, 4) 6.558 43.885 0.032 0.060 0.094 0.200
(3, 6) 6.395 32.431 0.038 0.076 0.114 0.202

Sb (1, 2) 1.033 2.195 x2
1 0.013 0.056 0.103 0.248

(3, 4) 6.908 1081.550 0.062 0.123 0.175 0.321
(3, 6) 14.903 1460.157 0.176 0.205 0.244 0.384

St (1, 2) 1.032 2.251 x2
1 0.015 0.055 0.103 0.250

(3, 4) 4.619 418.205 0.052 0.115 0.164 0.314
(3, 6) 11.929 934.045 0.178 0.205 0.248 0.369

X2 (1, 2) 0.493 0.477 x2
1 0.000 0.008 0.016 0.107

(3, 4) 0.667 0.810 0.001 0.007 0.047 0.159
(3, 6) 0.706 1.146 0.003 0.020 0.048 0.194

M3 (1, 2, 3) 0.925 1.618 x2
1 0.007 0.037 0.078 0.244

(3, 4, 5) 0.951 1.922 0.011 0.038 0.086 0.248
(3, 6, 7) 1.001 2.231 0.013 0.054 0.105 0.239

X2 (1, 2, 3) 2.61 3.748 x2
1 0.046 0.217 0.376 0.740

(3, 4, 5) 2.787 4.35 0.038 0.249 0.436 0.744
(3, 6, 7) 2.981 5.701 0.073 0.239 0.403 0.776
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As for the X 2 statistics, we see in Table 1 that the bivariate (Chen-Thissen) X 2

rejects less often than it should, whereas the trivariate X 2 rejects more often than it

should. The former is consistent with simulation result of Chen and Thissen (1997),

whereas the latter is consistent with the asymptotic theory of Maydeu-Olivares and

Joe (2006).

Table 2 presents the simulation results for samples of size 1,000. As expected,

with a large enough sample size, the score test statistics and R2 perform better (i.e.,

their reference distributions more closely approximate their empirical ones). In con-

trast, no improvement is apparent for either the bivariate or trivariate X 2 statistics.

Because the empirical distribution of the X 2 statistics is not well approximated by

the reference distributions employed, their power will not be investigated.

Results: Bifactor Alternative

The power (i.e., empirical rejection rate) of various statistics evaluated using their

corresponding reference distribution at commonly used nominal level (i.e., a = 0:01,

0.05, 0.1) is tabulated in Table 3. Only the results for three pairs and three triplets

are reported: negative LD pair (1, 2), positive LD pair (1, 4), and locally indepen-

dent pair (3, 6); triplet (1, 2, 3), (1, 2, 4), and (3, 6, 7):

Table 2. Simulation Results Under a 2PL Model: N = 1,000.

Statistic Subtable Mean Variance Reference

Rejection Rate

0.01 0.05 0.1 0.25

Z (1, 2) 20.006 0.993 N(0, 1) 0.007 0.050 0.096 0.261
(3, 4) 20.012 1.044 0.011 0.061 0.109 0.250
(3, 6) 0.010 1.013 0.013 0.051 0.095 0.256

R2 (1, 2) 6.980 18.474 x2
7 0.021 0.056 0.106 0.238

(3, 4) 6.987 19.121 0.023 0.068 0.109 0.229
(3, 6) 6.997 14.373 0.009 0.060 0.105 0.248

Sb (1, 2) 1.036 1.946 x2
1 0.012 0.046 0.107 0.279

(3, 4) 1.193 4.010 0.028 0.071 0.118 0.272
(3, 6) 1.434 11.438 0.035 0.089 0.140 0.304

St (1, 2) 1.027 1.909 x2
1 0.009 0.050 0.102 0.264

(3, 4) 1.201 4.136 0.026 0.065 0.119 0.272
(3, 6) 1.442 13.211 0.031 0.082 0.136 0.289

X2 (1, 2) 0.531 0.506 x2
1 0.000 0.006 0.027 0.115

(3, 4) 0.691 0.956 0.002 0.019 0.051 0.158
(3, 6) 0.778 1.222 0.005 0.028 0.058 0.190

M3 (1, 2, 3) 0.991 2.016 x2
1 0.010 0.054 0.103 0.239

(3, 4, 5) 1.033 1.924 0.012 0.054 0.098 0.273
(3, 6, 7) 0.989 1.954 0.010 0.050 0.104 0.245

X2 (1, 2, 3) 2.753 4.358 x2
1 0.055 0.238 0.402 0.730

(3, 4, 5) 2.927 4.457 0.069 0.256 0.444 0.770
(3, 6, 7) 2.937 4.947 0.070 0.258 0.431 0.763
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We see in Table 3 that both Mk family statistics R2 and M3 do not have much

power to detect that the 2PL model is misspecified when the true model is the bifac-

tor triplet model as described in Equation 29; however, R2 has slightly higher power

than M3 for detecting negative LD pairs (i.e., Items 1 and 2). The score test statistics

and the bivariate residual show higher power than R2 and M3 for detecting both posi-

tive (e.g., Items 1 and 4) and negative (e.g., Items 1 and 2) LD pairs within the bifac-

tor triplet. None of the statistics rejects much more than the nominal level for the

pair (3, 6): The reason is that for this pair the 2PL model is correctly specified.

Results: Independent Cluster Alternative

For the final condition, data were simulated from the independent cluster two-

dimensional model of Equation 30. The empirical rejection proportions for some

pairs and triplets are presented in Table 4 with a sample of size 1,000.

We see in this table that when data are generated from a two-factor independent

cluster model, both score test statistics and the bivariate residual have the highest

level of power for all pairs. In contrast, R2 has relatively high power when two items

are from different factors, but its power is still uniformly lower than for the first tier.

The M3 statistic, again, has very little power.

The results of the simulation study can be summarized as follows. In the null case

where data are generated from 2PL model: (a) Pearson’s X 2 computed from either

bivariate (i.e., Chen and Thissen) or trivariate (i.e., an unadjusted M3 in the sense of

Equation 23) subtables cannot be approximated well by a chi-squared distribution.

(b) The empirical distribution of both score test statistics Sb and St is well approxi-

mated by its reference asymptotic distribution in large samples, but might be liberal

Table 3. Simulation Results Under a Bifactor Model: N = 1,000.

Statistic Subtable Mean Variance Reference

Rejection Rate

0.01 0.05 0.1

Z (1, 2) 23.657 0.884 N(0, 1) 0.880 0.963 0.982
(1, 4) 4.390 0.993 0.962 0.992 0.998
(3, 6) 20.008 1.003 0.014 0.056 0.097

R2 (1, 2) 7.036 23.208 x2
7 0.028 0.075 0.128

(1, 4) 7.164 17.895 0.020 0.056 0.111
(3, 6) 7.902 17.676 0.022 0.087 0.155

Sb (1, 2) 16.017 68.908 x2
1 0.897 0.966 0.982

(1, 4) 18.949 64.612 0.963 0.992 0.998
(3, 6) 2.374 313.123 0.039 0.085 0.137

St (1, 2) 16.462 71.282 x2
1 0.909 0.968 0.984

(1, 4) 19.001 66.856 0.961 0.993 0.998
(3, 6) 2.028 141.169 0.042 0.083 0.124

M3 (1, 2, 3) 1.074 2.442 x2
1 0.011 0.058 0.113

(1, 2, 4) 1.069 2.191 0.011 0.052 0.110
(3, 6, 7) 1.07 2.225 0.015 0.055 0.110
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for certain combinations of parameter values that are likely to produce zero cell

counts in small samples. Nevertheless, the results of Appendix B reveal that this defi-

ciency could be improved by using a better approximation of the information matrix.

(c) The empirical distribution of R2 is well approximated by its reference distribution

for a sample of size 1,000, but not as well in a sample of size 300 for some pairs. (d)

Bivariate residual and M3 have the best small sample behavior. They have very accu-

rate empirical Type I error rates.

As for power, R2 and M3 have low power under both alternative models.

Nevertheless, the power of R2 is barely acceptable when computed for negative LD

pairs under independent cluster alternative, which makes it useful in separating items

belonging to different factors. Meanwhile, the score test statistics and bivariate resi-

dual are very sensitive to both underfit and overfit of the covariances between item

responses. Therefore, they are recommended for the purpose of identifying LD.

In closing, the simulation study reported here has only investigated two LD data

generating mechanisms. Also, by some accounts the form of LD considered here can

be described as weak (for instance, the correlation between the traits in the indepen-

dent clusters condition is only 0.3). Further research is necessary to investigate the

performance of the statistics under alternative data generating models leading to LD,

including situations leading to stronger local dependencies than those considered here.

Numerical Example: LSAT-7 Data

We fit a 2PL model to the well-known LSAT-7 data (Bock & Lieberman, 1970).

These data consist of 1,000 responses to J = 5 binary variables. Because the data are

not sparse, the overall X 2 and M2 statistics agree (as shown in Table 5).

Table 4. Simulation Results Under a Two-Dimensional Model: N = 1,000.

Statistic Subtable Mean Variance Reference

Rejection Rate

0.01 0.05 0.1

Z (1, 2) 3.988 4.354 N(0, 1) 0.705 0.809 0.859
(3, 4) 3.645 2.997 0.704 0.793 0.850
(3, 6) 21.795 1.182 0.245 0.441 0.562

R2 (1, 2) 4.632 11.367 x2
7 0.005 0.021 0.038

(3, 4) 6.521 14.952 0.010 0.045 0.088
(3, 6) 9.844 32.109 0.080 0.186 0.282

Sb (1, 2) 20.225 291.632 x2
1 0.707 0.815 0.863

(3, 4) 32.403 1125.321 0.760 0.844 0.888
(3, 6) 5.011 17.969 0.289 0.520 0.643

St (1, 2) 20.096 286.479 x2
1 0.702 0.818 0.864

(3, 4) 32.121 1125.113 0.749 0.835 0.880
(3, 6) 4.212 14.513 0.214 0.441 0.567

M3 (1, 2, 3) 1.581 5.117 x2
1 0.048 0.117 0.186

(3, 4, 6) 0.907 1.388 0.003 0.033 0.075
(3, 6, 7) 1.44 4.151 0.039 0.105 0.165
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Both statistics suggest a barely acceptable fit, and to investigate whether we can

identify how to improve the fit of the model to these data, we compute the score tests

Sb and St, Chen-Thissen’s X2, the bivariate residual Z2, and R2 for all pairs of items.

We also compute the X2 and M3 statistics for all triplets of items. The results are pre-

sented separately for pairs and triplets in Tables 6 and 7. We see in these tables that

the statistics fail to agree.

For pairwise diagnostics: (a) The bivariate X 2 statistic suggests that the model fits

for all pairs, but we know that Chen and Thissen’s proposal leads to underrejection;

(b) Sb, St, Z consistently identify the pairs (1, 3), (1, 4), and (2, 3) as fitting poorly;

(c) in addition, the bivariate residual Z suggests that pair (1, 5) does not fit well; (d)

the problematic pairs suggested by the R2 statistic are (1, 2), (2, 4), and (2, 5):
Provided one is willing to remove one item to improve model fit, then Items 1 and 3

might be the top choices as suggested by most of the statistic; however, R2 suggests

that Item 2 might also be problematic.

For triplet-wise diagnostics: (a) Pearson’s X 2 suggests more problematic triplets

than it should, as we know it is liberal; (b) in contrast, M3 flags only the item triplet

(1, 2, 5): If one wishes to delete one item, triplet-wise diagnostics alone might not be

very informative.

Table 6. LD Diagnostics for Pairs: LSAT-7 Data.

Pair

X2 (df = 1) Sb (df = 1) St (df = 1) Z2 (df = 1) R2 (df = 2)

Statistic p Statistic p Statistic p Statistic p Statistic p

(1, 2) 0.45 .50 1.15 .28 1.18 .28 1.19 .27 8.95 .01
(1, 3) 0.86 .35 4.43 .04 4.58 .03 4.16 .04 0.53 .77
(1, 4) 2.58 .11 4.28 .04 4.30 .04 4.77 .03 3.16 .21
(1, 5) 2.39 .12 3.62 .06 3.58 .06 3.90 .05 2.77 .25
(2, 3) 1.06 .30 8.12 .00 7.67 .01 8.38 .00 3.96 .14
(2, 4) 0.27 .61 0.77 .38 0.77 .38 0.70 .40 8.63 .01
(2, 5) 1.38 .24 2.89 .09 2.91 .09 2.83 .09 8.39 .02
(3, 4) 0.15 .69 0.95 .33 0.96 .33 0.67 .41 1.36 .51
(3, 5) 0.00 .96 0.01 .94 0.00 .95 0.01 .93 1.58 .45
(4, 5) 0.00 1.00 0.00 .98 0.00 .99 0.00 1.00 3.24 .20

Note. Values in boldface indicate p \ .05.

Table 5. Overall Goodness-of-Fit Statistics: LSAT-7 Data.

Statistic df p

X2 32.48 21 0.05
M2 11.94 5 0.04
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Next, we fit the 2PL model to the data omitting one item at a time. The results

(Table 8) reveal that deleting Item 1 will produce the smallest X 2, and Item 3 the

smallest M2. These are consistent with the diagnoses drawn from the score tests and

the standardized residuals.

Concluding Remarks

The statistic that fared the worst is Pearson’s X 2 applied to trivariate subtables heur-

istically using the same reference distribution as for M3 (i.e., number of cells minus

number of parameters involved minus one, i.e., x2
1). We should avoid using it because

it rejects well fitting items more often than it should.

Chen and Thissen (1997), also heuristically, suggested using as reference

distribution for X 2 the reference distribution corresponding to an independence

Table 7. LD Diagnostics for Triplets: LSAT-7 Data.

Triplet

X2 (df = 1) M3 (df = 1)

Statistic p Statistic p

(1, 2, 3) 3.27 .07 0.73 .39
(1, 2, 4) 4.27 .04 0.48 .49
(1, 2, 5) 11.36 .00 6.12 .01
(1, 3, 4) 5.79 .02 1.27 .26
(1, 3, 5) 5.41 .02 1.63 .20
(1, 4, 5) 5.89 .02 1.37 .24
(2, 3, 4) 2.05 .15 0.43 .51
(2, 3, 5) 4.48 .03 1.60 .21
(2, 4, 5) 1.79 .18 0.20 .65
(3, 4, 5) 0.25 .62 0.09 .77

Note. Values in boldface indicate p \ .05.

Table 8. Overall X2 and M2 Statistics After Deleting One Item: LSAT-7 Data.

Item Omitted

X2 (df = 7) M2 (df = 2)

Statistic p Statistic p

1 5.01 .66 1.26 .53
2 9.52 .22 1.90 .29
3 8.59 .29 1.01 .60
4 18.68 .01 7.05 .03
5 9.86 .20 6.58 .04

Note. Omitting Item 1 produces the smallest X2. Omitting Item 3 produces the smallest M2.
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model. If this reference distribution is used, then one can apply X 2 to pairs of

items. Unfortunately, we have seen that this resulted in failure to reject poorly fitting

items.

The remaining statistics we considered have known asymptotic distributions,

which guarantees the rejection rate being adequate when the fitted model is correct,

provided that sample size is large enough.

M3 statistic for trivariate subtables can be seen as a correction of X 2: This correc-

tion is necessary for the statistic to be asymptotically distributed as chi-squared,

whenever a model is estimated using J items while the testing only involves a subset

of them (e.g., pair or triplet). Triplets of variables are needed to assess the goodness

of fit of the 2PL. M3 was found to be very well approximated by its reference distri-

bution in small samples when the fitted model was correct. Hence, it will not reject

well-fitting items. However, it was also found to have low power to detect dependen-

cies arising from a bifactor or independent cluster multidimensional models. In addi-

tion, it is generally hard to draw conclusions from tests involving triplets of items as

compared to pairs.

To be able to test pairwise LD, we have proposed a new bivariate statistic in this

article, termed R2, by drawing on information from the sum score. It is similar in

spirit to Glas’s (1988) statistic for testing the overall goodness-of-fit of the Rasch

model and also to Thissen and Orlando’s (2000) item-fit statistic. Drawing on theory

from Joe and Maydeu-Olivares (2010), we have been able to derive the asymptotic

distribution of the R2 statistic for pairs of variables. Larger samples are needed for the

statistic to be well approximated by its asymptotic distribution than for M3. However,

we found that R2 also lacked power to identify the two parametric forms of LD used

in our simulation study.

The score test statistics and standardized bivariate residuals had the highest power

in our simulation study. However, both of them require the computation of the infor-

mation matrix (or the covariance matrix of all estimated item parameters). The

expected information cannot be computed for long tests, while the cross-product esti-

mation does not work well with small samples. This might limit the use of these sta-

tistics in practice.

To summarize, there exist statistics that will not reject well fitting items—namely,

M3, R2, score statistics, standardized residuals. Among them, however, the most pow-

erful statistics (i.e., score test statistics, standardized bivariate residuals) depend on

the computation of the information matrix. We have seen that using the expected

information leads to a much better performance of the statistics. However, the

expected information matrix can only be computed with tests that are not too long

(e.g., no more than 30 binary items). One can compute M3 and R2 for larger models

but they may have little power to detect poorly fitting items. Future research should

investigate better estimates of Fisher information that are computable for large mod-

els and have adequate small sample performance.
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Appendix A

Example for TR2, jk When J = 4

When J = 4, there are in total 24 = 16 possible response patterns:

Y =

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2
664

3
775
0

: ðA:1Þ

Using these ordering of the patterns, the statistics shown in Equation 24 for Items 1

and 2 can be obtained from the cell residuals by multiplication of the following

9 3 16 transformation matrix:

TR2, 12 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
6666666666664

3
7777777777775

: ðA:2Þ

This matrix is only shown for exposition purposes. In practice, the statistics are to be

computed directly.

Appendix B

Simulation Results for St Using Expected and Observed Information When
the Model Is Correctly Specified

Using the same true parameter values as in Equations 25 and 26 with sample size

N = 300, we repeated the simulation under H0 for the score test statistic St using both

the expected (i.e., exact) and the observed (i.e., cross-product approximated) infor-

mation. The results are tabulated in Table B.1.

For all three pairs displayed in Table B.1, the statistic computed using exact infor-

mation has rejection rates much closer to the nominal a level than the one computed

using the cross-product approximation. This reveals that the small sample perfor-

mance of the score test is contingent on the estimates of the Fisher information

matrix.
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