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Assessing the reliability of a questionnaire or test score 
is one of the most frequent tasks in psychological research. 
Often, researchers wish to go beyond providing a point es-
timate of the reliability of their test score and are interested 
in testing hypotheses concerning the reliability of their test 
score. A typical situation is one in which a researcher wishes 
to determine whether the reliability of his or her test score 
is larger than some predetermined cutoff value (say .80). 
Another commonly encountered situation is one in which 
a researcher wishes to determine whether the reliability of 
his or her test score is equal across two or more populations. 
For instance, the researcher may wish to determine whether 
the reliability of a test score is equal across genders, or he or 
she may wish to determine whether the reliability of a test 
score is the same across several countries. Finally, some-
times researchers are interested in determining whether, 
within a population, the reliabilities of two test scores are 
equal. For instance, the researcher may wish to test whether 
the reliability of a test score based on p items equals the 
reliability of a test score based on a subset of those p items 
(such as when a full form and a short form of a question-
naire are available). A special case of this instance is when 
a researcher wishes to test whether the reliability changes 
when a single item is removed from the scale. As another 
example, a researcher may wish to test whether the scores 
based on two subsets of items drawn from the same item 
domain are equally reliable.

Most often, reliability assessment is performed by means 
of coefficient alpha (Hogan, Benjamin, & Brezinski, 2000). 
Coefficient alpha (α) was first proposed by Guttman (1945), 
with important contributions by Cronbach (1951). For some 
discussions on coefficient alpha, see Cortina (1993); Miller 
(1995); Schmitt (1996); Shevlin, Miles, Davies, and Walker 
(2000); and ten Berge (2000). Coefficient α is a population 
parameter and thus an unknown quantity. In applications, 
it is typically estimated using the sample coefficient alpha, 
a point estimator of the population coefficient alpha. As 
with any point estimator, sample coefficient alpha is sub-
ject to variability around the true parameter, particularly in 
small samples. Methods for performing hypothesis testing 
based on coefficient alpha rely on the estimation of the vari-
ability of sample coefficient alpha (i.e., its standard error). 
The initial proposals for estimating the standard error of 
coefficient alpha were based on model and distributional 
assumptions (see Duhachek & Iacobucci, 2004, for an over-
view). Thus, if a particular model held for the covariance 
matrix among the test items, and the test items followed 
a particular distribution, a confidence interval for coeffi-
cient alpha could be obtained. The sampling distribution 
for coefficient alpha was first derived (independently) by 
Kristof (1963) and Feldt (1965), who assumed that the test 
items were strictly parallel (see Lord & Novick, 1968) and 
normally distributed. This model implies that all of the item 
variances are equal and that all of the item covariances are 
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dard errors of sample alpha, which can be computed using 
the code provided by Duhachek and Iacobucci (2004) and 
Maydeu-Olivares et al. (2007). However, adopting an SEM 
framework for Cases 1 and 2 is convenient, because it pro-
vides a link to Case 3 hypothesis testing, which cannot be 
easily performed without using an SEM framework. Also, 
by adopting an SEM framework, we can integrate the re-
sults of van Zyl et al. and Yuan et al. with the large literature 
on reliability assessment using SEM.

The three cases considered are illustrated using four ex-
amples. The test statistics discussed in the present article 
are based on large-sample theory and may not be accurate 
in small samples. Since it is questionable to present results 
using arbitrary parameter values and to draw generalizable 
conclusions from them, we show how a Monte Carlo inves-
tigation can be performed using the simulation capabilities 
of SEM packages to determine the accuracy of the obtained 
p values, and we do so for each of the examples presented.

Coefficient Alpha
Consider a test or questionnaire composed of p items, 

Y1, . . ., Yp, intended to measure a single attribute. The reli-
ability of the test score, X 5 Y1 1 · · · 1 Yp, is defined as 
the percentage of variance of X that is due to the attribute 
of which the items are indicators. The most widely used 
procedure to assess the reliability of X is coefficient alpha 
(Cronbach, 1951; Guttman, 1945). In the population of 
respondents, coefficient alpha is
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where Sisii denotes the sum of the p item variances in the 
population, and Si,jsij denotes the sum of the p( p 2 1)/2 
distinct item covariances. In applications, a sample of N 
respondents from the population is procured, and a point 
estimator of the population alpha given in Equation 1 can 
be obtained using the sample coefficient alpha:
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where sij denotes the sample covariance between items i 
and j, and sii denotes the sample variance of item i.

Coefficient alpha and the reliability of a test score. 
If the items satisfy a true-score equivalent model (a.k.a. 
an essentially tau-equivalent model), coefficient alpha 
equals the reliability of the test score (Lord & Novick, 
1968, p.  50; McDonald, 1999, chap. 6). A true-score 
equivalent model is a one-factor model in which the fac-
tor loadings are equal for all items. The model implies that 
the population covariances are all equal, but the popula-
tion variances need not be equal for all items. Coefficient 
alpha also equals the reliability of the test score when the 
items are strictly parallel, because these are special cases 
of the true-score equivalent model. In the parallel items 
model, in addition to the assumptions of the true-score 
equivalent model, the unique variances of the error terms 

equal. However, Barchard and Hakstian (1997) found that 
standard errors for coefficient alpha obtained using these 
results were not sufficiently accurate when model assump-
tions were violated (i.e., the items were not strictly parallel). 
The lack of robustness of the standard errors for coefficient 
alpha to violations of model assumptions may have hin-
dered the widespread use of hypothesis tests for alpha in 
applications.

A major breakthrough occurred when van Zyl, Neu
decker, and Nel (2000) derived the asymptotic (i.e., large 
sample) distribution of sample coefficient alpha without 
model assumptions. In particular, van Zyl et al. assumed 
only that the items composing the test were normally 
distributed and that their covariance matrix is positively 
definitive. Hence, their approach is model free. All previ-
ous derivations, which assumed particular models (e.g., 
tau equivalence) for the covariance matrix, can be treated 
as special cases of van Zyl et al.’s result. Duhachek and 
Iacobucci (2004) compared the performance of these 
model-free standard errors for coefficient alpha with 
those of the model-based procedures proposed by Feldt 
(1965) and Hakstian and Whalen (1976) under violations 
of the model assumptions underlying coefficient alpha. 
They found that the model-free, normal theory (NT) inter-
val estimator proposed by van Zyl et al. uniformly outper-
formed competing procedures across all conditions.

However, van Zyl et al. (2000) assumed that the items 
composing the test can be well approximated by a normal 
distribution. In practice, tests are most often composed of 
binary or Likert-type items for which the normal distribu-
tion can be a poor approximation. Yuan, Guarnaccia, and 
Hayslip (2003) have proposed a model-free and asymp-
totically distribution-free (ADF) standard error for sample 
coefficient alpha that overcomes this limitation. Maydeu-
Olivares, Coffman, and Hartmann (2007) showed that for 
sample sizes over 100 observations, ADF standard errors 
are preferable to NT standard errors, because the latter 
are not sufficiently accurate when the skewness or excess 
kurtosis of the items is larger than 1.

The aim of this study is to show how hypotheses for 
coefficient alpha can be tested using the NT results of 
van Zyl et al. (2000) and also using the ADF results of 
Yuan et al. (2003), using a structural equations modeling 
(SEM) framework. In particular, we show how to perform 
hypothesis testing in three cases. Case 1 involves a single 
sample alpha. Case 2 involves two statistically independent 
sample alphas. Case 3 involves two statistically depen-
dent sample alphas. Case 1 arises when testing whether the 
population alpha exceeds some predetermined cutoff value. 
Case 2 arises when comparing the population alpha across 
two independent samples, such as male and female sub-
jects or across countries. Case 3 arises when comparing the 
population alpha for two sets of items in a single sample. 
Typical examples of Case 3 are testing the equality of popu-
lation alpha when an item is dropped, testing the equality of 
alpha for a full-scale score and a reduced-scale score, and 
testing the equality of alpha for the same score measured 
at two time points. An SEM framework is not needed for 
testing the Case 1 and 2 hypotheses. Indeed, the formulae 
involved are straightforward. All that is needed are the stan-
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Case  1: Hypothesis testing involving a single-
sample coefficient alpha. Consider testing whether coef-
ficient alpha equals some a priori value, α0 (e.g., .8 or .7). 
The null and alternative hypotheses are H0: αdif 5 0 and 
H1: αdif . 0, where αdif 5 α 2 α0. Since in large samples, 
ˆα is normally distributed, a suitable test statistic is
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where ̂ϕdif is the standard error for ̂αdif, and ̂ϕ is either the 
NT standard error, ̂ϕNT, or the ADF standard error, ̂ϕADF, 
depending on the distributional assumptions made. Then, 
the observed significance level ( p value) for the test is 
the area under the standard normal curve to the left of the 
observed z value.

Case 2: Hypothesis testing involving two statisti-
cally independent sample coefficient alphas. This case 
arises when a researcher is interested in comparing coef-
ficient alpha in two populations (e.g., male vs. female sub-
jects) or in two disjoint samples from the same population. 
For testing the equality of alpha across two populations, 
the null and alternative hypotheses are H0: αdif 5 0 and 
H1: αdif  0, where αdif 5 α1 2 α2, and α1 and α2 are the 
alpha coefficients for a test score in Populations 1 and 2, 
respectively. An appropriate test statistic is
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where ˆϕ1 and ˆϕ2 are the (NT or ADF) standard errors for 
the estimates ̂α1 and ̂α2. For this two-tailed alternative, the 
p value of the test is obtained as twice the area under the 
standard normal curve to the left of |z|.

Case 3: Hypothesis testing involving two statisti-
cally dependent sample coefficient alphas. Armed with 
the code for NT standard errors provided by Duhachek 
and Iacobucci (2004), and with the code for ADF stan-
dard errors provided by Maydeu-Olivares et al. (2007), 
Case 1 and 2 hypothesis testing can readily be performed. 
In particular, for testing the equality of alpha across two 
populations, we used the fact that the variance of the dif-
ference between ˆα1 and ˆα2 equals the sum of the vari-
ances of each sample alpha. However, a researcher may 
be interested in testing whether the alpha coefficients for 
two test scores obtained from the same sample are equal. 
In this case, the null and alternative hypotheses are, as in 
Case 2, H0: αdif 5 0 and H1: αdif  0, where αdif 5 α1 2 
α2, and α1 and α2 are the alpha coefficients for two dif-
ferent test scores in the same population. An appropriate 
test statistic is
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where ˆϕ1 and ˆϕ2 are the (NT or ADF) standard errors of 
ˆα1 and ̂α2. The p values are obtained as in Case 2. Notice, 
however, that in this case, the variance for the difference 
between ˆα1 and ˆα2 also depends on the covariance be-
tween the two sample alphas, because they are obtained 
from the same sample. There are a variety of situations 

in the factor model are assumed to be equal for all items. 
A more constrained version of the parallel items model is 
the strictly parallel items model, in which the item means 
are additionally assumed to be equal across items.

When the items do not conform to a true-score equiva-
lent model, coefficient alpha does not equal the reliability 
of the test score. For instance, if the items conform to a 
one-factor model with distinct factor loadings (i.e., con-
generic items), the reliability of the test score is given by 
coefficient omega (see McDonald, 1999). Under a con-
generic measurement model, coefficient alpha underesti-
mates the true reliability. However, the difference between 
coefficient alpha and coefficient omega is generally in the 
third decimal, except in the rare cases in which one of the 
factor loadings is very large (e.g., .9) and all of the other 
factor loadings are very small (e.g., .2) (Raykov, 1997).

The large-sample distribution of sample alpha. 
Equation 2 shows that sample coefficient alpha is a func-
tion of the sample variances and covariances. These vari-
ances and covariances are normally distributed in large 
samples, not only when the item responses are normally 
distributed, but also under the ADF assumptions set 
forth by Browne (1982, 1984). As a result, and without 
any model assumptions, in large samples, ˆα is normally 
distributed with mean α and variance ϕ2. The standard 
error of sample alpha, ̂ϕ, can be estimated using the delta 
method (e.g., Agresti, 2002) from the large-sample cova-
riance matrix of the sample variances and covariances. 
This matrix is different under NT and ADF assumptions. 
As a result, when the normality assumption for the items 
is replaced by the milder ADF assumption, the standard 
error for sample alpha will differ, and we will use ̂ϕNT and 
ˆϕADF to distinguish them. However, the point estimate of 
sample coefficient alpha, ̂α, remains unchanged when NT 
or ADF assumptions are invoked. Note that ADF assump-
tions replace the normality assumption by the milder as-
sumption that eighth-order moments of the distribution of 
the data are finite. This assumption is satisfied in the case 
of Likert-type items, in which the distribution of each item 
is multinomial. The assumption ensures that the fourth-
order sample moments are consistent estimators of their 
population counterparts (Browne, 1984).

The accuracy of statistical inferences for coefficient 
alpha rests on the accuracy of the standard errors for 
sample efficient alpha. Both the NT and ADF model-free 
standard errors for sample coefficient alpha, proposed by 
van Zyl et al. (2000) and Yuan et al. (2003), respectively, 
are based on large-sample theory. Fortunately, Duhachek 
and Iacobucci (2004) showed that the NT standard errors 
might be well estimated with sample sizes as small as 
30, provided that the item responses are approximately 
normally distributed. Also, sample sizes as small as 100 
observations (and in some cases 50 observations) might 
suffice to adequately estimate ADF standard errors 
(Maydeu-Olivares et al., 2007).

Hypothesis Testing for Coefficient Alpha
In this section, we describe the statistical theory under-

lying hypothesis testing for coefficient alpha based on the 
results of van Zyl et al. (2000) and Yuan et al. (2003).
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the model (including additional parameters, such as α or 
αdif). In Mplus 5, GLS and ML denote GLS and ML es-
timation, respectively, under normality assumptions. ML 
estimation with robust standard errors is performed by 
using MLM or MLMV. MLM and MLMV yield the same 
parameter estimates and standard errors and differ only 
in the goodness-of-fit statistics provided. For the mod-
els considered here, MLM and MLMV yield the same 
fit—a perfect fit—because the models are saturated.

Case 2: Hypothesis testing involving two statisti-
cally independent sample coefficient alphas. For two 
populations, we need to extend the previous SEM setup to 
two populations as follows:

(1) For each population, specify the model to be a p 3 
p symmetric matrix.

(2) Define three additional parameters as above for 
each population. Thus, for the first population, define  
γ11, γ21, and α1. For the second population, define γ12, 
γ22, and α2.

(3) Define αdif 5 α1 2 α2.

Again, the model fits perfectly, and the z statistic given 
by Equation 4 appears in the Mplus output as the ratio of 
the estimated αdif divided by its standard error, along with 
the desired two-tailed p value. Also, a confidence interval 
for αdif may be requested.

Case 3: Hypothesis testing involving two statisti-
cally dependent sample coefficient alphas. Consider 
two test scores computed on the same sample of respon-
dents. This may occur when the two test scores being 
compared are alternate forms of the same test (possibly 
with no items in common) or when the two test scores 
correspond to pretest and posttest administrations of the 
same test. The first test score is based on p1 items, and the 
second is based on p2 items. Some items may appear on 
both test scores, so that the overall number of items is p # 
p1 1 p2. When no item appears on both test scores, the 
overall number of items is p 5 p1 1 p2. On the other hand, 
p , p1 1 p2 when one or more items appear on both test 
scores. This may occur when one test score corresponds to 
the full form of a test and the other test score corresponds 
to a reduced form of the test.

The procedure involved for testing a hypothesis involv-
ing the difference between the alphas is very similar to the 
previous ones:

(1) Specify the model to be a p 3 p symmetric matrix.

(2) Define three additional parameters for each test 
score: γ11, γ21, and α1 for the first test score and γ12, γ22, 
and α2 for the second test score.

(3) Define αdif 5 α1 2 α2.

Again, we do not impose any constraints among the p 
items. The model fits perfectly. The z statistic given by 
Equation 5 appears in the Mplus output as the ratio of the 
estimated αdif divided by its standard error, along with the 
desired two-tailed p value.

In the next section, we provide numerical examples to il-
lustrate hypothesis testing for coefficient alpha under both 

in which Case 3 hypothesis testing can arise. These situa-
tions are easily handled by adopting an SEM framework. 
The simpler Cases 1 and 2 can also be tested using an 
SEM framework that directly yields the z test statistics and 
associated p values.

Hypothesis Testing for Coefficient Alpha  
Using an SEM Framework

In this section, we describe how to test hypotheses con-
cerning coefficient alpha using SEM and the model-free 
approach of van Zyl et al. (2000) and Yuan et al. (2003). All 
that is needed is an SEM package that has the capabilities 
for defining additional parameters that are functions of the 
parameters of the model. In this article, we used Mplus Ver-
sion 5 (Muthén & Muthén, 2008). We provide the annotated 
Mplus input files as supplementary material that can be 
downloaded from http://brm.psychonomic-journals.org. We 
also provide the data used in the examples as supplemen-
tary materials so the examples below can be reproduced.

Case  1: Hypothesis testing involving a single-
sample coefficient alpha. Within an SEM framework, 
a model-free standard error for coefficient alpha can be 
obtained as follows: 

1. Specify the model to be a p 3 p symmetric matrix.

2. Following Equation 1, define three additional param-
eters: g1 5 Sisii, g2 5 Si,jsij, and a 5 [ p/( p 2 1)]{1 2 
[γ1/(γ1 1 2γ2)]}. 

3. Define αdif 5 α 2 α0.

The z statistic given by Equation 3 appears in the com-
puter output as the ratio of the estimated αdif divided by 
its standard error, along with its associated two-tailed 
p value. Because in this case the alternative is one-tailed, 
the two-tailed p value shown in the computer output must 
be divided by 2 to obtain the desired one-tailed p value. 

Note that since a fully saturated model is used in Step 1, 
there are zero degrees of freedom, and the model fits per-
fectly. Also, the additional parameters in Step 2 do not 
introduce additional constraints on the model.

Different estimation methods can be used to estimate 
the parameters. Some popular choices are generalized least 
squares (GLS) estimation, maximum likelihood (ML) es-
timation, and weighted least squares (WLS) estimation. 
GLS and ML estimation can be performed under normal-
ity assumptions or with standard errors that are robust to 
normality (e.g., ADF) assumptions. WLS estimation as-
sumes ADF assumptions. Because a saturated model is 
being fitted, all estimators (GLS, ML, or WLS) lead to 
the same point estimate for coefficient alpha, as was given 
in Equation 2. Also, when estimating the model under 
normality assumptions, GLS and ML lead to the same 
standard error for sample coefficient alpha, as was given 
by van Zyl et al. (2000). Similarly, when estimating the 
model without normality assumptions, robust GLS, robust 
ML, and WLS lead to the same standard error for sample 
alpha, as was given by Yuan et al. (2003). Mplus 5 imple-
ments NT GLS estimation, NT ML estimation, robust ML 
estimation, and WLS estimation. Also, Mplus yields as 
optional output confidence intervals for any parameter in 
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almost identical results when using the milder ADF as-
sumptions. In that case, the z statistic is 21.08 and p 5 .14 
(one-tailed). Mplus also yields (upon request) confidence 
intervals for α and for αdif. A 95% confidence interval for 
α under normality assumptions is (.85; .92) and the ADF 
interval is the same (to two significant digits).

Example 2: Testing the hypothesis that the popu-
lation alpha for the full NPO scale is equal across 
genders (Case 2). For the male sample, under normality 
assumptions, α̂ 5 .84 and ϕ̂NT 5 .02. The Mplus output 
yields an estimated alpha difference (males 2 females) of 
2.05 with a standard error of .03 under normality assump-
tions. The z statistic from Equation 4 is 21.52, yielding a 
p value of .13. We cannot reject the hypothesis that popula-
tion alpha is equal across genders. In the male sample, the 
NPO items do not markedly depart from a normal distribu-
tion either. As a result, when we replace the NT assump-
tions by ADF assumptions, a similar result is obtained: z 5 
21.48 and p 5 .14.

Example 3: Testing the equality of alpha between 
the full and short forms of the NPO scale in the male 
population (Case 3). For the short form in the male 
sample, ˆα 5 .72 and ˆϕNT 5 .04. Also, the estimated 
alpha difference (full 2 short) is .12 with a standard 
error of .03. The z statistic from Equation 5 is 4.21 and 
p , .01. We reject the hypothesis of equality of alpha for 
the full and short NPO scale scores in the male popula-
tion. Again, similar results are obtained under ADF as-
sumptions: z 5 3.60 and p , .01. 

As a final example, we provide another example of 
Case 3. This example involves testing the hypothesis of 
equality of alpha for two repeated administrations of the 
short forms of the NPO scale. The two administrations are 
3 weeks apart. The sample includes both male and female 
respondents (N 5 138). Table 2 provides the correlations 
and standard deviations among the five items at each ad-
ministration. The first five items shown in Table 2 cor-
respond to the first administration, and the last five items 
correspond to the second administration.

Example 4: Testing the equality of alpha in two 
repeated administrations of the short form of the 
NPO scale (Case 3). Under ADF assumptions, a 95% 
confidence interval for alpha for the first administration is 
(.69; .82), whereas a 95% confidence interval for the sec-

normality assumptions and the less stringent ADF assump-
tions. As an example of Case 1, we test whether the popula-
tion coefficient alpha of a scale score equals .9. As an ex-
ample of Case 2, we test whether the population coefficient 
alphas across genders are equal. We provide two examples 
of Case 3. In the first example, we test whether the popula-
tion alpha of the scale score equals the scale score when 
only half of the items are used. These scale scores corre-
spond to the full and short forms of a questionnaire. In the 
second example, we test whether the population alpha of 
a scale score changes when the questionnaire is adminis-
tered to the same respondents at two time points.

A Numerical Example: Testing Reliability 
Hypotheses Based on Coefficient Alpha for the 
Negative Problem Orientation Scale Scores

The negative problem orientation (NPO) scale is one of 
the five scales of the Social Problem Solving Inventory 
(SPSI-R; D’Zurilla, Nezu, & Maydeu-Olivares, 2002; 
see also Maydeu-Olivares, Rodríguez-Fornells, Gómez-
Benito, & D’Zurilla, 2000). Two forms of this inventory 
are available: the full form and the short form. In its full 
form, the NPO scale consists of 10 items. Each item is 
to be answered using a 5-point response scale. The short 
scale consists of a subset of 5 items. Here, we shall use 
two random samples, 100 male and 100 female respon-
dents, from the normative U.S. sample. The correlations 
and standard deviations among the 10 NPO items in these 
samples are provided in Table 1. The first 5 items shown 
in Table 1 correspond to the items composing the short 
form. Note that the correlations and standard deviations 
provided suffice for NT hypothesis testing involving co-
efficient alpha. For ADF hypothesis testing, the raw data 
are needed. The raw data are provided as supplementary 
materials.

Example 1: Testing the hypothesis that α 5 .9 for 
the full NPO scale in the female population (Case 1). 
Using ML and assuming that the items are approximately 
normally distributed, ˆα 5 .88 and ˆϕNT 5 .02. The z sta-
tistic of Equation 3 is z 5 21.04, yielding a two-tailed 
p value of .30. Hence, the one-tailed p value is .15, and 
we cannot reject the hypothesis that α 5 .9 in the female 
population. Because in this sample the NPO items do not 
markedly depart from a normal distribution, we obtain 

Table 1 
Correlations and Standard Deviations Among the Items of the Negative Problem Orientation Scale

Male Respondents (n 5 100) Female Respondents (n 5 100)

  i1  i2  i3  i4  i5  i6  i7  i8  i9  i10  i1  i2  i3  i4  i5  i6  i7  i8  i9  i10

i1 1.00 1.00
i2 .32 1.00 .39 1.00
i3 .23 .24 1.00 .39 .42 1.00
i4 .28 .29 .31 1.00 .37 .39 .46 1.00
i5 .41 .44 .22 .28 1.00 .37 .46 .18 .43 1.00
i6 .44 .35 .47 .38 .39 1.00 .26 .41 .37 .51 .45 1.00
i7 .21 .48 .37 .25 .33 .47 1.00 .43 .54 .47 .62 .50 .50 1.00
i8 .29 .32 .50 .26 .33 .32 .28 1.00 .20 .24 .25 .41 .33 .29 .50 1.00
i9 .24 .35 .29 .29 .35 .37 .46 .33 1.00 .29 .42 .40 .42 .37 .42 .65 .42 1.00
i10 .20 .23 .46 .26 .25 .47 .50 .28 .55 1.00 .46 .50 .60 .55 .38 .39 .64 .44 .63 1.00

  SD  1.09  1.15  1.19  1.02  .97  1.19  1.02  1.36  1.19  1.08  1.13  1.14  1.19  1.30  1.17  1.21  1.23  1.20  1.34  1.31
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each example as the true mean and covariance matrix. In 
each case, 1,000 random samples were drawn. Table 3 pro-
vides the empirical rejection rates for each of the exam-
ples. As can be seen in this table, given the small sample 
sizes considered, the p values obtained are reliable. Also 
notice that the p values for Example 2 are somewhat more 
accurate than those for the remaining three examples. This 
may be related to the sample sizes involved. In Example 2, 
the sample size is larger (100 male and 100 female respon-
dents) than in the other examples (100 female respondents 
in Example 1, 138 individuals in Example 3, and 100 male 
respondents in Example 4).

Readers familiar with SEM methods may wonder why 
ADF methods work so well in this situation when extant 
research reveals that much larger sample sizes are needed 
for ADF methods to work well. We believe that the reason 
is that ADF methods are used here only in the estimation 
of standard errors and not in the point estimation of coef-
ficient alpha. Indeed, in this setup, coefficient alpha is es-
timated by sample coefficient alpha as given in Equation 2 
(see Maydeu-Olivares, Coffman, & Hartmann, 2007, for 
further details).

Discussion
The two most widely used strategies for drawing sta-

tistical inferences about the reliability of a test score are 
the use of coefficient alpha and the use of a model-based 
reliability coefficient.

The model-based approach begins by fitting a mea-
surement model to the items composing the test. When a 
model cannot be rejected at the usual significance level, 
a reliability coefficient based on the fitted model can be 
employed. For instance, suppose that interest lies in per-

ond administration is (.79; .89). Given these intervals, it 
is difficult to determine whether coefficient alpha is equal 
across administrations. In contrast, the z statistic from 
Equation 5 is 23.06, p , .01. We clearly reject the hy-
pothesis of invariance of alpha across administrations. A 
higher alpha was obtained for the second administration. 
For these data, a similar result is obtained under normality 
assumptions: z 5 22.98, p , .01.

Accuracy of the p values. As we have pointed out, 
the accuracy of the test statistics rely on the accuracy of 
the standard errors. Duhachek and Iacobucci (2004) and 
Maydeu-Olivares et al. (2007) investigated the accuracy 
of the NT and ADF standard errors in a variety of situ-
ations and reported that they are accurate with sample 
sizes of 100 (and, in some cases, even fewer) observations. 
However, when applying these test statistics, the applied 
researcher may be in doubt as to whether the conditions 
confronted in his or her study match those investigated 
in previous studies. In other words, the p values obtained 
may be in doubt.

To verify the accuracy of the p values for a particu-
lar study, a simulation study can be performed using the 
estimated parameters of the model as the true parameter 
values. Using the capabilities of Mplus for Monte Carlo 
simulation, we investigated the accuracy of the p values 
in each of our four examples, using the actual sample size 
from each of the studies as the sample size in our simula-
tions. We provide the annotated Mplus files for the simu-
lation as supplementary materials that can be downloaded 
from http://brm.psychonomic-journals.org. Because in 
our examples the items were approximately normally dis-
tributed, multivariate normal data were generated in each 
case using the estimated mean and covariance matrix from 

Table 2 
Correlations and Standard Deviations Among the Items of the Short Scale of the  

Negative Problem Orientation Scale Measured at Two Time Points (N 5 138) 

  i1  i2  i3  i4  i5  r1  r2  r3  r4  r5

i1 1.00
i2 .53 1.00
i3 .41 .33 1.00
i4 .37 .37 .35 1.00
i5 .47 .31 .42 .24 1.00
r1 .52 .39 .35 .34 .45 1.00
r2 .45 .58 .37 .36 .45 .57 1.00
r3 .45 .41 .69 .35 .59 .51 .51 1.00
r4 .34 .35 .28 .49 .34 .45 .36 .50 1.00
r5 .48 .48 .37 .36 .64 .61 .59 .56 .44 1.00

  SD 1.16 1.16 1.22 1.10 1.25 1.12 1.19 1.20 1.02 1.29

Note—Items measured at Time 1 are denoted as i1–i5, and items measured at Time 2 are 
denoted as r1–r5.

Table 3 
Empirical Rejection Rates of the Test Statistic at the Exact Settings for Each of Our Examples

Sample Empirical Rejection Rates (%)

Example  Size  1  5  10  20  30  40  50  60  70  80  90

1 100 2.3 7.3 11.6 19.9 29.4 39.0 48.1 60.2 71.1 81.3 90.7
2 200 1.5 5.4 10.5 20.8 30.4 39.3 50.2 60.2 69.6 79.9 90.5
3 100 0.1 3.1 7.7 19.8 30.3 40.0 48.8 57.8 67.0 76.0 86.7
4 138 2.2 6.8 12.1 21.5 30.0 39.1 49.8 61.2 72.1 83.1 92.5

Note—In each case, 1,000 replications were generated using the actual example’s sample size.
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special case of Equation 6. Thus, in many instances, such 
as when a k-factor model fits the data, coefficient alpha 
is a lower bound to population reliability. Nevertheless, it 
may be best to simply claim inferences about population 
alpha rather than population reliability. Claiming lower 
bound properties for coefficient alpha without fitting a 
measurement model should be avoided, because when 
Equation 6 is not satisfied, such as when some of the er-
rors, Ei, are correlated, population alpha may be larger 
than population reliability (Green & Hershberger, 2000; 
Komaroff, 1997; Raykov, 2001). In our experience, how-
ever, the situations in which alpha is larger than reliability 
are rather rare.

Concluding Remarks
In this article, we have shown that drawing statistical in-

ferences for population alpha is quite straightforward. Sta-
tistical inferences for coefficient alpha are model free and 
do not require assuming that the items composing the test 
score are normally distributed. Because of this computa-
tional ease, researchers interested in drawing statistical 
inferences for population reliability may want to consider 
drawing inferences for population alpha instead. We do 
believe that researchers should attempt to draw inferences 
for population reliability whenever possible. However, 
this requires that a well-fitting measurement model can 
be found and the model-based reliability estimate is easy 
to compute. If a well-fitting model can be found but the 
model-based reliability estimate is cumbersome to com-
pute, researchers may consider drawing inferences for 
coefficient alpha instead. If the fitted model satisfies the 
conditions for coefficient alpha to be a lower bound to re-
liability, drawing inferences for coefficient alpha becomes 
an attractive option to drawing inferences for population 
reliability from a computational viewpoint. When no well-
fitting measurement model can be found, researchers may 
still draw inferences for coefficient alpha, because this 
is a meaningful parameter per se. However, in this case, 
researchers drawing inferences about coefficient alpha 
should carefully avoid extrapolating their conclusions to 
population reliability or claiming that coefficient alpha is 
a lower bound of population reliability. These claims need 
to be supported by model fitting.
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