
Multivariate Behavioral Research, 49:354–371, 2014
Copyright C© Taylor & Francis Group, LLC
ISSN: 0027-3171 print / 1532-7906 online
DOI: 10.1080/00273171.2014.910744

Identifying the Source of Misfit in Item Response
Theory Models

Yang Liu
The University of North Carolina at Chapel Hill

Alberto Maydeu-Olivares
Faculty of Psychology, University of Barcelona

When an item response theory model fails to fit adequately, the items for which the model
provides a good fit and those for which it does not must be determined. To this end, we compare
the performance of several fit statistics for item pairs with known asymptotic distributions under
maximum likelihood estimation of the item parameters: (a) a mean and variance adjustment
to bivariate Pearson’s X2, (b) a bivariate subtable analog to Reiser’s (1996) overall goodness-
of-fit test, (c) a z statistic for the bivariate residual cross product, and (d) Maydeu-Olivares
and Joe’s (2006) M2 statistic applied to bivariate subtables. The unadjusted Pearson’s X2 with
heuristically determined degrees of freedom is also included in the comparison. For binary
and ordinal data, our simulation results suggest that the z statistic has the best Type I error
and power behavior among all the statistics under investigation when the observed information
matrix is used in its computation. However, if one has to use the cross-product information, the
mean and variance adjusted X2 is recommended. We illustrate the use of pairwise fit statistics
in 2 real-data examples and discuss possible extensions of the current research in various
directions.

Item response theory (IRT) modeling involves fitting a latent
variable model to discrete responses obtained from question-
naire/test items designed to measure personality, attitudes,
patient-reported health outcomes, and educational achieve-
ment, among other things. Before any inferences can be
drawn from the fitted model, the model’s fit must be assessed,
given that any conclusions derived from poorly fitting models
can be potentially misleading. To this end, a number of pro-
cedures can be reliably used to assess the overall goodness of
fit (GOF) of IRT models (for reviews, see Mavridis, Mous-
taki, & Knott, 2007; Maydeu-Olivares & Joe, 2008). When
a model does not fit well, alternative IRT models might be
fitted. However, more often than not no such model provides
a good fit; this is to be expected, given that IRT modeling
involves many degrees of freedom. Facing this situation, re-
searchers often resort to selecting the best fitting model and
then seek to improve its fit by using item-level fine-tuning.
Hence, in a context of item calibration and selection, re-
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searchers have to differentiate well-fitting items from poorly
fitting ones; and on the basis of these outcomes they may de-
cide to retain only the former set or to apply an alternative IRT
model to the latter set. Note that such piecewise assessment
should be performed even when the overall fit is acceptable,
as there may be parts of the model whose fit can be improved.
Once the model has been modified, or once items have been
removed, the overall fit of the resulting model needs to be
reassessed.

A substantial body of literature has been published on
the identification of misfits in IRT modeling (e.g., Ander-
sen, 1973; Bock, 1972; Cagnone & Mignani, 2007; Chen &
Thissen, 1997; Drasgow, Levine, Tsien, Williams, & Mead,
1995; Glas, 1988; Glas & Verhest, 1989, 1995; Glas &
Suarez-Falcón, 2003; Kelderman, 1984; McKinley & Mills,
1985; Orlando & Thissen, 2000, 2003; Stone & Zhang, 2003;
Tay & Drasgow, 2011; Toribio & Albert, 2011; van den Wol-
lenberg, 1982; Yen, 1984). However, some of the statistics
proposed in these studies have unknown sampling distribu-
tions and their use relies on heuristics; another group appears
to be valid only for certain models, whereas others appear to
serve solely to detect certain types of misfit. Maydeu-Olivares
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SOURCE OF MISFIT IN IRT 355

and Liu (2012) recently identified the main challenges faced
when attempting to identify poorly fitting items: first, the
sampling distribution of the test statistic needs to be well
approximated by a known reference distribution when the
model is correctly specified; second, some tests of interest
cannot be applied owing to the lack of degrees of freedom;
and third, some statistics may lack power to detect alternative
models of interest.

Reference distributions are usually obtained using asymp-
totic methods. If the reference distribution does not closely
match the sampling distribution of the statistic for correctly
specified models, then the researcher may over- or underre-
ject well-fitting items. Overrejection is particularly undesir-
able as good items are generally expensive to develop; like-
wise, underrejection should be avoided because it prevents
the researcher from determining the power of the statistic
under alternatives of interest.

Quadratic form statistics, such as Pearson’s X2 applied
to item pairs, are often used for piecewise goodness-of-fit
assessment. For chi-square distributed statistics, degrees of
freedom often equal the number of parameters in the satu-
rated model minus the number of parameters in the restricted
model. For a binary variable, the saturated model involves
two probabilities that must add up to one; as such, there is
no degree of freedom available for testing at the item level.
For polytomous items, testing at the item level using chi-
square distributed statistics is only possible for IRT models
with fewer item parameters than the number of response
alternatives minus one. This means that testing the source
of misfit may require pairs of variables if a chi-square dis-
tributed statistic is used and even triplets or quads if the items
are binary (Maydeu-Olivares & Liu, 2012).

One way to overcome the problem of the lack of de-
grees of freedom is to use a large sample z statistic (i.e., an
asymptotically normal statistic divided by its standard error).
Another way is to use a statistic that draws information from
the sum score, for instance, Orlando and Thissen’s (2000,
2003) heuristic statistic S-X2. Reiser (1996) and Maydeu-
Olivares and Joe (2005) suggested using bivariate z statistics
to assess the source of misfit in two-way marginal subtables
for binary item response data. Recently, Maydeu-Olivares
and Liu (2012) proposed an extension of Reiser’s z statistic
suitable for polytomous ordinal items. However, the com-
putation of z statistics involves obtaining an estimate of the
asymptotic covariance matrix of all item parameters, which
is challenging when the maximum likelihood estimator is
used (in this case it amounts to the inverse of the Fisher in-
formation matrix). The three most widely used approaches
to estimate the Fisher information are usually referred to as
the expected, the observed, and the cross-product (XPD) in-
formation matrices. When expected information is used, the
distribution of bivariate z statistics can be well approximated
even in small samples (Maydeu-Olivares & Liu, 2012); how-
ever, when XPD information is used, the approximation is
presumed to be much poorer. Note that Liu and Maydeu-

Olivares (2013) observed this trend for a score test statistic.
Unfortunately, for computational reasons the expected infor-
mation matrix can only be calculated when the number of
binary items is under 20. If there are five or more response
alternatives, then this matrix can only be computed with 6 or
so items. Hence, either the observed or the XPD information
matrix has to be used in most real applications.

For a work-around to both the lack of degrees of free-
dom and the computation of the information matrix, Liu
and Maydeu-Olivares (2013) proposed a statistic, R2,ij , that
involves a pair of item and conditions on sum score lev-
els/groups, as inspired by Orlando and Thissen’s (2000,
2003) S-X2 statistic and Glas’s (1988) R2 statistic. Draw-
ing on the results of Joe and Maydeu-Olivares (2010), Liu
and Maydeu-Olivares (2013) were able to derive the asymp-
totic distribution of R2,ij . Alternatively, Maydeu-Olivares
and Joe’s (2006) M2 test statistic applied to item pairs can
be used for piecewise goodness-of-fit assessment. Under the
null hypothesis of a correctly specified model, this statistic
follows asymptotically a chi-square distribution. However,
Liu and Maydeu-Olivares (2013) and Maydeu-Olivares and
Liu (2012) found that statistics for pairs and triplets of items
that do not require the computation of an information matrix
(e.g., M2,R2,ij ) tend to have low power for detecting multi-
dimensionality of the latent trait, even though they may have
excellent Type I errors even in small samples.

In summary, to assess the source of misfit in IRT models
a number of statistics with known asymptotic distribution
are now available. However, if their computation does not
involve the information matrix, they appear to lack power to
detect certain alternatives of interest in applications. On the
other hand, if their computation does involve estimating the
information matrix, most research has been undertaken using
the expected information matrix, which can only be com-
puted for small models. Extant research suggests that when
XPD information is used instead of the expected information,
larger samples are needed for the asymptotic distribution to
ensure a good approximation of the sampling distribution
of the statistic. In most applications, however, expected in-
formation matrix cannot be computed because the model is
large. Hence, it is of interest to investigate statistics whose
sampling distribution is well approximated by the asymptotic
theory when either the observed or XPD information matrix
is used.

We propose two new quadratic form statistics. The first
statistic is a mean and variance correction to Pearson’s X2 so
that it can be approximated asymptotically by a chi-square
distribution. The second statistic differs from X2 in that the
weight matrix in the quadratic form is chosen to be an esti-
mate of the Moore-Penrose pseudoinverse of the asymptotic
covariance matrix of the bivariate residuals. This is simi-
lar in spirit to Reiser’s (1996) overall GOF statistic; with
this choice of weight matrix, the resulting statistic is asymp-
totically chi-square. Apart from the two new statistics, we
also include the bivariate residual z statistic for binary data
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356 LIU AND MAYDEU-OLIVARES

(Reiser, 1996) and a natural extension of it suitable for or-
dinal data (Maydeu-Olivares & Liu, 2012). We only con-
sider multinomial maximum likelihood (ML) estimation of
the IRT parameters, which is often referred to as marginal
maximum likelihood estimation (e.g., Bock & Aitkin, 1981)
in the IRT literature and also as full information maxi-
mum likelihood in the item factor analysis literature (e.g.,
Jöreskog & Moustaki, 2001). Whenever the asymptotic co-
variance matrix of the item parameter estimates is involved
in the computation of the goodness-of-fit statistic, it is es-
timated by the inverse of the information matrix. Both the
observed and XPD information matrix are investigated in this
study.

For succinctness, we focus our attention on detecting
sources of misfit using pairs of items. However, the methodol-
ogy presented in this article can be generalized to goodness-
of-fit assessment in marginal subtables of arbitrary orders
(single items, triplets of items, etc.). By using pairs of items,
we may detect whether there is misfit in the associations
between items, and they are considerably easier to interpret
than item triplets. Interested readers are referred to Maydeu-
Olivares and Liu (2012) for testing using single items and to
Liu and Maydeu-Olivares (2012) for testing using triplets of
items.

The rest of this article is organized as follows: In out-
lining the motivation and focus of our presentation, we first
describe two applications. Next, we describe the statistics
under investigation and their asymptotic reference distribu-
tion. We then report a simulation study designed to determine
whether the sampling distribution of the statistics is well ap-
proximated by their reference distribution when the fitted
model is correctly specified. For statistics with an adequate
empirical Type I error rate, the eventual selection depends
on their power to reject alternatives of interest, which is ex-
amined by conducting additional simulations. Both binary
and polytomous rating data are considered. In polytomous
conditions, we also compute as benchmarks the bivariate
version of Maydeu-Olivares and Joe’s (2006) M2 and Pear-
son’s X2 using heuristically the same degrees of freedom
as M2. Because a bivariate X2 computed from the full ta-
ble ML parameter estimates is not asymptotically chi-square
(Maydeu-Olivares & Joe, 2006), the statistics investigated
here should have better Type I error rates than those of unad-
justed X2 and hopefully as good as those of M2. We also hope
they will be more powerful than M2. In the binary case, M2

cannot be computed for pairs of items due to lacking degrees
of freedom. On the other hand, X2 is still computable; Chen
and Thissen (1997) suggested for it a heuristic chi-square
reference distribution with the same degrees of freedom as
the independence model (i.e., df = 1). It has been found
that Chen and Thissen’s proposal tends to underreject (see,
e.g., Liu & Maydeu-Olivares, 2013); therefore, we expect the
statistics proposed here to perform better.

The article concludes with a discussion of the findings
and some recommendations for applied researchers. These

recommendations are illustrated by using the statistics de-
scribed in the article in the two applications that we now
introduce.

TWO APPLICATIONS

PROMIS Depression Short Form

Pilkonis et al. (2011) described the emotional distress item
bank from the Patient-Reported Outcomes Measurement In-
formation System (PROMIS) in detail. Respondents were
asked to report the frequency with which they had experi-
enced certain feelings in the past 7 days using a K = 5-point
rating scale ranging from never to always; the responses were
coded from 0 to 4 for the analyses. The short form of the de-
pression scale (consisting of n = 8 items) is analyzed here
so that we can provide detailed results for all items. We used
the N = 768 complete responses in the data kindly provided
by the authors, who fitted a logistic graded response model
(Samejima, 1969) with a single normally distributed latent
trait.

There are Kn = 58 = 390,625 possible response patterns
in this example. Under the fitted model, the probability of
observing a response pattern is given by1

Pr (Y1 = k1, · · · , Yn = kn) =
∞∫

−∞

n∏
i=1

Pr (Yi = ki |η )f (h) dη,

(1)
where Yi denotes the random variable associated to the re-
sponses to item i; η denotes the latent trait; and φ (η) denotes
the latent trait’s density, which is assumed to be standard
normal. Also, under this model,

Pr (Yi = k |η ) =⎧⎪⎨
⎪⎩

1 − �
(
η ; αi,1, βi

)
if k = 0, (2)

�
(
η ; αi,k, βi

) − �
(
η ; αi,k+1, βi

)
if 0 < k < K − 1,

�
(
η ; αi,K−1, βi

)
if k = K − 1,

where

�
(
η ; αi,k, βi

) = 1

1 + exp
[− (

αi,k + βiη
)] (3)

denotes a standard logistic distribution function evaluated
at αi,k + βiη. Applying this model to the depression data,
we have five parameters per item (four intercepts αi,k and
one slope β i) and q = 5 × 8 = 40 parameters in total.
We estimated this model by ML using Mplus 7.0 (Muthén &
Muthén, 2012); 48 rectangular quadrature points from –5 to 5
were used to approximate the intractable integral in Equation
(1).

1The notation adopted in this article is different from the standard IRT
convention. As noted by a reviewer, it is more consistent with that used in
the statistical literature.
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SOURCE OF MISFIT IN IRT 357

The overall GOF of the logistic graded model to these
data cannot be assessed using Pearson’s X2 or the likelihood
ratio G2 statistic, as the data are very sparse. In fact, X2 yields
a p-value of zero and G2 a p-value of one. A more accurate
p-value for the overall fit can be obtained using Maydeu-
Olivares and Joe’s (2005, 2006) M2 statistic. We obtain M2 =
805.44 on 440 degrees of freedom; p < .01; and we conclude
that, taking into account sampling variability, the fitted model
is not likely to be the data-generating model. We computed
an RMSEA statistic using M2 (denoted RMSEA2) to assess
whether the fitted model provides a close approximation to
the true and unknown data-generating model. A 90% confi-
dence interval for the RMSEA2 yields [0.03, 0.04]. Maydeu-
Olivares and Joe (2014) suggest that IRT models with an
RMSEA2 less than or equal to 0.05 provide a close approx-
imation to the data-generating model and that those with an
RMSEA2 less than or equal to 0.05 / (K –1) provide an ex-
cellent approximation. Because K = 5, their criterion for an
excellent approximation is RMSEA2 ≤ 0.0125. We conclude
that the fitted model provides a close approximation to the
data-generating model but falls short of their criterion for
an excellent approximation. Thus, there is room for modi-
fying the model and for improving its fit to these data. To
achieve this, we first need to locate the model misfits using a
piecewise fit assessment.

EPQ-R Extraversion Scale Short Form

Binary item response data differ from polytomous data with
regard to assessing the source of misfit. When the GOF for
each pair of items is of interest, there are no degrees of
freedom available for some of the statistics considered in
this article. Hence, this special case needs to be considered
in some detail.

When data are binary, Samejima’s (1969) graded model
(2) reduces to a two-parameter logistic (2PL) model.
Maydeu-Olivares and Liu (2012) fitted a 2PL model us-
ing the ML estimator to data provided by the 824 respon-
dents in the female United Kingdom normative sample to the
short form of the extraversion scale of Eysenck’s Personality
Questionnaire-Revised (EPQ-R; Eysenck, Eysenck, & Bar-
rett, 1985). These data are reanalyzed here. The scale consists
of 12 binary items: a typical item is “Are you a talkative per-
son?” The response categories are “Yes” and “No,” coded
as 1 and 0, respectively. In this case, there are 212 = 4,096
possible response patterns. These data are also sparse, so
Pearson’s X2 and the likelihood ratio G2 statistic should not
be used. The estimated M2 statistic is 474.23 on 54 degrees of
freedom, which indicates that a one-dimensional 2PL model
fits rather poorly. A 90% confidence interval for RMSEA2

yields [0.09, 0.11] and we conclude that the fitted model is
not close to the true data-generating model. What statistics
should be used to locate misfits in this case? In the following
section, we discuss some proposals.

GOODNESS-OF-FIT STATISTICS FOR
BIVARIATE MARGINAL SUBTABLES

Denote the set of q IRT item parameters by θ . For the graded
response model considered in this article, θ consists of slopes
and intercepts that are related to item discrimination and dif-
ficulty, respectively. Also, let π be the C = Kn dimensional
vector of response pattern probabilities. We write π(θ ) to
denote the multinomial probabilities expressed as a function
of the model parameters. For any pattern, π(θ ) is given by
Equations (1) and (2) for the graded response model. Then,
the null hypothesis of overall GOF is H0 : π = π(θ ) versus
H1 : π �= π (θ). After performing an overall GOF test, we
wish to examine GOF in a piecewise fashion. More specifi-
cally, we seek to assess how well the model reproduces each
pair of items, which is very similar in spirit to examining z
statistics for residual covariances in structural equation mod-
eling (SEM).

Quadratic Form Statistics: Mij, Rij , and X2
ij

To determine whether a particular pair of items shows model
misfit, one natural statistic to use is the quadratic form in
bivariate residuals

Qij = N
(
pij − π̂ ij

)′
Ŵij

(
pij − π̂ ij

)
. (4)

When both items have K response categories, pij and π̂ ij

are Cij = K2 dimensional vectors of observed and expected
bivariate proportions, respectively. These bivariate probabil-
ities only involve a qij-dimensional subset of all parameters,

denoted as θ ij, and for simplicity we write π̂ ij = π ij

(
θ̂ ij

)
in which θ̂ ij is the ML estimate. For the graded model con-
sidered here, θ ij amounts to a set of two slopes and 2 × (K –
1) intercepts. Finally, Ŵij is some Cij × Cij real symmetric
matrix that may depend on parameter estimates but converges

in probability to some constant matrix:Ŵij

p→ Wij .
When ML is used to estimate the IRT model parameters,

the residuals for a pair of items
√

N
(
pij − π̂ ij

)
are asymp-

totically normally distributed with mean zero and covariance
matrix (Maydeu-Olivares & Liu, 2012)

�ij = Dij − π ijπ
′
ij − �ijI−1

(ij )�
′
ij . (5)

In Equation (5), Dij = diag(πij ) is a diagonal matrix of
the bivariate probabilities, �ij = ∂π ij

(
θ ij

)
/∂θ ′

ij denotes the
Cij × qij matrix of derivatives of the bivariate probabilities
with respect to the parameters involved in the bivariate sub-
table, I denotes the Fisher information matrix of all item
parameters, and I−1

(ij ) denotes the qij × qij submatrix of I−1

obtained by selecting the qij rows and columns corresponding
to θ ij (Maydeu-Olivares & Liu, 2012).

When the model is correctly specified, Qij is asymptot-
ically distributed as a mixture of d independent c2

1 random
variables where d is the rank of Wij�ij by the general theory
of quadratic form statistics in normal random variables (e.g.,
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358 LIU AND MAYDEU-OLIVARES

Box, 1954). In particular, if

�ij Wij�ij Wij�ij = �ij Wij�ij (6)

is satisfied, then Equation (4) is asymptotically distributed as
a chi-square with d degrees of freedom (e.g., Schott, 1997,
Theorem 9.10).

Equation (6) holds when �ij is a generalized inverse of
Wij ; that is, Wij satisfies �ij Wij�ij = �ij . This is the ap-
proach taken by Maydeu-Olivares and Joe (2006), who pro-
posed using the statistic

Mij = N
(
pij − π̂ ij

)′
Ĉij

(
pij − π̂ ij

)
,

Ĉij = D̂−1
ij − D̂−1

ij �̂ij

(
�̂

′
ij D̂−1

ij �̂ij

)−1
�̂

′
ij D̂−1

ij (7)

to assess the source of misfit in bivariate tables. In Equation
(7), all vectors and matrices with a hat are evaluated at the
parameter estimates θ̂ ij . Provided �ij is of full rank (i.e.,
θ ij is estimable only from pij), Mij is asymptotically dis-
tributed as a chi-square distribution with degrees of freedom
equal to the number of parameters in the saturated model
of the bivariate subtable Cij – 1 minus the number of item
parameters involved in the same subtable qij; thus, dfij = Cij

– qij – 1. Mij is simply the M2 statistic applied to the bivari-
ate subtable for items i and j; however, Equation (7) differs
from the formula of M2 applied as an overall GOF test. See
Maydeu-Olivares and Joe (2006) and Maydeu-Olivares and
Liu (2012) for further details.

Another way to satisfy Equation (6) is to use, as the weight
matrix, the Moore-Penrose pseudoinverse of Equation (5)
evaluated at the parameter estimates, �̂

+
ij , leading to

Rij = N
(
pij − π̂ ij

)′
�̂

+
ij

(
pij − π̂ ij

)
. (8)

This statistic is a bivariate subtable counterpart of the over-
all GOF statistic proposed by Reiser (1996) for binary items.
The reference degrees of freedom of Rij is given by the rank
of �+

ij�ij , which further equals the rank of �ij . However, as
Reiser has noted in the case of overall goodness-of-fit tests,
the rank of �ij may depend on the true parameter values.
As a result, in applications, its degrees of freedom must be
estimated by determining the rank of �̂ij , for example, using
an eigendecomposition. Hence, the value of Rij and its p-
value will depend on how many eigenvalues are numerically
judged to be zero. This is by no means straightforward in IRT
applications because numerical integration is involved, and
thus the computation of small eigenvalues is vulnerable to
numerical errors (for an illustration of this point, see Maydeu-
Olivares & Joe, 2008). Nevertheless, the simulation results
of Mavridis et al. (2007) using the overall GOF counterpart
of Equation (8) suggest that it is safe to use this statistic in
practice. It should be noted that the expected information ma-
trix was used in their study; therefore, the results might not
be generalizable to the case where the XPD or the observed
information must be used (e.g., for long tests).

Pearson’s X2 applied to a bivariate subtable

X2
ij = N

(
pij − π̂ ij

)′
D̂−1

ij

(
pij − π̂ ij

)
(9)

does not possess an asymptotic chi-square distribution be-
cause with the choice of weight matrix, Ŵij = D̂−1

ij , Equa-
tion (6) is not satisfied. Furthermore, Equation (7) implies
that X2

ij > Mij , and as a consequence, if we use the same ref-
erence distribution for X2

ij as for Mij we would be rejecting
well-fitting items (Maydeu-Olivares & Joe, 2006; Maydeu-
Olivares & Liu, 2012).

There are at least two ways to obtain asymptotically cor-
rect p-values for Pearson’s X2

ij given in Equation (9). One
way is by computing p-values for the mixture of chi-square
distributions via the inversion formula given in Imhof (1961);
another way is to adjust X2

ij by its mean and variance so that
its asymptotic distribution can be approximated by a chi-
square distribution. Liu and Maydeu-Olivares (2012) empir-
ically compared the two approaches and concluded that there
was little difference between them. As a result, we only con-
sider the mean and variance adjustments because the compu-
tation using Imhof’s inversion method is more involved but
does not yield a more accurate p-value.

To compute p-values for X2
ij using a mean and variance

adjustment, we assume that the distribution of X2
ij can be

approximated by a bχ2
a distribution. The first two asymptotic

moments of X2
ij are

μ1 = tr
(

D−1
ij 
ij

)
, μ2 = 2tr

(
D−1

ij 
ij

)2
. (10)

Solving for the two unknown constants a and b and evaluating
m1 and m2 at the parameter estimates (denoted with a hat),
we obtain the mean and variance corrected X̄2

ij statistic

X̄2
ij = X2

ij

b
= 2μ̂1

μ̂2
X2

ij , (11)

which has an approximate reference chi-square distribution
with degrees of freedom

a = 2μ̂2
1

μ̂2
. (12)

This approach originated in Satterthwaite (1946) and has
been applied in the SEM literature to overall GOF testing by
Satorra and Bentler (1994). For binary item response data,
Cai, Maydeu-Olivares, Coffman, and Thissen (2006) used
this method to approximate the asymptotic distribution of
several overall GOF test statistics.

Following Asparouhov and Muthén (2010), it is possible
to define an alternative mean and variance corrected X2

ij

which, unlike Equation (11), has dfij = Cij – qij – 1 degrees
of Freedom (provided of course that dfij > 0). Their method
entails writing the statistic ¯̄Xij

2 = a∗ + b∗Xij
2 where a∗ and

b∗ are chosen so that the mean and variance of ¯̄X
2
ij are dfij and

2 dfij, respectively. Solving for the two unknown constants
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SOURCE OF MISFIT IN IRT 359

a∗ and b∗, we obtain

¯̄X
2
ij = X2

ij

√
2dfij

μ̂2
+ dfij −

√
2dfij μ̂

2
1

μ̂2
. (13)

Asparouhov and Muthén’s (2010) simulation results in
the context of overall GOF tests for SEM models suggested
that the difference between Equation (11) and Equation (13)
is negligible.

Large Sample z Statistics

For binary data, Mij and ¯̄X
2
ij cannot be computed for item

pairs due to the lack of degrees of freedom (i.e., dfij ≤ 0).
X̄2

ij , however, can still be used because the degrees of freedom
in Equation (12) are estimated as a real number. Rij can also
be used with binary data as its (integer-valued) degrees of
freedom are estimated as well, unless the estimate is exactly
zero.

An attractive alternative for binary data is the standardized
residual

zij = p
(11)
ij − π̂

(11)
ij

SE
(
p

(11)
ij − π̂

(11)
ij

) = p
(11)
ij − π̂

(11)
ij√

σ̂
(11)
ij /N

, (14)

as suggested by Reiser (1996) and Maydeu-Olivares and Joe
(2005). Here, π (11)

ij = Pr
(
Yi = 1, Yj = 1

)
and p

(11)
ij is its cor-

responding observed proportion. It turns out that p
(11)
ij is sim-

ply one of the four probabilities in πij , and σ̂
(11)
ij is its corre-

sponding diagonal element in Equation (5). The asymptotic
distribution of this z statistic is standard normal. Notice that
z2
ij is asymptotically chi-square with one degree of freedom;

in fact, it can also be expressed as a quadratic form statistic
in bivariate marginal residuals.

Because for binary data EYiYj = π
(11)
ij , π

(11)
ij is also the

population cross-product moment of the two items, and p
(11)
ij

is the sample counterpart. The cross-product moment of two
items can also be computed analogously in the polytomous
case (Maydeu-Olivares & Liu, 2012):

κij := EYiYj =
K−1∑
yi=0

K−1∑
yj =0

yiyjπ
(yiyj )
ij (15)

in which π
(yiyj )
ij = Pr

(
Yi = yi, Yj = yj

)
. The corresponding

sample estimate is kij = y′
iyj /N , where yi denotes the N

observations on item i coded using categories (0, 1, . . . K
− 1). Consequently, it is possible to define a z statistic for
polytomous response variables as

zord = kij − κ̂ij

SE
(
kij − κ̂ij

) = kij − κ̂ij√
σ̂ 2

ord/N

. (16)

However, the computation of the cross product in Equation
(15) is not meaningful if the response categories are not
ordered; so in Equation (16) we use the subscript ord to

remind users that this statistic is for ordinal data only. Also,
in Equation (16),

σ̂ 2
ord = v′
̂ij v, (17)

where, from Equation (15), v′ is the 1 × K2 vector

v′ =
(

0 × 0, 0 × 1, . . . 0 × (K − 1), . . . , (K − 1)

× 0, (K − 1) × 1, . . . , (K − 1) × (K − 1)

)
. (18)

The statistic zord also asymptotically follows a standard
normal distribution for correctly specified models. Similarly,
z2
ord is a quadratic form statistic of bivariate marginal resid-

uals with a weight matrix leading asymptotically to a chi-
square statistic with one degree of freedom.

Estimation of the Asymptotic Covariance Matrix
of the Item Parameter Estimates

The computation of X̄2
ij , ¯̄X

2
ij , zij, and its generalization zord

requires an estimate of the q × q information matrix I . When
the item parameters are estimated by ML, two commonly
used estimates of I are the expected information matrix

ÎE = �̂′D̂
−1

�̂ (19)

and the XPD information matrix

ÎXPD = �̂′
Odiag

(
pO

/
π̂2

O

)
�̂O. (20)

In Equation (19), � = ∂π (θ )
/
∂θ ′denotes the C × q ma-

trix of derivatives of all possible response pattern probabil-
ities with respect to the item parameters, and D = diag(π)
is a diagonal matrix of all pattern probabilities. Both are
evaluated at the ML estimates. For polytomous data, the ex-
pected information matrix can only be computed in models
involving a few items. For instance, for the PROMIS de-
pression data this matrix is very difficult to compute because
the dimension of � is 390,625 × 40. In contrast, pO and
πO in Equation (20) denote, respectively, the observed and
expected proportions of the CO observed patterns, and �O

is the CO × q matrix of derivatives of the observed patterns
with respect to the model parameters. Because CO ≤ N, the
number of observations, the XPD estimate of the informa-
tion matrix can always be computed because the dimension
of vectors and matrices involved in Equation (20) does not
increase as a function of test length.

A third alternative is the observed information matrix,
which can be written as

IO = N

CO∑
c=1

pc

(πc(θ))2

[
∂πc(θ )

∂θ

∂πc(θ)

∂θ ′ − πc(θ)
∂2πc(θ)

∂θ∂θ ′

]

= IXPD − N

CO∑
c=1

pc

πc(θ)

∂2πc(θ)

∂θ∂θ ′ (21)
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360 LIU AND MAYDEU-OLIVARES

in which πc and pc are elements in vectors p0 and π0, and it
differs from the previous two expressions in that it involves
second-order derivatives of the pattern probabilities with re-
spect to the model parameters. Equation (21) is computed
directly later in our simulations and empirical examples;
however, as pointed out by one referee, numerical approx-
imation of Equation (21) via differentiating the EM map,
namely, the supplemented EM algorithm, is another possi-
bility (Cai, 2008; Meng & Rubin, 1991). In the sequel, we
use only the observed and the XPD information matrices for
the computation of the proposed statistics.

Previous Research

Cagnone and Mignani (2007) investigated the empirical Type
I errors and power of a statistic closely related to Rij:

Gij = N
(
pij − π̂ ij

)′
D̂−1/2

ij

(
D̂−1/2

ij 
̂ij D̂−1/2
ij

)+
D̂−1/2

ij

(
pij − π̂ ij

)
.

(22)
Their fitted model was a two-dimensional logistic graded

model, which is also referred to as a proportional odds model
(McCullagh, 1980) in some of the statistical literature. The
alternative model in their power simulations was a unidi-
mensional logistic graded model. With a sample size of 500,
Gij showed reasonable Type I errors (between 4 and 9% at
the 5% significance level) and good power (between 30 and
90% for K = 3 and over 90% for K = 4). However, because
they used the expected information in their computation, the
largest model they considered involved n = 6 variables with
K = 4 categories (C = 46 = 4,096).

Maydeu-Olivares and Liu (2012) investigated the empir-
ical Type I errors of Mij and zord when fitting Samejima’s
(1969) graded model and those of zij when fitting a 2PL.
Empirical rejection rates of Mij were right on target even at
the smallest sample size considered (N = 100). Using the
expected information matrix, empirical rejection rates of zij

and zord were between 4 and 6% at this sample size, which
is very close to the 5% nominal level. With a sample of
size 1,000, zij and zord showed maximum power for rejecting
a multidimensional model, whereas the power of Mij was
only marginally higher than the nominal rate (between 5 and
12%). The power of Mij was higher for rejecting a 50/50 uni-
dimensional mixture model with a three standard deviation
mean difference (power was between 45 and 60%).

Liu and Maydeu-Olivares (2013) studied the empirical
Type I errors and power of several statistics as local depen-
dence diagnostics for the 2PL model. The pairwise statistics
involved wereX2

ij using as reference a chi-square distribution
with degrees of freedom equal to an independence model
(Chen & Thissen, 1997), zij; two score test statistics (Glas &
Suárez-Falcón, 2003; Liu & Thissen, 2012); and the statistic

R2,ij = N
(
pij,S − π̂ ij,S

)′
Ĉij,S

(
pij,S − π̂ ij,S

)
, Ĉij,S

= �̂
−1
ij,S − �̂

−1
ij,S�̂ij,S

(
�̂

′
ij,S�̂

−1
ij,S�̂ij,S

)−1
�̂

′
ij,S�̂

−1
ij,S ,

(23)

which is based on the residual bivariate proportions given
each sum-score level, pij,S − π ij,S . In Equation (23), �ij,S

denotes the asymptotic covariance matrix of the observed
proportions, and �ij,S the corresponding Jacobian matrix
with respect to the model parameters. R2,ij belongs to the
family of test statistics Mκ (Joe & Maydeu-Olivares, 2010),
and it asymptotically follows a chi-square distribution with n
– 3 degrees of freedom for the 2PL model. Liu and Maydeu-
Olivares (2013) found that in terms of Type I errors, Chen
and Thissen’s X2

ij was too conservative, whereas the other
statistics behaved well with a sufficiently large sample size
(N = 1,000). Power was investigated for a bifactor and a
two-dimensional alternative. There were only marginal dif-
ferences in power between zij and the score tests (power
as high as 95% for some pairs at the 5% level), but R2,ij

showed only slightly higher power than nominal α levels (at
most 9%). Liu and Maydeu-Olivares (2013) also considered
tripletwise statistics; however, they concluded that it is gen-
erally not easy to draw useful inferences from them. They
also investigated the choice of estimate of the information
matrix and found that the behavior of the score test statistics
improved markedly when the expected information matrix is
used compared with the XPD approximation.

The present study extends previous research by introduc-
ing the mean and variance corrected X2

ij statistics in Equa-
tions (11) and (13) and the Rij statistic in Equation (8). Via
simulations we investigate their Type I error rate and power
together with the zord/zij statistics. The observed and XPD
information matrices are used for all statistics to gauge the
effect of choice of information matrix estimate on the be-
havior of the statistics. For benchmark purposes, the results
for Mij (for ordinal data only), whose computation does not
involve the information matrix, and for X2

ij are also reported.

SIMULATION PART I: EMPIRICAL TYPE I
ERROR RATES

Ordinal Data

We used a graded response model with n = 10 items and K
= 5 categories to simulate the data. The true intercept and
slope values were

α =

⎛
⎜⎜⎜⎜⎜⎝

1.60 1.79 2.13 1.60 1.79 2.13 1.60 1.79 2.13 1.60

0.53 0.60 0.71 0.53 0.60 0.71 0.53 0.60 0.71 0.53

−0.53 −0.60 −0.71 −0.53 −0.60 −0.71 −0.53 −0.60 −0.71 −0.53

−1.60 −1.79 −2.13 −1.60 −1.79 −2.13 −1.60 −1.79 −2.13 −1.60

⎞
⎟⎟⎟⎟⎟⎠

′

,

β =
(

1.28 1.67 2.27 1.28 1.67 2.27 1.28 1.67 2.27 1.28
)′

. (24)

Normally shaped response distributions are resulted with this
choice of intercept values, whereas skewed ones are typically
found in practice. As a reviewer pointed out, further research
should investigate the performance of the test statistics when
item responses are skewed as well. In this case, item pa-
rameters may be poorly estimated; however, the degree to
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SOURCE OF MISFIT IN IRT 361

which it may affect the behavior of the proposed tests re-
mains unknown. Preliminary evidence on this can be found
in Liu and Maydeu-Olivares (2012) in which they considered
asymmetrically placed intercept values and obtained results
mostly comparable with those observed in the present study.

Two sample sizes were considered, N = 300 and 1,000;
1,000 replications per condition were used. Estimation of the
item parameters was performed using Mplus 7.0 (Muthén &
Muthén, 2012); 48 rectangular quadrature points from –5 to
5 were used to approximate numerically the marginal likeli-
hood function. All GOF statistics were computed using R (R
Development Core Team, 2012). The reference distributions

for the test statistics are (a) χ2
14 for Mij , X2

ij , and ¯̄X
2
ij ; (b)

(0, 1)for zord ; (c) a chi-square distribution with degrees of
freedom equal to the number of eigenvalues of 
̂ij greater
than 10−5 for Rij ; and (d) Equation (12) for X̄2

ij . Given that
the model is correctly specified, empirical rejection rates
should be close to the nominal α level for all statistics except
for the unadjusted X2

ij , whose distribution is not χ2
14 but a

mixture of independent χ2
1 .

The mean and variance of the statistics across the 1,000
replications are shown in Table 1 for both sample sizes. For
chi-square distributed statistics, the mean of the statistics
should be equal to the degrees of freedom, and the variance
of the statistics should be 2 times the degrees of freedom. For
z statistics, the mean and variance of the statistics should be
zero and one, respectively. For conciseness, only the results
for pairs (1, 2), (1, 3), and (2, 3) are presented, which cover
all three slope combinations. Rejection rates at α = 0.01,
0.05, and 0.10 are shown graphically in Figure 1, again for
both sample sizes. Rejection rates for X̄2

ij are not shown in
Figure 1 as they are almost identical to those of ¯̄X

2
ij .

In Figure 1 we see that the empirical Type I error rates
of Mij are right on target even when the sample size is 300,
whereas the unadjusted X2

ij rejects slightly more often (8–9%
at 5% level); the pattern is similar to what was reported in
Maydeu-Olivares and Liu (2012). When the observed in-
formation matrix is used, the empirical Type I error rates of
¯̄X

2
ij , Rij, and zord are also accurate. In contrast, when the XPD

information matrix is used zord becomes unusable: due to neg-
ative variance estimates, zord could only be computed across
300, 189, and 164 replications for these three pairs as N =
300 and 986, 959, and 948 replications as N = 1,000. Even
for N = 1,000, the statistic rejects too many (> 15% at 5%
level) well-fitting items. In Figure 1, we also see that when
the XPD information matrix is used, the empirical rejection

rates of ¯̄X
2
ij are somewhat inflated (about 8% at 5% level)

when N = 300, whereas those of Rij are not too adversely
affected.

However, in Table 1 we see that the empirical variance
of Rij can be very large (maximum 432.57; in general larger
than 2 times the mean). This means that in correctly speci-
fied models one may observe extremely large values of this
statistic in applications, which leads researchers to believe

that the model grossly misfits one or more pairs. This is an
extremely undesirable feature. Also in Table 1 we see that
the variance of the statistic generally increases as sample size
increases and that it is present for both information matrix
estimates, although the variances are generally larger when
the XPD information is used.

Note that even in a model of this size (which is small
by IRT standards), the expected information matrix cannot
be computed. If the computation of the statistic involves the
information matrix, the observed information is preferred
over the XPD information as suggested by our simulation
results. We also conclude that in terms of retaining well-
fitting ordinal items, Mij is the best statistic, very closely
followed by zord and the mean-and-variance adjusted X2

ij if

TABLE 1
Estimated Mean and Variance of Bivariate GOF

Statistics: Graded Model, Correctly Specified

N = 300 N = 1,000

Pair (i, j) Stat Info. Mean Variance df Mean Variance df

(1, 2) Mij — 14.05 26.07 14 13.78 27.51 14

X2
ij — 15.67 29.51 14 15.37 28.27 14

X̄2
ij OBS 16.06 30.98 16.00 15.76 29.70 16.01

XPD 14.16 22.87 12.81 15.34 27.84 15.22
¯̄X

2
ij OBS 14.06 27.13 14 13.77 25.98 14

XPD 15.44 26.84 14 14.12 26.04 14
Rij OBS 22.30 91.48 21.85 22.10 53.78 22.14

XPD 18.86 157.29 17.53 20.09 181.78 19.06
zord OBS 0.01 1.03 — 0.01 1.06 —

XPD 0.61 9.94 — –0.03 2.09 —
(1, 3) Mij — 14.02 27.29 14 14.14 29.14 14

X2
ij — 15.56 30.15 14 15.65 31.05 14

X̄2
ij OBS 15.96 31.69 15.94 16.06 32.69 15.95

XPD 14.07 23.46 12.76 15.63 30.60 15.16
¯̄X

2
ij OBS 14.02 27.85 14 14.10 28.69 14

XPD 15.40 27.55 14 14.46 28.77 14
Rij OBS 22.07 78.16 21.81 23.20 116.51 22.30

XPD 18.64 77.79 17.60 20.27 138.28 19.16
zord OBS –0.05 0.96 — –0.07 0.93 —

XPD –0.11 7.77 — –0.13 3.26 —
(2, 3) Mij — 13.95 27.67 14 14.05 28.54 14

X2
ij — 15.50 30.30 14 15.56 29.23 14

X̄2
ij OBS 15.90 31.84 15.92 15.96 30.77 15.93

XPD 13.99 23.45 12.71 15.53 28.78 15.13
¯̄X

2
ij OBS 13.98 28.01 14 14.03 27.04 14

XPD 15.38 27.61 14 14.39 27.09 14
Rij OBS 22.32 89.33 21.85 23.22 81.99 22.31

XPD 19.46 210.22 17.62 22.08 432.57 19.22
zord OBS 0.02 0.94 — –0.03 1.01 —

XPD 0.03 11.61 — 0.03 4.08 —

Note. df reported for X̄2
ij and Rij are averages across the 1,000 replica-

tions. GOF = goodness of fit; OBS = observed information matrix; XPD
= cross-product information. All results are based on 1,000 replications
except for zord when using cross-product information. In this case, due to
negative variance estimates, zord could only be computed across 300, 189,
and 164 replications for these three pairs as N = 300 and 986, 959, and 948
replications as N = 1,000. — = not applicable.
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Vertical axis: Empirical rejection rate
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FIGURE 1 Type I error results for bivariate GOF statistics: N = 300 and 1,000; true model—graded, fitted model—graded. The statistics are Mij, the
unadjusted X2

ij (with the same df as Mij), the mean and variance adjusted ¯̄X
2
ij , Rij, and the residual cross product zord. GOF = goodness of fit; XPD =

cross-product information.

the observed information is used. If only XPD information
is available, zord should be avoided. In both cases, Rij should
be used with caution due to its problematic performance
for some pairs in the simulation. On the other hand, the
unadjusted X2

ij should be avoided because of its liberality.

Binary Data

In this section, binary item response data were generated
from a 2PL model. The simulation setup was the same as
in the graded model conditions; specifically, once again we
used 10 items and two sample size conditions: N = 300 and
1,000. The true parameter values in this case were α = 0 and

β =
(

1.28 1.67 2.27 1.28 1.67 2.27 1.28 1.67 2.27 1.28
)′

.

(25)

In this simulation setting, the Mij and ¯̄X
2
ij statistics cannot

be computed due to the lack of degrees of freedom. The refer-
ence distributions for the remaining statistics are (a) (0, 1)for
zij ; (b) a chi-square distribution with degrees of freedom
equal to the number of eigenvalues of 
̂ij greater than 10−5

for Rij ; and (c) Equation (12) for X̄2
ij . For comparative pur-

poses, we also provide results for the unadjusted X2
ij using

Chen and Thissen’s (1997) proposal of using a chi-square
distribution with degrees of freedom equal to those of the
independence model. For this setup, this amounts to using a
χ2

1 reference distribution.
The mean and variance of the statistics under considera-

tion are reported in Table 2 for both sample sizes. Empirical
rejection rates at selected α levels, again for both sample
sizes, are shown in Figure 2.

Figure 2 shows that Pearson’s X2
ij with Chen and Thissen’s

(1997) reference distribution is over-conservative (less than
1% at 5% level) for all three pairs, as has frequently been
observed in previous simulation studies. In contrast, when
observed information is used, zij, Rij, and the mean and vari-
ance adjusted X̄2

ij have rather accurate empirical Type I errors
even at the smallest sample size considered. However, when
the XPD information matrix is used, X̄2

ij tends to overreject
slightly (13–15% at 10% level) at small sample sizes and
underrejects with low slopes (5% at 10% level for Items 1
and 2); zij is over-liberal (over 10% at 5% level) for all three
pairs at small sample sizes. Furthermore, in this case, due
to negative variance estimates, zij could only be computed
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FIGURE 2 Type I error results for bivariate GOF statistics: N = 300 and 1,000; true model—2PL, fitted model—2PL. The statistics are the unadjusted
X2

ij (with the same df as the independence model), the mean and variance adjustedX̄2
ij , Rij, and the residual cross product zij. GOF = goodness of fit; XPD =

cross-product information; 2PL = two-parameter logistic.

across 993, 990, and 978 replications for these three pairs as
N = 300.

Inspecting Table 2, we see again that Rij can take very
large values in applications, as its empirical variance is very
large, particularly when XPD information is used. As before,
we conclude that the observed information matrix should be
used whenever possible. We also conclude that in terms of re-
taining well-fitting binary items, zij or the mean-and-variance
X̄2

ij statistic should be used. If only XPD information is avail-
able, X̄2

ij should be used. In both cases, Rij should be used
with caution.

SIMULATION PART II: POWER

In this section we examine the power of the statistics un-
der investigation for detecting model misspecification. Only
statistics with adequate empirical Type I error rates were

investigated: These are Mij , X̄2
ij , ¯̄X

2
ij , zord, and Rij for the

ordinal case and X̄2, Rij , and zij for the binary case. As in
the previous section, the fitted model was graded for ordi-
nal data and the 2PL for binary data. We investigated power
for detecting (a) a multidimensional model, (b) a unidimen-
sional model with the latent variable distributed as a mixture
of normal distributions, and (c) a unidimensional model with
a guessing parameter. For conciseness, only power results for
N = 1,000 are reported. A thousand replications were used
for each condition.

To generate multidimensional data, we used an indepen-
dent cluster two-dimensional graded response model. The
same intercepts as in the previous simulation were used; that
is, we used the ones reported in Equation (23) for the graded
case and α = 0 in the binary case. The latent traits correla-
tion was set to 0.7 and the slopes used for both the graded
and binary case were

β =
(

1.28 1.67 2.27 1.28 1.67 0 0 0 0 0
0 0 0 0 0 1.28 1.67 2.27 1.28 1.67

)′

.

(26)
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TABLE 2
Estimated Mean and Variance of Bivariate GOF

Statistics: 2PL Model, Correctly Specified

N = 300 N = 1,000

Pair (i, j) Stat Info. Mean Variance df Mean Variance df

(1, 2) X2
ij — 0.49 0.45 1 0.55 0.56 1

X̄2
ij OBS 0.96 1.76 1.02 1.09 2.18 1.02

XPD 0.74 1.01 0.64 1.01 1.74 0.90
Rij OBS 2.35 13.07 2.44 2.21 6.24 2.41

XPD 1.29 7.75 1.34 1.86 94.05 1.70
zij OBS 0.03 0.95 — 0.02 1.07 —

XPD –0.23 7.28 — –0.05 1.19 —
(1, 3) X2

ij — 0.42 0.31 1 0.46 0.41 1
X̄2

ij OBS 0.99 1.80 1.05 1.09 2.23 1.04
XPD 0.74 1.02 0.62 1.01 1.85 0.91

Rij OBS 2.65 40.44 2.47 2.16 4.99 2.42
XPD 1.80 44.69 1.43 2.45 47.44 1.86

zij OBS 0.03 0.94 — 0.04 1.04 —
XPD –0.24 5.46 — –0.04 1.22 —

(2, 3) X2
ij — 0.42 0.39 1 0.41 0.34 1

X̄2
ij OBS 1.08 2.56 1.06 1.04 2.20 1.05

XPD 0.79 1.41 0.60 0.97 1.76 0.92
Rij OBS 2.44 11.91 2.48 2.13 5.83 2.42

XPD 1.90 24.25 1.46 2.62 82.12 1.88
zij OBS –0.02 1.00 — –0.05 1.00 —

XPD –0.34 7.76 — –0.12 1.15 —

Note. df reported for X̄2
ij and Rij are averages across the 1,000 repli-

cations. GOF = goodness of fit; 2PL = two-parameter logistic; OBS =
observed information; XPD = cross-product information. All results are
based on 1,000 replications except for zij when using cross-product infor-
mation. In this case, due to negative variance estimates, zij could only be
computed across 993, 990, and 978 replications for these three pairs as N
= 300. — = not applicable.

To generate mixture data, we used the same setup as in
simulations for correctly specified models except that the la-
tent variable was drawn from a 50/50 mixture of (0, 1) and
N (2, 1) distributions. Finally, to generate data with a guess-
ing parameter, we used the same setup as in the simulations
for correctly specified models, except that we replaced the
2PL formula of Equation (3) with a three-parameter logistic
(3PL) model:

�
(
η ; αi,k, βi, γi

) = γi + 1 − γi

1 + exp
[− (

αi,k + βiη
)] ,

(27)

where γi is the guessing parameter. We used γi = 0.2 for
all items (in both binary and ordinal conditions). We note that
fitting a guessing parameter in conjunction with the graded
response model is seldom pursued in practice; it is used here
only for data generation purposes.

Ordinal Data

Empirical power rates at α = 0.05 using both estimates of
the information matrix are shown graphically in Figure 3 for
the same item pairs as in the previous section: (1, 2), (1, 3),

and (2, 3), where the average slopes are low, medium, and
high, respectively. For the multidimensional condition, these
pairs correspond to items belonging to the same factor. Thus,
for this condition we also provide results for pairs (1, 7), (1,
8), and (2, 8): each comprises one item from the first factor
and one from the second factor; all possible combinations of
slope are covered by the choice of these six pairs. Also, for
zord, based on the results of the previous section, only results
using observed information are provided.

It is clear in Figure 3 that Mij exhibits very low power
(almost identical to the nominal level) to detect a multidi-
mensional model even at this sample size, as pointed out
previously by Maydeu-Olivares and Liu (2012). However,
its power for detecting a mixture model and the presence
of a lower asymptote in the response function is similar to

the power of the mean and variance adjusted ¯̄X
2
ij . ¯̄X

2
ij has

high power (about 90%) for detecting the presence of mul-
tidimensionality in high slope items belonging to the same
dimension. However, its power decreases as the item slopes
decrease. Furthermore, it has low power (less than 20%) for
detecting the presence of multidimensionality in between-
factor item pairs.

We also see in this figure that all statistics have problems
in detecting the presence of a mixture model. Power at the
5% level is less than 30%. Power increases with increas-
ing slopes, and the most powerful statistic is the residual
cross product zord, followed by Rij. In fact, the residual cross
product is also the most powerful statistic (reject 90–100%)
for detecting multidimensionality. Rij is the most powerful
statistic (almost always reject) for detecting the presence of
a lower asymptote in the response function (guessing), al-
though in this condition the power decreases substantially
when the XPD information matrix is used instead of the
observed information matrix.

Binary Data

Empirical power rates at α = 0.05 using both estimates of
the information matrix are shown graphically in Figure 4 for
the same item pairs as in the ordinal condition. In this case,
results using XPD information for the residual cross product
statistic zij are provided due to its acceptable Type I errors.

In this figure we see that Rij (47%–93% for items in the
same factor and 22%–45% for items in different factors) is
slightly less powerful than zij and X̄2

ij (67%–98% for items in
the same factor and 34%–63% for items in different factors)
for detecting multidimensionality in the binary case. Even
the most powerful statistic, zij, exhibits only moderate power
for detecting the presence of multidimensionality in pairs
composed of items belonging to different dimensions when
the items have low slopes.

As in the case of the previous results with ordinal data,
the power of these statistics for detecting the presence of
mixtures is low (less than 30% at the 5% level); and also
when detecting the presence of guessing, the power of X̄2

ij
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FIGURE 3 Power results at α = 0.05 for bivariate GOF statistics: N = 1,000, true model—two-dimensional graded, mixture of graded models, and graded

model with guessing, fitted model—graded. The statistics are Mij, the mean and variance adjusted ¯̄X
2
ij , Rij, and the residual cross product zord. GOF = goodness

of fit; XPD = cross-product information.

is only slightly higher than the nominal level. Rij is the only
statistic that has power for detecting the presence of guessing
but only when the observed information is used. When XPD
information is used, however, the power of Rij is only slightly
higher than the nominal level and lower than the power of zij.
In fact, comparing the results shown in Figures 3 and 4 we
see that the choice of information matrix has a much larger
impact in binary data than in ordinal data. For binary data,
generally the power is higher when the XPD information
matrix is used to compute the Rij and zij statistics, although
one should also take the differential empirical Type I errors
into consideration.

DISCUSSION

The behavior of the statistics varies for different types of mis-
fit and for different choices of information matrix estimate
(observed vs. XPD); as such, it is not always easy to provide
an overall recommendation as to which statistic should be
used. Mij has obvious computational advantages in that it
does not require a covariance matrix of the item parameter

estimates and exhibits the best Type I error rates. However,
its power is lower than that of the other statistics under the
three conditions simulated here. Hence, its use cannot be rec-
ommended. The remaining statistics require computing the
information matrix (used to obtain the covariance matrix of
the item parameters). In applications, the choice of informa-
tion matrix may be limited by the software used to perform
the analysis. If both approaches are available, we strongly
recommend using the observed information matrix, as this
choice yields more accurate Type I errors.

When only the XPD information is available, we sug-
gest computing the mean and variance adjusted statistics X̄2

ij

and ¯̄X
2
ij . When the observed information matrix is available,

the use of the cross-product residual (zord or zij) is recom-
mended because its Type I errors are precisely controlled
and it is generally the most powerful statistic. However, it
is not meaningful to compute this statistic when items are
polytomous and nominal. In this case, we suggest computing
the mean and variance adjusted X2 statistics because the the-
ory discussed in this article still applies; however, additional
simulation studies are needed to evaluate the empirical Type
I error and power behavior of the statistics.
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FIGURE 4 Power results at α = 0.05 for bivariate GOF statistics: N = 1,000, true model—two-dimensional 2PL, mixture of 2PLs, and 3PL, fitted model—2PL.
The statistics are the mean and variance adjusted X̄2

ij , Rij, and the residual cross product zi. GOF = goodness of fit; 2PL = two-parameter logistic; 3PL =
three-parameter logistic; XPD = cross-product information.

In line with the results reported by Asparouhov and
Muthén (2010) for structural equation models, we found
negligible differences between the two mean-and-variance-

adjusted statistics X̄2
ij and ¯̄X

2
ij . From an applied perspective,

the latter is preferable because its degrees of freedom are in-
teger valued and determined by the usual formula, that is, the
number of parameters in the saturated model minus the num-

ber of parameters in the restricted model. However, ¯̄X
2
ij is not

applicable to test the fit of the 2PL model to pairs of items,
as the degrees of freedom computed in this fashion are neg-
ative. X̄2

ij , on the other hand, can still be used, as its degrees
of freedom are estimated as a real number. However, values
of X̄2

ij for different item pairs cannot be directly compared
as they are on a different scale (their estimated df ). Only the
p-values can be directly compared across item pairs. This is
undesirable in actual applications as it forces researchers to
inspect tables of p-values with a large number of decimals in
order to determine the item pairs with the greatest magnitude
of misfit. To improve the reporting of the results, we suggest

reporting ¯̄X
2
ij using one degree of freedom in applications.

As an alternative, the standardized X̄2
ij ,

X̄2
ij − a√

2a
, (28)

could be used, where a denotes the degrees of freedom

estimated using Equation (12). One advantage of ¯̄X
2
ij and

Equation (28) is that comparisons of the magnitude of statis-
tics across item pairs that have different estimated degrees
of freedom (i.e., the value of a), as well as those com-
posed of different numbers of categories, are facilitated.
In fact, selecting one or the other of the two statistics to
display binary data results is irrelevant, as it can be eas-
ily verified that the two are mathematically related by the
formula

X̄2
ij − a√

2a
= −1√

2
+ 1√

2
¯̄X

2
ij . (29)

If the presence of guessing or a similar phenomenon is of
concern, then Rij should be used, as this statistics exhibits
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SOURCE OF MISFIT IN IRT 367

the highest power in our simulations for detecting this kind
of misfit. Throughout the conditions investigated here, Rij

exhibits good behavior in terms of Type I errors and power
rates. Our main concern regarding this statistic is its very
large sampling variance across all conditions. This means that
in actual applications, very large Rij values are likely to be
encountered; this may lead applied researchers to conclude
that a certain pair of items fits extremely poorly, although
in fact this may simply be the result of the large sampling
variability of the statistic. It is for this reason that we recom-
mend the use of the mean and variance adjusted Pearson’s X2

statistic rather than Rij , except when the presence of guessing
is a concern. This recommendation, however, involves trad-
ing off a small loss in power for a statistic with no excessive
variance.

Here we compute the Rij statistic after obtaining a pseu-
doinverse of 
̂ij , the estimated asymptotic covariance matrix
of the bivariate residuals using an eigendecomposition. Be-
cause the rank of 
ij may depend on the true parameter
values (Reiser, 1996), we obtain 
̂+

ij by setting to zero all

eigenvalues of 
̂ij smaller than 10−5 and taking the num-
ber of nonzero eigenvalues as the degrees of freedom of the
statistic. In so doing, the degrees of freedom in our simu-
lations may change from replication to replication. Because
numerical integration is used in the IRT models considered,
the eigenvalues of 
̂ij are not estimated precisely. We con-
jecture that this is the source of the large sampling variability
of Rij in our simulations. If so, this variability may be re-
duced if a larger cutoff, say 10−4, is used. Regardless of the
number of eigenvalues used to compute 
̂+

ij , the distribution
of Rij remains asymptotically chi-square under the null hy-
pothesis. Therefore, an alternative approach for computing
Rij is to use a predetermined number of degrees of free-
dom dfij and set the smallest Cij – dfij eigenvalues to zero
in the computation of 
̂+

ij . We conjecture that the empir-
ical Type I errors of the resulting Rij statistic will remain
close to the nominal rates for any selected dfij smaller than
the true but unknown dfij and that the empirical variance
of the statistic will be close to its expected variance under
the reference chi-square distribution for a small enough dfij.
However, the selected dfij should not be much smaller than
the true and unknown dfij because the smaller the selected
dfij the smaller the value of the estimated Rij statistic; con-
sequently, we also conjecture that when the predetermined
dfij is too small, the statistic may suffer from a loss of power.
Because we have observed in our simulations that most of-
ten dfij estimated using a cutoff 10−5 for the eigenvalues is
larger than the usual formula for degrees of freedom in chi-
square statistics, dfij = Cij – qij – 1, it is likely that using
this number of predetermined eigenvalues in the computa-
tion of Rij may yield the best combination of power and
sampling variance of the statistic. However, the question of
how to improve the performance of Rij is left for further
research.

APPLICATIONS

We now return to the two data examples introduced earlier.
Because the overall M2 statistic and the RMSEA2 suggested
that the model fit could be improved, we assess the misfit of
the model to each pair of items. The observed information
matrix, obtained from Mplus 7.0, is used in the computation
of the asymptotic covariance matrix of bivariate residuals.
Based on the simulation results, we mainly refer to the resid-
ual cross-product z statistics (zord or zij) for identifying the

source of misfit; however, we also provide ¯̄X
2
ij and Rij statis-

tics in order to evaluate the extent to which different statistics
agree.

PROMIS Depression Short Form

zord statistics for this example are presented in Table 3. To
control for multiple testing, we used the Bonferroni proce-
dure. Because there are 28 pairs of items, we use a signifi-
cance level of α = 0.05/28 = 0.0018. Using a standard normal
reference distribution, the critical value is 3.12. We mark in
boldface all values of zord larger in absolute value than this
critical value. It is widely known that the Bonferroni pro-
cedure is conservative; that is, it flags fewer misfitting item
pairs than it should. If a more precise joint significance level
is desired, we recommend using the Benjamini-Hochberg
procedure (Thissen, Steinberg, & Kuang, 2002). The results
are displayed in Table 3. A column has been added to the
table that includes the average of the absolute value of the
zord values. The row average suggests that the poorest item is
Item 4, followed by Item 7. Table 3 also reveals that af-
ter applying a Bonferroni correction, there are only four
statistically significant z statistics. They involve item pairs
(5,1), (7,4), (8,3), and (7,6).

For comparison, we also provide the values of the ¯̄X
2
ij and

Rij statistics for these data, which are shown in Table 4. The

TABLE 3
zord Statistics (z Statistics for Residual Cross
Product) for the PROMIS Depression Data

Item 1 2 3 4 5 6 7 8 Average

1 1.44 1.49 –0.24 3.29 –0.27 –0.13 1.77 1.23
2 1.44 0.03 –1.23 0.82 –1.40 0.99 1.02 0.99
3 1.49 0.03 0.13 0.71 0.90 –0.21 4.88 1.19
4 –0.24 –1.23 0.13 –2.81 3.11 7.01 0.24 2.11
5 3.29 0.82 0.71 –2.81 –0.55 –0.63 1.66 1.50
6 –0.27 –1.40 0.90 3.11 –0.55 4.08 0.39 1.53
7 –0.13 0.99 –0.21 7.01 –0.63 4.08 0.12 1.88
8 1.77 1.02 4.88 0.24 1.66 0.39 0.12 1.44

Note. Statistics in bold are statistically significant at the 5% significance
level using the Bonferroni correction. A column has been added to the table
that includes the average of the absolute value of the zord values. PROMIS =
Patient-Reported Outcomes Measurement Information System.
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368 LIU AND MAYDEU-OLIVARES

TABLE 4
Mean and Variance Adjusted ¯̄X

2
ij (Above the

Diagonal) and Rij (Below the Diagonal) Statistics for
the PROMIS Depression Data

Item 1 2 3 4 5 6 7 8 Average

1 23.02 21.64 36.42 22.42 25.17 37.45 17.54 26.24
2 33.68 16.13 21.97 38.14 21.02 29.66 23.82 24.82
3 44.34 27.75 34.49 32.97 18.56 16.66 26.74 23.88
4 54.57 50.88 60.69 31.66 32.81 33.25 37.74 32.62
5 64.10 70.47 43.57 88.49 20.42 56.57 22.30 32.07
6 41.72 41.21 37.02 54.23 36.10 22.26 15.90 22.30
7 55.78 70.35 43.57 132.99 73.92 42.56 23.97 31.40
8 53.26 37.01 79.89 53.43 36.20 39.98 52.98 24.00

Note. Statistics in bold are statistically significant at the 5% significance
level using the Bonferroni correction. A column has been added to the table

that includes the average of the ¯̄X
2
ij values across all eight items. PROMIS

= Patient-Reported Outcomes Measurement Information System.

estimated degrees of freedom for Rij were 20 for 4 pairs, 21
for 16 pairs, and 22 for 8 pairs. In contrast, the degrees of

freedom used for ¯̄X
2
ij are 52 – 2 × 5 – 1 = 14. A column

has been added to the table that includes the average of the
¯̄X

2
ij values across all eight items. Averages of Rij statistics

are not computed as they are based on different degrees of
freedom.

After applying a Bonferroni correction, the ¯̄X
2
ij values sug-

gest that the model misfits pairs (4,1), (4,3), (5,2), (7,1), (7,5),
and (8,4). Thus, although our simulation results reveal that

zord is generally more powerful than ¯̄X
2
ij under the condi-

tions investigated, in this example ¯̄X
2
ij identifies more misfit-

ting pairs than zord. Furthermore, the pairs flagged by these
procedures only partially overlap. In our experience, this is

generally the case. We conjecture that it is because ¯̄X
2
ij and

zord summarize the information contained in the bivariate
residuals differently, as is manifested by their different de-

grees of freedom (consider squared zord having asymptoti-
cally df = 1). Specifically, zord provides a more concentrated

summary than ¯̄X
2
ij . If the concentration of the information

is along the direction of the misfit, zord will be more power-

ful than ¯̄X
2
ij ; otherwise, it will be as powerful, or even less

powerful, than ¯̄X
2
ij . In this article, we have seen that the con-

centration of information performed by zord helps to detect
the presence of multidimensionality of the latent trait. How-
ever, it does not help to improve the detection of mixtures of
latent traits or the detection of guessing.

As for Rij, after applying a Bonferroni correction, in Ta-
ble 4 we see that this statistic suggests that the model misfits
15 of 23 possible item pairs. Furthermore, all Rij statistics
involving Item 8 are statistically significant. Although this
may suggest that this statistic is the most powerful in this
example, given our simulation results we cannot be sure how
far these results are due to the variability of the Rij statistic.

Because no item fits the model much worse than the oth-
ers, and because the scale has already been in short form,
we advise against removing any item to improve the fit.
Deleting an item when there are so few may sharply re-
duce the precision of the measurement. Our advice in this
application is to attempt to find a better fitting model. Fail-
ing to do so, the fitted model may be used as it provides a
close fit to the data using the criteria of Maydeu-Olivares
and Joe (2014). Here is a word of caution: a piecewise as-
sessment shall be performed regardless of the value of the
RMSEA2 (or similar overall measure of fit). It is not hard to
find tests where the RMSEA2 is low but one or more items fit
poorly.

EPQ-R Extraversion Scale Short Form

zij statistics for this example are presented in Table 5. The
results are displayed in this table after grouping the items
according to their misfit. This is achieved by performing a

TABLE 5
zij Statistics (z Statistics for Residual Cross Product) for the EPQ-R Extraversion Data

Item 1 5 9 2 4 7 3 10 6 8 12 11 Average

1 –0.01 –1.79 0.35 –2.59 8.28 –4.67 –5.11 –0.65 –4.82 –0.07 –1.27 2.69
5 –0.01 –0.93 –3.51 –0.46 3.62 2.29 –3.39 –1.06 –3.67 –3.34 –0.75 2.10
9 –1.79 –0.93 –2.43 6.38 –1.32 1.80 –3.34 1.29 –12.33 –3.33 4.38 3.57
2 0.35 –3.51 –2.43 –1.05 –2.25 –0.52 –4.32 –0.54 –4.46 7.63 –0.50 2.50
4 –2.59 –0.46 6.38 –1.05 –0.66 0.60 –3.34 2.19 –8.38 –3.07 1.16 2.72
7 8.28 3.62 –1.32 –2.25 –0.66 –2.28 –5.61 –0.27 –5.78 –1.68 –2.88 3.15
3 –4.67 2.29 1.80 –0.52 0.60 –2.28 0.06 –2.96 –0.30 –2.49 3.02 1.91
10 –5.11 –3.39 –3.34 –4.32 –3.34 –5.61 0.06 –0.93 31.60 –3.64 –2.94 5.84
6 –0.65 –1.06 1.29 –0.54 2.19 –0.27 –2.96 –0.93 –0.07 –2.11 –0.80 1.17
8 –4.82 –3.67 –12.33 –4.46 –8.38 –5.78 –0.30 31.60 –0.07 –1.66 –3.50 6.96
12 –0.07 –3.34 –3.33 7.63 –3.07 –1.68 –2.49 –3.64 –2.11 –1.66 0.08 2.65
11 –1.27 –0.75 4.38 –0.50 1.16 –2.88 3.02 –2.94 –0.80 –3.50 0.08 1.93

Note. Statistics in bold are statistically significant at the 5% significance level using the Bonferroni correction. EPQ-R = Eysenck’s Personality Questionnaire-
Revised.
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SOURCE OF MISFIT IN IRT 369

TABLE 6
Mean and Variance Adjusted X̄2

ij (Above the Diagonal) and Rij (Below the Diagonal) Statistics for the EPQ-R Extraversion Data

Item 1 5 9 2 4 7 3 10 6 8 12 11 Average

1 0.58 3.40 0.30 7.48 86.74 22.40 15.82 0.12 9.67 0.17 1.20 13.44
5 2.79 0.12 10.02 0.43 22.53 10.14 4.89 0.31 4.08 7.24 0.10 5.49
9 3.95 2.65 9.24 41.04 1.61 3.60 3.12 2.49 20.82 11.35 21.11 10.72
2 0.78 13.71 9.45 1.81 5.12 0.19 9.55 0.08 4.37 89.02 0.15 11.81
4 8.17 2.77 40.87 1.88 0.24 0.34 3.31 6.25 9.39 9.08 1.42 7.34
7 87.17 23.66 2.18 5.78 0.79 4.83 19.88 −0.03 14.48 1.57 7.72 14.98
3 22.95 12.06 3.70 0.29 0.38 5.35 0.86 7.96 0.61 5.00 10.26 6.02
10 21.23 11.68 7.08 13.25 134.03 25.76 0.52 0.17 254.98 6.17 4.54 29.39
6 1.28 3.16 3.28 1.13 6.89 1.08 9.24 2.72 0.55 3.01 0.36 1.94
8 13.73 10.06 36.45 7.12 18.64 19.75 0.14 225.20 0.94 0.23 5.45 29.51
12 1.45 11.52 13.31 90.16 11.10 3.20 6.50 11.26 5.21 1.99 0.24 12.10
11 1.74 2.62 21.32 0.35 1.56 8.34 10.44 6.77 1.39 7.35 1.52 4.78

Note. ¯̄X
2
ij has been computed with 1 df ; statistics in bold are statistically significant at the 5% significance level using the Bonferroni correction. A column

has been added to the table that includes the average of the ¯̄X
2
ij values across all 12 items. EPQ-R = Eysenck’s Personality Questionnaire-Revised.

cluster analysis of the squared zij values, the Ward procedure
being used in this case. To control for multiple testing, we
use the Bonferroni procedure and we mark in boldface all
values zij that are statistically significant at the 5% level after
applying this correction. We see that there is considerable
misfit in this application and that some z statistics are ex-
tremely large. The two worst fitting items are clearly Items
8 and 10. In particular, the model appears to predict rather
poorly the association between these two items. Because the
z statistic is positive, we infer that the model underestimates
the association between these two items.

In Table 6, we also report the results of the mean and vari-
ance adjusted statistics and Rij. To facilitate the presentation

of results, ¯̄X
2
ij statistics computed with one degree of free-

dom are displayed in Table 6; however, p-values of X̄2
ij are

used for significance tests. We have boldfaced the item pairs
flagged by statistically significant statistics at α = 0.05 after a
Bonferroni correction. Table 6 also displays the Rij statistics:
The estimated degrees of freedom were 1 for 4 pairs, 2 for 32
pairs, and 3 for 26 pairs. As for consistency among statistics,
zij identifies 20 misfitting pairs, more than those detected by
X̄2

ij (12 pairs) or Rij (13 pairs); 11 item pairs are identified by
all three statistics. Nevertheless, all three statistics suggest
the same conclusion: Items 8 and 10 are fitted poorly by the
2PL model.

In view of the results of this piecewise analysis, one should
attempt to find a better fitting model. A bifactor model was
fitted next, with four second-tier factors specified for four
pairs of items showing large bivariate statistics, that is, (1,
7), (2, 12), (4, 9), and (8, 10); within each pair, the secondary
slopes were constrained to be equal for model identifica-
tion. The resulting model fit was greatly improved: M2 =
146.46, df = 50, p < .01; a 90% confidence interval for
RMSEA2 is [0.04, 0.06]. On the other hand, we note that
simply removing the worst fitting items, that is, Items 8 and
10, did not improve the fit much: M2 = 287.00, df = 35,

p < .01; a 90% confidence interval for RMSEA2 is [0.08,
0.10].

CONCLUSIONS

In this article, we have examined the empirical behavior of
a number of test statistics for identifying misfitting items
in IRT modeling. We have focused solely on the graded
model (and its special case, the 2PL) because this is the most
widely used model in IRT applications and because there is
some evidence (Maydeu-Olivares, 2005) that it may be the
best fitting parametric model for rating data. Our simulation
results suggest that for this model, the z statistic based on
the residual cross-product (zord or zij) is the method of choice
if the observed information matrix is available to estimate
the covariance matrix of the item parameter estimates. When
only the XPD information matrix is available, we recommend
the use of mean and variance adjusted X2 statistics. Finally,
in applications where detecting the presence of guessing or
a similar phenomenon is of interest, we recommend the use
of the Rij statistic, as it is the most powerful statistic in this
case.

Future research should also compare the behavior of the
statistics investigated in this article with that of score tests
(Glas & Suárez-Falcón, 2003; Liu & Thissen, 2012, in press).
In score tests, the source of misfit is derived from nested
model comparisons. Specifically, researchers can specify a
less restrictive model for a subset of items that has the cur-
rent model as a special case and yet retain the current model
for the remaining items. In this way, the resulting model
for all items has the current one nested within, and standard
procedures for nested model comparison can then be used
to provide evidence of whether or not the alternative model
is more appropriate. This approach is particularly helpful
if researchers have a reasonable conjecture of the misfit
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mechanism. In this article, however, we have focused our
attention on the use of marginal subtable statistics, which are
more appropriate when researchers have no a priori knowl-
edge regarding model misspecification.

Our piecewise fit testing approach can be easily mod-
ified and adapted to other

√
n-consistent point estima-

tors such as various types of weighted least squares (e.g.,
B. Muthén, 1978), composite likelihood (e.g., Jöreskog &
Moustaki, 2001; Katsikatsou, Moustaki, Yang-Wallentin,
& Jöreskog, 2012), and Bayesian estimators (e.g., Al-
bert, 1992; Mislevy, 1986). For estimators that are not
asymptotically optimal (i.e., with minimum variance),
the asymptotic covariance matrix of the bivariate resid-
uals [Equation (5)] should be modified according to
Equation (2.5) of Maydeu-Olivares and Joe (2006). The
Bayesian expected a posteriori estimator (typically ob-
tained via MCMC sampling), on the other hand, is usually
asymptotically equivalent to the ML solution (i.e., the
Bernstein-von Mises theorem) and thus it is asymptotically
optimal; therefore, the procedures described here can be used
for goodness-of-fit testing in a fashion identical to what has
been discussed in this article.

In short, our results suggest that the source of misfit in
graded models can be safely evaluated using the same sam-
ple size as that needed to obtain an accurate estimate of the
item parameters (Forero & Maydeu-Olivares, 2009). Clearly,
additional research is required to evaluate the behavior of the
statistics discussed here when used with other IRT models.
Indeed, the statistics considered in this article are quite gen-
eral and can be applied to other models for categorical data,
such as latent class models.
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