Measurement, 11: 127-137, 2013 R tl d
Copyright © Taylor & Francis Group, LLC g outie .ge
ISSN: 1536-6367 print / 1536-6359 online & Taylor & Francis Group

DOI: 10.1080/15366367.2013.841511

REJOINDER

Why Should We Assess the Goodness-of-Fit
of IRT Models?

Alberto Maydeu-Olivares
Faculty of Psychology, University of Barcelona

In IRT measurement applications, the application of goodness-of-fit (GOF) methods informs us of the
discrepancy between the model and the data being fitted (the room for improvement). By routinely
reporting the GOF of our IRT models, together with the substantive results of the application of the
fitted model, we will be able to learn “how bad is this fit for this purpose” and establish reasonable
fit criteria, which are likely to depend on the intended use of the model. In psychological research,
greater attention should be paid to modeling the process used by individuals to respond to test items.
GOF methods provide an invaluable tool for this purpose as they often show that our models do not
capture well the underlying response process.
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Over the years, the term item response theory (IRT) has been used to mean various things, but
loosely stated one can describe IRT as a set of models for how individuals may respond to edu-
cational, psychological, and so forth, test items. When I was a graduate student in the 1990s,
one of the hot topics in Psychometrics was the proposal of new IRT models. I remember attend-
ing conferences and listening to one presentation after another describing the introduction of yet
another IRT model and wondering, “Do we need this new model? Does it reproduce data better?”
One of the highlights of IRT research during this period was the publication of the Handbook
of Modern Item Response Theory (van der Linden & Hambleton, 1997). Each chapter of this
edited volume describes an IRT model. The editors asked the authors to include a section in
each chapter describing statistical methods to determine the fit of the model to data. In so doing,
the reader could readily realize that goodness-of-fit methods lagged behind estimation meth-
ods for these models. Simply put, given two competing models described in the handbook, one
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could not generally determine which of the two provided a better fit to the data, or if one could,
whether the best fitting model provided a “good enough” fit. The overall Pearson’s X statistic
and the likelihood ratio G? statistic were described in most of the chapters, along with the usual
warning that their p-values could not be trusted except for models involving just a handful of
items. Also, several chapters suggested using the likelihood ratio test statistic to compare the
relative fit of competing nested models, Gfﬁf, rightfully pointing out that the asymptotic approx-

imation to the sampling distribution of Giif is less severely affected than for X?> and G by the

sparseness of the data. However, in my opinion, when describing Giif it was not emphasized
enough that the adequacy of the asymptotic approximation relies on the largest model being cor-
rectly specified (Haberman, 1977) and years later a report was published (Maydeu-Olivares &
Cai, 2006) to remind applied researchers of this fact. Chapters describing Rasch-type models
described a variety of test statistics with known asymptotic distribution and good performance
in small samples. Of particular importance in this area is the fundamental work of Dr. Cees
A. W. Glas (see Glas, 1988, 1999, 2010; Glas & Suarez-Falcon, 2003; Glas & Verhelst, 1989,
1995),which extends beyond Rasch-type models, and toward which the Focus article does not do
justice.

The Focus article describes an array of competing methods for the goodness-of-fit assessment
of IRT models that have been developed by a number of researchers since van der Linden and
Hambleton’s 1997 Handbook was published. To provide a historical context to these methods
and to give proper credit to some of this work, I find it helpful to describe my personal journey
through the field.

A PERSONAL JOURNEY

I obtained my PhD in Quantitative Psychology at the University of Illinois. While a graduate
student there I was very privileged to join the Model Based Measurement Laboratory led by the
late Dr. Michael Levine and by Dr. Fritz Drasgow. One of the areas of research in the lab was
precisely to investigate how well existing IRT models were able to reproduce data from existing
tests. We used Pearson’s X2 statistic computed for every item, pair of items, and item triplets
computed for every model under consideration. These statistics were summarized descriptively
(Drasgow, Levine, Tsien, Williams, & Mead, 1995; Tay & Drasgow, 2011) to qualitatively judge
the goodness-of-fit of IRT models. Although the approach can be successfully applied to com-
pare the relative fit of competing models (e.g., Chernyshenko, Stark, Chan, Drasgow, & Williams,
2001; Maydeu-Olivares, 2005a), I wondered whether we could formalize the goodness-of-fit
assessment process. More specifically, the asymptotic distribution of these X?s was unknown
and I wondered whether an alternative item-fit statistic with known asymptotic distribution could
be used instead, and whether we could derive the joint distribution of such yet-to-be determined
statistics.

My first attempt at addressing these questions was the statistic denoted as L, in Equation (3) of
the Focus article. I introduced this statistic in my dissertation (Maydeu-Olivares, 1997). For
item parameters estimated from tetrachorics (the focus of my dissertation) the statistic is not
asymptotically chi-square (unless fully weighted least squares is used); yet, it often yields
reasonable p-values in simulations. But there was no theory that supported its use for item
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parameters estimated by maximum likelihood (ML). Why did I focus on limited informa-
tion testing methods? Partly, it was due to the influence of Dr. Roderick P. McDonald (see
McDonald & Mok, 1995) also on the Illinois faculty at the time. But it was also the result of
work by Reiser and VandenBerg (1994), who showed that the limited information test statis-
tics used in limited information estimation methods were more accurate when data is sparse
than the full information test statistics used with full information estimation methods (i.e.,
ML estimation). The implicit question raised by Reiser and VandenBerg’s article was clear:
How can we use limited information goodness-of-fit statistics with full information estimation
methods?

After completing my dissertation, I discovered that Dr. Mark Reiser had already succeeded
at addressing this question in a landmark article (Reiser, 1996) in which he proposed the first
limited information overall goodness-of-fit statistic that could be used with ML estimates. This
statistic is referred to as R; in the Focus article, see Equation (12). In subsequent work, he applied
this statistic to latent class analysis as well (Reiser & Lin, 1999) and showed how to decompose
it in terms of independent components (Reiser, 2008). However, there were two features of the
R, statistic that left us unsatisfied: (1) degrees of freedom could not be determined a priori and,
furthermore, they depended on the true parameter values (Reiser, 1996) and (2) the statistic could
not be used with parameters estimated by methods other than ML (such as estimation from tetra-
chorics). In joint work with my colleague Dr. Harry Joe, we proposed (Maydeu-Olivares & Joe,
2005, 2006) a unified framework for limited and full information estimation and goodness-of-fit
testing that tackled these issues. It is in these papers that we introduced the overall goodness-of-fit
testing statistic M», which can be used with any consistent estimator and has the usual degrees of
freedom (number of statistics minus number of estimated parameters). This statistic is inspired by
an analogous statistic first proposed by Dr. Michael Browne in the context of covariance structure
analysis (Browne, 1982). It differs from Browne’s statistic in that raw moments are used (i.e.,
cross-products) instead of central moments (i.e., covariances) and in that the weight matrix is
evaluated using parameter estimates (instead of sample moments).

Raw moments are used instead of central moments for convenience. With categorical data
there is no need to use central moments, and the use of raw moments (which are marginal proba-
bilities and proportions) facilitates deriving the asymptotic distribution of the statistics. Browne’s
test statistic is known to perform poorly in small sample sizes (e.g., Curran, West, & Finch,
1996). In contrast, M, works very well in small samples (Maydeu-Olivares & Joe, 2006). This is
because in M, the weight matrix is evaluated under the model (using item parameter estimates),
whereas in Browne’s statistic the weight matrix is evaluated using sample moments. In covariance
structure analysis the weight matrix cannot be computed under the model because a covariance
structure model does not make any assumptions about the third and fourth order joint moments
involved in the computation of the weight matrix. In contrast, because IRT models are models
for the response patterns, the weight matrix can be computed under the model. This makes a big
difference in the behavior of the statistics in small samples.

About this time, inspired by Satorra and Bentler (1994) I considered employing a different
approach to assess the overall goodness of fit of IRT, a mean and variance correction to an easily
computed limited information test statistic. I wrote a note on this idea and sent it to Dr. David
Thissen at the University of North Carolina for comments. Several months later he replied to
me, letting me know that 2 graduate students there, now Dr. Li Cai and Dr. Donna Coffman, had
independently written a class project (!!) on precisely the same topic. We ended up publishing
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a report together on this approach (Cai, Maydeu-Olivares, Coffman, & Thissen, 2006), which
effectively corrects an error in Bartholomew and Leung (2002). This collaboration signaled the
beginning of a very fruitful collaboration with Dr. Cai on the topic of goodness-of-fit assessment
of IRT models.

In applications, IRT models are often applied to gigantic contingency tables (e.g., 5°°). The
overall goodness-of-fit test statistics described above cannot be computed in models of this size.
Simply, they are quadratic form statistics in univariate and bivariate margins and there are too
many margins. To solve this problem, statistics that “condense” the information provided in the
margins are needed. The necessary theory to construct such statistics was put forth in Joe and
Maydeu-Olivares (2010) and was effectively applied by Cai and Hansen (2013). The resulting
statistic M,,; (Equation 21 of the Focus article) can be successfully applied to test very large
models, but only if the data are ordinal.

Yet, in such large models, it is unrealistic to expect any IRT model to fit exactly. In applications
involving large models, a more fruitful avenue involves testing for approximate fit. Yet, in this
case, a question immediately arises, “What cut-off to use?” And in recent work with Dr. Harry
Joe, summarized in the Focus article, we have attempted to address this question by introducing
RMSEAs for IRT modeling, again drawing on work from the covariance structure literature (see
also McDonald & Mok, 1995).

In Maydeu-Olivares and Joe (2006), we also introduced a statistic for piece-wise diagnostics,
referred to as Mj; in the Focus article (Equation 38), that attempted to come full circle with this
personal journey. It is effectively a correction to the Pearson’s X? statistic used in the Illinois
Model Based Measurement Lab so that the resulting statistic has an asymptotic chi-square distri-
bution. However, while on sabbatical at the University of North Carolina, a graduate student, Mr.
Yang Liu, performed simulations to investigate the small sample performance of M;;. The sim-
ulations revealed that while the statistic has excellent empirical Type I errors, it lacks power.
This brought about the development of a full array of alternatives to M;;, led by Mr. Liu, also
summarized in the Focus article.

What else is to be done? A whole lot, not least is to investigate how well the different alter-
native statistics behave in applications, as well as in simulations. Back in the Illinois lab where
I grew up as a researcher, Dr. Levine and Dr. Drasgow taught me to be demanding. An IRT
model should not only fit the data well where the model is calibrated, but it should also fit well
in “fresh” cross-validation samples as well (holding the parameters fixed at the values estimated
in the calibration sample). When comparing the overall fit of an IRT model in calibration and
cross-validation samples using X? (or G* for that matter), fit substantially worsens in the cross-
validation samples. This led researchers to question the suitability of existing parametric IRT
models. It turns out that this is a statistical artifact. Pearson’s X? should not be used in cross-
validation samples because it does not take into account that there are 2 sources of sampling
variability (calibration and cross-validation sample) and as a result it does not follow an asymp-
totic chi-square distribution. In Joe and Maydeu-Olivares (2006) we introduced an alternative to
X2, referred to as vaal, suitable for this type of cross-validation. We showed that when Xfml is
used, IRT models may fit cross-validation data as well as they fit calibration data. Of course,
due to data sparseness, Xfml is well approximated by asymptotic methods only in small models
(just as X? in calibration samples). We have recently developed limited information statistics for
cross-validation samples. These will enable applied researchers to test models whose fit cannot
be assessed with existing methods, due to the lack of degrees of freedom. This work in progress
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will enable, for instance, testing the fit of nonparametric IRT models such as those (Drasgow,
Levine, Williams, McLaughlin, & Candell, 1989) whose fit we tested using averages of X2s for
single items, and averages of X?s for pairs of items when I was a graduate student at Illinois.
At the personal level, this will complete a journey that has lasted 25 years.

A REJOINDER

Edwards (this issue) puts forth a very important question: Do we have in IRT modeling “produc-
tion level” goodness-of-fit (GOF) statistics as we have in structural equation modeling (SEM)?
The answer is an outright yes. In SEM the standard overall GOF statistics are the likelihood ratio
(LR) test statistic (often referred to simply as the chi-square statistic) when data are assumed to
be normality distributed, and Satorra-Bentler mean (or mean and variance) corrections to the LR
statistic. The source of misfit is usually assessed using modification indices (aka score/Lagrange
multiplier tests) although sometimes z statistics for residual means and covariances are also used
(these are often referred to as standardized residuals). The LR test statistic is so widely used
because of convenience: it is a side product of the estimation process. Therefore, one would only
use alternative test statistics if they were much better than the LR statistic, which is not the case.
When using ML, the limited information test statistics described in the Focus article are not a side
product of the model estimation process. They are to be computed in addition to estimating the
item parameters. Therefore, we can choose which test statistic to use. Based on existing research,
I recommend using M,,,; for routine evaluation of IRT models for ordinal data such as those
obtained when administering Likert-type items, and also for binary data (M,,; reduces to M, in
the binary case). M,,; can assess the fit of models of any size and it is already implemented in
FlexMirt (Cai, 2012). For assessing the source of misfit I recommend using z statistics for resid-
ual means and cross-products. R code for computing all the statistics for piece-wise assessment
reported in this paper is given in Liu and Maydeu-Olivares (2013).

What if the data are polytomous unordered? In this case M,,; and z statistics cannot be used
as they are suitable only for ordinal (or binary) data. There are no proposals that can assess the
overall fit of a model to a 5°° table. At most, only models with about 20 items can be tested.
At present I would use M;, which is implemented in FlexMirt and also in IRTPro (Cai, du Toit, &
Thissen, 2011) and mean-and-variance corrected X statistics to assess these models, but further
research in this area is needed.

What if the model involves lower asymptote parameters, as the 3-parameter logistic (3PL)
model, a question raised by Edwards (2013)? This issue also remains to be investigated. In prin-
ciple, M, can be used to test this model, but it may be that Reiser’s R, is more suitable to assess
the GOF of this model.

As T have pointed out, score test statistics are more widely used in SEM for piece-wise model-
fit assessment than z statistics, and Oberski and Vermunt (this issue) raise the very interesting
question of whether they should be the method of choice in IRT modeling as well (instead of z
statistics or other residual-based test statistics described in the Focus article). Score tests have
2 clear advantages over residual-based statistics: (a) they suggest a way to modify the model and
an estimate of the value of the parameter if this were added to the model and (b) they are most
powerful if the alternative model used to specify the score test is correctly specified. However,
the drawback of score tests is that an alternative model needs to be specified. SEM focuses on
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linear models, and the alternative model used to compute the score tests (modification indices)
is simply another linear model with additional linear relationships among the variables being
modeled. But in IRT, nonlinear models are used and applied researchers may be interested in
detecting (a) whether the shape of the nonlinear function (usually logistic) is correctly specified,
(b) whether the distribution of the latent traits (usually normal) is correctly specified, and (c)
whether asymptote parameters should be added to the response function. What alternative model
should be used in this case?

Consider the PROMIS anxiety example described in the Focus article. A unidimensional
graded-response model (Samejima, 1969) was fitted to that data. I could have fitted Muraki’s
(1992) generalized partial credit model instead. Both models have the same number of parame-
ters but they are not equivalent and the difference in fit is not great (Maydeu-Olivares, Drasgow,
& Mead, 1994). In this case, Bock’s (1972) nominal model can be used as an alternative model.
Whereas for each item, both the graded and generalized partial credit model have (loosely speak-
ing) a common slope but a different intercept associated to each category, Bock’s model has
(subject to identification constraints) a different slope and intercept associated to each response
category. Thus, Bock’s model is a suitable alternative model to be used in a score test of Muraki’s
model. Such a score test would inform us if, for any given item, different slopes should be used.
Better yet, Thissen and Steinberg’s (1984) model could be used instead of Bock’s model, as their
model adds a lower asymptote parameter to each response category. Thus, the use of Thissen and
Steinberg’s model as an alternative model in a score test would inform us of the suitability of
lower asymptote parameters and/or different slope parameters per item.

But for the graded model, what alternative (less restricted) model should be used in comput-
ing score tests? The only alternatives that I am familiar with are a threshold-drift model (Glas,
1999) and a bifactor model (Liu & Thissen, 2013), and Liu and Thissen (2013) show that differ-
ent results are obtained depending on the alternative model used. How useful are score tests to
detect departures from the model they were not intended to detect (nonlogistic shape functions
or nonnormal latent trait distributions)? This is an open question that can only be addressed by
simulations. Currently, I believe that score tests are most useful in applications for which there is
a clear alternative model in mind. One such example is the one described by Oberski and Vermunt
(this issue). Another example is when multidimensionality is suspected and a bifactor alternative
can be employed. Yet, another example involves the investigation of differential item functioning
or when there is a clear alternative model (such as Muraki’s model being nested within Bock’s
model).

An alternative to the use of score statistics is to simply use residual-based statistics such as
a mean-and-variance-adjusted X2, or a z statistic. These statistics simply inform us of which
items or pairs of items do not fit well, but they do not suggest ways to modify the model (except
when multidimensionality is suspect or when we may remove items from the test). But if we
feel we need to modify the model (because it does not even provide a close fit to the data),
we can look at the data using fit plots for the items flagged as misfitting (Chernyshenko et al.,
2001; Drasgow et al., 1995; Maydeu-Olivares, Morera, & D’Zurilla, 1999; Stark, Chernyshenko,
Drasgow, & Williams, 2006). Clearly, future research should compare the relative performance
of score statistics to residual-based statistics in detecting the source of misfit.

As we have seen, there are strong analogies between GOF developments in IRT modeling and
in SEM (see also Maydeu-Olivares, 2005b), but research on GOF testing in SEM is ahead of
similar research in IRT, and Cai and Monroe (this issue) suggest adapting the most useful tools
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in the SEM GOF toolbox to incorporate them into the IRT GOF toolbox. One of the most use-
ful of the SEM GOF tools is undoubtedly the Tucker-Lewis goodness-of-fit index. Hence, Lee
and Cai’s (2012) counterpart is a most welcome addition to the IRT GOF toolbox. The Tucker-
Lewis (1973) index, as well as other similar indices such as the Comparative Fit Index (CFL:
Bentler, 1990), compare the fitted model to a baseline model. My main concern with regard to
comparative fit indices in general is the choice of baseline model. In the factor analysis litera-
ture, an independence model is almost invariably used as the baseline model. Lee and Cai also
use an independence model as baseline for what they refer to as a zero-factor model). But, if
we believe that the items are independent, why do we fit a factor analysis or an IRT model? To
put it differently, if we fit a factor analysis or an IRT model because we try to account for the
observed associations in the data, why do we use an independence model as baseline to assess
its fit? I firmly believe that these indices are useful to gauge the relative performance of com-
peting models using the least parameterized model as baseline. For instance, they can be used
to compare a bifactor model to a 1-dimensional model using the latter as baseline. But these
indices should not be used to compare a bifactor model to an independence model, and a 1-
dimensional model to an independence model to help choosing between the bifactor model and
the 1-dimensional model. I believe that these indices can be used to gauge model-data fit as
well, but to do so, we need to use a meaningful baseline model other than the independence
model.

ASSESSING THE GOODNESS-OF-FIT OF IRT MODELS

Why should we assess the goodness-of-fit of IRT models? Because IRT modeling is about iden-
tifying a plausible process that individuals may have used to respond to items. Consequently, we
must assess how well the models we are fitting are doing their job. It is true as Edwards (this
issue) suggests that some of the models that we use are so simplistic that they are unrealistic.
My reply to this concern is twofold.

The first part of my reply is let’s make them more realistic, that is, let’s improve our models.
Much of my substantive research has focused on measuring psychological constructs using rat-
ings. Our models for these data assume that the answer to the second item being administered
depends only on the traits being measured, and it does not depend on the response to the first
item. I do not think this is a reasonable assumption in all testing situations, but it is an assumption
we invariably make. Also, we now strongly suspect that individuals respond differently to items
depending on their direction (positively worded or negatively worded). Our current models strug-
gle when both positively and negatively worded items measuring the same construct are included
in a questionnaire. They often lead us to believe that we are measuring 2 constructs (such as
optimism and pessimism). I just think that we are using models that are too simplistic. Currently,
IRT modeling focuses mainly on how well we measure individuals and, to a lesser extent, on the
underlying decision process, As a psychologist, I am keenly interested in the response process
itself, in modeling that process, and therefore in assessing the fit of the model. For instance, in
a landmark article, Thissen and Steinberg (1986) classified parametric IRT models into differ-
ence models—the graded response model— and divide-by-total models, which includes Bock’s
nominal model and Muraki’s generalized partial credit model. In my experience modeling rating
data, the graded response model always fits better than Muraki’s model (and Bock’s model rarely
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outperforms the graded model). For an illustration of this point using descriptive methods, see
Maydeu-Olivares (2005a). This suggests to me that the process used by individuals to respond to
these items is more closely approximated by the graded-response model.

The second part of my reply is that we must assess the GOF of our IRT models to deter-
mine how well we are doing when measuring unobservable constructs (how much room for
improvement—statistically speaking—there is). Engelhard and Perkins (this issue) describe the
2 prevalent traditions to psychological measurement. Within the Rasch modeling tradition, assess-
ing goodness-of-fit comes naturally and suitable GOF statistics have existed for quite some time.
Items are carefully constructed and selected to fit the desired model. And as the second example
of the Focus article reveals, we have become very good at it. We are able to construct tests such
that the selected model cannot be rejected. But outside a Rasch modeling tradition, items are also
constructed and selected, and a model is fitted. Within this model-data tradition (using Engelhard
and Perkins’s terminology) we are also keenly interested in assessing the GOF of the fitted model,
for if the intended model is rejected, we wish to determine how far away we are from the data we
are fitting, and whether the piece-wise GOF statistics suggest an easy fix.

Common sense should be used when judging the results of a GOF assessment because in
principle it is easier to model a 23 contingency table that a 5°° one. In the first case, one should
strive to find a model that cannot be rejected, whereas in the second case it is not realistic to expect
to find such a model. Also, it is easier to find a model that cannot be rejected with 300 observations
(we do not have much power) than with 3,000. In the latter, if the model is rejected, researchers
should check the magnitude of the misfit (using for instance residual correlations if the data are
ordinal).

A common concern runs through most of the comments about the Focus article (Cai &
Monroe; Edwards; and Thissen (all in this issue). Paraphrasing Cai and Monroe, we see some
SEM practitioners being unnecessarily obsessed with the GOF of their models, failing to devote
the necessary time to investigate the usefulness of their model and its substantive interpretation.
The concern is that the introduction of these new IRT GOF methods brings about a similar phe-
nomenon to IRT research. This is a well-founded concern that I share. Does this mean that we
should not assess the fit of IRT models? Certainly not. The overall GOF of a model informs us
of the discrepancy between the model and the data. By routinely reporting the GOF of our IRT
models, together with the substantive implications of the application of the fitted model, we will
be able to learn “how bad is this fit for this purpose” and establish reasonable criteria, which will
depend on the intended use of the model. Surely, a model that shows a substantial degree of misfit
may prove useful for purpose A (but not necessarily for purposes B and C). But certainly, there
are limits. What those limits are is what we ought to determine. And we need GOF statistics to
do that.

Thissen (this issue) point out that sometimes tests are constructed to serve a purpose and that
in these cases one should use a specific test statistic that checks whether the purpose is indeed
served. I agree. The statistics described in the Focus article are all-purpose. There is no guarantee
that they have power against all possible alternatives (intended purposes of the test). Different
test statistics have different power we regard to different alternatives. This is why the piece-wise
statistics in the anxiety PROMIS example do not completely agree on what items are misfitting.
Cai and Monroe (this issue) report a test statistic that has higher power than M, (an all-purpose
statistic) to detect an IRT model with a multimodal distribution. When interest lies in specific
hypotheses, we may need specific tests (see also Thissen, this issue). But the converse may also
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be true—that all-purpose statistics such as M, are as powerful in detecting specific departures
from the model as specific-purpose statistics (Maydeu-Olivares & Montaiio, 2013).

By using a common GOF metric in our IRT studies together with the substantive results
obtained, we will be able to establish cut-off criteria for different purposes. This is, in my view,
how we can overcome the danger of being over-zealous about the GOF of our IRT models. For
instance, if the intended purpose of the test is test linking, by reporting a common GOF metric,
possibly complemented by a specific purpose statistic (Thissen, this issue), we may learn that a
cut-off value of X on the common GOF metric denotes a close enough fit for test linking, but
based on previous studies that used the common GOF metric we know that X is not enough to
make reliable inferences about the dimensionality of the construct being measured. This is where
I would like us to go.

REFERENCES

Bartholomew, D. J., & Leung, S. O. (2002). A goodness of fit test for sparse 2p contingency tables. British Journal of
Mathematical and Statistical Psychology, 55(1), 1-15. doi:10.1348/000711002159617

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-46.

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal
categories. Psychometrika, 37(1), 29-51. doi:10.1007/BF02291411

Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in applied multivariate analysis (pp.
72—-141). Cambridge, United Kingdom: Cambridge University Press.

Cai, L. (2012). FlexMIRT: A numerical engine for multilevel item factor analysis and test scoring. [Computer program].
Seattle, WA: Vector Psychometric Group.

Cai, L., du Toit, S. H. C., & Thissen, D. (2011). IRTPRO: Flexible, multidimensional, multiple categorical IRT modelling.
[Computer software]. Chicago, IL: Scientific Software International.

Cai, L., & Hansen, M. (2013). Limited-information goodness-of-fit testing of hierarchical item factor models. British
Journal of Mathematical and Statistical Psychology, 66(2), 245-276. doi:10.1111/j.2044-8317.2012.02050.x

Cai, L., Maydeu-Olivares, A., Coffman, D. L., & Thissen, D. (2006). Limited-information goodness-of-fit testing of item
response theory models for sparse 2 tables. British Journal of Mathematical and Statistical Psychology, 59, 173-194.
doi:10.1348/000711005X66419

Chernyshenko, O. S., Stark, S., Chan, K.-Y., Drasgow, F., & Williams, B. (2001). Fitting item response theory
models to two personality inventories: Issues and insights. Multivariate Behavioral Research, 36(4), 523-562.
doi:10.1207/S15327906MBR3604_03

Curran, P, West, S., & Finch, J. (1996). The robustness of test statistics to nonnormality and specification error in
confirmatory factor analysis. Psychological Methods, 1(1), 16-29.

Drasgow, F., Levine, M. V, Tsien, S., Williams, B., & Mead, A. (1995). Fitting polytomous item response theory models
to multiple-choice tests. Applied Psychological Measurement, 19, 143-165.
Drasgow, E., Levine, M. V, Williams, B., McLaughlin, M. E., & Candell, G. L. (1989). Modeling incorrect responses to
multiple-choice items with multilinear formula score theory. Applied Psychological Measurement, 13, 285-299.
Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika,
53(4), 525-546.

Glas, C. A. W. (1999). Modification indices for the 2-PL and the nominal response model. Psychometrika, 64(3), 273-294.
doi:10.1007/BF02294296

Glas, C. A. W. (2010). Item parameter estimation and item fit analysis. In Wim J. van der Linden & C. A. W. Glas (Eds.),
Elements of adaptive testing (pp. 269-288). New York, NY: Springer. doi:10.1007/978-0-387-85461-8

Glas, C. A. W., & Sudrez-Falcon, J. C. S. (2003). A comparison of item-fit statistics for the three-parameter logistic
model. Applied Psychological Measurement, 27(2), 87-106. doi:10.1177/0146621602250530

Glas, C. A. W., & Verhelst, N. (1989). Extensions of the partial credit model. Psychometrika, 54(4), 635—-659.

Glas, C. A. W., & Verhelst, N. (1995). Testing the Rasch model. In G. Fischer & I. W. Molenaar (Eds.), Rasch models:
Foundations, recent developments and applications (pp. 69-96). New York, NY: Springer.



136 MAYDEU-OLIVARES

Haberman, S. J. (1977). Log-linear models and frequency tables with small expected cell counts. Annals of Statistics, 5,
1148-1169.

Joe, H., & Maydeu-Olivares, A. (2006). On the asymptotic distribution of Pearson’s X2 in cross-validation samples.
Psychometrika, 71(3), 587-592. doi:10.1007/s11336-005-1284-z

Joe, H., & Maydeu-Olivares, A. (2010). A general family of limited information goodness-of-fit statistics for multinomial
data. Psychometrika, 75(3), 393—419. doi:10.1007/s11336-010-9165-5

Lee, T., & Cai, L. (2012, July). A note on a Tucker-Lewis index for item response theory modeling. Paper presented at the
2012 International Meeting of the Psychometric Society, Lincoln, NE.

Liu, Y., & Maydeu-Olivares, A. (in press). Identifying the source of misfit in item response theory models. Multivariate
Behavioral Research.

Liu, Y., & Thissen, D. (2013). Local dependence score tests for the graded response model. Unpublished manuscript.

Maydeu-Olivares, A. (1997). Structural equation modeling of binary preference data. Dissertation Abstracts
International: Section B. University of Illinois.

Maydeu-Olivares, A. (2005a). Further empirical results on parametric versus non-parametric irt modeling of Likert-type
personality data. Multivariate Behavioral Research, 40(2), 261-279. doi:10.1207/s15327906mbr4002_5

Maydeu-Olivares, A. (2005b). Linear IRT, non-linear IRT, and factor analysis: A unified framework. In A. Maydeu-
Olivares & J. J. Mcardle (Eds.), Contemporary Psychometrics. A Festchrift for Roderick P. McDonald (pp. 73—100).
Mahwah, NJ: Erlbaum.

Maydeu-Olivares, A., & Cai, L. (2006). A cautionary note on using G 2 (dif) to assess relative model fit in categorical
data analysis. Multivariate Behavioral Research, 41(1), 55-64. doi:10.1207/s15327906mbr4101_4

Maydeu-Olivares, A., Drasgow, F, & Mead, A. D. (1994). Distinguishing among parametric item
response models for polychotomous ordered data. Applied Psychological Measurement, 18(3), 245-256.
doi:10.1177/014662169401800305

Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and goodness-of-fit test-
ing in 2 n contingency tables. Journal of the American Statistical Association, 100(471), 1009-1020.
doi:10.1198/016214504000002069

Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency
tables. Psychometrika, 71(4), 713-732. doi:10.1007/s11336-005-1295-9

Maydeu-Olivares, A., & Montafio, R. (2013). How should we assess the fit of Rasch-type models? Approximating the
power of goodness-of-fit statistics in categorical data analysis. Psychometrika, 1, 116-133.

Maydeu-Olivares, A., Morera, O., & D’Zurilla, T. J. (1999). Using graphical methods in assessing measurement invari-
ance in inventory data. Multivariate Behavioral Research, 34(3), 397-420. doi:10.1207/S15327906MBR3403_5
McDonald, R. P.,, & Mok, M. M.-C. (1995). Goodness of Fit in Item Response Models. Multivariate Behavioral Research,

30(1), 23-40. doi:10.1207 /s15327906mbr3001_2

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological
Measurement, 16(2), 159-176. doi:10.1177/014662169201600206

Reiser, M. (1996). Analysis of residuals for the multinomial item response model. Psychometrika, 61(September),
509-528.

Reiser, M. (2008). Goodness-of-fit testing using components based on marginal frequencies of multinomial data. British
Journal of Mathematical and Statistical Psychology, 61(Pt2), 331-360.

Reiser, M., & Lin, Y. (1999). A goodness-of-fit test for the latent class model when expected frequencies are small.
Sociological Methodology, 29(1), 81-111. doi:10.1111/0081-1750.00061

Reiser, M., & VandenBerg, M. (1994). Validity of the chi-square test in dichotomous variable factor analysis when
expected frequencies are small. British Journal of Mathematical and Statistical Psychology, 47(1), 85-107.
doi:10.1111/j.2044-8317.1994.tb01026.x

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric
Monograph, 17.

Satorra, A., & Bentler, P. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In
A. Von Eye & C. C. Clogg (Eds.), Latent variable analysis. Applications for developmental research (pp. 399-419).
Thousand Oaks, CA: Sage.

Stark, S., Chernyshenko, O. S., Drasgow, F., & Williams, B. A. (2006). Examining assumptions about item responding
in personality assessment: Should ideal point methods be considered for scale development and scoring?, Journal of
Applied Psychology, 91( 1), 25-39. doi:10.1037/0021-9010.91.1.25



REJOINDER 137

Tay, L., & Drasgow, F. (2011). Adjusting the a2/df ratio statistic for dichotomous item response theory analyses: Does
the model fit? Educational and Psychological Measurement, 72(3), 510-528. do0i:10.1177/0013164411416976

Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items. Psychometrika, 49(4), 501-519.
doi:10.1007/BF02302588

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51(4), 567-577.

Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38,
1-10.

Van der Linden, W. J., & Hambleton, R. K. (Eds.). (1997). Handbook of modern item response theory. New York, NY:
Springer.



