Common Variants in the TPH1 and TPH2 Regions Are Not Associated With Persistent ADHD in a Combined Sample of 1,636 Adult Cases and 1,923 Controls From Four European Populations

Stefan Johansson,1,2* Anne Halmøy,1 Thegna Mavroconstanti,1 Kaya K. Jacobsen,1,2 Elisabeth T. Landaas,1,2 Andreas Reif,3 Christian Jacob,3 Andrea Boreatti-Hümer,3 Susanne Kreiker,3,4 Klaus-Peter Lesch,3 Cornelis C. Kan,5 J.J. Sandra Kooij,6 Lambertus A. Kiemeneij,7 Jan K. Buitelaar,5 Barbara Franke,5,8 Marta Ribasés,9,10 Rosa Bosch,9 Mónica Bayés,11,12,13 Miguel Casas,9,14 Josep Antoni Ramos-Quiroga,9,14 Bru Cormand,15,16,17 Per Knappskog,2,18 and Jan Haavik1,19

1Department of Biomedicine, University of Bergen, Bergen, Norway
2Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
3Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
4Department of Child and Adolescent Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
5Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
6Parnassia, Psycho-Medical Centre, The Hague, The Netherlands
7Department of Epidemiology & Biostatistics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
8Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
9Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
10Psychiatric Genetics Unit, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain
11Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Catalonia, Spain
12CIBER Epidemiología y Salud Pública, Barcelona, Catalonia, Spain
13Centro Nacional de Genotipado (CeGen), Barcelona, Catalonia, Spain
14Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Catalonia, Spain
15Departamento de Genética, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
16CIBER Enfermedades Raras, Barcelona, Catalonia, Spain
17Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain
18Medical Genetics and Molecular Medicine, Department of Clinical Medicine, University of Bergen, Bergen, Norway
19Division of Psychiatry, Haukeland University Hospital, Bergen, Norway

Received 10 July 2009; Accepted 23 December 2009

The tryptophan hydroxylase 1 and 2 (TPH1 and TPH2) genes encode the rate-limiting enzymes in the serotonin biosynthesis. Genetic variants in both genes have been implicated in several psychiatric disorders. For attention-deficit/hyperactivity disorder (ADHD) in children, the results are conflicting, and little is known about their role in adult ADHD patients. We therefore first genotype-tagged all common variants within both genes in a Norwegian sample of 451 patients with a diagnosis of adult ADHD and 584 controls. Six of the single nucleotide polymorphisms (SNPs) were subsequently genotyped in three additional independent European Caucasian samples of adult ADHD cases.
and controls from the International Multicenter persistent ADHD Collaboration (IMpACT). None of the SNPs reached formal study-wide significance in the total meta-analysis sample of 1,636 cases and 1,923 controls, despite having a power of >80% to detect a variant conferring an OR = 1.25 at P = 0.001 level. Only the TPH1 SNP rs17794760 showed nominal significance [OR = 0.84 (0.71–1.00), P = 0.05]. In conclusion, in the single largest ADHD genetic study of TPH1 and TPH2 variants presented to date (n = 3,559 individuals), we did not find consistent evidence for a substantial effect of common genetic variants on persistent ADHD. © 2010 Wiley-Liss, Inc.

Key words: TPH1; TPH2; ADHD; common variants; genetic analysis

INTRODUCTION

Serotonin (5-HT) is a neurotransmitter and a hormone with important regulatory functions both in the peripheral organs and central nervous system (CNS). Serotonin dysfunction has been implicated in different psychiatric disorders such as major depression, schizophrenia, autism, and attention-deficit/hyperactivity disorder (ADHD). Tryptophan hydroxylase 1 and 2 (TPH1 and TPH2), which catalyze the rate-limiting step of serotonin biosynthesis [Walther et al., 2003; McKinney et al., 2005], have therefore been extensively studied for their putative role in the susceptibility to such psychiatric disorders. The human TPH1 and TPH2 genes are located on chromosomes 11p15.3-p14 and 12q21.1, respectively, and have different expression patterns. TPH1 is found in the pineal gland, pituitary gland, and peripheral organs, including enterochromaffin cells of the gut, while TPH2 is mainly expressed in the CNS and peripheral serotonergic neurons [Cote et al., 2007; Gutknecht et al., 2009; Zill et al., 2009].

ADHD is a common neuropsychiatric disorder conferring substantial impairment which manifests itself during childhood, but most patients will have symptoms that persist into their adult life [Biederman and Faraone, 2005; Faraone et al., 2006]. Non-remitting ADHD could represent a severe and highly familial subtype of ADHD [Larsson et al., 2004]. Although most candidate studies in ADHD have targeted dopaminergic and noradrenergic signaling in ADHD, recent studies also indicate a serotonergic dysfunction underlying this psychiatric condition [Oades, 2007]. Sheehan et al. [2005] were the first to report an association between common TPH2 variants and ADHD, but later studies have yielded inconsistent results [Walitza et al., 2005; Brookes et al., 2006; Sheehan et al., 2007; Baehne et al., 2008; Manor et al., 2008]. Since the discovery of TPH2, there has been less interest in the role of TPH1 in ADHD, but TPH1-knockout mice have shown that its expression might still be important for the developing CNS [Cote et al., 2007; Savelieva et al., 2008; Gutknecht et al., 2009]. Furthermore, TPH1 is one of the strongest candidate genes in meta-analyses of previous studies on schizophrenia [Allen et al., 2008].

The recent success of whole genome association studies in other common disorders, such as type 2 diabetes, coronary artery disease, and obesity, has highlighted that large sample sizes are needed to sort out the true disease loci from spurious associations [Altshuler et al., 2008]. It is highly likely that the situation is similar for psychiatric disorders such as ADHD, where sample sizes have generally been small and testable phenotypes numerous. We therefore decided to increase power by applying a two-stage design with initial dense genetic tagging of all common single nucleotide polymorphisms (SNPs) within the TPH1 and TPH2 regions in a sample of 451 adult ADHD patients and 584 controls from Norway. These results were then followed by targeted replication attempts in three additional samples from Germany, The Netherlands, and Spain. The total sample of 1,636 cases and 1,923 controls is part of the International Multicenter persistent ADHD Collaboration (IMpACT).

MATERIALS AND METHODS

Patients and Controls

The total sample included 1,636 adult ADHD patients and 1,923 controls’ all of Caucasian origin from Norway, Spain, Germany, and The Netherlands recruited into the IMpACT. Extensive description of the study samples can be found in Sanchez-Mora et al. [2009]. In short, all patients have been extensively examined by an experienced psychiatrist and diagnosed with ADHD according to the diagnostic criteria of Diagnostic and Statistical Manual for Mental Disorders-IV (DSM-IV), with onset of symptoms before the age of 7 years via retrospective diagnosis (which was confirmed by a family member, wherever possible), lifelong persistence of symptoms, and current diagnosis.

Measures of symptom severity in the Norwegian sample: severity of ADHD in adulthood was measured by the 18-item adult ADHD self-report rating scale (ASRS; mean = 45.9, SD = 12.1), where nine questions address the frequency of inattentive symptoms (mean = 23.8, SD = 6.6) and nine address the frequency of hyperactivity/impulsivity symptoms (mean = 22.1, SD = 6.8) [Kessler et al., 2005]. Childhood ADHD symptoms was measured by the 25-item Wender Utah Rating Scale (WURS; mean = 58.5, SD = 18.2) [Ward et al., 1993]. The distributions of the rating scales in the Norwegian patients are shown in Supplementary Figure 1.
Genotyping and Marker Selection

Information from CEU-HapMap-build 21-data was used in the Haploview-Tagger software [de Bakker et al., 2005] for selection of tagging SNPs. We applied the following criteria for marker selection: pairwise tagging only, r^2 threshold $= 0.8$, all SNPs in the genes and 1 kb surrounding region, with minor allele frequency (MAF) above 5%. Seven SNPs were found to be sufficient to tag all common variation within the TPH1 gene. We also included a putative splice-site variant, rs1799913, located just upstream of exon 7, and the SNP rs1800532 (known as 218A/C) based on previous claims of association with several psychiatric conditions (references). Applying the same criteria, 20 SNPs were initially selected to tag all common variation in a 96 kb region that includes the TPH2 gene and the nearby flanking region. Two markers failed in the assays, but the final 18 successfully genotyped tagSNP set were still sufficient to tag all SNPs (MAF > 0.05) in the region with a mean maximal r^2 of 0.93 ($r^2 > 0.73$ for all non-genotyped variants) according to HapMap data (build 21).

Genotyping of the Norwegian samples: DNA was extracted either from whole blood, or from saliva using the Oragene™ DNA Self-Collection Kit from DNA Genotek (DNA Genotek Inc., Ontario, Canada). DNA from cases and controls were inter-mixed on 96-well plates with a minimum of two internal controls and two blank samples on each plate. Genotyping was performed using the MassARRAY iPLEX System (SEQUENOM, Inc., San Diego, CA) by CIGENE at the national technology platform, and supported by the Functional Genomics Programme (FUGE) in the Research Council of Norway. Total genotyping rate was >98% after removal of poorly performing markers and individuals. Concordance rate was 100% among 11 subjects with duplicate DNA spread over all assay plates.

Genotyping of the replication samples: samples from Spain and The Netherlands were genotyped together with an additional smaller Norwegian sample in one multiplex reaction using the MassARRAY iPLEX System at CIGENE in Norway. The German samples were genotyped using the same multiplex reaction at Würzburg, Germany (primers are available upon request).

Statistical Analysis

For single marker analysis of dichotomous traits, we focused on an additive allelic model either with the chi-square test or by using logistic regression with gender as a cofactor as implemented in the PLINK software [Purcell et al., 2007]. For comparison, we also tested, but could not find, any evidence for a stronger association for either a dominant or recessive model in the Norwegian data set. For the meta-analysis, we considered only an additive allelic mode of inheritance and applied a random effect analysis as implemented by the “metan” command in Stata 8.2 (Stata Statistical Software, Stata Corp., College Station, TX), with the estimate of heterogeneity being taken from the Mantel–Haenszel model. Similar results were also obtained using the stratified Mantel–Haenszel test as implemented in the PLINK software. Haplotype analysis was performed in PLINK using a sliding window approach with three consecutive markers throughout the gene. The omnibus test is a test with $n–1$ degrees of freedom where n is the number of common haplotypes (1% frequency threshold). Haploview [Barrett et al., 2005] was used for linkage disequilibrium (LD) visualization. A possible association between SNPs and the quantitative traits, ASRS and WURS, was analyzed using linear regression (allelic model) in Norwegian cases only, with gender and current medication as cofactors. The traits were near normally distributed among cases, and results are therefore only presented without transformation (Supplementary Fig. 1). All the results are presented without correction for multiple testing.
RESULTS
Stage 1: Norwegian Sample

Demographic characteristics for the 451 ADHD patients and 584 controls from Norway are presented in Table I. The sample was successfully genotyped for nine SNPs covering all common variants in the \textit{TPH1} region and 18 SNPs in the \textit{TPH2} region. The pattern of LD was similar between the Norwegian sample and the HapMap CEU data set with relatively strong LD overall including a large LD block covering exons 5–8 for \textit{TPH2} and one block of strong LD and limited haplotype diversity (only five common haplotypes, mean maximal $r^2 = 0.97$) for \textit{TPH1} (Fig. 1).

Table II shows the results of the logistic regression analysis between \textit{TPH1} markers and adult ADHD in 451 Norwegian individuals with persistent ADHD and 584 controls (adjusted for gender). Only rs17794760, located in intron 2, showed evidence of nominal association with ADHD (OR = 0.74, 95% CI: 0.59–0.94, $P = 0.01$). Haplotype analysis revealed that the suggested protective allele tagged a single haplotype that spans all nine markers (OR = 0.74, $P = 0.02$). We next considered the ASRS as a quantitative measure of severity of inattentive and hyperactive symptoms and found no further evidence of association with the tested markers.

Eighteen of the 20 selected \textit{TPH2} SNPs were successfully genotyped in the entire Norwegian sample. Association results are depicted in Table III. In the single point analyses, the rare alleles of the two perfectly correlated markers rs1386496 and rs4760818 were slightly more common in cases than in controls. Haplotype analysis also showed additional evidence of association for a three-marker haplotype made up by rs7305115, rs4760818, and rs4760820 (omnibus $P = 0.02$; Table III). Results suggested one putative protective haplotype (15% in cases vs. 20% in controls, $P = 0.004$) and one susceptibility haplotype (14.2% in cases vs. 11.4% in controls, $P = 0.06$). In addition, quantitative analysis of ASRS symptom scores in only ADHD cases showed suggestive associations between the rare alleles of rs1386496 and rs4760818 and increased inattentive symptom score (using gender and current use of medication as cofactors in the analysis; Table IV).

Stage 2: Meta-Analysis in the IMPACT Sample

Based on the results from the Norwegian sample and previously reported studies, we chose one SNP in \textit{TPH1} and five in \textit{TPH2} for the replication study (markers underlined in green in Fig. 1) in an additional sample of 1,185 adult cases and 1,339 controls from The Netherlands, Germany, and Spain as well as an additional smaller sample from Norway (samples from IMpACT; Table I). The single \textit{TPH1} SNP, rs17794760, showed nominal association with ADHD in the meta-analysis which could be ascribed to the Norwegian and Spanish samples (Fig. 2 and Supplementary Table I). However, this association did not survive correction for multiple testing. In addition, the meta-analysis did not support association between common \textit{TPH2} variants or haplotypes and adult ADHD (Fig. 2 and Supplementary Table I). Marker allele frequencies (Supplementary

<table>
<thead>
<tr>
<th>Country</th>
<th>Controls (% males)</th>
<th>Total (% males)</th>
<th>Combined subtypea (%)</th>
<th>Depression/anxiety (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norwayb</td>
<td>728 (44)</td>
<td>502 (53)</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>490 (49)</td>
<td>246 (48)</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Germany</td>
<td>393 (50)</td>
<td>589 (53)</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Spain</td>
<td>312 (65)</td>
<td>299 (72)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>1,923</td>
<td>1,636</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aPercentage of patients with combined subtype.

bFifty-one cases and 144 controls of the Norwegian sample were part only in the replication sample.

<table>
<thead>
<tr>
<th>SNP</th>
<th>BP</th>
<th>MAF cases</th>
<th>MAF controls</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>P_{gender}</th>
<th>Omnibus three-point P</th>
<th>Haplo P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1799913</td>
<td>18003831</td>
<td>0.402</td>
<td>0.383</td>
<td>1.08 (0.90–1.30)</td>
<td>0.39</td>
<td>0.37</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>rs1800532</td>
<td>18004392</td>
<td>0.410</td>
<td>0.383</td>
<td>1.12 (0.94–1.35)</td>
<td>0.21</td>
<td>0.20</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>rs11606304</td>
<td>18008824</td>
<td>0.084</td>
<td>0.080</td>
<td>1.05 (0.76–1.44)</td>
<td>0.77</td>
<td>0.78</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>rs10486683</td>
<td>18010121</td>
<td>0.432</td>
<td>0.416</td>
<td>1.07 (0.89–1.27)</td>
<td>0.48</td>
<td>0.49</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>rs17794760</td>
<td>18012496</td>
<td>0.157</td>
<td>0.200</td>
<td>0.74 (0.59–0.94)</td>
<td>0.02</td>
<td>0.014</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>rs169806</td>
<td>18015868</td>
<td>0.405</td>
<td>0.389</td>
<td>1.07 (0.89–1.28)</td>
<td>0.47</td>
<td>0.44</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>rs10832876</td>
<td>18016505</td>
<td>0.271</td>
<td>0.244</td>
<td>1.15 (0.94–1.41)</td>
<td>0.17</td>
<td>0.18</td>
<td>0.02</td>
<td>0.20</td>
</tr>
<tr>
<td>rs591556</td>
<td>18017976</td>
<td>0.161</td>
<td>0.166</td>
<td>0.96 (0.76–1.22)</td>
<td>0.74</td>
<td>0.79</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>rs623580</td>
<td>18020553</td>
<td>0.319</td>
<td>0.356</td>
<td>0.85 (0.70–1.02)</td>
<td>0.09</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I) and LD between markers (Supplementary Fig. 2) were relatively similar between populations.

Stratification for combined inattentive/hyperactive-impulsive (Supplementary Table II), or for primarily inattentive cases (data not shown), did not have any significant impact on the observed results for either TPH1 or TPH2. Also, there were no significant differences in allele frequencies when stratification for comorbid depression/anxiety (Supplementary Table III) or for gender was applied (data not shown).

DISCUSSION

Replicating genetic association findings in psychiatric disorders has been an important bottleneck in the identification of susceptibility...
genes for such disorders. In the present study, we therefore used a two-stage design: an initial explorative analysis with dense genetic tagging of common TPH1 and TPH2 SNPs in a clinical sample of 451 adult patients with persistent ADHD, and 584 controls from Norway was followed by attempts at replication in an additional sample of 2,524 individuals (1,185 cases and 1,339 controls) from IMpACT, a collaboration aimed to study the genetic predisposition to persistent ADHD.

Our two-stage study revealed no consistent evidence of association between persistent ADHD and common variants in the TPH1 and TPH2 regions. Previous TPH2 studies mainly restricted to childhood ADHD have also yielded inconsistent results: Sheehan et al. [2005] performed a family-based association study in 179 Irish families and found a strong over-transmission of the major allele for several markers in the region between introns 5 and 8 of the gene (most significant finding for rs1843809: OR = 2.36, P = 0.0006). However, the same group was later unable to replicate this finding in a smaller sample (107 families) of UK descent [Sheehan et al., 2007]. Another study by Walitza et al. [2005] found nominal association between ADHD and two SNPs within the promoter region of the gene in a sample of 103 families (225 affected family members) and later reported an association of these SNPs with...
cognitive response control (but not ADHD per se) in both affected and unaffected individuals [Baehne et al., 2008]. Additionally, in the largest ADHD candidate gene study presented to date, Brookes et al. [2006] failed to find an association between ADHD and the promoter SNPs, but again found association for markers in introns 5–8 of TPH2 in a sample of 776 combined type cases from the IMAGE study [Kuntsi et al., 2006]. However, it was the opposite allele compared to the initial study by Sheehan et al. [2005] that was overtransmitted to affected children (OR = 1.40, \(P = 0.003 \)).

Haplotype and LD analysis revealed that there were several markers which tagged a putative risk haplotype with a frequency of about 14% in the intron 5–8 region. Further support for this finding was found in a recent quantitative trait analysis in an Israeli sample partially overlapping with the IMAGE sample [Manor et al., 2008]. In this study, the same haplotype was found to be associated with combined type ADHD, worse performance on the continuance performance test, and improvement following methylphenidate treatment.

As all these studies had been performed in children with ADHD, the situation for persistent ADHD is even less clear. However, from the current study, it seems reasonable to conclude that the TPH2 region does not contain common genetic variants with strong effects on persistent ADHD across populations, though we do not have the power required to exclude the existence of common variants of more modest effects (OR: 1.05–1.15) in, or near, the region. Furthermore, all of the above-mentioned studies including our own have focused only on the gene and core promoter region; so it remains possible that effects of putative, to our knowledge still unknown, more distant regulatory variants have been missed.

For TPH1, both the Norwegian and Spanish samples showed evidence of an association of rs17794760 with persistent ADHD, while there was no association in the German and Dutch sample (OR = 0.84, \(P_{\text{random effect model}} = 0.05, P_{\text{fixed effect model}} = 0.006 \)). Two previous studies with subjects from Japan and China, respectively, did not find evidence for single marker association between the 218A>C SNP (rs1800532) and ADHD [Li et al., 2003, 2006]. Likewise, there was no evidence for association between ADHD and TPH1 markers in two studies of samples from European populations [Brookes et al., 2006; Ribases et al., 2009]. However, none of the above-mentioned studies had full coverage of the common variation within the TPH1 region and none involved any markers in strong LD with our top-hit marker rs17794760. Hence, it is not possible to exclude entirely a role of rs17794760 or another common risk variant tagged by this SNP within the TPH1 region.

We chose to increase the power of our study by analyzing samples from several different populations. While this has proven very useful in many complex disorders [McPherson et al., 2007; Zeggini et al., 2008], it may come at the cost of introducing phenotypic heterogeneity into the study sample due to differences in the classification of ADHD or in recruitment strategies between different sites. In an attempt to limit this problem, we re-analyzed the data stratified on combined or inattentive cases, but the results remained similar in both sub-analyses. Importantly, our study design does not allow us to test for less-frequent variants which might explain more of the genetic variance of psychiatric disorders [McKinney et al., 2008; Goldstein 2009; Need et al., 2009].

In conclusion, we have performed the largest study of the role of TPH1 and TPH2 variants in ADHD to date, and our results do not support the idea that common variants within these genes have a substantial effect on persistent ADHD.

ACKNOWLEDGMENTS

We are grateful to all patients and control subjects for their participation in the study. We thank Guri E. Matte, Paal H. Borge, Sigrid Erdal, and Sidsel E. Riise for technical assistance in Norway. We thank M. Nogueira, N. Gómez-Barros, and M. Corrales for their involvement in the clinical assessment, and M. Dolors Castellar and A. Dávila for their help in the recruitment of control subjects in Spain. The Dutch controls were derived from the Nijmegen Biomedical Study. Principal investigators of the Nijmegen Biomedical Study are L.A.M. Kienemeny, M. den Heijer, A.L.M. Verbeek, D.W. Swinkels, and B. Franke. The Norwegian part of the study was sponsored by Research Council of Norway, Helse-Vest, and The University of Bergen. Financial support for the Spanish part of the study was received from “Instituto de Salud Carlos III-FIS, Spain” (PI040524, PI041267, PI080519) and “Agência de Gestão d’Ajuts Universitaris i de Recerca-AGAUR” (2009SGR00971). M. Ribases is a recipient of a “Miguel de Servet” contract from “Instituto de Salud Carlos III” (Spain). The Dutch part of the project was supported by the Hersenstichting Nederland (Fonds Psychische Gezondheid).

REFERENCES

