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A family of Root Mean Square Error of Approximation (RMSEA) statistics is proposed for
assessing the goodness of approximation in discrete multivariate analysis with applications
to item response theory (IRT) models. The family includes RMSEAs to assess the approxi-
mation up to any level of association of the discrete variables. Two members of this family
are RMSEA2, which uses up to bivariate moments, and the full information RMSEAn. The
RMSEA2 is estimated using the M2 statistic of Maydeu-Olivares and Joe (2005, 2006), whereas
for maximum likelihood estimation, RMSEAn is estimated using Pearson’s X2 statistic. Using
IRT models, we provide cutoff criteria of adequate, good, and excellent fit using the RMSEA2.
When the data are ordinal, we find a strong linear relationship between the RMSEA2 and
the Standardized Root Mean Squared Residual goodness-of-fit index. We are unable to offer
cutoff criteria for the RMSEAn as its population values decrease as the number of variables
and categories increase.

Parametric models are fitted to categorical data in an attempt
to capture the underlying process that may have generated
the data. Yet, in applications one should expect discrepancies
between the postulated parametric model and the population
probabilities that, given a sufficiently large sample size, will
not be attributed to chance and will lead to rejecting the fitted
model. As the number of variables being modeled increases,
good parametric approximations to the population probabil-
ities become increasingly difficult and much smaller sample
sizes will suffice to reveal discrepancies between the pop-
ulation probabilities and the model specified under the null
hypothesis. In this context, and paraphrasing Steiger (1990),
the question of interest is how well our model approximates
the unknown population probabilities. Ultimately, however,
researchers need to decide whether the approximation pro-
vided by the fitted model is good enough. This can be ac-
complished by testing whether the discrepancy between the
population probabilities and the fitted model is less than or
equal to some arbitrary value (Browne & Cudeck, 1993).
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Maydeu-Olivares, Faculty of Psychology, University of Barcelona, P. Valle
de Hebrón, 171, 08035 Barcelona, Spain. E-mail: amaydeu@ub.edu

Although well developed in the structural equation mod-
eling (SEM) literature where they arose, the notions of as-
sessing goodness of approximation and testing for close
fit are yet to be developed in categorical data analysis.
This article aims to fill this gap with an eye on applica-
tions to item response modeling (IRT). Interestingly, assess-
ing the overall exact model fit in categorical data analysis
had proved so difficult, except for very small models that
are usually not of interest in applications, that the issue of
goodness-of-fit has been outside the IRT research agenda
for many years. Recently, there has been a growing inter-
est in goodness-of-fit assessment in IRT (Bartholomew &
Leung, 2001; Bartholomew & Tzamourani, 1999; Cai &
Hansen, 2013; Cai, Maydeu-Olivares, Coffman, & Thissen,
2006; Glas, 1988; Glas & Verhelst, 1989, 1995; Joe &
Maydeu-Olivares, 2006, 2010; Langeheine, Pannekoek, &
van de Pol, 1996; Maydeu-Olivares, 2006; Maydeu-Olivares
& Cai, 2006; Maydeu-Olivares & Joe, 2005, 2006; Reiser,
1996, 2008; Reiser & VandenBerg, 1994; Tollenaar & Mooi-
jaart, 2003; Von Davier, 1997) and recent reviews (Mavridis,
Moustaki, & Knott, 2007; Maydeu-Olivares, 2013; Maydeu-
Olivares & Joe, 2008) suggest that the issue of assessing
whether IRT models fit exactly is well under way to being
solved.
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306 MAYDEU-OLIVARES AND JOE

In this article we provide a general framework for assess-
ing the goodness of approximation of a model in categorical
data analysis. The developments presented here closely par-
allel the existing ones in SEM. For instance, we make use
of the Root Mean Square Error of Approximation (RMSEA)
first introduced by Steiger and Lind (1980) in the SEM liter-
ature. The RMSEAs introduced here are simply a transfor-
mation of the discrepancy between the fitted model and the
population probabilities that adjusts for model complexity
and expresses such discrepancy in the metric of the summary
statistics used to assess model fit. For ease of exposition we
concentrate on models for multivariate data obtained under
multinomial sampling although the framework can be easily
extended to models obtained under other sampling schemes.
Also, for concreteness, our presentation focuses on applica-
tions to IRT modeling although applications to other statisti-
cal models for multivariate discrete data are straightforward.
The presentation necessarily is somewhat technical although
most technical material is relegated to an Appendix.

The remainder of the article is organized as follows: We
begin by reviewing tests of exact fit in multinomial models,
such as Pearson’s X2, and discussing why asymptotic p values
for these statistics are inaccurate unless model size is very
small. We also discuss in this section how to obtain accurate
asymptotic p values for tests of exact fit, namely, by using test
statistics that only use bivariate information. In the second
section we propose using a Mahalanobis distance to measure
the discrepancy between the population probabilities and the
fitted model in categorical data analysis. Using this distance,
an RMSEA can be formed, which can be estimated using
Pearson’s X2 statistic. Unfortunately, the sampling distribu-
tion of this RMSEA estimate will only be well approximated
using asymptotic methods in very small models. To over-
come this problem we propose using the same strategy used
to overcome the exact goodness-of-fit testing problem, us-
ing an RMSEA that uses only bivariate information. We de-
scribe the relationship between the full information RMSEA
(referred as RMSEAn) and the bivariate RMSEA (referred
as RMSEA2) and we examine using simulation studies the
extent to which their empirical sampling distribution can be
approximated in finite samples. We also examine the issues
of what cutoff value to use for the RMSEAn and RMSEA2

and how to assess the goodness of approximation in models
that are so large that the RMSEA2 cannot be computed.

TESTING FOR EXACT FIT IN MULTINOMIAL
MODELS

Consider a set of n multinomial variables, such as n test items,
Y1 to Yn, each with K response alternatives. We assume that
all variables have the same number of categories simply to
ease the notation and simplify the exposition. Responses to
these variables can be placed in a Kn contingency table. The
cells of this contingency table will be indexed by c = 1, . . . ,

C = Kn. The C dimensional column vector of population
probabilities will be denoted by π . Cell proportions (the
sample counterpart of π ) based on a sample of size N will
be denoted by p. We consider a parametric model for the
probability vector that depends on a q-dimensional vector
of parameters θ to be estimated from the data. Generically,
we denote such a model as π (θ). For example, in the case
of the two-parameter logistic model with a standard normal
distributed trait (2PLM) widely used in IRT, q = 2n and θ

is the vector of intercepts and slopes, one for each item, and
π (θ ) are the restrictions imposed by the 2PLM on the set of
probabilities, one for each possible pattern.

Full Information Statistics

In a test of exact fit we assess the null hypothesis H0 :
π = π (θ ) against the alternative H1 : π �= π (θ). That is,
we assess whether the population probability vector arises
exactly from the parametric model π (θ) against the al-
ternative that the model is incorrect. The two classical
goodness-of-fit statistics for testing this null hypothesis are
the likelihood ratio statistic, G2, and Pearson’s X2 statis-
tic. In scalar form these statistics may be written as G2 =
2N
∑C

c=1 pc ln(pc/π̂c),where pc and p̂c = pc(θ̂) denote the
observed proportion and estimated probability for cell c, and
X2 = N

∑C
c=1 (pc − π̂c)2/p̂c. In matrix form, Pearson’s X2

statistic can be written as

X2 = N (p − π̂ )′ D̂−1 (p − π̂) , (1)

where π̂ = π (θ̂), p − π̂ are the cell residuals, and D̂ =
diag (π̂) is a diagonal matrix of estimated probabilities. If
the model parameters have been estimated using the maxi-
mum likelihood (ML) method and if the fitted model holds
exactly in the population, the empirical distribution of the G2

and X2 statistics can be approximated in large samples using
a chi-square distribution with C − q − 1 degrees of freedom.

Unfortunately it is well known that the p values obtained
using this large sample approximation are grossly incorrect
except in small models. A useful rule of thumb to determine
whether the large sample p values for G2 and X2 are reliable
is to compare them. If the p values are similar, they are likely
to be accurate. If they are slightly different, the p value for X2

is likely to be the most accurate (Koehler & Larntz, 1980). If
they differ widely, it is likely that both p values are incorrect.
Regrettably, it is common to find in IRT applications that G2

yields a p value of 1 and that X2 yields a p value of 0, which
clearly suggests that both p values are grossly incorrect.

In SEM, under correct model specification, asymptotic p
values for overall goodness-of-fit statistics may be incorrect if
the sample size is not large enough. But most often the asymp-
totic p values for G2 and X2 fail regardless of sample size.
To understand why, consider the more accurate of these two
statistics, X2. The empirical variance of X2 and its variance
under its reference asymptotic distribution differ by a term
that depends on the inverse of the cell probabilities (Cochran,
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RMSEA IN CATEGORICAL DATA 307

1952). As a result, when the cell probabilities become small
the discrepancy between the empirical and asymptotic vari-
ances of X2 can be large. The empirical variance of X2 is
larger than the expected variance under the reference chi-
square distribution and p values for X2 computed using the
reference asymptotic distribution are too small, leading to
reject the model. But as the number of cells, C, increases,
the probabilities must be small as they must add up to one.
Thus, for large C, small cell probabilities must be encoun-
tered and p values obtained using the reference asymptotic
distribution must be too small (Bartholomew & Tzamourani,
1999). How large must C be for the asymptotic p values for
X2 to be useless? As Thissen and Steinberg (1997) put it,
when the number of categories is five or more, the approxi-
mation becomes invalid for any model as soon as the number
of variables is greater than six “with any conceivable sample
size” (p. 61). This is what has been referred to in the categor-
ical data literature as the problem of sparse expected tables
(or sparseness, for short) and some guidelines on what the
expected counts, Npc, should be for the asymptotic approx-
imation to X2 to be accurate have been offered. This is the
reason in typical IRT applications the asymptotic approxima-
tion to the empirical distribution of X2 will fail—regardless
of sample size. Of course, in nonsparse conditions, for any
model π(θ ) of a given size, C, the accuracy of the asymptotic
p values for X2 will also depend on sample size, N, just as in
SEM.

G2 and X2 can be called full information statistics in the
sense that they use all the information available in the data
to test the model. How can we obtain a statistic whose dis-
tribution can be well approximated by asymptotic methods
in sparse situations, that is, when the number of cells C is
large? By using limited information test statistics, that is, by
using statistics that only use a limited amount of the informa-
tion available in the data. These statistics pool, with overlap,
the cells of the contingency table using the multidimensional
structure of the data. The distribution of limited informa-
tion statistics is better approximated by asymptotic methods
in large models than for full information statistics because
pooled cells must have higher expected probabilities. Also,
because limited information statistics concentrate the avail-
able information, they can be more powerful, perhaps sur-
prisingly, than full information statistics. Maydeu-Olivares
and Joe (2005, 2006) provided a framework that unifies lim-
ited and full information testing in multivariate discrete data
to which we now turn.

Limited Information Statistics

Perhaps the best way to understand limited information test-
ing is by realizing that a model for a population contingency
table admits at least two representations. One of them uses
cell probabilities. The other representation uses moments.

Consider the smallest multivariate categorical data prob-
lem, a 2 × 2 table arising from two binary variables each

coded as {0, 1}. The cell representation uses four cell proba-
bilities that must add up to one. The alternative representation
uses three moments: the two means, π1

1 = Pr (Y1 = 1) and
π1

2 = Pr (Y2 = 1), and the cross product π11
12 = Pr(Y1 = 1,

Y2 = 1). Both representations are depicted here.

It is obvious that the relationship is one-to-one and invert-
ible. One can always go from one representation to the other
regardless of the number of binary variables involved.

The same is true for contingency tables involving polyto-
mous variables where not necessarily all variables consist of
the same number of alternatives. This is shown here, again
for the simplest case, a 2 × 3 table. In this case there are six
cell probabilities, which must add up to one. The alternative
representation uses five moments: three univariate moments,
π1

1 = Pr (Y1 = 1), π1
2 = Pr (Y2 = 1), and π2

2 = Pr (Y2 = 2),
and two bivariate moments, π11

12 = Pr (Y1 = 1, Y2 = 1) and
π12

12 = Pr (Y1 = 1, Y2 = 2). Note that the moments are sim-
ply the marginal probabilities that do not involve category 0.

We use π̇1 to denote the set of all univariate moments, π̇2

to denote the set of bivariate moments, and so forth. Also,
we use π r to denote the column vector of all population
moments up to order r; that is, π ′

r = (π̇ ′
1, π̇

′
2, . . . , π̇

′
r ). Its

sample counterpart (marginal proportions) is denoted by pr.
Later on we describe in more detail why these quantities are
moments.

Maydeu-Olivares and Joe (2005, 2006) proposed the fam-
ily of test statistics Mr that are simply quadratic forms in
residual moments. More specifically, the family of test statis-
tics Mr is

Mr = N (pr−π̂ r )′ Ĉr (pr − π̂ r ) . (2)

The weight matrix in Equation (2) is

Cr = �−1
r − �−1

r �r (�′
r�

−1
r �r )−1�′

r�
−1
r

= �(c)
r (�(c)′

r �r�
(c)
r )−1�(c)′

r , (3)

evaluated at the parameter estimates. In Equation (3), �r de-
notes the matrix of derivatives of the moments up to order
r with respect to the parameter vector θ , and �r denotes
N times the asymptotic covariance matrix of the sample mo-
ments up to order r evaluated at the parameter estimates θ̂ .
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308 MAYDEU-OLIVARES AND JOE

�(c)
r is simply a matrix such that �(c)′

r �r = 0. See the Ap-
pendix for further details.

Mr is a family of test statistics: M1, M2, . . . , up to Mn.
In M1 only means are used. In M2, only means and cross
products are used, and so forth, up to Mn where up to n-way
moments are used. When all moments are used (i.e., when
Mn is used) a statistic that uses all the information avail-
able in the data (i.e., a full information statistic) is obtained.
Furthermore, for the ML estimator, Mn equals Pearson’s X2

algebraically. On the other hand, when r < n, the statistics
Mr are limited information statistics.

If the model is identified from moments up to order r (i.e.,
if it could be estimated using only the sample moments up to
order r), and if the model holds exactly in the population, the
empirical distribution of Mr can be approximated asymptoti-
cally using a chi-square distribution with dfr = sr − q degrees
of freedom, where when all items consist of the same number

of categories, K, sr =∑r
i=1 ( n

i )(K − 1)i . For routine appli-

cations, Maydeu-Olivares and Joe (2005, 2006) proposed
using M2. This is simply a quadratic form in residual means
and cross products with df2 = n(K − 1) + n(n−1)

2 (K − 1)2 −
q degrees of freedom.

Why use only bivariate information for testing? Maydeu-
Olivares and Joe (2005) showed that the empirical variance
of Mr and its variance under its reference asymptotic dis-
tribution differ by a term that depends on the inverse of the
marginal probabilities of order 2r (or n, should n < 2r). Thus,
if for instance M2 is employed, the accuracy of the asymp-
totic approximation depends at most on four-way marginal
probabilities. In contrast, the accuracy of the asymptotic
approximation to M3 depends on up to six-way marginal
probabilities. This means that the accuracy of the asymp-
totic approximation to Mr improves with decreasing r (be-
cause, for instance, four-way probabilities are larger than six-
way probabilities). Consequently, they recommended testing
using the lowest amount of information possible. As most
IRT models are identified using only univariate and bivari-
ate information, they recommended using M2 for general
testing in IRT. Consistent with asymptotic theory, Maydeu-
Olivares and Joe (2005, 2006) showed that the accuracy of
the asymptotic approximation to the sampling distribution of
Mr statistics worsened as model size increased, sample size
decreased, and r increased. Yet, M2 yielded accurate p val-
ues even for the largest model considered, a graded response
model (Samejima, 1969) for 10 variables each with five re-
sponse categories, and the smallest sample considered, N =
300 observations. Despite that this is a small model for IRT
standards, the number of cells of the contingency table, C, is
close to 10 million, and there are almost as many degrees of
freedom available for full information testing.

Clearly, it is unlikely that any restricted model will fit ex-
actly such large contingency tables in applications. What
is needed, paraphrasing Browne and Cudeck, (1993, pp.
137–138) is a procedure for assessing how well a model with

unknown, but optimally chosen, parameter values approxi-
mates the population probability vector if it were available.
Also, following Steiger (1990), we may wish to take into
account model complexity, as models with more parameters
are likely to approximate the population probability vector
better than less parameterized models. Finally, we need to
determine how precisely we have determined the goodness
of approximation from our sample data (Steiger, 1990).

FULL INFORMATION GOODNESS
OF APPROXIMATION

As before, we consider fitting a model for a C-dimensional
probability vector expressed as a function of q parameters
π0 = π (θ ). We refer to π0 as the fitted model and also as
the null model because it is the model specified in the null
hypothesis of exact fit. Now, suppose that the null model is not
the data-generating model. Rather, the population probability
vector that generated the data is πT . One way to assess the
discrepancy between the population probability vector and
the null model is by using the Mahalanobis distance, Dn,
between them, where

Dn = (πT − π0)′ D−1
0 (πT − π0) . (4)

Dn is a discrepancy due to approximation between a pop-
ulation probability vector and the null model. It is also the
distance in Pearson’s X2 metric between them. Notice that it
is a population quantity as there are no data involved in the
expression.

The Mahalanobis distance Dn will generally decrease
when parameters are added to the null model. As a result, if
model parsimony is of concern, we may wish to use instead,
following Steiger (1990) and Browne and Cudeck (1993), a
Root Mean Square Error of Approximation, RMSEAn,

εn =
√

Dn

df
(5)

as a measure of the discrepancy due to approximation per
degree of freedom.

Like for any other parameter, estimates of the RMSEAn

are subject to sampling fluctuations. We can convey the pre-
cision with which the RMSEAn is estimated by providing
a confidence interval for its population value (with say 90%
confidence). Also, we may wish to test whether the null model
is a good enough approximation to the population probability
vector. That is, we could use the following test of close fit,

H ∗
0 : εn ≤ cn vs. H ∗

1 : εn > cn, (6)

where cn is some cutoff value. Notice that if there is no
error of approximation, that is, if Dn = 0, then εn = 0. Thus,
testing H ∗

0 : εn = 0 vs. H ∗
1 : εn > 0 is equivalent to the usual

test of exact model fit H0 : π = π0 vs. H1 : π �= π0.
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RMSEA IN CATEGORICAL DATA 309

Now, how can we estimate the RMSEAn from data? How
can we obtain a confidence interval for it? And, if we wish to
do so, how can we obtain a p value for the test of close fit in
Equation (6)? As a special case of the results in the next sec-
tion, if the model parameters θ have been estimated by ML,
and under an assumption of a sequence of local alternatives,
the RMSEAn given by Equation (5) can be estimated using
Pearson’s X2 and its degrees of freedom (df ) using

ε̂n =
√√√√Max

(
X̂2 − df
N × df

, 0

)
, (7)

where X̂2 is the observed value of the X2 statistic for the
data set, and we have taken into account that X̂2 − df , with
df = C – q – 1, may be negative in applications. Also, a 90%
confidence interval for εn is given by⎛

⎝
√

L̂

N × df
;

√
Û

N × df

⎞
⎠ , (8)

where L̂ and Û are the solution to

Fχ2 (X̂2; df, L̂) = 0.95, and Fχ2 (X̂2; df, Û ) = 0.05,

(9)
respectively, where Fχ2 ( · ; df, λ) is the noncentral chi-
square distribution function with df degrees of freedom and
noncentrality parameter λ. Note that Fχ2 ( · ; df, λ) is non-
decreasing as λ increases, and Fχ2 (X̂2; df, 0) > 0.95 if the
p value of the chi-square test statistic is less than .05. In
this case, the asymptotic p value for the test of close fit in
Equation (6) is

p = 1 − Fχ2

(
X̂2; df,N × df × c2

n

)
. (10)

Now, the accuracy of the confidence intervals for the
RMSEAn and the accuracy of the p value in Equation (10)
for the test of close fit depend on the accuracy of the noncen-
tral chi-square approximation to the distribution of X2 under
a sequence of local alternatives assumption. Unfortunately,
this approximation suffers from the same problems discussed
previously for the asymptotic approximation of X2 under the
null hypothesis of exact fit. If the sampling variability of X2

when the model holds exactly is underestimated by its ref-
erence (central) chi-square distribution, its variability under
a sequence of local alternatives will be underestimated un-
der its reference noncentral chi-square distribution as well.
This implies that the except in nonsparse tables, the confi-
dence intervals obtained using asymptotic methods will un-
derestimate the true variability of the RMSEA estimate in
Equation (7).

What is needed is a statistic for assessing goodness of ap-
proximation whose precision can be well estimated in prac-
tice. For testing exact fit, a solution to this problem was
obtained by considering the family of limited information
statistics Mr, and using the statistic within this family that
is best approximated by its reference chi-square distribution,

M2. The same approach can be used to obtain a test of ap-
proximate fit, and more generally, to assess the goodness of
approximation of categorical data models. This leads us to
consider a family of limited information population discrep-
ancies between the population probability vector and the null
model as well as a family of limited information RMSEAs.
Also, unlike the results presented in this section, which ap-
ply to models estimated by ML, results in the next section
are applicable to any consistent and asymptotically normal
estimator. This includes, among others, the ML estimator,
estimators based on polychorics (e.g., Muthén, 1993), and
the pairwise likelihood estimators of Katsikatsou, Moustaki,
Yang-Wallentin, and Jöreskog (2012).

A FAMILY OF LIMITED INFORMATION RMSEAs

Consider the family of discrepancies between the population
probabilities and null model given by

Dr = (πT
r − π0

r

)′
C0

r

(
πT

r − π0
r

)
(11)

with π0
r being the moments up to order r under the null

model, πT
r being the moments implied by the population

probability vector, and C0
r being Equation (3) based on the

null model. D1 is the population discrepancy between the
univariate moments under the population probability vector
and the null model; D2 is the population discrepancy between
univariate and bivariate moments; and so forth up to Dn, a
population discrepancy involving all moments.

The null model π0 here corresponds to the value of θ 0 that
minimizes the Kullback-Leibler (KL) discrepancy between
the population probabilities and the model specified under
the null hypothesis. That is, the vector π (θ0) minimizes

DKL (πT ,π (θ0)) = π ′
T ln (πT /π (θ0))

= π ′
T [ln (πT ) − ln (π (θ0))] . (12)

Then this special case of Equation (11) when all moments
are used is algebraically equal to the expression for Dn given
in Equation (4).

Taking into account model parsimony, Equation (11) leads
to a family of Root Mean Square Error of Approximation
RMSEAr’s given by

εr =
√

Dr

dfr
, (13)

where dfr = sr – q denotes the degrees of freedom available
for testing when only up to rth-way moments used.

For any consistent and asymptotically normal estimator,
θ̂ , we show in the Appendix that under a sequence of local
alternatives, an estimate of the RMSEAr is

ε̂r =
√√√√Max

(
M̂r − dfr
N × dfr

, 0

)
, (14)
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310 MAYDEU-OLIVARES AND JOE

where M̂r is the observed value of the Mr statistic for the data
set. Also, a 90% confidence interval for er is given by⎛

⎝
√

L̂r

N × dfr
;

√
Ûr

N × dfr

⎞
⎠ , (15)

where L̂r and Ûr are the solution to

Fχ2 (M̂r ; dfr , L̂r ) = 0.95, and Fχ2 (M̂r ; dfr , Ûr ) = 0.05,

(16)
respectively, assuming Fχ2 (M̂r ; dfr , 0) > 0.95.

Finally, researchers may be interested in performing a test
of close fit of the type

H ∗
0 : εr ≤ cr vs. H ∗

1 : εr > cr, (17)

where cr is an arbitrary cutoff value that depends on r, the
highest level of association used. p values for Equation (17)
are obtained using

p = 1 − Fχ2

(
M̂r ; dfr , N × dfr × c2

r

)
. (18)

Equation (17) defines a family of tests of close fit. Which
member of this family should be used? We advocate using the
member of this family for which we can obtain a more accu-
rate p value. Consequently, from extant theory we advocate
testing using the smallest r at which the model is identi-
fied, generally two. That is, we recommend using RMSEA2

in applications, the RMSEA statistic obtained from the M2

statistic using Equation (14).

THE SAMPLING DISTRIBUTION OF THE
SAMPLE RMSEA2 AND RMSEAn

To show that the distribution of the RMSEA2 can be well
approximated using asymptotic methods even in large models
and small samples, whereas the distribution of the RMSEAn

can only be well approximated in small models, we report
the results of a small simulation study using IRT models
estimated by (marginal) ML.

Binary data were generated using a two-parameter logistic
model (2PLM)

Pr (Yi = 1|η) = 1

1 + exp [αi+βiη]
, i = 1, . . . n (19)

with a standard normal latent trait η and a one-parameter
logistic model (1PLM) was fitted. The 1PLM is obtained by
setting all slopes β i equal. Six conditions were investigated.
The six conditions were obtained by crossing two model
sizes (n = 5, 10) and three sample sizes (N = 100, 500,
3,000). One thousand replications per condition were used.
The intercepts and slopes for the five item condition were

α′ = (−1,−0.5, 0, 0.5, 1), and β ′ = (0.6, 1, 1.7, 1, 0.6),
(20)

respectively. In the 10-item condition these values were
simply duplicated. For each replication, two tests of close
fit in Equation (17) were performed: H ∗

0 : ε2 ≤ c2 vs. H ∗
1 :

ε2 > c2 and H ∗
0 : εn ≤ cn vs. H ∗

1 : εn>cn. The cutoff crite-
ria c2 and cn were set equal to the population RMSEA2 and
RMSEAn for convenience, as with this choice the expected
rejection rates need not be computed. Thus, for each repli-
cation, data were generated using a 2PLM with parameter
values in Equation (20) and a 1PLM was fitted by ML. The
sample RMSEA2 and RMSEAn were computed using Equa-
tions (7) and (14), respectively, and p values for the test of
close fit with values c2 and cn were computed using Equa-
tions (10) and (18). For testing the RMSEAn there are 25 df
when n = 5 and 1,012 df when n = 10. In contrast, for test-
ing the RMSEA2 there are 9 df when n = 5 and 44 df when
n = 10.

The population RMSEAs were computed by choosing the
1PLM parameter vector that minimized the KL function in
Equation (12). Minimizing Equation (12) is equivalent to
using a multinomial ML discrepancy function between the
population probability vector and the 1PLM specified un-
der the null hypothesis (Maydeu-Olivares & Montaño, 2013;
Reiser, 2008; see also Jöreskog, 1994). More specifically, the
procedure used to compute the population RMSEAs was as
follows: First, cell probabilities under the 2PLM with param-
eters in Equation (20) were computed. This is the probability
vector πT . These probabilities were then treated as if they
were sample proportions and a 1PLM was fitted by ML. This
yields the 1PLM parameter vector θ0 closest to the popula-
tion 2PLM in the KL metric in Equation (12). Using these
1PLM parameters the fitted probability vector π0 = π (θ0)
and the population RMSEA2 and RMSEAn parameters are
computed. Using this procedure, we found that for n = 5, the
population RMSEAn = 0. 0306 and RMSEA2 = 0.0509; for
n = 10, RMSEAn = 0. 0098 and RMSEA2 = 0.04654.

Table 1 reports the results of the simulation: expected rates
under the null hypothesis that the RMSEAs equal their popu-
lation values and empirical rejection rates across 1,000 repli-
cations. The results are as expected from asymptotic theory:
The sampling distribution of the full information RMSEAn

based on Pearson’s X2 is well approximated by asymptotic
methods when the model is small (n = 5) but not when the
model is so large than some probabilities under the fitted
model become too small (n = 10). In contrast, the sampling
distribution of the bivariate information RMSEA2 based on
M2 is well approximated by asymptotic methods under all
conditions, even for a sample size of 100. A sample size
of 100 also suffices to approximate the distribution of the
RMSEAn (based on X2) with n = 5.

For our choice of population values and fitted models
and for these particular parameter values, (a) the values for
the population bivariate RMSEA are larger than the values
of the full information RMSEA, and (b) the values of the
population RMSEA2 and RMSEAn decrease as the number
of variables increases. Are these findings typical? To address
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RMSEA IN CATEGORICAL DATA 311

TABLE 1
Empirical Rejection Rates for Tests of RMSEA2 and RMSEAn Equal to Their Population Values

Stat n N 1% 5% 10% 20%

RMSEAn 5 100 2.5 8.1 13.2 22.5
5 500 1.0 6.1 11.3 22.1
5 3000 1.7 6.0 12.9 22.8

10 100 30.8 37.6 40.8 47.1
10 500 26.8 39.4 48.5 56.0
10 3,000 16.9 34.8 44.7 57.3

RMSEA2 5 100 1.8 6.8 11.7 23.0
5 500 0.9 5.2 9.6 19.4
5 3,000 1.1 5.8 10.8 21.5

10 100 1.3 5.4 10.0 19.5
10 500 1.5 5.8 10.0 20.1
10 3,000 1.1 4.9 10.3 20.8

Note. Data were generated according to a two parameter logistic model with a normally distributed latent trait and a one parameter logistic model was fitted
by maximum likelihood (ML). 1,000 replications were used. The population RMSEAn for n = 5, 10 are 0.0306 and 0.0098. The population RMSEA2 for n =
5, 10 are 0.0509 and 0.0465. Degrees of freedom for RMSEAn are 25 and 1012 for n = 5, 10. Degrees of freedom for RMSEA2 are 9 and 44 for n = 5, 10.

this issue we examine in the next section how the population
RMSEA2 and RMSEAn change for different configurations
of model misspecification in IRT models as well as how they
change as the number of variables increases. We also address
in this section the issue of what cutoff values could be used
for RMSEA2 and RMSEAn, that is, what criteria could be
used to determine that the fit of a model is “close.”

CHOICE OF RMSEA CUTOFF VALUES
IN IRT MODELS

Binary Data

We used the procedure described in the previous section to
compute the population RMSEA2 and RMSEAn values when
the population probabilities arise from a bidimensional three-
parameter logistic model (3PLM) with standard normal latent
traits and unidimensional 1PLM and 2PLM were used as null
models. The item response function for this 3PLM is

Pr(Yi = 1|η1, η2) = ci + 1 − ci

1 + exp [− (αi+βi1η1+βi2η2)]
,

i = 1, . . . n, (21)

where ci denotes the “guessing” parameter. Seventy-two con-
ditions were obtained by crossing (a) two null models (uni-
dimensional 1PLM and 2PLM), (b) four levels for the cor-
relation between the latent traits (ρ = 0, 0.3, 0.6, 1), (c)
three levels of the ”guessing“ parameter (c = 0, 0.1, 0.2),
and (d) three levels of model size (n = 6, 8, 10). An indepen-
dent clusters configuration was used for the bidimensional

3PLM: B =
(

β 0
0 β

)
. The population parameters were as fol-

lows: for n = 6, α = (1.19, 0, –1.19)′—duplicated twice, and
β = (1.67, 2.27, 1.67)′ for n = 8, α = (2.38, 1.42, –1.42,
–2.38)′—duplicated twice, and β = (1.67, 2.27, 2.27, 1.67)′

and for n = 10, α = (2.38 1.42, 0, –1.42, –2.38)′—duplicated
twice, and β = (1.67, 2.27, 1.28, 2.27, 1.67)′. The c param-
eters were set equal for all items. In the metric of the normal
ogive IRT model (also known as ordinal factor analysis),
these parameter values correspond to the following thresh-
olds and factor loadings (e.g., Flora & Curran, 2004; Forero
& Maydeu-Olivares, 2009): for n = 6, τ = (–0.5, 0, 0.5)′,
λ = (0.7, 0.8, 0.7)′; for n = 8, τ = (–1, –0.5, 0.5, 1)′, λ =
(0.7, 0.8, 0.8, 0.7)′; and for n = 10, τ = (–1, –0.5, 0′, 0.5,
1)′, λ = (0.7, 0.8, 0.6, 0.8, 0.7)′.1

When the null model is a 1PLM, population RMSEAn

values ranged from 0.008 to 0.105 with a median of 0.026,
whereas population RMSEA2 values ranged from 0.026 to
0.191 with a median of 0.073. When the null model is a
2PLM, population RMSEAn values ranged from 0 to 0.110
with a median of 0.025, whereas population RMSEA2 values
ranged2 from 0 to 0.238 with a median of 0.085. Of the 72
conditions investigated only in 2 of them the RMSEAn was
larger than the RMSEA2 and the difference was less than
0.01. These were unidimensional models with n = 6. In all
other conditions the RMSEA2 was larger than the RMSEAn

and the largest difference was 0.13 (when n = 10, c = 0, and
ρ = 0).3 Furthermore, because the 1PLM is a special case of
the 2PLM, the distance between the population probability

1Ten additional sets of 72 RMSEA2 and RMSEAn where obtained draw-
ing the model parameter values at random from a uniform distribution.
Intercepts were drawn between –2.38 and 2.38, slopes were drawn between
1.28 and 2.27, correlations were drawn between 0 and 1, and guessing pa-
rameters between 0 and 0.2. Results similar to the ones reported here for a
single fixed set of parameters were found.

2Because the data-generating model is a 3PLM involving two dimensions
and the matrix of slopes has an independent clusters structure, when c = 0
and ρ = 1, the 2PL is correctly specified and the population RMSEAn and
RMSEA2 equal 0.

3The largest differences between RMSEA2 and RMSEAn were found
whenever c = 0, ρ = 0, and a 2PL was fitted; the difference in all three cases
(n = 6, 8, 10) was at least 0.12.
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312 MAYDEU-OLIVARES AND JOE

FIGURE 1 Plot of RMSEA2 values as a function RMSEAn, number of
variables, latent trait dimensionality, and fitted model.

vector and the model implied by the null hypothesis must be
smaller for the 2PLM than for the 1PLM, but also degrees of
freedom must be smaller for the 2PLM. As a result, because
in the RMSEAs this distance is divided by the degrees of
freedom, the RMSEAs for the 2PLM need not be smaller
than for the 1PLM.

Figure 1 displays the population (RMSEAn, RMSEA2)
pairs for each of the 72 conditions, separately for each null
model (1PLM or 2PLM). We see several interesting pat-
terns in Figure 1. First, the relationship between RMSEAn

and RMSEA2 values depends on dimensionality and model
size (n). Second, for the 2PLM, the values of the RMSEAs
are lower for unidimensional models than for bidimensional
models. However, for the 1PLM some bidimensional models

yield RMSEA values lower than some unidimensional mod-
els. Third, for bidimensional models, RMSEA2 values can be
well predicted from RMSEAn values and n with R2 of over
99% when a quadratic regression model is used. The curva-
ture of the quadratic relationship increases as n increases; for
n = 6 a linear model yields an R2 of one.

The relationship between RMSEA values and model size
is more clearly seen in Figure 2. In this figure, RMSEAn and
RMSEA2 values are displayed separately as a function of
number of variables (n), correlation between the traits (ρ),
guessing parameter (c), latent trait dimensionality (d), and
null model (1PLM and 2PLM). Each line in this figure joins
three values of RMSEA: for n = 6, 8, and 10 and a particular
ρ × c combination. Figure 2 reveals that RMSEAn decreases
as n increases. We also see in this figure that the RMSEA2

decreases as n increases but that it appears to asymptote at
n = 8 for both the 1PLM and 2PLM. The reason for this
behavior is as follows: The value of the full information non-
centrality parameter Dn increases as n increases, but the full
information degrees of freedom (2n – q – 1) increase at a faster
rate than Dn as n increases. As a result, RMSEAn decreases
as n increases. In contrast, bivariate information degrees of
freedom n(n + 1)/2 – q increase at a slower rate than full
information degrees of freedom as n increases. Therefore,
for a given model for multidimensional multinomial data,
RMSEA2 may asymptote as n increases.

The results obtained reveal the difficulty of specifying
cutoff criteria for multinomial RMSEAs. First, a different
criterion must be employed for RMSEAn and RMSEA2. Sec-
ond, the cutoff may depend on model size (n). Finally, the
cutoff may depend on the population probabilities and the
null model. Yet, it can be easily argued that latent trait di-
mensionality is the most important substantive consideration
when determining the fit of an IRT model. That is, we may be

FIGURE 2 Plot of RMSEAn and RMSEA2 values as a function of number of variables, correlation between the traits (ρ), guessing parameter (c), latent trait
dimensionality, and fitted model. Each line joints three values.
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RMSEA IN CATEGORICAL DATA 313

FIGURE 3 Plot of RMSEA2 values as a function RMSEAn, number of
variables, latent trait dimensionality, and fitted model in the range RMSEA2

< 0.10 and RMSEAn < 0.05.

willing to retain a misspecified IRT model if the latent trait
dimensionality is correctly specified whereas we are unlikely
to retain it if the latent trait dimensionality is misspecified.
Interestingly, the results shown in Figure 1 reveal that for the
population probabilities and null models considered (IRT
models for binary data) the main driver of the value of the
RMSEAs is the latent trait dimensionality in the population
probabilities. Thus, it appears to be possible to establish cut-
off criteria for the RMSEAs to separate incorrectly specified
binary IRT models with a single latent trait from models
involving more than one latent trait. To do so, in Figure 3
we zoom in the results presented in Figure 1 to examine
in detail the area where the RMSEAs approach 0. We see
in this figure that a cutoff criterion of close fit of RMSEA2

≤ 0.05 will retain most misspecified unidimensional 1PLM
and 2PLM while rejecting most misspecified bidimensional
models. Furthermore, this cutoff does not depend on model
size as the largest RMSEA2 values for unidimensional mod-
els are found when n = 8 and not for the largest model. Thus,
a value of 0.05 for the bivariate RMSEA seems a reasonable
cutoff criterion for close fit in binary IRT models: models
with a RMSEA2 above this cutoff are likely to have the
wrong latent trait dimensionality, whereas models below this
cutoff are likely to have the correct latent trait dimensionality.
Furthermore, note than when a 2PLM is fitted all unidimen-
sional IRT models yield a population RMSEA2 values less
than 0.03. A smaller cutoff value should be used for the full
information RMSEA as RMSEAn is most often smaller than
the corresponding bivariate RMSEA. The results shown in
Figure 3 suggest that if the criterion is to retain misspecified
unidimensional IRT models, a value of 0.03 for RMSEAn

seems a reasonable cutoff criterion for close fit when full
information testing is used.

Polytomous Data

To investigate what population values may be expected in
the polytomous case, we computed population RMSEA2 and
RMSEAn values when the population probabilities conform
to a bidimensional logistic graded response model (GRM)
with standard normal latent traits. This is a suitable IRT
model for ordinal responses (Maydeu-Olivares, 2005). The
item response function for this model is

Pr (Yi = k |η1,η2 ) =
⎧⎨
⎩

1 − �i,1 if k = 0
�i,k − �i,k+1 if 0 < k < K − 1

�i,K−1 if k = K − 1
,

(22)

�i,k = 1

1 + exp[−(αi,k + βi1η1+βi2η2)]
. i = 1, . . . n.

(23)
This model reduces to the 2PLM in the binary case. Forty-
eight conditions were obtained by crossing (a) four levels for
the correlation between the latent traits (ρ = 0.6, 0.7, 0.8,
0.9), (b) four levels of model size (n = 6, 8, 10, 12), and (c)
three levels of number of categories (K = 2, 3, 4). The same
configuration of slopes used in the binary case was used. For
each condition, the population values of the intercepts were
set equal across items. The intercepts used were for K = 4,
αi = (1.42, 0, –1.42); for K = 3, αi = (1.42, –1.42); and
for K = 2, αi = (0). In all conditions, the null model was a
unidimensional GRM (Samejima, 1969).

Figure 4 displays the population RMSEAn and RMSEA2

values as a function of the number of variables, the correlation
between the traits, and the number of categories. RMSEAn

values were only computed for up to 10 variables due to the
size of the model involved when K = 4. We see in this figure
that in addition to depending on the intertrait correlation,
the population RMSEAn depends strongly on the number
of variables (the larger, the smaller the RMSEAn) but even
more strongly on the number of categories (the larger, the
smaller the RMSEAn). In contrast, we see that the RMSEA2

is relatively unaffected by the number of variables when the
amount of model misspecification is small (i.e., large ρ).
However, the value of the population RMSEA2 depends on
the number of categories although less so than the RMSEAn.
If an RMSEA2 less than or equal to 0.05 were used as cutoff
value for close fit, all models with an intertrait correlation
larger than 0.6 would be judged to be a close fit for K = 4;
but for K = 3, only models with a correlation larger than
0.7 would be retained; and for K = 2, only models with a
correlation larger than 0.9 would be judged to be a close
fit.

However, because for small levels of model misspecifi-
cation (e.g., ρ = 0.9) the population RMSEA2 appears to
be robust to the effect of the number of variables, it may be
feasible to provide a common cutoff for a RMSEA2 adjusted
by number of categories. More specifically, let the adjusted
RMSEA2 be (K – 1) × RMSEA2. Values of this adjusted
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314 MAYDEU-OLIVARES AND JOE

FIGURE 4 Plot of RMSEAn and RMSEA2 values as a function of number of variables, correlation between the traits, and number of categories.

RMSEA2 are plotted in Figure 5 as a function of the num-
ber of variables, the correlation between the traits, and the
number of categories. We see that the values of this adjusted
RMSEA2 are relatively stable across number of categories
and items for small levels of model misspecification. Thus, if
c2 is the cutoff value for close fit when the RMSEA2 is used
with binary data, we suggest using as cutoff of excellent fit
c2/(K − 1) for K ≥ 2. It does not appear possible to offer
a similar set of cutoffs for the RMSEAn as its values also
depend on the number of variables.

All in all, the results illustrate the difficulty of choosing
a cutoff criterion of close fit. Even if we circumscribe our-
selves to a set of IRT models, population RMSEA2 values

FIGURE 5 Plot of adjusted RMSEA2 values as a function of number of
variables, correlation between the traits, and number of categories.

depend on the number of categories of the data: the more cat-
egories, the smaller the RMSEA2 population value. This is
because the RMSEAs do not adjust for model size. As model
size increases (either because the number of categories in-
creases or because the number of variables increases) the
noncentrality parameter increases. The RMSEAs adjust the
noncentrality parameter by degrees of freedom to penalize
models with too many parameters, but they do not adjust
for model size. As a result, RMSEAs will tend to decrease
as model size increases. This is simply a reflection of the
fact that keeping all other factors constant, the noncentrality
parameter increases less rapidly than degrees of freedom as
model size increases. Fortunately, our results indicate that
the RMSEA2 is relatively robust to the effect of number of
variables. In contrast, the values of the population RMSEAn

decrease not only as the number of categories increases but
also as the number of variables increases. This fact, coupled
with the fact that the sampling distribution of the RMSEA2

is much better approximated using asymptotic methods than
the sampling distribution of RMSEAn makes the RMSEA2 a
much better candidate than RMSEAn to assess the degree of
approximation of categorical data models.

Increasing the number of categories has a further effect
on goodness-of-fit assessment of categorical data models,
namely, as the number of categories increases, model size in-
creases so rapidly that M2, and hence the RMSEA2, may not
be computed due to memory limitations. For instance, when
K = 5 and n = 10 the number of univariate and bivariate mo-
ments that enter in the computation of M2 and the RMSEA2

is s = n(K − 1) + n(n−1)
2 (K − 1)2 = 760, but when K = 7

and n = 20, s = 6,960. We consider in the next section
how to assess the goodness-of-fit of a model for ordinal
data when M2 cannot be computed because the model is too
large.
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RMSEA IN CATEGORICAL DATA 315

ASSESSING GOODNESS-OF-FIT IN LARGE
MODELS FOR ORDINAL DATA: Mord

AND RMSEAord

Multivariate discrete data can be summarized using C sam-
ple proportions. For n variables with K categories, C = Kn.
Limited information goodness-of-fit testing is based on us-
ing a smaller set of statistics that summarize the information
contained in the data as much as possible, but not too much,
in such a way that potential models can be discriminated
by the summaries (Joe & Maydeu-Olivares, 2010, p. 413).
Generally, the summaries make use only of univariate and
bivariate information so that their distribution may be well
approximated using asymptotic methods and higher power
may be obtained. When M2 is used, the summary statistics
used are the means and cross products of indicator (dummy)
variables used to denote each of the categories in the multi-
nomial variables involved.

For example, let Y i and Yj be two multinomial variables
each with three categories, k = {0, 1, 2}. Y i and Yj can be
characterized using the indicator variables Ii,1, Ii,2 and Ij,1,
Ij,2, respectively, where

Y i Ii ,1 Ii ,2

0 0 0
1 1 0
2 0 1

Then, the summary statistics used in M2 are the sample means
of these indicator variables and the sample cross products
involving indicator variables from different variables. That is,
the summary statistics used in M2 are the sample counterparts
of

E[Ii,1] = Pr (Yi = 1)

E[Ii,2] = Pr (Yi = 2)

E[Ij,1] = Pr
(
Yj = 1

)
E[Ij,2] = Pr

(
Yj = 2

)

E[Ii,1Ij,1] = Pr(Yi = 1, Yj = 1)

E[Ii,1Ij,2] = Pr(Yi = 1, Yj = 2)

E[Ii,2Ij,1] = Pr(Yi = 2, Yj = 1)

E[Ii,2Ij,2] = Pr(Yi = 2, Yj = 2)

.

(24)
Therefore the summary statistics used in M2 are just the

univariate and bivariate proportions that exclude category 0.
As n and particularly K increase, the number of summary

statistics used in M2 increase very rapidly, to the point that
for large values of n and K computing M2 may no longer
be feasible. In such large models, it is necessary to further
reduce the information used for testing. The means and cross
products of the multinomial variables ignoring the multivari-
ate nature of the multinomial variables is a natural choice
of statistics in this case. That is, one can use as summary
statistics the sample counterparts of

κi = E[Yi] = 0 × Pr (Yi = 0) + . . . + (Ki − 1)

× Pr (Yi = Ki − 1) , (25)

κij = E[YiYj ] = 0 × 0 × Pr(Yi = 0, Yj = 0)

+ . . . + (Ki − 1) × (Kj − 1)

× Pr
(
Yi=Ki − 1, Yj=Kj−1

)
. (26)

For our previous example, these simplify to

κi = E[Yi] = 1 Pr(Yi = 1) + 2 Pr(Yi = 2)

κj = E[Yj ] = 1 Pr(Yj = 1) + 2 Pr(Yj = 2)

κij = E[YiYj ] = 1 × 1 Pr(Yi = 1, Yj = 1) + 1

× 2 Pr(Yi = 1, Yj = 2) + 2 × 1 Pr(Yi = 2, Yj = 1)

+ 2 × 2 Pr(Yi = 2, Yj = 2). (27)

Comparing Equation (24) with Equation (27), we see that
quantities in Equation (27) are simply a linear function of
those in Equation (24). Therefore, the sample counterparts
of Equation (27)—means and cross products of variables
coded as {0, 1, . . . , Ki}—are a further reduction of the data
than the sample counterparts of Equation (24)—univariate
and bivariate proportions.

Let κ̂ = κ(θ̂) be the statistics in Equation (27), which
depend on the model parameters and are evaluated at their
estimates, and let m be the sample counterpart of Equation
(27). Using these statistics, from theory in Joe and Maydeu-
Olivares (2010), a quadratic-form statistic can be formed
similar to M2:

Mord = N (m − κ̂)′ Ĉord (m − κ̂) ,

Cord = �−1
ord − �−1

ord�ord (�′
r�

−1
ord�ord )−1�′

ord�−1
ord .

(28)

Mord differs from M2 in that the statistics used for testing
are different, and so are their asymptotic covariance matrix
� , and the matrix of derivatives involved, � , both of which
are to be evaluated at the parameter estimates. The sample
statistics used in Mord are m = (ȳ′, c′)′, the n sample means
ȳ, and the n(n-1)/2 cross products c = vecr

(
Y′Y/N

)
. Here

Y denotes the N × n data matrix and vecr() denotes an
operator that takes the lower diagonal of a matrix (excluding
the diagonal) and stacks it on a column vector. Also, when
all variables are binary, Mord reduces to M2. We provide
in the Appendix details on �ord and �ord for the graded
IRT response model. Also, Cai and Hansen (2013) provided
details4 on how to compute these for bifactor IRT graded
response models.

From theory in Joe and Maydeu-Olivares (2010), Mord

follows an asymptotic chi-square distribution with dford =
n(n+1)/2 – q degrees of freedom for any consistent and

4Cai and Hansen (2013) used M∗
2 to refer to the statistic we refer to as

Mord to emphasize that it should only be used with ordinal data.
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316 MAYDEU-OLIVARES AND JOE

asymptotically normal estimator. Also, under a sequence of
local alternatives the noncentrality parameter of Mord divided
by sample size is

Dord = (κT − κ0)′ C0
ord (κT − κ0) (29)

with κ0 and κT being the means and cross products in Equa-
tion (27) under the fitted (i.e., null) model and population
probabilities, respectively, and C0

ord is given in Equation (28)
and it is computed based on the fitted (null) model. An RM-
SEA can be constructed using Equation (29):

εord =
√

Dord

df ord

, (30)

and an estimate of this RMSEA is

ε̂ord =
√√√√Max

(
M̂ord − df ord

N × df ord

, 0

)
. (31)

As we did for the previous RMSEAs discussed in this
article we can construct confidence intervals for this ordinal
RMSEA and test whether the ordinal RMSEA is smaller than
some cutoff value.

Now, because Mord is a quadratic form of statistics that
are a further reduction of the data than the statistics used in
M2, from theory in Joe and Maydeu-Olivares (2010), (a) the
empirical sample distribution of Mord is likely to be better ap-
proximated in small samples than the distribution of M2; and
(b) if (Dord/D2) > 0.9, that is, if the ratio of noncentrality
parameters for Mord and M2 is sufficiently large, Mord will be
more powerful than M2 over a variety of alternative directions
because there are fewer degrees of freedom associated with
Mord than with M2. Cai and Hansen (2013) investigated the
small sample distribution of Mord and M2 in bifactor logistic
models for polytomous data and reported that the sampling
distribution of Mord is better approximated than that of M2

when there are small expected counts in the bivariate tables.
They also reported that Mord has higher power than M2 to
detect misspecified bifactor models.

The use of Mord is not without limitations. First, the com-
putation of the population means and cross products in Equa-
tion (27) and their sample counterparts must be meaningful.
These are simply weighted combinations of univariate and
bivariate probabilities. Such linear combinations are mean-
ingless when the categorical data are nominal. Hence, the
use of Mord is only justified when data are ordinal—hence its
name. Second, the number of items must be large enough for
the degrees of freedom of Mord to be positive. For instance,
for the GRM with a single latent trait, the minimum number
of items needed for the degrees of freedom of Mord to be
positive is n > K + 2. A larger number of items is needed in
the case of multidimensional models. Thus, there is an inter-
esting trade-off between Mord and M2: When the number of
items and categories is large M2 cannot be used for compu-
tational reasons, but when the number of items is small and

FIGURE 6 Plot of RMSEAord values as a function of RMSEA2 and
number of categories (2 or higher).

the number of categories is large, Mord cannot be used due to
lack of degrees of freedom.

Choice of RMSEAord Cutoff Values in IRT Models

What is the relationship between the RMSEA2 and
RMSEAord population values? What cutoff values should
be used when using RMSEAord? To address these questions
we used the 48 conditions of the previous subsection. Due to
the lack of degrees of freedom, RMSEAord cannot be com-
puted when n = 6 and K = 4. As a result, the effective
number of conditions in this case is 44. RMSEA2 versus
RMSEAord population values are plotted in Figure 6. When
K = 2, RMSEA2 equals RMSEAord. For K > 2 we see that
in all cases RMSEAord is greater than RMSEA2, reflecting
that the noncentrality parameter of Mord is greater than that
of M2. As a result, Mord has more power than M2 to reject this
particular type of model misspecification. Furthermore, we
see in Figure 6 that the relationship between both RMSEAs
when K > 2 is approximately linear (R2 = 75%).

RMSEAord values are plotted in Figure 7 as a function of
number of variables and number of categories. We see in this
figure that for the parameter values chosen RMSEAord values
are larger when K = 3 than when K = 2 except for n = 6 and
ρ = .8 or .9. We also see in this figure that for K = 4
RMSEAord values decrease as the number of variables in-
creases. In fact, for n = 12, RMSEAord values are lower
when K = 4 than for K = 2,3. All in all, it appears very diffi-
cult to offer a cutoff value for the RMSEAord across different
values of n and K.

The Standardized Root Mean Squared Residual
(SRMSR)

A solution to the problem of how to assess the approximate
fit of large models when the data are ordinal may lie in
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FIGURE 7 Plot of RMSEAord values as a function of number of variables,
correlation between the traits, and number of categories.

the use of the Standardized Root Mean Squared Residual
(SRMSR) borrowed from the factor analysis literature. For
a pair of items i and j, the residual correlation is the sample
(product-moment or Pearson) correlation minus the expected
correlation. In turn, the expected correlation simply equals
the expected covariance divided by the expected standard
deviations. Thus, the residual correlation is

rij − ρ̂ij = rij − κ̂ij − κ̂i κ̂i√
κ̂ii − κ̂2

i

√
κ̂jj − κ̂2

j

, (32)

where the means (κ i and κ j) and the cross product κ ij were
given in Equations (25) and (26), and κ ii is

kii = E[Y 2
i ] = 02 × Pr (Yi = 0) + . . . (Ki − 1)2

× Pr (Yi = Ki − 1) . (33)

The sample SRMSR is simply the square root of the av-
erage of these squared residual correlations5

̂SRMSR =
√√√√∑

i<j

(rij − ρ̂ij )2

n(n − 1)/2
. (34)

Being an average of residual correlations, the SRMSR
should not be affected by the number of items, all other
factors being held constant. To investigate whether this
is indeed the case, we computed the population SRMSR
for the previous 48 conditions. The population SRMSR is

5A more appropriate label for the statistic in Equation (34) is Root Mean
Squared Residual Correlation (RMSRC) but in the factor analysis literature
where it originated this statistic is commonly referred to as RMSR (cor-
relation) or SMSR. The latter is used here to avoid introducing additional
terminology.

FIGURE 8 Plot of Standardized Root Mean Squared Residual (SRMSR)
values as a function of number of variables, correlation between the traits,
and number of categories.

defined as

SRMSR =

√√√√√∑
i<j

(
ρ̂T

ij − ρ̂0
ij

)2

n(n − 1)/2
. (35)

This is the squared root of the mean of the squared dif-
ferences between the correlations implied by the population
probabilities and fitted model. The values of these population
SRMSRs are plotted in Figure 8 as a function of the num-
ber of variables, number of categories, and correlation.6 As
we can see in this figure, for the conditions investigated, the
values of the SRMSR are relatively stable across the num-
ber of variables and categories for small amounts of model
misspecification.

What is the relationship between the SRMSR and the bi-
variate RMSEA? To address this question, we plot in Figure 9
the values of the population SRMSR and RMSEA2 across
the 48 conditions as a function of the number of categories.
We see in this figure that their relationship, for the models
investigated, is increasingly linear as the number of cate-
gories increases: for K = 2, 3, and 4, the R2 between SRMSR
and RMSEA2 are 95%, 98%, and 99%. In fact, as Figure 10
shows, when the RMSEA2 is adjusted by (K – 1) its rela-
tionship to the SRMSR is quite linear (R2 = 97%). Thus, it
is possible to relate cutoff values for SRMSR and RMSEA2.
In so doing, we find that a population SRMSR value of 0.05
corresponds roughly to an adjusted RMSEA2 of 0.09 and that
a population RMSEA2 value of 0.05 corresponds roughly to
a value of SRMSR of 0.03.

6The SRMSR can be computed even when there are no degrees of freedom
available for testing using Mord . As a result, 48 conditions are displayed in
Figure 8 but only 44 in Figure 7.
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318 MAYDEU-OLIVARES AND JOE

FIGURE 9 Plot of SRMSR values as a function of RMSEA2 values. Their
linear association increases as the number of categories increases.

DISCUSSION

Assessing the goodness-of-fit in multivariate data analysis is
more complicated for categorical than for continuous vari-
ables: As the number of variables increases, the asymptotic p
values for the usual test statistics for categorical data analysis
such as Pearson’s X2 become inaccurate regardless of sample
size. This problem can be solved by using limited informa-
tion test statistics such as Maydeu-Olivares and Joe’s (2005,
2006) M2 statistic as asymptotic p values for this statistic
are accurate even when the data are extraordinarily sparse. A
similar approach can be used to reliably assess the goodness
of approximation in multivariate categorical data analysis.

FIGURE 10 Plot of population SRMSR values as a function of adjusted
RMSEA2 values, that is, (K – 1) RMSEA2.

The RMSEA as first proposed in the context of factor
analysis by Steiger and Lind (1980) assesses model to data
fit while imposing a penalty for model complexity. As a re-
sult, it can be used to assess goodness of approximation but
also for model selection. Furthermore, emphasis is given to
computing confidence intervals on the population parameter.
This requires that the test statistic used to estimate the pop-
ulation RMSEA has a known sampling distribution. In this
article we have proposed a family of RMSEA parameters
for multivariate categorical data analysis. Two members of
this family are the full information RMSEAn and the bivari-
ate RMSEA2. For any consistent and asymptotically normal
estimator, these RMSEAs can be estimated using Mn and
M2, respectively. In the special case where the ML estima-
tor is used, the RMSEAn can be estimated using Pearson’s
X2 statistic. Because these statistics have known asymptotic
sampling distributions, it is possible to construct confidence
intervals and to perform tests of close fit based on them. For
the ML estimator, the RMSEAn may be used when the sam-
pling distribution of X2 is well approximated (i.e., in models
with not too many possible response patterns), whereas the
RMSEA2 may be used in very large models. However, in
applications we may find categorical models that involve so
many response patterns that M2 simply cannot be computed.
This will occur if both the number of items and of response
alternatives per item is large. In this case, an RMSEA suitable
for ordinal data can be computed and a confidence interval
for it constructed using the asymptotic sampling distribution
of Mord.

However, by construction, these categorical RMSEAs
present two features that may be perceived as undesirable for
the purpose of assessing goodness of approximation proper
(regardless of model complexity). First, the RMSEAs are
hard to interpret substantively. Because confidence intervals
for the RMSEAs are of interest, the RMSEAs are constructed
using test statistics with known sampling distributions. But
test statistics with known sampling distributions are usually
weighted averages, which are inherently difficult to interpret,
rendering the substantive interpretation of the RMSEAs dif-
ficult. Second, because by construction the RMSEAs adjust
for model parsimony by dividing a test statistic by its degrees
of freedom, the population RMSEAs will generally not be
invariant as model size increases keeping all determinants of
model misfit constant. As a result, it may be difficult to offer
cutoff values for the RMSEAs that are independent of the
number of variables and categories used.

We have seen that this is indeed the case for the RMSEAn

and RMSEAord but not for the RMSEA2. That is, for
the models investigated, both the population RMSEAn and
RMSEAord decrease as the number of variables and cate-
gories increase, but the population RMSEA2 appeared to
be relatively stable for small levels of misspecification as
the number of variables increased and it could be easily
adjusted by the number of categories. As a result, cutoff pop-
ulation values for the RMSEA2 but not for the RMSEAn and
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RMSEA IN CATEGORICAL DATA 319

RMSEAord can be offered. For IRT models, we argued that
distinguishing between misspecified models with the correct
and incorrect latent dimensionality may be the most impor-
tant consideration in applications. Consequently, we searched
for an RMSEA2 population value that enabled researchers to
distinguish between these two sets of models. The resulting
population value, RMSEA2 ≤ 0.05, is our criterion for close
fit. Because population values of the RMSEA2 decrease as
the number of categories increases but values of the RMSEA2

adjusted by the number of categories using RMSEA2/ (K –
1) remain relatively stable for small degrees of model misfit,
our criterion for excellent fit is adjusted RMSEA2 ≤ 0.05.
Notice that the adjusted RMSEA2 equals the raw RMSEA2

when the data are binary. Therefore, our criteria for close and
excellent fit are equal in the case of binary data.

The use of an RMSEA2 adjusted by the number of re-
sponse categories enables us to address the second of the
concerns we put forth regarding the use of RMSEAs, namely,
invariance to the number of items and categories, but it does
not fully address the first. What can we say about the magni-
tude of an estimated RMSEA2 equal to say 0.12? To address
this issue, we examined the relationship between popula-
tion RMSEA2 values and Standardized Root Mean Squared
Residual (SRMSR) values in IRT models. The SRMR can
be described simply as the squared root of the average of the
residual product-moment correlations squared and therefore
should only be computed with binary or ordinal data. For
the IRT models investigated there is a strong linear relation-
ship between the population adjusted RMSEA2 and SRMR
values, which enables associating adjusted RMSEA2 values
to SRMR values. If we are willing to consider a model for
ordinal data that yields an SRMR ≤ 0.05 as an acceptable
approximation to the data, we can use this value as cutoff for
acceptable fit and link it to the RMSEA2 values as summa-
rized in Table 2.

When the data are ordinal or binary, we recommend using
the RMSEA2 and SRMR in tandem to assess the goodness
of approximation of the fitted models. The SRMR provides a
normed effect size of the model misfit and therefore its mag-
nitude can be easily judged. In contrast, the RMSEA2 gives
us a measure of model misfit adjusted by degrees of freedom
and it should be used when selecting among competing mod-
els fitted to the same data. It is straightforward to obtain a

TABLE 2
Suggested Cutoff Criteria for Approximate Fit in

Categorical Data Analysis

Criterion RMSEA2 SRMR

Adequate fit 0.089 0.05
Close fit 0.05 0.027
Excellent fit 0.05 / (K – 1) 0.027 / (K – 1)

Note. The Squared Root Mean Residual (SRMR) should only be com-
puted for ordinal and binary data.

confidence interval for the RMSEA2 and to perform a test of
close fit. In contrast, it is possible but cumbersome to obtain
a confidence interval for the SRMR for categorical data we
propose. Thus, it is best to use the SRMR as a goodness-
of-fit index. As a goodness-of-fit index, the SRMR can be
easily computed for models of any size. In particular, it can
be computed for models with so many response patterns that
the RMSEA2 cannot be computed. For such large models for
ordinal data we prefer the SRMR to the RMSEAord as we
cannot offer cutoff criteria for the latter.

Interestingly, our cutoff criteria for close and acceptable
fit using the RMSEA2 are very similar to those put forth by
Browne and Cudeck (1993) in the context of factor analysis.
What is the relationship between the RMSEAs and SRMSR
proposed here and those currently in use in structural equa-
tion modeling? We address this issue in the next subsection.

Relationship Between RMSEAs and SRMSR for
Categorical and Continuous Data

The IRT models used in the previous sections are equivalent
to the ordinal factor analysis model used when fitting a factor
analysis model using polychoric correlations except for the
choice of link function—logistic for the former, normal for
the latter (Takane & de Leeuw, 1987). However, the RMSEA
and SRMSR obtained when fitting an ordinal factor analy-
sis using polychoric correlations are different from the ones
introduced here. In ordinal factor analysis, the SRMSR can
be interpreted approximately as the average residual poly-
choric correlation, whereas the SRMSR introduced can be
interpreted approximately as the average residual product-
moment correlation. Therefore, they are different statistics
and they take different values in applications, particularly
when the number of categories is small and, as a result, es-
timated polychoric correlations differ from product-moment
correlations.

The bivariate RMSEA2 introduced here is conceptually
different from the RMSEA in use when fitting an ordinal
factor analysis to polychoric correlations. The latter reflects
how well the model reproduces the polychoric correlations,
whereas the former reflects how well the model reproduces
the bivariate tables. When fitting an ordinal factor model via
polychoric correlations the overall discrepancy between the
model and the data can be decomposed (Maydeu-Olivares,
2006; Muthén, 1993) into a distributional discrepancy (the
extent to which the assumption of discretized multivariate
normality underlying the use of polychorics is tenable) and a
structural discrepancy (the extent to which the model repro-
duces the polychoric correlations). The polychoric RMSEA
only assesses the latter, whereas the RMSEA2 assesses the
overall discrepancy. Generally, when fitting an ordinal factor
analysis the distributional discrepancy is much larger than the
structural discrepancy (Maydeu-Olivares, 2006) and there-
fore we believe that the RMSEA2 introduced here should be
used instead of the polychoric RMSEA when assessing the
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320 MAYDEU-OLIVARES AND JOE

goodness of approximation of ordinal factor analysis mod-
els. However, because the RMSEAs adjust the discrepancies
(overall or structural) by their respective degrees of freedom
and the degrees of freedom associated to the overall bivariate
discrepancy are much larger than the degrees of freedom from
fitting the hypothesized structural model to polychoric cor-
relations, the overall RMSEA2 may be smaller than the poly-
choric RMSEA in applications. Further research is needed
on the relationship between the polychoric RMSEA and the
RMSEA2 introduced in this article.

The SRMSR given in Equation (34) is the same used
in linear factor analysis for continuous data. However, the
SRMSR reported by software programs for factor analysis
or structural equation modeling may differ from the SRMSR
defined in Equation (34). In Equation (34) the expected corre-
lations are obtained by dividing the expected covariances by
the expected standard deviations. Existing implementations
may compute the expected correlations using sample stan-
dard deviations instead. In our experience, when Equation
(34) using Equation (32) is used to compute the SRMSR for
an IRT model fitted to ordinal data and the same expression
is used to compute the SRMSR for a comparable linear factor
analysis model fitted to the same data (treating them as if they
were continuous), similar results are obtained. However, the
models are based on different assumptions and are estimated
differently. Strictly speaking, the linear factor analysis is mis-
specified when applied to ordinal data because its predicted
values cannot take integer values (Maydeu-Olivares, Cai, &
Hernández, 2011; McDonald, 1999). An analogy is applying
linear regression to predict a dichotomous dependent vari-
able. In contrast, an IRT model may be the correctly speci-
fied data-generating model. A linear factor analysis attempts
to account for the observed bivariate associations present in
the data (covariances or correlations). Furthermore, when a
linear factor analysis is fitted to ordinal data using ML, a mis-
specified density is assumed (the distribution of the data is
multinomial, but a normal density is assumed when estimat-
ing the model) although corrections are used (e.g., Satorra
& Bentler, 1994) to ensure that the test statistic is robust to
density misspecification. In contrast, IRT models attempt to
account for the observed frequencies of the response patterns
(or equivalently for the univariate, bivariate, trivariate, . . . , up
to n-way associations present in the data), and when ML is
used to fit an IRT model to ordinal data, a correctly speci-
fied density, multinomial, is employed. When a linear factor
analysis is fitted to ordinal data the SRMSR should be low
if the model provides a reasonable approximation to the data
as a discrepancy function between the sample and expected
bivariate moments is minimized. When an IRT model is fitted
to ordinal data, the SRMSR need not be low as a discrepancy
function between all sample and expected moments is be-
ing minimized. In this context, the SRMSR should be taken
simply as a computationally convenient, substantively easy
to interpret, goodness-of-fit index to gauge the magnitude of
the misfit to the low order margins of the contingency table

because assessing the magnitude of the misfit to the full table
is impractical. From this point of view, it is reassuring to
find that IRT and linear factor analysis yield similar SRMSR
indices.

SOME DATA EXAMPLES

In this section, we provide some examples to illustrate the
theory set forth in the previous sections. In all cases we used
maximum likelihood (ML) to estimate the IRT models. This
is generally called marginal ML in the IRT literature (see
Bock & Aitkin, 1981). The software flexMIRT (Cai, 2012)
with default settings was used in all cases. This software
provides estimates of X2 and the full information RMSEAn

(provided there are not too many response patterns), M2 and
the RMSEA2, and Mord and the RMSEAord. IRTPRO (Cai,
du Toit, & Thissen, 2011) also computes X2 and RMSEAn

and M2 and RMSEA2.

Fitting Logistic IRT Models to the LSAT7 Data

This data set (Bock & Lieberman, 1970) consists of the re-
sponses of 1,000 individuals to five selected items of the
Law Scholastic Aptitude Test. The answers to these items
have been coded dichotomously (correct, incorrect). This
is a very small model, as there are only 25 = 32 possible
response patterns. As a consequence, the asymptotic approx-
imation to the distribution of the full information RMSEA
can be trusted. We fitted a 1PLM and a 2PLM to these data
using ML. Table 3 provides the results for the test statis-
tics for assessing exact fit. Two statistics are reported in
this table, M2, which uses only univariate and bivariate in-
formation, and X2. X2 assesses how well the model repro-
duces the univariate, bivariate, trivariate, four-variate, and
five-variate moments. As can be seen in this table, when the
p values of X2 can be trusted, M2 and X2 provide fairly similar
results.

The goodness of approximation results are also shown in
this table. The RMSEA2 and the RMSEAn agree in that both
the 1PLM and 2PLM provide good fits to these data. How-
ever, we do not observe quite as close an agreement between
the RMSEA2 and RMSEAn as we did for the p values of
the test of exact fit. Indeed, for both models considered, the
limited information RMSEAs are larger. The M2 and X2 test
statistics are members of a general family of test statistics
described in Joe and Maydeu-Olivares (2010). For two test
statistics within this family they show that if one statistic is
obtained by concentrating the information used in the other
statistic, the statistic that further concentrates the information
will be more powerful to detect many alternatives of interest.
Furthermore, they show that power will generally be related
to the ratio of the value of the statistic divided by its degrees
of freedom. The M2 statistic “concentrates” the informa-
tion used in X2 into fewer degrees of freedom. Because the
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TABLE 3
Goodness-of-Fit Assessment for Two IRT Models Fitted to the LSAT 7 Data

Tests of Exact Fit

1PLM 2PLM

Value df p Value df p

M2 23.17 9 .01 11.94 5 .04
X2 44.15 25 .01 32.48 21 .05

Goodness of Approximation

1PLM 2PLM

Value 90% CI df p Value 90% CI df p

RMSEA2 0.040 (0.020; 0.060) 9 .78 0.037 (0.009; 0.065) 5 .75
RMSEAn 0.028 (0.013; 0.041) 25 .58 0.023 (0; 0.038) 21 .74

Note. n = 5, K = 2, N = 1,000. For the RMSEA2 we test H0: ε2 ≤ 0.05; for the RMSEAn we test H0: εn ≤ 0.03.

RMSEAs are a function of the statistics divided by their de-
grees of freedom, as power increases so does the RMSEA
estimate. Thus, one should expect the estimated RMSEA2 to
be larger than the RMSEAn reflecting the fact that the test
statistic has more power to detect that the fitted model does
not approximate well the population probabilities.

Because the RMSEA2 is generally larger than the
RMSEAn, different cutoff values should be used, otherwise
models that would be rejected using RMSEA2 would be ac-
cepted using RMSEAn. Our results suggest that if a cutoff of
0.05 is used for the RMSEA2, a cutoff of 0.03 should be used
for the RMSEAn. These are the cutoff criteria that we use
for testing in Table 3. Using these criteria, a similar p value
for the tests of close fit is obtained for the 2PLM but not so
much for the 1PLM. The use of the same cutoff criteria for
the RMSEAn as for the RMSEA2, 0.05, leads to a p value of
1 when testing for close fit using the RMSEAn.

Next, we consider a realistic example.

Fitting an IRT Model to Beck’s Hopelessness
Scale

Chang, D’Zurilla, and Maydeu-Olivares (1994) modeled the
responses of 393 individuals to Beck’s Hopelessness Scale
(Beck, Weissman, Lester, & Trexler, 1974). This is a set of
n = 20 true-or-false questions used to predict depression,
suicidal ideation, and suicidal intent. We fitted a 2PLM to
these data using ML and we report in Table 4 tests of exact
fit using M2 and X2 as well as the goodness of approximation
of the model using RMSEAn and RMSEA2.

There are 220 (>1 million) cells in the contingency table.
As a result, the degrees of freedom obtained after fitting
any IRT model to these data will be over a million. It is
questionable whether we are interested in testing how well
the model reproduces the joint moments of the data up to
20th order, which is what X2 does. Furthermore, the p value
for X2 is useless due to data sparseness. In contrast, the p
value for M2 can be trusted, even with the small sample size

of this example, and it can be argued that M2 performs a more
meaningful assessment, how well the model reproduces the
bivariate margins of the table, and in so doing it may be
more powerful than X2 to reject the model. However, it is
questionable to expect that any model for these data will fail
to be rejected by a test of exact fit because recall that the
model is trying to fit all 220 possible response patterns. With
such large models, assessing the goodness of approximation
of the fitted model is a more sensible endeavor.

The use of the RMSEAn based on X2 to assess the good-
ness of approximation in this example is questionable for
several reasons. First, the RMSEAn assesses how well we
approximate all moments of the data. We do not feel that
such an assessment is of substantive interest. Second, due to
data sparseness, we cannot assess the precision of a RMSEAn

estimate (we cannot obtain reliable confidence intervals or a
test of close fit). Third, we cannot even qualitatively assess the
magnitude of the estimated RMSEAn because the RMSEAn

decreases as the number of variables increases. Thus, for this
example we obtained an RMSEAn point estimate of 0.055
and we provide a 90% confidence interval in Table 4. How-
ever, this confidence interval is incorrect; it overestimates

TABLE 4
Goodness-of-Fit Assessment for a One-Dimensional

Two-Parameter Logistic Model Fitted to Beck’s
Hopelessness Scale

Tests of Exact Fit

Value df p

M2 231.50 170 .001
X2 2,299,697.064 1,048,535 0

Goodness of Approximation

Value 90% CI df
RMSEA2 0.030 (0.020; 0.040) 170
RMSEAn 0.055 (0.055; 0.055) 1,048,535

Note. n = 20, K = 2, N = 393.
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the precision with which we estimate the RMSEAn. Qual-
itatively, the RMSEAn appears small given the number of
degrees of freedom involved. However, we know that the
population RMSEAn decreases as the number of variables
increases, so we really do not know if an RMSEAn = 0.055
is “small” or not given 20 binary variables.

In contrast, in our view, the RMSEA2 performs a more
meaningful assessment, how closely the model approximates
the bivariate margins. Also, reliable confidence intervals for
its population value can be obtained. Finally, because the
population RMSEA2 appears to be relatively robust to the
number of variables involved we can offer cutoff values and
a test of close fit can be performed.

It is interesting to see that in this example the RMSEAn

estimate, 0.055, is larger than the RMSEA2 estimate, 0.030.
Why is the RMSEA2 smaller than the RMSEAn in this case?
We believe that it is because X2 and hence, the RMSEAn,
have such a large sampling variability in this case that they
cannot be trusted.

In closing this example we point out that if there is in-
terest in assessing how well the model approximates higher
order moments, then RMSEA3 (involving trivariate margins),
RMSEA4 (involving four-way margins), and so forth, can be
estimated and its precision assessed using the theory pro-
vided in this article. However, increasingly larger sample
sizes are needed to estimate accurately the precision of these
higher order RMSEAs. We now turn to an example involving
an IRT model for polytomous ordinal data.

Fitting an IRT Model to the PROMIS Depression
Items

We fitted a unidimensional GRM with a normally distributed
latent trait to the n = 28 PROMIS depression items (Pilko-
nis et al., 2011). Respondents are asked to report the fre-
quency with which they experienced certain feelings in the
past 7 days using a K = 5 point rating scale ranging from
never to always. The responses were coded from 0 to 4 for
the analyses. We used the N = 768 complete responses to
these data kindly provided by the authors. Preliminary anal-
yses revealed quite large slope estimates and we used 100
rectangular quadrature points between –8 and 8 to ensure the
accuracy of the results reported here.

There are over 37 trillion possible response patterns and
Pearson’s X2 cannot be computed in this case. Yet, the model
only involves q = 5 × 28 = 140 parameters. Testing the
exact fit of the model does not make much sense. It would be
wonderful if we failed to reject any model to these data, but
it is not realistic to expect such an outcome. M2 can barely
be computed in this example and its computation takes con-
siderably longer than the estimation of the model itself. This
is because in this example there are s = 6,160 moments to
be computed, along with their asymptotic covariance ma-
trix. Degrees of freedom for M2 are therefore 6,160 – 140
= 6,020. The M2 estimate is 8,543.56 and consequently the

RMSEA2 estimate is 0.023. Using our suggested cutoff cri-
teria, we conclude that, overall, the fitted model provides a
close fit to the PROMIS depression data, but it falls short of
our criteria for excellent fit (0.05/4 = 0.0125) as the 90%
confidence interval for the population bivariate RMSEA is
(0.022; 0.024). Because the data are ordinal, we can com-
pute the residual correlations implied by the model and the
SRMSR. Its estimate is 0.037. Certainly, the overall magni-
tude of the misfit of the model is small. However, even if a
model provides a good overall approximation as in this case,
it is necessary to investigate whether there are some parts of
the model whose fit can be improved. If the data are ordi-
nal as in this case, this can be accomplished by examining z
statistics for the residual means in Equation (25) and cross
products in Equation (26) (Maydeu-Olivares & Liu, 2012).
The residual correlations provide us with an estimate of the
size of the misfit for each cross product z statistic. Examining
the residual correlations, we find that there are nine residual
correlations larger in absolute value than 0.10. We conclude
that although the GRM provides a good overall approxima-
tion to these data, the model can be fine-tuned to provide a
better approximation as there are associations between these
items that are not well captured by the model.

This model is about the largest model for which the
RMSEA2 can be computed. Yet, the RMSEAord can be com-
puted effortlessly in this example and it can be computed
for much larger models for ordinal data. A 90% confidence
interval for the population RMSEAord in this example is
(0.065; 0.073). Hence, the value obtained is larger than for
the RMSEA2, reflecting that Mord is more powerful than M2

(Cai & Hansen, 2013). As a consequence, different cutoff
criteria should be used for the RMSEA2 and RMSEAord.
The RMSEAord can be used to compare competing mod-
els (adjusting for parsimony) fitted to the same data, but we
cannot offer a cutoff criterion of close fit as this parameter
decreases as the number of variables and categories fitted
increase.

CONCLUDING REMARKS

We have introduced a family of RMSEAs that enables re-
searchers to assess the goodness of approximation of their
models for multivariate categorical data. The family consists
of the statistics RMSEA1, RMSEA2, . . ., to RMSEAn. The
RMSEA1 describes the goodness of approximation of the
model to the univariate margins of the contingency table,
the RMSEA2 to the bivariate margins, and so forth up to
RMSEAn, which describes the goodness of approximation
to the full table. These RMSEAs can be conveniently es-
timated using Maydeu-Olivares and Joe’s Mr statistics: M1

can be used to estimate the RMSEA1; M2 to estimate the
RMSEA2 ;and so forth up to Mn, which can be used to esti-
mate the RMSEAn. For ML estimation, Pearson’s X2 equals
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Mn (Maydeu-Olivares & Joe, 2005). Consequently, X2 can
be used to estimate the full information RMSEA in this case.

At what level of association shall we assess the goodness
of approximation of our models? At least at the level at which
the model is identified, otherwise the RMSEA cannot be
computed. Thus, if a categorical data model can be estimated
using only bivariate information, RMSEA2 to RMSEAn can
be used. The smallest the level of association used, the better
we can determine the precision of the sample RMSEA. Thus,
we recommend assessing the goodness of approximation at
the smallest level of association at which a model is identified.
Many models for categorical data, such as the IRT models
we have used in this article, are identified using bivariate
information. Thus, for routine applications, we recommend
using the bivariate RMSEA2. In some applications it may be
of interest to examine higher order RMSEAs. But assessing
fit at higher order associations requires increasingly larger
sample sizes. Also, population RMSEAs of different orders
(e.g., RMSEA2 vs. RMSEAn) are on different scales and
therefore different cutoff criteria of close fit should be used.
For any given RMSEA, cutoff criteria of good fit can only
be meaningfully given if population values remain relatively
stable for increasing number of variables and number of
categories. Fortunately, for the models investigated here the
RMSEA2 meets this requirement and we have been able to
offer cutoff values of adequate, good, and excellent fit for the
RMSEA2. In contrast, population RMSEAn values decrease
as the number of categories and the number of variables
increase and therefore any fixed cutoff value would favor
large models.

As soon as the number of cells is larger than about 300,
confidence intervals for the RMSEAn may be inaccurate. For
models with over a million cells, the RMSEAn can no longer
be computed. The bivariate RMSEA can still be computed
and its precision assessed in models of this size, but in mod-
els with over a trillion cells it can no longer be computed.
An RMSEAord can be computed in this case, and hence the
goodness-of-fit of approximation assessed, but only if the
data are ordinal. Unfortunately, the population RMSEAord

decreases as the number of variables and categories increases
and as a result we are unable to offer cutoff criteria of close fit
for it. However, the RMSEAord can (and should) be used in se-
lecting among competing models fitted to the same data. For
assessing the goodness of approximation in large models for
ordinal data we suggest using the SRMSR borrowed from the
factor analysis literature. Population values of this goodness-
of-fit index are relatively stable across number of variables
and categories and we have been able to offer cutoff criteria of
adequate, good, and excellent fit for the SRMSR as well. Fur-
thermore, for the IRT models investigated, population values
of SRMSR and RMSEA2 show a strong linear relationship.

Finally, in dealing with models for multivariate data it
does not suffice to inspect summary measures of fit such as
the RMSEA2 or the SRMSR. Rather, the fit of the model to all
the variables must be assessed to check if there is an obvious

model deviation that can be remedied with a slightly more
complex model. Only when no apparent trend is apparent
in the residual diagnostics, the RMSEA2 and/or the SRMSR
can be considered as a measure of the goodness of approxi-
mation of the model. z statistics for residual means and cross
products provide suitable residual diagnostics for binary and
ordinal data (Maydeu-Olivares & Liu, 2012), and residual
correlations provide an assessment of the magnitude of the
misfit identified by z statistics for residual cross products.
For nominal polytomous data, other residual diagnostics for
each item and pair of items must be employed.

In closing, for ease of exposition, in our presentation we
have reported just the results obtained with a single set of
parameter values, although different sets of parameters were
used to investigate the robustness of the cutoff values of-
fered. Future research should thoroughly examine the effects
of potential determinants of the results, such as item skew-
ness. Also, although the presentation here has focused on
applications to IRT modeling, the framework presented here
is completely general and can be applied to any model for
discrete data under multivariate multinomial assumptions.
We expect that the cutoff values offered here will be use-
ful to applied researchers using the IRT models considered
in this article. However, more research is needed to inves-
tigate whether the cutoffs offered (using dimensionality as
criterion) are useful when other criteria are of interest. For
instance, researchers may be interested in retaining misspec-
ified models where the correlation between the true latent
traits and the estimated latent traits is above some value, say
0.99, but not if the correlation is smaller. The procedures
described in this article can be used to check the usefulness
of the cutoffs offered in distinguishing IRT models based on
this or other criterion. A final remark: Assessing the good-
ness of approximation of a model does not provide us with
information about its usefulness. On the other hand, assess-
ing the goodness of approximation of a model that has been
judged to be useful tells us how much room there is for
improvement.
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APPENDIX

Derivation of the Asymptotic Distribution of the
Sample RMSEAr in Equation (14) Under a
Sequence of Local Alternatives Assumption for
Any Consistent and Asymptotically Normal
Estimator

The derivations presented here are very similar to those of
Browne and Cudeck (1993) for structural equation models for
continuous data. Consider n multinomial variables each with
K categories and two models for the resulting C = Kn contin-
gency table: the fitted (null) model π0 = π (θ ), a parametric
model that depends on q parameters to be estimated from the
data, and the population probabilities πT . We assume that
the population probabilities are related to the null model by
the standard assumption of a sequence of local alternatives,
πT = πT ,N = π0 + δ/

√
N , where π0 = π(θ0) and θ0 is in

the interior of the parameter space. This assumption is also
known as the parameter drift assumption. It implies that there
is a sequence of probabilities converging to a point where the
null model is satisfied. That is, as N → ∞, π0 = πT .

We assume that θ̂ , based on the null parametric model, is
asymptotically normal under the sequence of local alterna-
tives assumption (and consistent if δ = 0). Then, the asymp-
totic distribution of Mr is noncentral chi-square with dfr = sr

– q degrees of freedom and noncentrality parameter (Joe &
Maydeu-Olivares, 2010; Maydeu-Olivares & Joe, 2005):

λr = lim
N→∞

N
(
πT

r − π0
r

)′
C0

r

(
πT

r − π0
r

) = lim
N→∞

ND r ,

(36)
where Cr given in Equation (3) is computed under the null
model, and πT

r depends on δ/
√

N . For ease of exposition, we
assume δ/

√
N and Dr = λr/N for a large sample of size N.

Let M̂r be the observed value of the Mr statistic for a
data set. From the properties of the noncentral chi-square
distribution, asymptotically,

Pr(M̂r > Mr ) = 1 − Fχ2 (M̂r ; dfr, λr ), (37)

and this is increasing as λr increases. Under H ∗
0 : εr =√

Dr/dfr ≤ cr , the largest value of λr = NDr is N × dfr ×
c2
r so that the p value for this H ∗

0 of close fit is

max
H ∗

0

{
1−Fχ2

(
M̂r ; df r , λr

)}=1−Fχ2

(
M̂r ; df r ,

N × df r × c2
r

)
. (38)

The asymptotic 95% confidence interval for λr is (L̂r , Ûr ),
where

1 − Fχ2 (M̂r ; dfr, L̂r ) = 0.05,

1 − Fχ2 (M̂r ; dfr, Ûr ) = 0.95, (39)

provided 0.05 > 1 − Fχ2 (M̂r ; dfr, 0) (the right-hand side
is the p value for H0 of exact fit of the null parametric
model). Because by Equation (13) and the aforementioned,
εr = √

Dr/dfr = √
λr/(N × dfr ), an asymptotic 95% con-

fidence interval for εr is Equation (15).
Now, the mean of a noncentral chi-square distribution is its

noncentrality parameter plus the degrees of freedom. There-

fore, asymptotically, E[Mr ] = λr + dfr =
(

lim
N→∞

NDr

)
+

sr − q. Using the method of moments we can estimate Dr

using

D̂r = M̂r − dfr

N
. (40)

Finally, the point estimate of εr = √
Dr/dfr is Equation (14).

Computation of M2. Consider n items coded as Yi =
{0, 1, . . . , K – 1}. That is, for ease of exposition we assume
all items consist of the same number of categories, K. Let

πa
i = Pr(Yi = a), πab

ij = Pr(Yi = a, Yj = b). (41)

Then, π̇1 denotes the set of all univariate population mo-
ments. Its dimension is n(K − 1), and its elements are π1

1 , π2
1

, . . . , πK−1
1 , π1

2 , π2
2 , . . . , πK−1

2 , . . . , π1
n , π2

n , . . . , πK−1
n . Sim-

ilarly, π̇2 denotes the set of bivariate population moments.

Its dimension is
(

n

2

)
(K − 1)2, and its elements are π11

12 , π12
12

, . . . , πK−1,K−1
12 , . . . , π11

13 , π12
13 , . . . , πK−1,K−1

13 , . . . , π11
K−1,K ,

π12
K−1,K , . . . , π

K−1,K−1
K−1,K .

Then, π ′
2 = (π̇ ′

1, π̇
′
2) is the set of univariate and bivari-

ate moments, with sample counterpart p′
2 = (ṗ′

1, ṗ′
2). The

asymptotic covariance matrix of
√

N (p2 − π2) is denoted
by �2. It can be partitioned according to the partitioning of
p2 into �11 = √

NAcov (ṗ1), �21 = √
NAcov (ṗ2, ṗ1), and

�22 = √
NAcov (ṗ2, ṗ2), where Acov() denotes asymptotic

covariance matrix. �11, �21, and �22 have elements
√

NAcov
(
pa

i , p
b
j

) = πab
ij − πa

i πb
j , (42)

√
NAcov

(
pab

ij , pc
k

) = πabc
ijk − πab

ij πc
k ,i < j, (43)

√
NAcov

(
pab

ij , pcd
kl

) = πabcd
ijkl − πab

ij πcd
kl , i < j, k < l,

(44)

respectively, where

πabc
ijk = Pr(Yi = a, Yj = b, Yk = c),

πabcd
ijkl = Pr(Yi = a, Yj = b, Yk = c, Yl = d). (45)
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Now, in Equation (42)

πab
ij =

⎧⎨
⎩

0, if i = j, a �= b,

πa
i , if i = j, a = b,

πab
ij , otherwise.

(46)

In Equation (43),

πabc
ijk =

⎧⎨
⎩

0, if (i = k, a �= c) ∨ (j = k, b �= c) ,

πab
ij , if (i = k, a = c) ∨ (j = k, b = c) ,

πabc
ijk , otherwise,

(47)
whereas in Equation (44)

πabcd
ijkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if (i = k, a �= c) ∨ (i = l, a �= d)

∨ (j = k, b �= c) ∨ (j = l, b �= d) ,

πab
ij , if {i, j} = {k, l}, {a, b} = {c, d},

πabc
ij l , if (i = k, a = c) ∨ (j = k, b = c) ,

πabd
ijk , if (i = l, a = d) ∨ (j = l, b = d) ,

πabcd
ijkl , otherwise.

(48)
Consider now a parametric model for the vector of population
probabilities, π(θ ) , where there is a q-parameter vector. The
null model used throughout this article is the graded response
model (GRM) with a standard normal latent trait. Under this
model,

πa
i =

∞∫
−∞

Pr (Yi = a |η ) φ (η) dη,

πab
ij =

∞∫
−∞

Pr(Yi = a |η ) Pr(Yj = b |η )φ (η) dη,i < j,

(49)

and analogous expressions hold for trivariate πabc
ijk and four-

way moments πabcd
ijkl . In Equation (49) φ (η) denotes a stan-

dard normal density, and

Pr (Yi = a |η ) =
⎧⎨
⎩

1 − �i,1 if a = 0
�i,a − �i,a+1 if 0 < a < K − 1

�i,K−1 if a = K − 1
,

(50)

�i,a = 1

1 + exp[−(αi,a + βiη)]
, i = 1, . . . n, (51)

with αi,a decreasing in a for all i. To compute the test statistic
M2, the matrix �2 = ∂π2(θ)

∂θ ′ is needed. With θ ′ = (α′,β ′) we
have

�2 =
(

�11 �12

�21 �22

)
=
(

∂π̇1(α)
∂α′

∂π̇1(β)
∂β ′

∂π̇2(α)
∂α′

∂π̇2(β)
∂β ′

)
.

For this null model �11 has elements

∂πa
i

∂απ,g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

∂�i,a

∂αi,a

φ (η) dη, if i = p, a = g,

−
∞∫

−∞

∂�i,a

∂αi,a

φ (η) dη, if i = p, a + 1 = g,

0, otherwise,
(52)

where

∂�i,a

∂αi,a

= �i,a(1 − �i,a), (53)

�21 has elements

∂πab
ij

∂αp,g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

∂�i,a

∂αi,a

Pr(Yj = b |η ) φ (η) dη if i = p, a = g,

−
∞∫

−∞

∂�i,a

∂αi,a

Pr(Yj = b |η ) φ (η) dη, if i = p, a + 1 = g,

∞∫
−∞

∂�j,b

∂αj,b

Pr(Yi = a |η ) φ (η) dη, if j = p, b = g,

−
∞∫

−∞

∂�j,b

∂αj,b

Pr (Yi = a |η ) φ (η) dη, if j = p, b + 1 = g,

0, otherwise.
(54)

�12 has elements

∂πa
i

∂βp

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

∂�i,a

∂βi

φ (η) dη, if i = p, a = K − 1,

−
∞∫

−∞

(
∂�i,a

∂βi

− ∂�i,a+1

∂βi

)
φ (η) dη, if i = p, a < K − 1,

0, otherwise,
(55)

where

∂�i,a

∂βi

= η�i,a(1 − �i,a). (56)
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Finally, �22 has elements

∂�ab
ij

∂βp

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

∂�i,a

∂βi

Pr
(
Yj = b |η )φ (η) dη,

if i = p, a = K − 1,

−
∞∫

−∞

(
∂�i,a

∂βi

− ∂Yi,a+1

∂βi

)
Pr
(
Yj = b |η )φ (η) dη,

if i = p, a < K − 1,

∞∫
−∞

∂�j,b

∂βj

Pr (Yi = a |η ) φ (η) dφ,

if j = p, b = K − 1,

−
∞∫

−∞

(
∂�j,b

∂βj

− ∂Yj,b+1

∂bj

)
Pr (Yi = a |η ) � (η) dη,

if j = p, b < K − 1,

0, otherwise.
(57)

Computation of Mord. The computation of Mord in-
volves �ord , the asymptotic covariance matrix of

√
N (m −

κ), and the matrix �ord = ∂κ(θ )
∂θ ′ . �ord can be partitioned ac-

cording to the partitioning of m into �11 = √
NAcov (m1),

�21 = √
NAcov (m2, m1), and �22 = √

NAcov (m2, m2).
�11, �21, and �22 have elements

√
NAcov(mi,mj ) = E[YiYj ] − E[Yi]E[Yj ], (58)

√
NAcov(mij ,mk) = E[YiYjYk]

−E[YiYj ]E[Yk], i<j, (59)
√

NAcov(mij ,mkl) = E[YiYjYkYl] − E[YiYj ]E[YkYl],

i < j , k < l, (60)

respectively. In Equation (58),

E[YiYj ] =
⎧⎨
⎩

E[Y 2
i ], if i = j,

E[YiYj ], otherwise.
(61)

In Equation (59),

E[YiYjYk] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E[Y 2
i Yj ], if i = k,

E[Y 2
j Yi], if j = k,

E[YiYj ], otherwise,

(62)

and a similar expression is obtained for E[YiYjYkYl] in Equa-
tion (60).

For the null model employed in this article, the GRM with
a normally distributed latent trait, these expressions can be
computed as follows:

E [Yi] =
+∞∫

−∞

[
K−1∑
a=1

�i,a

]
f (η)dη, (63)

E
[
YiYj

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

[
K−1∑
a=1

(2a − 1)�i,a

]
φ(η)dη, if i = j,

+∞∫
−∞

[
K−1∑
a=1

�i,a

][
K−1∑
b=1

�j,b

]
φ(η)dη, otherwise,

(64)

E
[
YiYj Yk

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

[
K−1∑
a=1

(2a − 1)�i,a

][
K−1∑
b=1

Yj,b

]
φ(η)dη if i = k,

+∞∫
−∞

[
K−1∑
b=1

(2b − 1)�i,b

][
K−1∑
a=1

�i,a

]
φ(η)dη if j = k,

+∞∫
−∞

[
K−1∑
a=1

�i,a

][
K−1∑
b=1

�j,b

][
K−1∑
c=1

�k,c

]
φ(η)dη otherwise,

(65)

E
[
YiYj YkYl

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

[
K−1∑
a=1

(2a − 1)�i,a

][
K−1∑
b=1

(2b − 1)�j,b

]
φ(η)dη

if i = k, j = l,
+∞∫

−∞

[
K−1∑
a=1

(2a − 1)�i,a

][
K−1∑
b=1

�j,b

][
K−1∑
d=1

�l,d

]
φ(η)dη

if i = k,
+∞∫

−∞

[
K−1∑
a=1

(2a − 1)�i,a

][
K−1∑
b=1

�j,b

][
K−1∑
c=1

�k,c

]
φ(η)dη

if j = l,
+∞∫

−∞

[
K−1∑
b=1

(2b − 1)�j,b

][
K−1∑
a=1

�i,a

][
K−1∑
d=1

�l,d

]
φ(η)dη

if j = k,
+∞∫

−∞

[
K−1∑
b=1

(2b − 1)�j,b

][
K−1∑
a=1

�i,a

][
K−1∑
c=1

�k,c

]
φ(η)dη

if j = l,
+∞∫

−∞

[
K−1∑
a=1

�i,a

][
K−1∑
b=1

�j,b

][
K−1∑
c=1

�k,c

][
K−1∑
d=1

�l,d

]
φ(η)dη

otherwise.

(66)
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Similarly, �ord can be partitioned as

�ord =
(

�11 �12

�21 �22

)
=
(

∂κ1(α)
∂α′

∂κ1(β)
∂β′

∂κ2(α)
∂α′

∂κ2(β)
∂β′

)

and for this model �11, �12, �21, and �22 have elements

∂E [Yi]

∂αp,g

=

⎧⎪⎪⎨
⎪⎪⎩

0, ifj �= i,
+∞∫

−∞

[
(1 − �p,g)�p,g

]
φ(η)dη, if j = i,

(67)

∂E [Yi]

∂βp

=

⎧⎪⎪⎨
⎪⎪⎩

0, ifj �= i,
+∞∫

−∞

⎧⎨
⎩

K−1∑
g=1

[(
1−�p,g

)
�p,g

]⎫⎬⎭ ηφ(η)dφ, if j = i,

(68)

∂E
[
YiYj

]
∂αp,g

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ifp �= i, j,
+∞∫

−∞

(
K−1∑
b=1

�j,b

) [
1 − �p,g

]
�p,gφ(η)dη, ifp= i,

+∞∫
−∞

(
K−1∑
a=1

�i,a

) [
1 − �p,g

]
�p,gφ(η)dη, ifp = j,

(69)

∂E
[
YiYj

]
∂βp

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if p �= i, j,
+∞∫

−∞

(
K−1∑
b=1

�j,b

)⎡⎣K−1∑
g=1

([
1 − �p,g

]
�p,g

)⎤⎦ ηφ(η)dη, if p = i,

+∞∫
−∞

(
K−1∑
a=1

�i,a

)⎡⎣K−1∑
g=1

([
1 − �p,g

]
�p,g

)⎤⎦ ηφ(η)dη, if p = j,

(70)

respectively.
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