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Goodness-of-Fit Assessment of Item Response
Theory Models

Alberto Maydeu-Olivares
Faculty of Psychology, University of Barcelona

The article provides an overview of goodness-of-fit assessment methods for item response theory
(IRT) models. It is now possible to obtain accurate p-values of the overall fit of the model if bivariate
information statistics are used. Several alternative approaches are described. As the validity of infer-
ences drawn on the fitted model depends on the magnitude of the misfit, if the model is rejected it
is necessary to assess the goodness of approximation. With this aim in mind, a class of root mean
squared error of approximation (RMSEA) is described, which makes it possible to test whether the
model misfit is below a specific cutoff value. Also, regardless of the outcome of the overall good-
ness-of-fit assessment, a piece-wise assessment of fit should be performed to detect parts of the model
whose fit can be improved. A number of statistics for this purpose are described, including a z statistic
for residual means, a mean-and-variance correction to Pearson’s X2 statistic applied to each bivariate
subtable separately, and the use of z statistics for residual cross-products.

Keywords: maximum likelihood, latent class, categorical data, discrete data, model selection, ordinal
factor analysis, polychoric correlation

Item response theory (IRT) modeling involves fitting a latent variable model to discrete responses
obtained from questionnaire/test items intended to measure educational achievement, personality,
attitudes, and so on. As in any other modeling endeavor, after an IRT model has been fitted, it is
necessary to quantify the discrepancy between the model and the data (i.e., the absolute goodness-
of-fit of the model). A goodness-of-fit (GOF) index summarizes the discrepancy between the
values observed in the data and the values expected under a statistical model. A goodness-of-fit
statistic is a GOF index with a known sampling distribution. As such, a GOF statistic may be
used to test the hypothesis of whether the fitted model could be the data-generating model. This
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is important, because if we cannot reject this hypothesis, then we can be reasonably confident
about the validity of the inferences drawn from our fitted model.

In practice, it is likely that the fitted model be rejected using an overall GOF statistic. Simply, it
is not easy to find the data-generating model. In this case, we expect the item parameter estimates
to be biased, but we do not know the magnitude or the direction of the bias. Any inference drawn
on a poorly fitting model is potentially invalid. The extent to which inferences drawn on poorly
fitting models are invalid will depend on a number of factors such as the nature of the inference,
the nature of the true data-generating and fitted models, and so on, but clearly it will depend on
the degree of misfit between the true and fitted models, that is, on the goodness of approximation
of the fitted model.

The goodness of approximation of an IRT model should be regarded as the effect size of its
misfit. As such, it is convenient that the goodness of approximation statistic can be interpreted
qualitatively, for if a model is rejected, the researcher can judge whether the discrepancy is of sub-
stantive interest. Furthermore, detailed studies are needed to investigate the validity of inferences
drawn for different degrees of model misspecification. This is important, because IRT applica-
tions often involve so many degrees of freedom that it is unlikely that any fitted model be the
data-generating model. But, if inferences of interest are shown to be valid for some degree and
direction of model misspecification, then testing the exact fit for the model can be replaced by a
test of this nonzero degree of model misspecification. These tests of approximate fit are of most
interest in IRT applications involving large degrees of freedom.

Unfortunately, these important considerations have been largely absent in the IRT literature.
Until recently the assessment of the overall goodness-of-fit of IRT models has not been on the IRT
research agenda because of the lack of overall goodness-of-fit statistics with accurate p-values in
models with more than a few degrees of freedom. With the recent introduction of new overall
GOF statistics that make use only of low-order associations among the items, this undesirable
situation has begun to change.

It is not that there is a lack of literature on goodness of fit in IRT modeling. Quite the opposite,
in fact: the body of literature on the topic is very large. However, much of it focuses on piece-wise
assessment of the model (i.e., how well the IRT model fits a particular item or a particular pair of
items). Many of the statistics proposed for piece-wise fit assessment of IRT models have unknown
sampling distributions and their use relies on heuristics, others appear to be valid only for certain
models, and still others appear to be valid only for detecting certain types of misfit. In many
ways, IRT piece-wise statistics are analogous to z statistics for residual means and covariances
in structural equation modeling (SEM). Another useful analogy for IRT piece-wise statistics is
the use of Bonferroni-corrected–post hoc t-tests in ANOVA. But post hoc tests in ANOVA are
only meaningful after a statistically significant F statistic. And it is necessary to control for the
overall Type I error of z statistics in SEM, which is done by using an overall SEM goodness-
of-fit statistic. In the same fashion, IRT researchers should use an overall GOF statistic before
performing a piece-wise assessment of fit. But a piecewise goodness-of-fit assessment should
also be performed in addition to (as opposed to instead of) an overall GOF assessment, regardless
of the latter’s outcome. This is because a model may fit well overall (i.e., on average), but some
parts of the data may be poorly reproduced, suggesting that an alternative model should be used.
Also, piece-wise GOF assessment may reveal the source of misfit in poorly fitting models.

The aim of this article is to provide a comprehensive framework for goodness-of-fit assessment
in IRT modeling. The account presented here reflects my personal view on the topic. In addition,
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I focus on procedures that can be applied, in principle, to any IRT model. In fact, the procedures
described here do not make use of any of the specific properties of IRT models and can therefore
be applied more generally to any model for multivariate discrete data such as latent class models.
Finally, the procedures described here are the result of ongoing research: how to best assess the
fit of IRT models remains an open question, and more research in this area is needed.

The article is organized as follows. First, I review the classical statistics for assessing the over-
all fit of categorical data models and their limitations for IRT model-fit testing. Next, I describe
the new limited information goodness of fit statistics that have been proposed in the literature in
order to overcome the shortcomings of classical statistics. The third section introduces methods
for assessing approximate fit. The fourth section describes methods for piece-wise assessment of
fit. The fifth section includes 2 numerical examples. Most of the presentation focuses on meth-
ods for maximum likelihood (ML) estimation. but estimation of IRT models from polychoric
correlations is also widely used. The sixth section discusses methods for estimators based on
polychorics. I conclude with a discussion and some recommendations for applied users.

CLASSICAL GOODNESS-OF-FIT STATISTICS

Consider the responses given by N individuals to n test items, each with K categories coded
as 0, 1, . . . , K – 1. The resulting data can be gathered in an n-dimensional contingency table
with C = Kn cells. Each cell corresponds to one of the C possible response patterns. Within this
setting, assessing the goodness of fit of a model involves assessing the discrepancy between the
observed proportions and the probabilities expected under the model across all cells of the contin-
gency table. More formally, let π c be the probability of one such cell and let pc be the observed
proportion, c = 1, . . . , C. Also, let π(θ) be the C-dimensional vector of model probabilities
expressed as a function of the, say, q model parameters to be estimated from the data. Then, the
null hypothesis to be tested is H0 : π = π(θ) against H1 : π �= π(θ). For instance, if Samejima’s
(1969) graded-response model with a single latent trait is fitted to the responses to n rating items
each with K response categories, then θ denotes the n (K – 1) intercepts and n slopes of the model.

The two best known goodness-of-fit statistics for discrete data are Pearson’s statistic X2 =
N

∑
c

(pc − π̂c)2
/π̂c , and the likelihood ratio statistic G2 = 2N

∑
c

pc ln(pc/π̂c) where π̂c =
πc

(
θ̂
)

. Asymptotic p-values for both statistics can be obtained using a chi-square distribution

with C – q – 1 degrees of freedom when maximum likelihood estimation is used. However, these
asymptotic p-values are only correct when all expected frequencies are large (>5 is the usual rule
of thumb). A practical way to evaluate whether the asymptotic p-values for X2 and G2 are valid is
to compare them. If the p-values are similar, then both are likely to be correct. If they are slightly
dissimilar, then X2 yields the most accurate p-value (Koehler & Larntz, 1980). If they are very
different, it is most likely that both p-values are incorrect.

Unfortunately, as the number of possible response patterns increases, the expected frequen-
cies must be small because the sum of all C probabilities must be equal to 1 (Bartholomew &
Tzamourani, 1999). As a result, in IRT modeling of the p-values for these statistics cannot nor-
mally be used. In fact, when the number of categories is large (say K > 4), the asymptotic p-values
almost invariably become inaccurate as soon as n > 5. To overcome the problem of the inaccuracy
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of the asymptotic p-values for these statistics, two general methods have been proposed: resam-
pling methods (e.g. bootstrap), and pooling cells. Unfortunately, mixed results have been reported
(Tollenaar & Mooijaart, 2003; von Davier, 1997) on the accuracy of p-values for the X2 and G2

statistics obtained by resampling methods and further research on this topic is needed.
Pooling cells results in statistics whose asymptotic distribution may be well approximated

by asymptotic methods, because pooled cells must have larger expected frequencies. However,
pooling must be performed before the analysis is made to obtain a statistic with the appropriate
asymptotic reference distribution. A straightforward way to pool cells a priori for goodness-of-
fit testing is to use low-order margins, that is, univariate, bivariate, and so forth, proportions and
probabilities. Goodness-of-fit statistics based on low-order margins are referred to in the literature
as limited information statistics because they do not use all the information available in the data
for testing the overall goodness-of-fit of the model. Because they are based on pooled cells,
the p-values of limited information statistics are accurate in very large models even with very
small samples (Maydeu-Olivares & Joe, 2005, 2006). Furthermore, because they “concentrate”
the information available for testing, they are most often more powerful than full information
statistics such as Pearson’s X2 for detecting alternatives of interest (Joe & Maydeu-Olivares,
2010; Reiser, 2008).

OVERALL GOODNESS-OF-FIT TESTING USING LIMITED
INFORMATION STATISTICS

To understand what limited information methods are, consider the following 2 × 3 contingency
table:

Y2 = 0 Y2 = 1 Y2 = 2

Y1 = 0 π00 π01 π02

Y1 = 1 π11 π11 π12

This table can be characterized using the cell probabilities π′ = (π00, · · · , π12). Alternatively,

it can be characterized using the univariate π̇′
1 =

(
π

(1)
1 , π (1)

2 , π (2)
2

)
and bivariate π̇′

2 =(
π

(1)
1

(1)
2 , π (1)

1
(2)
2

)
probabilities, where

Y2 = 0 Y2 = 1 Y2 = 2

Y1 = 0

Y1 = 1 π
(1)
1

(1)
2 π

(1)
1

(2)
2 π

(1)
1

π
(1)
2 π

(2)
2
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and π
(2)
2 = Pr (Y2 = 2) and π

(1)
1

(2)
2 = Pr (Y1 = 1, Y2 = 2). The 2 characterizations are equivalent.

We refer to the representation using π2
′ = (

π̇′
1, π̇′

2

)
as moment representation. The elements

of π̇1 and π̇2 are clearly univariate and bivariate moments if the variables are binary, for
Pr (Y = 1) = E (Y) and Pr

(
Yi = 1, Yj = 1

) = E
(
YiYj

)
. They are also moments when the items

are polytomous; in this case they are moments of indicator variables used to denote each category
except the zero category (Maydeu-Olivares & Joe, 2006). When all variables consist of the same
number of categories, K, there are n(K − 1) univariate moments π̇1 and n(n−1)

2 (K − 1)2 bivariate

moments π̇2. The equivalence between the C probabilities π and the C − 1 =
n∑

i=1

(
n
i

)
(K − 1)n

moments πn
′ = (

π̇′
1, π̇′

2, · · · , π̇′
n

)
, exemplified in the above 2 × 3 contingency table, extends to

contingency tables of any dimension.
Limited information test statistics simply disregard some of the higher order moments. Thus,

in the above 2 × 3 example, a statistic that only uses the univariate moments is a limited infor-
mation statistic. In contrast, full information statistics use all moments (up to order n or πn) for
testing. Pearson’s X2 statistic is a full information statistic, and it can therefore be written as a
function of the cell probabilities or as a function of the moments up to order n. In matrix form,
X2 can be written as a function of the cell proportions and probabilities as

X2 = N
(
p − π̂

)′
D̂

−1 (
p − π̂

)
, (1)

where p − π̂ are the cell residuals, and D̂ = diag
(
π

(
θ̂
))

is a diagonal matrix of estimated cell

probabilities. On the other hand, regardless of the number of variables and categories, Pearson’s
X2 statistic as a function of the sample and expected moments is

X2 = N
(
pn − π̂n

)′
�̂−1

n

(
pn − π̂n

)
, (2)

where pn − π̂n are the residual moments, and N�̂n is the asymptotic covariance matrix of the
sample moments up to order n, pn, evaluated at the parameter estimates.

In limited information test statistics only moments up to order r < n are used for testing.
Most often, r = 2 (or only univariate and bivariate moments are used for testing), but sometimes
r = 3 needs to be used. For instance, a statistic analogous to Pearson’s X2 statistic but that only
involves univariate and bivariate moments is

L2 = N
(
p2 − π̂2

)′
�̂−1

2

(
p2 − π̂2

)
. (3)

The set of univariate and bivariate moments p2 is one possible set of statistics that summarizes
the information contained in the margins of the contingency table. But other choices of summary
statistics could be used instead. Also, given a choice of summary statistics (e.g. p2) one can con-
struct different test statistics. Finally, the asymptotic distribution of the test statistic will depend
as well on how the item parameters have been estimated. I now discuss each of these three topics
in turn.
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Choice of Summary Statistic

Consider testing a model using the information contained in the bivariate margins. In this case,
one can use as summary statistics the set of univariate and bivariate moments p2 or the set of all
bivariate proportions, say, p̂2, with population counterpart π̂2. For instance, we could consider
a quadratic form analogous to (3) using the residuals p̂2 − π̂, instead of the residuals p2 − π̂2.
Because there are n(n−1)

2 bivariate tables and each table is of dimension K2, π̂2 is of dimension
n(n−1)

2 K2. However, because the probabilities in each bivariate table must add up to 1, there are
only n(K − 1) + n(n−1)

2 (K − 1)2 + 1 mathematically independent bivariate probabilities in �π2.

In contrast, π2 is of length
2∑

i=1

(
n
i

)
(K − 1)n = n(K − 1) + n(n−1)

2 (K − 1)2. It is generally prefer-

able to use the set of moments (e.g. π2) instead of the full set of marginal probabilities (e.g. �π2)
because the former leads to smaller matrices and vectors, and, most importantly, there are no
redundancies among its elements. Thus, the asymptotic covariance matrix of p2 is of full rank;
whereas, there are n(n − 2)(K − 1) + n(n−1)

2 + 1 zero eigenvalues in the asymptotic covariance
matrix of the full set of bivariate proportions �p. One can see the elements of π2 as a way to
obtain the mathematically independent elements in �π2.

Another choice to be made involves the order of margins used for testing. For IRT applications,
Maydeu-Olivares and Joe (2005, 2006) suggested testing using the smallest possible order (i.e.
the smallest possible r). This is because the lower the order of moments used, the more accurate
the p-values and (generally) the higher the power. In this article I focus on the logistic graded-
response model (Samejima, 1969) and its special cases, the 2-parameter and 1-parameter logistic
(2PL and 1PL) models, as these are the most widely used models in applications. These models
can be identified (i.e. estimated) using only bivariate information, and so they can be tested using
only this information (r = 2).

Choice of Estimation Method

In general, the asymptotic distribution of a test statistic varies according to the choice of the
estimation method for the item parameters. For instance, Pearson’s X2 follows a chi-square distri-
bution when item parameters have been estimated using an asymptotically optimal (i.e., minimum
variance) full information estimator, such as the ML estimator, but not for other estimators. For
instance, it does not follow a chi-square distribution for item parameters estimated using bivariate
(aka pairwise) composite likelihood methods (BCL: Katsikatsou, Moustaki, Yang-Wallentin, &
Jöreskog, 2012; Maydeu-Olivares & Joe, 2006). The variable X2 does not follow a chi-square
distribution either when the item parameters have been estimated using tetrachoric/polychoric
correlations (Jöreskog, 1994; Muthén, 1978, 1984, 1993). In contrast, the statistic L2 given in
(3) does not follow a chi-square distribution for the ML estimator but I conjecture that it does for
the BCL estimator. This is just a hypothesis at this stage, which remains to be investigated.

To simplify the exposition, in this article I focus on the ML estimator. This estimator is also
referred to in the IRT literature as marginal ML estimator (MML: Bock & Aitkin, 1981). To sim-
plify the exposition further, I assume that all items consist of the same number of response
alternatives, K. At the end of the article I provide results for another widely used class of
estimators, those based on polychorics.
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For the ML estimator, the asymptotic distribution of the univariate and bivariate residual
moments p2 − π̂2 is asymptotically normal with mean zero and covariance matrix

�2 = �2 − �2I−1�2
′. (4)

In (4), �2 = ∂π2(θ)
∂θ ′ denotes the matrix of derivatives of the univariate and bivariate moments

with respect to the parameter vector θ, and N�2 denotes the asymptotic covariance matrix of
the univariate and bivariate sample moments p2. These matrices are evaluated at the parameter
estimates, θ̂.

Also, in (4) I−1 divided by sample size is the asymptotic covariance matrix of the item param-
eter estimates θ̂, and I denotes the information matrix. The three best known approaches to
estimate the information matrix are the expected information matrix, the observed information
matrix, and the cross-product information matrix. The expected information matrix is

IE = �′ diag (π)�, (5)

where � = ∂π(θ)
∂θ ′ is a C × q matrix. Because C = Kn, when the items are binary the expected

information matrix can only be computed when the number of items is 19 or so. If the response
alternatives are 5, this matrix can only be computed with 8 items or so. In contrast, the observed
and cross-product information matrices only involve the observed patterns, which are necessarily
fewer in number than the number of observations. As a result, either the observed or the cross-
product information matrices have to be used in most actual applications. The cross-products
information matrix is

IXP = �′
Odiag

(
pO

/
π2

O

)
�O, (6)

where pO and πO denote the proportions and probabilities of the CO observed patterns, and �O

is a CO × q matrix of derivatives of the observed patterns with respect to the full set of q item
parameters.

The observed information matrix cannot be written easily in matrix form. In scalar form it can
be written as

IO = N
CO∑
c=1

pc

(πc(θ))2

[
∂πc(θ)

∂θ

∂πc(θ)

∂θ′ − πc(θ)
∂2πc(θ)

∂θ∂θ′

]
= IXP − N

CO∑
c=1

pc

πc(θ)

∂2πc(θ)

∂θ∂θ′ . (7)

Choice of Test Statistic

Assume the model’s fit is to be assessed using the vector of univariate and bivariate residual
moments p2 − π̂2 and recall that this is simply the vector of univariate and bivariate residual
proportions that do not include the lowest category (category zero). To test the overall goodness-
of-fit of an IRT model using only bivariate information, we can construct a quadratic form statistic

Q = N
(
p2 − π̂2

)′
Ŵ

(
p2 − π̂2

)
, (8)
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where Ŵ is some real symmetric weight matrix that may depend on the model parameters but

converges in probability to some constant matrix: Ŵ
p→ W. In general, the asymptotic distribution

of Q is a mixture of independent chi-square variates. However, when Ŵ is chosen so that

�2W�2W�2 = �2W�2, (9)

then (8) is asymptotically distributed as a chi-square with degrees of freedom equal to the rank of
W�2. There are 2 ways to choose Ŵ so that (9) is satisfied.

One choice involves using a weight matrix such that �2 is a generalized inverse of W; that is,
W satisfies �2W�2 = �2. This is the approach taken by Maydeu-Olivares and Joe (2005, 2006),
who proposed using the statistic

M2 = N
(
p2 − π̂2

)′
Ĉ2

(
p2 − π̂2

)
, C2 = �−1

2 − �−1
2 �2(�′

2�
−1
2 �2)−1�′

2�
−1
2 (10)

to assess the overall goodness-of-fit of IRT models. M2 is asymptotically chi-square equal to the
number of univariate and bivariate moments minus the number of estimated parameters, i.e.,

df2 = n(K − 1) + n(n − 1)

2
(K − 1)2 − q. (11)

This can be readily verified by noting that C2 in (10) can be alternatively written as C2 =
�

(c)
2

(
�

(c)
2

′
�c�

(c)
2

)−1
�

(c)′
2 , where �

(c)′
2 is an orthogonal complement to �

(c)′
2 , that is �

(c)′
2 �2 = 0.

Another way to satisfy (9) is to use a weight matrix such that W is a generalized inverse of �2;

that is, W satisfies W�2W = W. This approach leads to the choice Ŵ = �̂
+
2 and the statistic

R2 = N
(
p2 − π̂2

)′
�̂+

2

(
p2 − π̂2

)
. (12)

For binary data, this statistic was proposed by Reiser (1996, 2008).
M2 has a computational advantage over R2 in that it does not require the computation of

the asymptotic covariance matrix of the item parameter estimates. Thus, for ML estimation, the
information matrix need not be computed; only its diagonal elements are needed to obtain the
standard errors of the parameter estimates. Also, a single implementation suits all estimators,
since M2 follows the above chi-square distribution for any consistent estimator.

In contrast, the degrees of freedom of R2 equal rank
(
�+

2 �2
) = rank (�2). However, the rank

of �2 is unknown and may depend on the parameter values (Reiser, 1996). As a result, currently,
in applications the degrees of freedom involved when using R2 must be estimated by determining
the rank of �̂2, for example, using an eigen decomposition. Hence, the p-value of R2 will depend
on how many eigenvalues are numerically judged to be zero. This is tricky in IRT applications,
as numerical integration is involved, and, as a result, it may be difficult to judge whether an
eigenvalue is zero; for an illustration of this point see Maydeu-Olivares and Joe (2008).

An alternative way to obtain an overall goodness-of-fit statistic is to use as weight matrix in
the quadratic form Q given in equation (8) a matrix that is easily computed. In this case, the
resulting statistic will asymptotically follow a mixture of chi-square distributions. A p-value in
this case can be obtained using the inversion formula given in Imhof (1961). Another way to
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obtain a p-value in this case is by adjusting the test statistic by its asymptotic mean-and-variance
so that the asymptotic distribution of the adjusted test statistic can be approximated by a chi-
square distribution. This approach dates back to Satterthwaite (1946) and was made popular in the
structural equation modeling literature by Satorra and Bentler (1994). Imhof’s inversion method
is slightly more involved computationally but does not yield a more accurate p-value (Liu &
Maydeu-Olivares, 2012a). As a result, here I focus on mean-and-variance corrections.

Two obvious choices of weight matrix in (8) that do not lead to a chi-square distributed statistic
are Ŵ = �−1

2 and Ŵ = (diag (�2))
−1. The first leads to the statistic L2 in (3). L2 was proposed by

Maydeu-Olivares and Joe (2005, 2006) for testing simple null hypotheses (i.e., known parameter
values), in which case it follows an asymptotic chi-square distribution. The latter leads to the
statistic

Y2 = N
(
p2 − π̂2

)′
(diag (�2))

−1
(
p2 − π̂2

)
, (13)

introduced by Bartholomew and Leung (2002) for testing IRT models for binary data. The mean-
and-variance adjustment for Bartholomew and Leung’s (2002) statistic for ML item parameter
estimates was given by Cai, Maydeu-Olivares, Coffman, and Thissen (2006).

To compute p-values for Q using a mean-and-variance adjustment, we assume that the distri-
bution of Q can be approximated by a bχ2

a distribution. The first two asymptotic moments of Q
are

μ1 = tr (W�2) , μ2 = 2tr(W�2)
2. (14)

Solving for the two unknown constants a and b and evaluating μ1 and μ2 at the parameter
estimates, we obtain the mean-and-variance corrected Q statistic

Q = Q

b
= μ̂2

2μ̂1
Q, (15)

which has an approximate reference chi-square distribution with degrees of freedom

a = 2μ̂2
1

μ̂2
. (16)

This is the approach used by Cai et al. (2006) to approximate the asymptotic distribution of Y2 in
binary IRT models. However, following Asparouhov and Muthén (2010), it is possible to define

an alternative mean-and-variance corrected Q that, unlike (15), has the same degrees of freedom

as M2. Their method entails writing the statistic as Q = a∗ + b∗Q, where a∗ and b∗ are chosen

so that the mean and variance of Q are df 2 and 2 df 2, respectively. Solving for the 2 unknown
constants a∗ and b∗ we obtain

Q = Q

√
2df2
μ̂2

+ df2 −
√

2df2μ̂2
1

μ̂2
. (17)
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Our simulation results, consistent with the results of Asparouhov and Muthén (2010), suggest
that there is a negligible difference in the p-values obtained using (15) and (17). Therefore, we

make use of L2 and Y2 as they are more intuitive: degrees of freedom are the familiar formula
equal to the number of statistics in p2 minus the number of item parameter estimates. Note that
mean-and-variance corrected statistics, as well as the use of Imhof’s inversion method, require
the computation of an estimate of �2, the asymptotic covariance matrix of the bivariate residual
moments. Therefore, for a computational viewpoint, M2 is also preferable to the use of quadratic
forms, which are asymptotically distributed as a mixture of chi-square variables.

Testing Models for Large and Sparse Ordinal Data

When the number of categories per item is large, M2 may not be computable for large numbers
of items due to the size of the matrices that need to be stored in memory. Using theory from Joe
and Maydeu-Olivares (2010), a statistic analogous to M2 may be computed using as summary
statistics residual means and cross-products instead of the residuals p2 − π̂2. The population
means and cross-products are

κi = E [Yi] = 0 × Pr (Yi = 0) + . . . + (Ki − 1) × Pr (Yi = Ki − 1) , (18)

κij = E
[
YiYj

] = 0 × 0 × Pr
(
Yi = 0, Yj = 0

) + . . . + (Ki − 1) × (Kj − 1)

× Pr
(
Yi = Ki − 1, Yj = Kj − 1

)
, (19)

with sample counterparts ki = yi (the sample mean) and kij = yi
′yj/N (the sample cross-product),

respectively. In particular, for our previous 2 × 3 example, the elements of κ are

κ1 = E [Y1] = 1 Pr (Y1 = 1) = π
(1)
1

κ2 = E [Y2] = 1 Pr (Y2 = 1) + 2 Pr (Y2 = 1) = π
(1)
2 + 2π

(2)
2 (20)

κ12 = E [Y1Y2] = 1 × 1 Pr (Y1 = 1, Y2 = 1) + 1 × 2 Pr (Y1 = 1, Y2 = 2) = π
(1)
1

(1)
2 + 2π

(1)
1

(2)
2 .

Using these statistics we can construct the goodness-of-fit statistic

Mord = N
(
k − κ̂

)′
Ĉord

(
k − κ̂

)
, Cord = �−1

ord − �−1
ord�ord(�′

r�
−1
ord�ord)−1�ord

′�−1
ord, (21)

where now N�ord is the asymptotic covariance matrix of the sample means and cross-products k,
�ord is the matrix of derivatives of the population means and cross-products κ with respect to the
model parameters, and Cord is evaluated at the parameter estimates.

Notice that Mord has the same form as M2. However, Mord uses fewer statistics than M2, and
the statistics used in the former are a linear combination of the statistics used in the latter. Thus,
for our 2 × 3 example, M2 is a quadratic form involving π2

′ =
(
π

(1)
1 , π (1)

2 , π (2)
2 , π (1)

1
(1)
2 , π (1)

1
(2)
2

)
,

whereas Mord is a quadratic form involving κ given in (20). Clearly, κ is obtained as a linear
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combination of π2, where the weights used correspond to the coding of the categories. However, it
only makes sense to use means and cross-products, and, therefore Mord, when the item categories
are ordered (hence its name). Furthermore, when the data are binary, Mord equals M2.

Mord is asymptotically distributed as a chi-square with dford = n(n+1)
2 − q degrees of freedom.

This means that Mord cannot be used when the number of categories is large and the number of
items is small due to the lack of degrees of freedom for testing. For instance, for a graded-response
model with a single latent trait, the number of items must be larger than the number of categories
times 2 (i.e., n ≥ K × 2) for the degrees of freedom Mord to be positive. Thus, for ordinal data,
if the model involves a large number of variables and categories one must resort to Mord, as M2

cannot be computed. On the other hand, when the number of categories is large and the number of
items is small, Mord cannot be computed due to a lack of degrees of freedom. In some medium-
size models for ordinal data, there is a choice between M2 and Mord. Because κ concentrates
the information available in π2, Mord may be more powerful than M2 along most alternatives of
interest (Joe & Maydeu-Olivares, 2010) and Cai and Hansen (2013) report simulations showing
that this is the case. Note that Cai and Hansen refer to Mord as M∗

2 . On the other hand, if the
concentration of the information is not along the alternative of interest, M2 will be more powerful
than Mord along that direction. Similarly, π2 concentrates the information available in π, the
cell probabilities, and M2 may be more powerful than X2 along most alternatives of interest, but
less powerful than X2 if it does not concentrate the information along the alternative of interest.
For instance, M2 will be less powerful than X2 if the misfit only appears in 3-way and higher
associations.

TESTING FOR APPROXIMATE FIT

In many IRT applications, degrees of freedom are so large that it is unrealistic to expect that
any model will fit the data. In other words, it is unrealistic to expect that the fitted IRT model
is the data-generating mechanism. Therefore, it is more reasonable to test whether the model
fits approximately rather than testing whether it fits exactly. By this we simply mean testing
whether some statistic is smaller than some cutoff. Drawing on work in the structural equations
modeling literature by Browne and Cudeck (1993), Maydeu-Olivares and Joe (in press) have
recently proposed a family of population discrepancy parameters between the fitted model and
the true and unknown data-generating model

Fr = (
πT

r − π0
r

)′
C0

r

(
πT

r − π0
r

)
, (22)

with π0
r being the moments up to order r under the fitted (i.e. null) model, πT

r under the true
model and C0

r being

Cr = �−1
r − �−1

r �r(�
′
r�

−1
r �r)

−1�′
r�

−1
r = �(c)

r (�(c)′
r �r�

(c)
r )−1�(c)′

r , (23)

based on the fitted (null) model. In this family of population discrepancies, F1 is the population
discrepancy between the univariate moments under the true and null models, F2 is the population
discrepancy between the univariate and bivariate moments under the true and null models, and so
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forth up to Fn, a population discrepancy involving all moments, which can be rewritten using the
cell probabilities as

Fn = (πT − π0)
′D−1

0 (πT − π0) (24)

To take into account model parsimony, a Root Mean Square Error of approximation (RMSEA;
Steiger & Lind, 1980) can be constructed for each of the members of the family of population
discrepancies (24) leading to a family of root mean square error of approximation RMSEArs,
given by

εr =
√

Fr

dfr
(25)

where dfr = sr – q denotes the degrees of freedom available for testing when only up to rth-way
moments are used.

Maydeu-Olivares and Joe (in press) also show that under a sequence of local alternatives, an
asymptotically unbiased estimate of the RMSEAr is

ε̂r =
√

Max

(
Mr − dfr
N × dfr

, 0

)
, (26)

where the Mr statistics are of the form (10) involving moments up to order r = 1, 2, . . . , n,

and dfr =
(

r∑
i=1

(
n
i

)
(K − 1)i

)
− q. Since for ML estimation Mn = X2 (Maydeu-Olivares & Joe,

2005), the full information RMSEA (i.e. RMSEAn) can be estimated as ε̂n =
√

Max
(

X2−df
N×df , 0

)
,

with df = C – q – 1.
A 90% confidence interval for εr is given by

⎛
⎝

√
L̂r

N × dfr
;

√
Ûr

N × dfr

⎞
⎠ , (27)

with L̂r and Ûr being the solution to

Pr
(
χ2

dfr

(
L̂r

)
≤ Mr

)
= 0.95, and Pr

(
χ2

dfr

(
Ûr

)
≤ Mr

)
= 0.05, (28)

respectively.
Finally, researchers may be interested in performing a test of close fit of the type

H0 : εr ≤ cr vs. H1 : εr>cr, (29)
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where cr is an arbitrary cutoff value that depends on r, the highest level of association used.
P-values for (29) are obtained using

p = 1 − Pr
(
χ2

dfr

(
N × dfr × c2

r

) ≤ Mr
)

. (30)

Which member of this family should be used? Maydeu-Olivares and Joe (in press) argue that
the RMSEA that should be used is the one whose sampling distribution can be best approximated
in small samples. This leads to using the smallest r at which the model is identified, generally r =
2. That is, they recommend using RMSEA2 in applications. This RMSEA can be estimated from
the M2 statistic using equation (26).

Using simulations, they actually show that the distribution of the sample RMSEA2 can be
well approximated in small samples even for large models, whereas the distribution of the full
information sample RMSEAn can only be well approximated in small models. Furthermore,
using the unidimensional graded-response model and its special cases, the 2PL and 1PL mod-
els as null (fitted) models, they illustrate the relationship between the population RMSEA2 and
RMSEAn showing that for all the true models they investigated (which included conditions of
multidimensionality and lower asymptote parameters) RMSEA2 > RMSEAn. This is simply a
reflection of M2 being generally more powerful than X2. Importantly, it implies that if the same
cutoff point is used in a RMSEA test of close fit (30), it is harder to retain a model when only
bivariate information is used than when full information is used.

Maydeu-Olivares and Joe (in press) then explore what cutoff should be used when testing
for close fit using the RMSEA2. Interestingly, they show that regardless of the number of vari-
ables being modeled, a cutoff of ε2 ≤ 0.05 separates quite well misspecified IRT models with
correctly specified latent trait dimensionality from IRT models with misspecified latent trait
dimensionality. They argue that for IRT modeling, a correctly specified latent trait dimensionality
is the most important consideration, and consequently, they suggest that a cutoff of RMSEA2 ≤
0.05 indicates adequate fit. They also show that the population RMSEA2 is strongly affected by
the number of categories: the larger the number of categories, the smaller the value of the popu-
lation RMSEA2. They also show that dividing the RMSEA2 by the number of categories minus
1, one obtains an RMSEA2 relatively unaffected by the number of categories. Consequently, they
suggest using ε2 ≤ 0.05/(K − 1) as a cutoff for excellent fit.

When the size of the model is so large that M2 cannot be computed, Maydeu-Olivares and Joe
(in press) suggest using

Ford = (
κT − κ0

)′
C0

ord

(
κT − κ0

)
(31)

to assess the discrepancy between the true and fitted models. In (31) κ0 and κT denote the
population means and cross-products (18) and (19) under the fitted (i.e. null) and true models,
respectively, and C0

ord as given in equation (21) based on the fitted (null) model. An RMSEA can
be constructed using the parameter

εord =
√

Ford

dford
, (32)
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with an asymptotically unbiased estimate

ε̂ord =
√

Max

(
Mord − dford

N × dford
, 0

)
. (33)

However, if Mord is more powerful than M2, then the RMSEAord must be larger than the
RMSEA2, as the RMSEAs are a function of the estimated noncentrality parameters. Thus, a
larger cutoff must be used for RMSEAord than for RMSEA2. Most importantly, the population
RMSEAord depends on the number of variables: the larger the number of variables, the smaller
the population RMSEAord, all other factors being constant.

To assess the approximate fit of large models for ordinal data while overcoming the depen-
dence of RMSEAord on the number of items and, hence, the difficulty of establishing a cutoff
criterion, I recommend the use of the Standardized Root Mean Square Residual (SRMSR) bor-
rowed from the factor analysis literature. For a pair of items i and j, the standardized residual is
defined as the sample (product-moment or Pearson) correlation minus the expected correlation.
In turn, the expected correlation simply equals the expected covariance divided by the expected
standard deviations:

rij − ρ̂ij = rij − κ̂ij − κ̂iκ̂i√
κ̂ii − κ̂2

i

√
κ̂jj − κ̂2

j

, (34)

where the means (κi and κj) and the cross-product κij were given in (18) and (19), and κ ii is

κii = E
[
Y2

i

] = 02 × Pr (Yi = 0) + . . . + (Ki − 1)2 × Pr (Yi = Ki − 1) . (35)

The SRMSR is simply the square root of the average of these squared residual correlations

SRMSR =
√√√√∑

i<j

(
rij − ρ̂ij

)2

n(n − 1)/2
. (36)

Being an average of standardized residuals, the SRMSR is not affected by the number of items,
all other factors being held constant. In addition, the interpretation of the SRMSR is straight-
forward and intuitive. In contrast, the RMSEAs cannot be readily interpreted. An advantage of
the RMSEAs over the SRMSR is that it is straightforward to compute confidence intervals for
them, and to perform hypothesis testing, since they are simply transformations of the M2 and
Mord statistics, respectively, which are chi-square distributed when the fitted model is correctly
specified (Maydeu-Olivares & Joe, in press). In contrast, the computation of confidence inter-
vals for the SRMSR, and hypothesis testing, is cumbersome as the asymptotic distribution of the
SRMSR is a mixture of independent chi-squares when the model is correctly specified. Thus,
the SRMSR is best used as a goodness-of-fit index. Any substantively motivated cutoff may be
used with the SRMSR, as its interpretation is straightforward. I feel that residual correlations
smaller than 0.05 indicate a substantively negligible amount of misfit, and therefore I suggest
using SRMSR ≤ 0.05 as a cutoff for well-fitting IRT models for ordinal data. Of course, the
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SRMSR is just a summary measure, and therefore it is good practice to report the largest standard-
ized residuals (36) in the model in addition to the SRMSR or to provide the matrix of residuals
if the model does not involve too many items. A disadvantage of the SRMSR compared with the
RMSEA is that it does not take model complexity into account. However, model complexity is
only of interest when different models are fitted to a data set, for instance models with a different
number of latent traits.

PIECE-WISE ASSESSMENT OF FIT

After examining the overall fit of a model, it is necessary to perform a piece-wise goodness-of-fit
assessment. If the overall fit is poor, a piece-wise fit assessment may suggest how to modify the
model. Even if the model fits well overall, a piece-wise goodness-of-fit assessment may reveal
parts of the model that misfit.

A useful starting point for our discussion of piece-wise fit assessment is the bivariate Pearson’s
X2 statistic. After the IRT model parameters have been estimated using the full data, a X2 statistic
may be computed for each bivariate subtable. In this case, it is convenient to write:

X2
ij = N

(
pij − π̂ij

)′
D̂

−1

ij

(
pij − π̂ij

)
. (37)

This is just the standard X2 statistic (1) applied to the bivariate subtable involving variables i
and j. Thus, for a model fitted to K category items, pij is the K2 vector of observed bivariate

proportions; π̂ij = πij

(
θ̂ij

)
is the vector of expected probabilities which depend only on the qij

parameters involved in the bivariate table, θ̂ij; and Dij = diag
(
π̂ij

)
. For instance, in the case of a

graded-response model with a single latent trait, θ̂ij are the 2 slopes and 2 × (K – 1) intercepts.
It is tempting to refer X2

ij to a chi-square distribution degrees of freedom equal to the number of
parameters in the unrestricted model πij, K2 – 1, minus the number of parameters in the restricted
model πij

(
θij

)
, qij, so that dfij = K2 – qij – 1. However, Maydeu-Olivares and Joe (2006) showed

that the asymptotic distribution of the subtable X2
ij is stochastically larger than this reference

distribution. This means that referring X2
ij to a chi-square distribution with dfij degrees of freedom

may lead to rejecting well-fitting items. They also showed that the M2 statistic (10) applied to
a bivariate subtable is asymptotically distributed as a chi-square with dfij degrees of freedom.
Finally, they also showed that the bivariate subtable M2 can be written in terms of the bivariate
cell residuals as

Mij = X2
ij − N

(
pij − π̂ij

)′
D̂

−1

ij �̂ij

(
�̂ij

′
D̂

−1

ij �̂ij

)−1
�̂ij

′
D̂

−1

ij

(
pij − π̂ij

)
(38)

where �ij denotes the matrix of derivatives of the bivariate probabilities πij with respect to the
parameters involved in the bivariate table, θij.

Unfortunately, Maydeu-Olivares and Liu (2012) have recently shown that Mij does not have
much power to detect multidimensionality, and consequently, alternatives to Mij are needed. From
equation (38), Mij can be seen as a correction to X2

ij. An alternative way to correct X2
ij, so that it
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can be referred to a chi-square distribution with dfij = K2 × qij – 1 degrees of freedom, is to
correct it by its asymptotic mean and variance. The mean-and-variance corrected statistic is

X
2

ij = X2
ij

√
dfij
tr2

+ dfij −
√

dfijtr2
1

tr2
. (39)

In (39), tr1 = tr
(

D̂
−1

ij �̂ij

)
, tr2 = tr

(
D̂

−1

ij �̂ijD̂
−1

ij �̂ij

)
, where for the MLE

�ij = Dij − πijπij
′ − �ij

(I−1
)

ij
�ij

′ (40)

multiplied by sample size is the asymptotic covariance matrix of the cell residuals for the pair of
variables i and j when the model parameters have been estimated by maximum likelihood using
the full table. In (40),

(I−1
)

ij denotes the rows and columns of the information matrix corre-
sponding to the item parameters involved in the subtable for variables i and j. As an alternative
to (39), we can compute a mean-and-variance corrected X2

ij with degrees of freedom estimated

as a real number, X
2
ij, analogous to the overall test statistic computed using (15) and (16). More

specifically, X
2
ij is computed as

X
2
ij =

tr
(

D̂ij�̂ijD̂ij�̂ij

)
tr

(
D̂ij�̂ij

) X2
ij, (41)

and it is referred to a chi-square distribution with

(
tr

(
D̂ij�̂ij

))2

tr
(

D̂ij�̂ijD̂ij�̂ij

) (42)

degrees of freedom.
Similarly, we can also compute a bivariate subtable counterpart of the overall statistic proposed

by Reiser (1996, 2008) given in equation (12)

Rij = N
(
pij − π̂ij

)′
�̂

+
ij

(
pij − π̂ij

)
. (43)

The degrees of freedom of Rij are given by the rank of �ij, which may be estimated from the data
as the number of eigenvalues of �̂ij, which are nonzero. In estimating the rank of �̂ij and of �̂2

in (12) we use 10−5 as a cutoff.
A drawback of Mij is that it cannot be used with binary data due to the lack of degrees of

freedom (Maydeu-Olivares & Liu, 2012). The parameter X
2
ij may be used with binary data since

the degrees of freedom are estimated as a real number using (42), and Rij may also be used with
binary data as its (integer-valued) degrees of freedom are estimated as well, unless the estimate
were exactly zero.
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An attractive alternative for binary data consists in using the z statistics for the residual cross-
product of both items,

zij = pij − π̂ij

SE
(
pij − π̂ij

) = pij − π̂ij√
σ̂ij/N

, (44)

as suggested by Reiser (1996). Here, πij = Pr
(
Yi = 1, Yj = 1

)
and pij is its corresponding pro-

portion. Thus, πij is simply 1 of the 4 probabilities in πij, and σ̂ij is its corresponding diagonal
element in (40). The asymptotic distribution of zij is standard normal, and of z2

ij is chi-square with
1 degree of freedom.

This statistic can be extended to polytomous ordinal data as

zij = kij − κ̂ij

SE
(
kij − κ̂ij

) = kij − κ̂ij√
σ̂ 2

ij /N
, (45)

where now σ̂ 2
ij = vij

′�̂ijvij, with

vij
′ = (0 × 0, 0 × 1, . . . 0 × (K − 1), . . . , (K − 1) × 0, (K − 1) × 1, . . . , (K − 1) × (K − 1)) ,

(46)

and kij − κ̂ij = vij
′ (pij − π̂ij

)
is the residual cross-product. In the binary case (45) reduces to (44).

Using z statistics, one can also assess the fit of the model to single items. Using ki to denote
the sample mean and κ̂i to denote the expected mean, a z statistic for a polytomous variable can
be computed as the residual mean divided by its standard error

zi = ki − κ̂i

SE(ki − κ̂i)
= ki − κ̂i√

σ̂ 2
i /N

(47)

where σ̂ 2
i = vi

′�̂ivi, with vi
′ = (0, 1, . . . K − 1), and the residual mean is a linear function of

the residual univariate proportions, ki − κ̂i = vi
′ (pi − π̂i

)
. The latter have asymptotic covariance

matrix (for the MLE)

�i = Di − πiπi
′ − �i

(I−1
)

i�i
′ (48)

multiplied by sample size. Here, pj is the K–dimensional vector of observed univariate pro-

portions and π̂i = πi

(
θ̂i

)
is the vector of expected probabilities, which depend only on the qj

parameters involved in the univariate subtable. Also, Di = diag
(
π̂i

)
and �i denotes the matrix

of derivatives of the univariate probabilities πi with respect to the parameters involved in the
bivariate table, θi. In the binary case, the z statistic for the residual mean reduces to the univariate
zi statistic proposed by Reiser (1996)

zi = pi − π̂i

SE(pi − π̂i)
= pi − π̂i√

σ̂ 2
i /N

, (49)
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where π̂i is the expected probability of endorsing the item, pi is the observed proportion, and σ 2
i

is its corresponding diagonal element in (48).
Further research is needed comparing the empirical Type I errors and power against alterna-

tives of interest of the array of statistics described above as well as of other statistics for assessing
the source of misfit with a known asymptotic distribution such as score tests (Glas, 1999; Glas &
Suárez-Falcón, 2003; Liu & Thissen, 2012, 2013). More details on score tests are given in the
discussion section.

Extant results on the small sample behavior of these methods suggest that the choice of approx-
imation of the information matrix has a strong impact on the behavior of the statistics in small
samples. Thus, Liu and Maydeu-Olivares (2012b) report that the use of the cross-products approx-
imation to compute score tests for binary data leads to rejecting well-fitting items in small samples
(<1000 observations). In contrast, they report that the use of the expected information matrix
leads to empirical Type I errors that are right on target even with 300 observations (they did not
consider smaller samples). However, the expected information matrix can only be used in appli-
cations involving a manageable number of possible response patterns (19 or so items if they are
binary, but only 8 or so items if they consist of 5 response categories). In our recent preliminary

comparison of the behavior of X
2

ij

(
and X

2
ij

)
, Rij, and zij we found that the observed information

matrix gives excellent results in small samples; whereas, the cross-products approximation may
be used only in large samples (>1000 observations). Thus, in small samples, zij should not be
computed using the cross-products approximation to the information matrix as σ̂ 2

ij in (45) is often
negative. Also, when using the cross-products approximation, the sampling variability of Rij is
very large. In the applications below, the observed information matrix is used.

NUMERICAL EXAMPLES

PROMIS Anxiety Short Form

To illustrate the procedures described above, I use the n = 7 item PROMIS anxiety short form
(Pilkonis et al., 2011). Respondents are asked to report the frequency with which they experienced
certain feelings in the past 7 days using a K = 5 point rating scale ranging from “never” to
“always.” I use the N = 767 complete responses to these data kindly provided by the authors.
Since the observed frequencies of the highest category were rather small for all items {6, 14, 13, 4,
5, 9, 13}, I merged the 2 highest categories prior to the analysis, so that K = 4. A unidimensional
logistic graded-response model (Samejima, 1969) with a normally distributed latent trait was
estimated by maximum likelihood using Mplus 6 (Muthén & Muthén, 2011); 48 Gauss-Hermite
quadrature points were used and standard errors were computed using the observed information
matrix (7). There are q = 4 × 7 = 28 estimated parameters in this example.

The model does not fit the data exactly, as the value of the statistic M2 given by equation
(10) is 346.34 on 182 degrees of freedom, p < 0.01. Mord cannot be used in this example, as
the number of degrees of freedom is zero. A larger number of items, or a smaller number of
categories with the same number of items, would be needed to estimate Mord. For completeness,
Table 1 displays all the remaining overall test statistics described in this article. In this table we
see that the estimated degrees of freedom of R2, 196, differs substantially from the number of
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TABLE 1
Overall Goodness-of-Fit Tests for the Fit of a Graded Response

Model to the Anxiety Data

stat value df RMSEA

M2 346.34 182 0.034
R2 386.45 196 0.036
Y2 152.17 55.23 0.048
L2 346.28 181.63 0.034

Y2 357.98 182 0.036

L2 346.81 182 0.034

Notes: N = 767; n = 7; K = 4.

degrees of freedom of M2, which in turns equals the number of statistics used for testing minus
the number of estimated parameters. Also, the estimated degrees of freedom of the mean-and-
variance corrected statistics Y2 and L2 differ substantially: 55.23 and 181.83, respectively. As the
statistics are on different scales (their degrees of freedom), I compute RMSEAs for each of the
statistics to gauge the (dis)similarity of the results obtained with the different statistics. As we
can see in Table 1, the RMSEAs for all statistics are remarkably close: they range from 0.034 to
0.036 with the exception of the RMSEA of Y2, which yields a larger value, 0.048. It is also worth

pointing out the remarkable closeness of the value of the mean and variance statistic L2 to the
value of the M2 statistic.

I also computed a 90% confidence interval for the population RMSEA based on M2, obtain-
ing (0.029; 0.040). Thus, the fit of the model is adequate (RMSEA2 ≤ 0.05) but falls short of
Maydeu-Olivares and Joe’s (in press) criterion for an excellent approximation, RMSEA2 ≤ (0.05/

(K –1) = 0.017.
If we are interested in detecting where the model misfits, with a view to modifying the model

we could use the Mij, Rij, or mean adjusted X2
ij statistics. Of the 2 mean and variance statistics I

prefer the one with dfij degrees of freedom, X
2

ij. These are displayed in matrix form in Table 2.
To control for multiple testing, I use a Bonferroni adjustment. Since there are (7 × 6) / 2 = 21

TABLE 2

Mean-and-Variance Adjusted Bivariate X
2

ij statistics After Fitting a Graded Response
Model to the Anxiety Data

Item 1 2 5 6 3 4 7 Average

1 20.77 19.94 20.67 16.93 11.89 35.37 17.94
2 20.77 14.69 25.39 15.71 15.44 23.26 16.47
5 19.94 14.69 7.70 22.38 13.20 26.26 14.88
6 20.67 25.39 7.70 22.87 15.42 15.03 15.30
3 16.93 15.71 22.38 22.87 4.40 19.90 14.60
4 11.89 15.44 13.20 15.42 4.40 8.54 9.84
7 35.37 23.26 26.26 15.03 19.90 8.54 18.34

Notes: df = 7; Statistics larger than 22.16 are significant at the 5% level with a Bonferroni adjustment and are in bold.
The row averages of the statistics have been appended as an additional column.
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TABLE 3
Mij and Rij Bivariate Statistics After Fitting a Graded Response Model to the Anxiety Data

Item 1 2 5 6 3 4 7 Average

1 12.18 16.60 16.52 16.64 6.14 36.02 14.87
2 39.42 13.73 27.61 15.97 12.61 20.62 14.67
5 27.26 25.55 8.37 24.38 14.69 22.84 14.37
6 24.75 31.32 10.44 24.60 12.05 11.50 14.38
3 47.62 28.44 29.02 31.11 5.03 10.47 13.87
4 79.66 34.06 19.50 46.31 5.03 4.51 7.86
7 42.60 30.08 30.66 28.37 10.47 18.58 15.14

Notes: Mij statistics are displayed above the diagonal; Rij statistics, below the diagonal. df = 7 for Mij, df range from
12 to 14 for Rij. Consequently, Rij values cannot be compared across pairs, and row averages are given for Mij only.
Statistics significant at the 5% level with a Bonferroni adjustment are in bold. The averages of the Mij statistics across
the 7 items have been appended as an additional column.

statistics the cut-off p-value used is 0.05/21 = 0.002. The critical value for a chi-square distri-
bution with dfij = 42 – 2 × 4 – 1 = 7 degrees of freedom yielding this p-value is 22.16. I have
highlighted the statistics that are larger than this critical value with boldface. I have also appended

to the table a column containing the average of the X
2

ij statistics for each item. These row averages
can be used to identify the best- and worst-fitting items.

In presenting tables of bivariate fit statistics such as X
2

ij, I find it useful to apply a cluster

analysis to the matrix of X
2

ij statistics (I use Ward’s method) and to display the bivariate statistics
with items reordered according to the results of the cluster analysis. I do this in Table 2. In this
table we see that the model misfit involves the associations between items {1, 2, 5} and item 7,
the associations between items {5, 6} and item 3, and the association between items 2 and 6. For
comparison, in Table 3 I provide the results obtained using Mij and Rij. Comparing the results
presented in tables 2 and 3, we see that generally the values of Mij are smaller than the values of

X
2

ij. As a result, the row averages obtained using Mij are smaller than using X
2

ij. This may indicate

that Mij has lower power than X
2

ij. However, similar conclusions are reached in this example when

using Mij and X
2

ij.
The use of Rij involves some complications. Degrees of freedom for different pairs of items

differ and as a result, the values of Rij across item pairs cannot be compared directly: only their
p-values can be compared. In this application, the estimated degrees of freedom of Rij were 12 for
3 item pairs, 13 for 9 item pairs, and 14 for the remaining item pairs. As a result, row averages of
Rij statistics cannot be computed. Most importantly, I observed that although Rij has reasonable
Type I error rates and high power, the sampling variability of the statistic is large even when the
observed information matrix is used. As a result, in applications, we are likely to encounter Rij

values that are very large. We see this in this example. The estimated Rij statistic for item pair {1,
4} is 79.66 on 13 df. On seeing such a large residual statistic, a researcher will believe that there
is a serious misfit in the model when, in fact, this high value of Rij may be the result of the large

sampling variability of the statistic. Actually, for this item pair, the mean and variance statistic X
2

ij
is not statistically significant.
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Currently our preferred method to assess the source of misfit is using z statistics. On the one
hand, they enable us to test the fit of the model at the item level. On the other hand, prelim-
inary results reveal that these statistics are more powerful for detecting alternatives of interest
that the other statistics discussed in this article. More specifically, zij statistics concentrate the
information of the bivariate table of residuals into a 1 degree of freedom statistic (z2

ij follows
a 1 degree of freedom chi-square distribution). If the concentration of the information is along
the direction of the misfit, then zij will be more powerful for detecting that direction of misfit;
otherwise, it will be less powerful than alternative statistics. In any case, there need not be a
strong relation between the results obtained using zij and the alternative statistics. The zij statis-
tics obtained in this example are presented in Table 4. Negative values of the statistics indicate
that the model overestimates the association between the items; whereas, positive values indicate
that the model underestimates the association. In this table, I have also included the univariate
statistics zi. Using a Bonferroni adjustment, the critical value for this standard normal statistic is
|3.12| and in the table I have highlighted the statistics that are larger than this critical value in
bold. As we can see in Table 4, the zij statistics clearly suggest that the misfit is located in the
association between items {1,3} with {2,5}. In all cases the residual is negative, suggesting that
the model overestimates the associations between these 2 pairs of items.

The residual cross-products also yield a relatively natural way to assess the magnitude of misfit
when the data are ordinal through its relation to the residual correlations (34). The residual corre-
lations for this example are reported in Table 4. The correlation between the zij statistics and the
residual correlations in this example is 0.877. As judged by the size of the residual correlations,
the magnitude of the misfit of the graded-response model to the PROMIS anxiety data is rather
small. The largest residual correlation is 0.036, and it involves items 4 and 2. Consequently, the
standardized square root mean squared residual is also very low: SRMSR = 0.016. The model
fits these data rather well, although it is unlikely to be the data-generating model.

TABLE 4
zi Statistics for Residual Means, Zij Statistics for Residual Cross-Products, and Residual Correlations After

Fitting a Graded Response Model to the Anxiety Data

Item 1 2 5 6 3 4 7 Average

1 3.91 −3.48 −3.57 −1.68 −1.54 −0.94 −1.98 2.44

2 −0.03 −0.77 0.50 −2.10 −3.21 1.53 −0.87 1.78

5 −0.02 0.02 −0.96 −2.41 −3.27 −1.37 −1.57 1.95

6 <0.01 −0.02 −0.01 −0.62 −0.79 −2.03 0.24 1.41

3 0.01 −0.03 −0.02 <0.01 −0.55 −2.20 −0.54 1.73

4 <0.01 0.04 −0.01 −0.02 −0.02 −2.20 −1.26 1.62

7 −0.01 −0.01 −0.02 <0.01 −0.01 −0.02 −1.26 1.09

Notes: zij statistics are displayed above the diagonal; zi statistics, along the diagonal; and residual correlations below
the diagonal. z statistics larger than |3.12| are significant at the 5% level with a Bonferroni adjustment and are in bold.
The averages of the absolute values of the z statistics across the 7 items have been appended as an additional column.
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If we wish to modify the model, how should we use the information obtained in this piece-wise
analysis? It is not clear in this example. The misfit does not appear to be located in a particular
cluster of items, which would suggest the need of a multidimensional model. Also, the misfit
does not appear to be associated to any particular item, which would suggest dropping the item
from further analysis. Rather, in this example there appear to be mild deviations from the fitted
model. The easiest course of action in this case is to retain the fitted model as a close enough
approximation to the true data-generating model. Other alternatives include (a) finding an alter-
native better-fitting IRT model (with a different response function), possibly including a mixture
distribution and (b) identifying outlying individuals whose responses are not well fit by the model.

CHILEAN MATHEMATICAL PROFICIENCY DATA

Due to the lack of degrees of freedom, the application of tests to bivariate subtables when the
items are binary presents certain peculiarities. For this reason, it is of interest to consider a binary
data example here as well. The data used in this example are the responses of 3,000 individuals
to a 15-item test aimed at measuring mathematical proficiency in Chilean adults. A 1-parameter
logistic model (1PL, aka random effects Rasch model) was applied to these data. Estimation was
again performed using ML with 50 Gauss-Hermite quadrature points; standard errors were again
computed using the observed information matrix.

Table 5 displays the values of the different goodness-of-fit statistics applied, along with their
degrees of freedom and p-values. As we can see in this table, using a significance level of 5%,
we cannot reject the hypothesis that the 1PL is the generating model for these data with any of
the statistics. This is surprising given the large sample size used and the restrictiveness of the

fitted model. In fact, all test statistics but Y2 and Y2 yield very similar p-values, between 0.09 and

0.12. Y2 and Y2 yield much larger p-values, around 0.50. More research is needed to explain this
discrepancy.

When fitting a 1PL model, 3 parameters are involved in each bivariate table (2 intercepts
and 1 common slope) and there are 3 mathematically independent probabilities. So there are
zero degrees of freedom for assessing the piece-wise fit of the model using Mij, and therefore

TABLE 5
Overall Goodness-of-Fit Tests for the Fit of a 1-parameter Logistic Model to

the Chilean Mathematical Proficiency Data

stat value df p RMSEA

M2 121.32 104 0.12 0.007
R2 133.40 113 0.09 0.008
Y2 22.88 23.52 0.50 0
L2 121.47 104.04 0.12 0.007

Y2 102.64 104 0.52 0

L2 121.43 104 0.12 0.007

Notes: N = 3,000; n = 15; K = 2.
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Xij

2
. Piece-wise assessment can be performed using zij as its asymptotic distribution is standard

normal. It can also be assessed using X
2
ij and Rij as for these statistics degrees of freedom are esti-

mated as a real number and as an integer, respectively. In this application, the estimated degrees
of freedom for X

2
ij ranged between 1.02 and 1.06 with an average of 1.03. The estimated degrees

of freedom for Rij were 2 for 6 item pairs, and 3 for the remaining 99 item-pairs. None of the

zij, X
2
ij or Rij statistics is statistically significant at the 5% level when using a Bonferroni adjust-

ment. We have failed to reject the hypothesis that the 1PL model is the generating model for these
data, and we have failed to detect any parts of the model whose fit may be improved. This is a
remarkable result.

Note that the X
2
ij statistics are not amenable to being displayed in table form since they are

on different scales (their degrees of freedom). To avoid this problem, and if mean-and-variance

adjusted X2 statistics are to be reported, I advocate reporting X
2

ij with 1 degree of freedom when

fitting binary data. This is a reasonable approach in as much as the p-values obtained using X
2
ij

and X
2

ij are very close. To illustrate this point, I have plotted both sets of p-values for this example
in Figure 1a. As we can see in this figure, in this example the relationship is almost perfectly
linear (except for very high p-values) with an intercept very close to zero. For completeness, in
Figure 1b I also provide the relationship between the p-values obtained using X

2
ij and Rij. In this

figure we see that except for 6 item pairs, there is a very strong curvilinear relationship between
the 2 sets of p-values. Only for 2 of these outlying pairs are there 2 degrees of freedom for
testing Rij. Therefore, there is no relationship between being an outlying item pair in Figure 1b

and the number of degrees of freedom of Rij. Finally, in Figure 1c the p-values for X
2
ij and zij

are displayed. We see that there is a strong linear relationship between the 2 sets of p-values.
However, the relationship is clearly heteroscedastic.

GOODNESS-OF-FIT METHODS FOR THE ORDINAL FACTOR ANALYSIS MODEL
ESTIMATED VIA POLYCHORIC CORRELATIONS

A logistic or a normal ogive link function can be used in the graded-response model, and dif-
ferences in fit when one or the other is used are generally small. When a normal ogive link
function is used, the model is formally equivalent to a factor analysis model for multivariate nor-
mal responses that have been categorized (i.e., an ordinal factor analysis model). That is, if (a)
a normally distributed psychological value is assumed to underlie the response to each item, (b)
a common factor model is assumed to hold for the unobserved psychological values, and (c) the
psychological values are discretized according to a set of thresholds, then Samejima’s normal
ogive graded-response model and the factor analysis model for ordinal responses are equivalent.

Also, the graded-response model can be specified using unstandardized parameters (intercepts
and slopes) or standardized parameters (standardized thresholds and standardized factor loadings)
(Forero & Maydeu-Olivares, 2009). Up to this point we have focused on the logistic version of the
model because it is the most widely used when ML estimation of the model is used. Also, when
ML estimation is used, unstandardized parameters are used. But, if the normal ogive version of
the model is used and the model is specified using standardized parameters, there is a separability
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a) 2
ijX with 2

ijX with one degree of freedom p-values

b) 2
ijX vs. Rij p-values

c) 2
ijX vs. zij p-values

FIGURE 1 Relationship between p-values for different statistics for
bivariate piecewise assessment of the 1-parameter logistic model fitted to
the Chilean mathematical proficiency data.
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of parameters that does not take place in the logistic version of the model, even when standardized
parameters are used. More specifically, when the normal ogive version is used with standardized
parameters, then (a) the univariate margins depend only on the standardized thresholds and (b)
the bivariate margins only depend on the standardized thresholds and the polychoric correlations.
A polychoric correlation is the correlation between 2 unobserved psychological values (if they
had been observed), and when both items are binary, it is referred to as tetrachoric correlation.
This separability of parameters in the normal ogive version of the model has implications for
model estimation, and also for the goodness-of-fit testing of the model.

Because of this parameter separability, the normal ogive model can be estimated sequentially.
First, the standardized thresholds are estimated separately for each item using maximum like-
lihood. Second, each polychoric correlation is estimated separately by maximum likelihood,
holding the thresholds at the values estimated in the second stage. This is pseudo maximum
likelihood in the terminology of Gong and Samaniego (1981). Third, the standardized factor
loadings (and other model parameters, such as the interfactor correlations) are estimated from the
thresholds and polychoric correlations by minimizing a weighted least squares (LS) function.

Fully weighted LS, diagonally weighted LS, or unweighted LS may be employed in the third
stage of the estimation method, and the latter may be the best performing method (Forero,
Maydeu-Olivares, & Gallardo-Pujol, 2009; Muthén, 1993). The procedure just described is
implemented in popular structural equation modeling programs such as Lisrel (Jöreskog &
Sörbom, 2007) or Mplus (Muthén & Muthén, 2011). The main difference between the 2 imple-
mentations is how they estimate the asymptotic covariance matrix of the parameter estimates
(Jöreskog, 1994; Maydeu-Olivares, 2006; Muthén, 1984; Muthén, 1993). A very similar proce-
dure is implemented in Eqs (Bentler, 2004; see also Lee, Poon, & Bentler, 1995).

The parameter separability present in the model also has implications for goodness-of-fit
testing: The overall discrepancy between the model and the data can be decomposed into a distri-
butional discrepancy (the extent to which the data arises from a discretized multivariate normal
distribution, and a structural discrepancy (the extent to which the constraints imposed on the
thresholds and polychoric correlations are correctly specified).

Current implementations of polychoric estimation methods provide an array of methods to test
the structural assumptions (i.e., whether a 1-factor model adequately reproduces the estimated
polychoric correlations): (a) an overall goodness-of-fit test, (b) z statistics for residual polychoric
correlations, and (c) score tests (aka modification indices), for instance, for correlations among
the unique errors.

Although these tests are informative, and therefore may be useful, they do not assess
model-data misfits. Rather, they assess solely the structural discrepancy and they rely on the
distributional assumptions being met. It is not clear how robust they are to violations of the
discretized multivariate normality assumption. Furthermore, the distributional assumption of
underlying multivariate normality is currently only assessed in a piece-wise fashion, computing
X2

ij for each pair of variables after the thresholds and polychoric correlations are estimated and
before a structural model is fitted. In this case, X2

ij is not asymptotically chi-square, because the 2-
stage procedure used to estimate the thresholds and polychoric correlations is not asymptotically
efficient. In principle, Mij should be used instead as this statistic is asymptotically correct when
polychoric correlations are computed in 2 stages. However, the simulation results by Maydeu-
Olivares, García-Forero, Gallardo-Pujol, and Renom (2009) reveal that p-values of X2

ij are just as
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accurate as those of Mij in this case due to the high efficiency of the 2-stage polychoric correla-
tion estimator. Yet, it is not clear what to conclude if the assumption of underlying normality is
rejected for some pairs but not for others. If assessing separately the distributional and structural
restrictions of this model are of interest, then an overall test of the distributional assumptions is
needed, and M2 (10) and Mord (21) may be used to this end. To test the distributional assumptions
using these statistics, the parameters estimated in the first 2 stages of the sequential estimation
procedure are used (i.e., unrestricted thresholds and polychoric correlations).

In contrast, the methods described in the previous sections of this article assess the overall dis-
crepancy between the model and the data. For instance, to assess the overall discrepancy M2 and
Mord may be applied, using in this case the restricted polychoric correlations and thresholds (as
implied for instance by a 1-factor model). Of the 2, in principle, the statistic Mord is better suited
for ordinal factor analysis problems as it is computationally less intensive, and extant theory and
simulation studies suggest that it has higher power (e.g., Cai & Hansen, 2012). However, when
there are no degrees of freedom for testing using Mord, M2 must be used. Also, using the estimated
statistics one can compute the RMSEA2 and RMSEAord overall goodness-of-approximation
statistics as well as confidence intervals for the population parameters.

To assess the overall source of misfit, Mij (38) can also be applied directly. The difference is
that when testing the overall misfit one uses the model-implied polychoric correlation; whereas,
when testing only the distributional restriction one uses the unrestricted polychoric correlation.
Maydeu-Olivares and Liu (2012) report that empirical rejection rates of Mij when applied to
assess the overall discrepancy in an ordinal factor analysis are right on target even with as few
as 100 observations. They also observe that the empirical rejection rates of the asymptotically
incorrect X2

ij also fare well in this case. In other words, the correction introduced by Mij on X2
ij for

this model is very small.
In closing this section, the other overall statistics presented earlier, as well as the other piece-

wise fit statistics, can also be computed for the ordinal factor analysis model. All that is needed is
to use the correct expression for the asymptotic covariance matrices in lieu of expressions (4) and
(40) given for the MLE. The asymptotic covariance matrix of the residual univariate and bivariate
moments for polychoric estimation methods is given in Maydeu-Olivares and Joe (2006, eq. 2.6).
An expression that is easier to program is given in Maydeu-Olivares (2006, eq. 31).

DISCUSSION

In this article, I have presented an overview of limited information test statistics for assessing the
goodness-of-fit of IRT models. The limited information methods presented here are quadratic-
form statistics in univariate and bivariate residuals.

Three general strategies have been proposed in the literature to construct overall limited infor-
mation test statistics. In one strategy, these residuals are weighted by a consistent estimate of their
asymptotic covariance matrix. The second strategy weights the residuals such that a consistent
estimate of their asymptotic covariance matrix is a generalized inverse of the weight matrix. The
third strategy simply chooses a computationally convenient weight matrix. When the first and sec-
ond strategies are used, a statistic with an asymptotic chi-square distribution is obtained. With the
third strategy, the asymptotic distribution of the statistic is a mixture of independent chi-square
variables, and p-values are generally obtained by computing a mean-and-variance adjustment
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to the statistic. In any case, because the asymptotic distribution of these residuals depends on
4-way probabilities, the distribution of these quadratic-form statistics can be well approximated
by asymptotic methods even in small samples.

When either the first or third strategy is pursued, the computation of the p-values involves an
estimate of the asymptotic covariance matrix of the item parameters. There are, in turn, 3 widely
used approaches to obtain this matrix when ML estimation is applied: the expected information
matrix, the observed information matrix, and the cross-products information matrix. The expected
information matrix yields good results for goodness-of-fit testing purposes, but it can only be
computed when the model does not involve too many possible response patterns. Specifically,
it can seldom be computed when the items are polytomous. As a result, either the observed
matrix or the cross-products matrix must be used in most applications. In our limited experience,
the cross-products approximation can only be used for goodness-of-fit purposes in fairly large
samples; whereas, the observed information matrix yields good results in small samples. More
research is needed to investigate which of the 3 strategies yields the best results in terms of Type
I errors and power, and how to best approximate the covariance matrix of the item parameter
estimates.

The same 3 strategies can be used to construct statistics to assess the source of misfit in poorly
fitting models. An additional approach can be used in this case, namely, the use of z statistics
that are asymptotically standard normal. In the case of binary data, it is relatively natural to
obtain a z statistic for the residual means and cross-product. This same approach can also be
used in the case of polytomous ordinal variables. Residual cross-products are directly related to
residual (product moment) correlations. Hence, the use of residual cross-products leads back, in
many ways, to the methods used to assess the goodness-of-fit of classical factor analysis models.
However, as the anxiety example illustrates, different piece-wise test statistics may suggest dif-
ferent ways to modify the model. For this reason, I suggest that 2 different piece-wise procedures
be used (such as z statistics and mean-and-variance corrected X2

ij).
The methods currently implemented in ordinal factor analysis models estimated using poly-

chorics are closely related to some of the methods described in this article. However, they only
assess the structural restrictions imposed by the model (how well the model fits the thresholds
and polychoric correlations). In contrast, the methods described in the first sections of the article
assess the overall restrictions imposed by the model (how well the model fits the data).

There is an important class of statistics for assessing the source of misfit that I have not covered
in this review: score tests (Glas, 1999; Glas & Suárez-Falcón, 2003; Liu & Thissen, 2012). Score
tests (aka Lagrange multiplier tests) have a known asymptotic distribution and are an attractive
alternative to the methods described in this article. They differ from the statistics presented here
in that they are directional. Thus, whereas the alternative hypothesis in the tests presented here
is unrestricted (it simply states that the fitted model does not hold), in score tests the alternative
hypothesis is fully specified and the fitted model is nested within the model specified by the
null hypothesis. For instance, if the true model is a bifactor model and a unidimensional model
is fitted, then a score test that uses a bifactor model as an alternative hypothesis has maximum
power, but if the alternative model is not a bifactor model, then the power of the test needs to be
investigated. For some fitted models and some true models, Type I errors and power rates of score
tests appear to be relatively unaffected by the choice of alternative model used in the score test
(Liu & Maydeu-Olivares, 2012b). However, in other cases the choice of alternative model does
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make a difference (Liu & Thissen, 2013). In any case, more research is needed to compare the
performance of the statistics presented here with that of the score tests.

CONCLUDING REMARKS

In applications, researchers should always assess how well IRT models fit their data. Whenever
the model does not fit the data, item parameter estimates are biased and, therefore, individu-
als’ scores are biased. The magnitude of the bias is unknown but it depends on the magnitude
of misfit of the model. Depending on the research question being addressed, the bias incurred
may be negligible from a substantive viewpoint if the model is only slightly misspecified (Reise,
Scheines, Widaman, & Haviland, 2012). In other applications, however, the use of misfitting
models may lead to seriously invalid conclusions. For policy analysis, invalid conclusions erro-
neously backed up by data modeling are more dangerous than theoretical conjectures because we
invariably assign more confidence to conclusions supported by data.

Goodness-of-fit should be distinguished from model selection. Model selection examines
model-model fit. As such, it need not provide us with information as to whether we should avoid
using any of the models under consideration. Goodness-of-fit examines model-data fit. Goodness-
of-fit and model selection should be used in tandem. If we find several competing models that fit
the data well, then we need to consider which model to use. Alternatively, if we first select the
best model from among a set of competing models using some model selection criterion, we need
to address the question of whether this best fitting model should be used or an alternative model
should be sought.

Assessing the overall goodness-of-fit has been outside the research agenda of IRT modeling
until very recently due to the lack of reliable statistics. The use of limited information test statis-
tics has changed this situation and in this article I have presented a general overview of these
methods. See also Glas and Verhelst (1995) for a review of methods specifically designed for
Rasch-type models.

Because limited information statistics concentrate the information available in the data, they
are generally more powerful than full information statistics. Of course, they have little power to
detect the misfit located in places in which they are not looking. Thus, if only bivariate informa-
tion is used for testing and the model misfit is located in the 3-way or higher associations between
the items, the statistics will have very low power. However, in our experience, it is hard not to
reject IRT models using the limited information statistics described in this article. On the other
hand, as the Rasch application shows, it is possible to find well-fitting IRT models for carefully
constructed sets of items, even in large samples. Yet, in my experience, such well-fitting appli-
cations are rare, and they are more common when binary items are used and when educational
contents are measured. If this is indeed the case, why is it so? Is it because it is easier to model
binary items than polytomous items? Is it because it is easier to model educational aspects than
personality, attitudes, or patient reported outcomes? Is it because our models for polytomous data
are inappropriate? Or is it simply because the test statistics are more powerful for polytomous
than for binary data? These are all very interesting questions, and it is clear that much more
research will be needed before we can answer them.

More research is also needed on a number of other topics. First, a great deal of research on
goodness-of-fit tests has focused on the graded-response model and Rasch-type models. There
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is some evidence (Maydeu-Olivares, 2005) that the graded-response model may be the best fit-
ting parametric model for rating data. However, more research is needed to investigate how to
assess the fit of alternative, more highly parameterized, models, such as the 3-parameter logistic
(3PL) or Bock’s (1972) nominal model. Can their fit be assessed using bivariate information? Do
we need to use trivariate information? Second, simulation studies are needed to determine which
statistic should be used to assess the overall goodness-of-fit, and the source of misfit. Importantly,
simulation results obtained with overall statistics should not be extrapolated to piece-wise statis-
tics or vice versa. For instance, in a recent study (Maydeu-Olivares & Liu, 2012) we found that
in conditions where the overall M2 statistic has maximum power (power = 1), the power of the
piece-wise M2 statistic (i.e. Mij) was only slightly above the nominal level. Third, and perhaps
most importantly, more research is needed to investigate the robustness of substantive conclusions
for modeling misspecification of varying degrees. For instance, if our model yields an RMSEA2

of 0.05, what does this information tell us about the accuracy of our latent trait estimates (i.e.
individual scores)? However, this suggestion for future work should not distract us from the fact
that a large set of methods is now available for applied researchers to assess the fit of their IRT
models. I look forward to seeing many applications of these methods in the near future.
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