Companion Web Site:
http://booksite.elsevier.com/9780128002124

Neuropathology of Drug Addictions and Substance Misuse, Volume 2
Victor R. Preedy, Editor

Available Resource:

- Additional Resources and Recommended Reading
Contents

List of Contributors xxxv
Preface xxxv
Acknowledgments xxxvii

Part I
Stimulants

Section A
General Aspects

 Derek P. Simon and Mary Jeanne Kreek
 Introduction 5
 Clinical Perspectives on Cocaine Abuse 5
 Molecular Neurobiology of Cocaine Addiction 7
 Conclusions 9
 Applications to Other Drugs of Abuse 9
 Definition of Terms 10
 Key Facts of the Statistics of Cocaine Use in the United States 10
 Summary Points 10
 References 10

2. Amphetamine Usage, Misuse, and Addiction Processes: An Overview
 Nicola Simola and Manolo Carta
 Introduction 14
 Usage, Misuse, and Addiction Processes 14
 Definition of Terms 21
 Key Facts 22
 Summary Points 22
 References 22

3. Mephedrone
 Mariana Angoa-Pérez and Donald M. Kuhn
 Introduction 25
 β-Ketoamphetamines, Amphetamines and the Potential for Neurotoxicity 25
 Strategy for Examination of the Neurotoxic Potential of Mephedrone 26
 Mephedrone Does Not Damage DA Nerve Endings 26
 Mephedrone Enhances the Neurotoxicity Caused by Methamphetamine, Amphetamine, and MDMA 29
 Mephedrone Does Not Damage 5HT Nerve Endings 30
 Discussion 30
 Applications to Other Addictions and Substance Misuse 32
 Definition of Terms 32
 Key Facts of Mephedrone Abuse 33
 Summary Points 33
 References 33

Section B
Molecular and Cellular Aspects

4. Cocaine and Brain-Derived Neurotrophic Factor
 Lisia von Diemen, Giovana Brolese, Marianne Possa, Silvia Bassani Schuch and Anne Orgler Sordi
 Introduction 39
 BDNF, Cocaine, and Animal Models 39
 BDNF Genetics in Cocaine Addiction 41
 Clinical Studies and BDNF 42
 Applications to Other Addictions and Substance Misuse 44
 Definition of Terms 44
 Key Facts of Cocaine and BDNF 45
 Summary Points 45
 References 45

5. On the Role of the Endocannabinoid System in Cocaine Addiction
 Przemysław Adamczyk and Mariusz Papp
 Introduction 48
 Overview of the ECBS 48
 ECBS in Cocaine Addiction 50
Conclusions

Applications to Other Addictions and Substance Misuse 53
Definition of Terms 57
Key Facts of Self-Administration 59
Summary Points 60
References 60

6. The Fas Receptor/Fas-Associated Protein and Cocaine

M. Julia García-Fuster, María Álvaro-Bartolomé and Jesús A. García-Sevilla

Introduction 63
Relevant Features of Fas Receptor and FADD Adaptor 64
Regulation of Fas Receptor Forms by Cocaine 66
Regulation of FADD Forms by Acute and Chronic Cocaine in Rat Brain 66
Role of FADD Forms in the Initial Propensity to Cocaine Use 67
Regulation of FADD Forms in Human Cocaine Addiction 68
Relevance of Fas/FADD Regulation by Cocaine and Its Downstream Signaling 69
Conclusions 69
Applications to Other Addictions and Substance Misuse 70
Definition of Terms 70
Key Facts 70
Summary Points 71
Acknowledgments 71
References 71

7. Cocaine and Neuromolecular Imaging of Neurotransmitters in the Brain: BRODERICK PROBE® Laurate Nanobiosensors in Mesocorticolimbic Neurons and the Nucleus Accumbens: Sex and Genes

Patricia A. Broderick

Introduction 74
Cocaine is a Psychostimulant 75
Role of NMI in the Study of Cocaine 75
Sexual Dimorphism in Cocaine-Induced Neurochemistry Online with Behavior 78
Role of the Estrous Cycle in Cocaine-Induced Responses 79
Role of the Genetic FH Animal Model of Depression in Cocaine Addiction: Comparison with the SD Strain 80
Applications to Other Addictions and Substance Misuse 82
Definition of Terms 83
Key Facts 83
Summary Points 83
References 84

8. Metabotropic Glutamate 5 Modulators: Potential Agents for Treating Cocaine Addiction

Christina J. Perry and Andrew J. Lawrence

Introduction: Addressing the Need for Treating Cocaine Abuse 86
mGlu5 Receptor: A Brief Background 87
The Cycle of Developing Addiction 87
The Incentive Value of Cocaine 88
Repeated Cocaine Exposure Leads to Sensitization to the Effects of Cocaine 89
Cocaine Use Escalates with Exposure 89
Withdrawal and Relapse 90
 Withdrawal Creates an Incubation of Craving 90
Extinguished Cocaine-S seeking Is Readily Reinstated 91
Two Approaches to Treating Cocaine Dependence 92
Applications to Other Addictions and Substances Misuse 93
Conclusion 93
Definition of Terms 93
Summary Points 94
Acknowledgment 94
References 94

9. Neuronal and Behavioral Effects of Amphetamine in *Caenorhabditis elegans*

Lucia Carvelli

Introduction 97
Caenorhabditis elegans Homologies with Mammalian Dopaminergic Synapses 98
Amphetamine Directly Modulates the Dopaminergic Neurons 99
Amphetamine Causes Behavioral Effects in *Caenorhabditis elegans* 100
Amphetamine Activates Targets Other than the Dopaminergic System to Generate Behavioral Effects 102
β-Phenylethylamine and Amphetamine Activate the Same Molecular Targets but via Different Kinetics 102
Application to Other Addictions and Substance Misuse 104
Definition of Terms 104
Key Facts 104
Summary Points 105
References 105
10. Amphetamines Activate G-Protein Coupled Trace Amine-Associated Receptor 1 (TAAR1): Implications for Understanding and Treating Psychostimulant Abuse

David K. Grandy

Introduction 108
Discovery of the Trace Amine Receptor 109
Anatomic Localization 110
Pharmacologic Characterization of the Trace Amine Receptor 110
Drug Development Programs 110
In Vivo Studies Related to Drug Abuse 112
Future Directions 113
Applications to Other Addictions and Substance Misuse 113
Definition of Terms 113
Key Facts about TAAR1 114
Summary Points 114
References 114

11. Amphetamine and Signal Detection

Matthew E. Andrzejewski and Nicole Holder

Introduction 117
A Primer on Signal Detection Theory 117
Sensitivity Indices: d′, A′, SI, and Percent Correct 120
AMPH Effects on Sensitivity 120
Terminology and Experimental Procedures 121
Dose Effects of AMPH 122
Implications of AMPH Effects on Signal Detection 122
Conclusions 122
Applications to Other Addictions and Substance Misuse 122
Definition of Terms 123
Key Facts about AMPH and Signal Detection 123
Summary Points 124
References 124

12. The Effects of Amphetamine and Methamphetamine on Brain Activity-Related Immediate Early Gene Expression

Peter R. Kufahl, Elisabeth Moore and M. Foster Olive

Introduction 126
Applications to Other Addictions and Substance Misuse 133
Conclusions 133
Definition of Terms 134
Key Facts 134

13. Methamphetamine-Induced Behavioral Abnormalities and Neuronal Apoptosis

Tomohiro Abeuka

Introduction 137
METH-Induced Psychosis 137
METH-Induced Neurotoxicity 138
Models for METH-Induced Psychosis 138
Neurodevelopmental Deficits and METH-Induced Psychosis and Apoptosis 141
Conclusions 142
Applications to Other Addictions and Substance Misuse 143
Definition of Terms 143
Key Factors of METH-Induced Apoptosis 144
Summary Points 144
Acknowledgment 144
References 144

14. Methamphetamine and the JAK/STAT Pathway

Joana Gonçalves and Ana Paula Silva

The JAK/STAT Signaling Pathway in the Central Nervous System: An Overview 147
JAK/STAT Pathway and Methamphetamine 149
Applications to Other Addictions and Substance Misuse 151
Definition of Terms 151
Key Facts 152
Summary Points 153
References 153

15. Methamphetamine and the Blood–Brain Barrier

Ricardo Alexandre Leitão, Vanessa Coelho-Santos and Ana Paula Silva

BBB Composition and Function: A Quick Overview 155
Effect of METH on BBB Function: Causes and Consequences 157
Adhesion Molecules and Transendothelial Immune Cells Migration 159
METH Abuse and Brain Infection 159
Conclusions 161
Applications to Other Addictions and Substance Misuse 165
Definition of Terms 165
Key Facts 166
Summary Points 166
References 166
16. Melatonin Receptors as Modulators of Methamphetamine-Mediated Behaviors
Shannon J. Clough, Anthony J. Hutchinson and Margarita L. Dubocovich

Introduction 169
Methamphetamine 169
Melatonin Receptors 170
The Circadian Clock and Drugs of Abuse 170
Locomotor Sensitization 170
Conditioned Place Preference 174
Conclusions 177
Applications to Other Addictions and Substance Misuse 177
Definition of Terms 177
Key Facts 177
Summary Points 178
References 178

17. Methamphetamine Neurotoxicity and the Ubiquitin–Proteasome System
Anna Moszczynska

Introduction 181
The Proteasome in Methamphetamine Neurotoxicity 182
The E3 Ligase Parkin in Methamphetamine Neurotoxicity 182
Summary and Conclusions 184
Applications to Other Addictions and Substance Misuse 185
Definition of Terms 186
Key Facts 186
Summary Points 186
References 187

18. Methamphetamine and Neuronal Nitric Oxide
Chitra D. Mandyam

Definition of Neurotoxicity and Preclinical Models of Methamphetamine Neurotoxicity 189
Definition of Addiction, the Stages of Addiction and Animal Models of Methamphetamine Addiction 189
Methamphetamine Neurotoxicity 189
Nitric Oxide, a Neurotransmitter with Two Faces 190
Role of Nitric Oxide in Methamphetamine Neurotoxicity 191
Applications to Other Addictions and Substance Misuse 193
Definition of Terms 193
Key Facts about Methamphetamine and nNOS 193
Summary Points 193
Acknowledgments 193
References 193

19. Candidate Genes of Chromosome 18q21, Methamphetamine, and Psychosis
Byung Dae Lee

Introduction 196
Applications to Other Addictions and Substance Misuse 203
Definition of Terms 203
Key Facts 203
Summary Points 203
References 204

Section C
Structural and Functional Aspects

20. Structural and Functional Aspects of Stimulant Misuse and Addiction
Alfonso Barrós-Loscertales

Introduction 209
Striatum and Midbrain 210
Structural and Functional Alterations of the Prefrontal Cortex in Stimulant Addiction and Misuse 210
Structural and Functional Alterations in Other Brain Regions 213
Functional and Structural Connectivity 214
Conclusions 215
Applications to Other Addictions and Substance Misuse 216
Definition of Terms 216
Key Facts about Aspects of Stimulant Misuse and Addiction 216
Summary Points 216
References 217

21. Sleep and Cocaine
Gustavo A. Angarita, Sofija V. Canavan, Sarah E. Hodges and Peter T. Morgan

Introduction 220
Subjective Measurements 220
Objective Measurements 221
Relationship between Subjective and Objective Sleep Outcomes 222
Relationship between Sleep Outcomes and Cognition 222
Relationship between Sleep Outcomes and Mood 223
Sleep and Cocaine Use Outcomes 223
Contents

Neurobiology of Cocaine-Induced Sleep Changes
- Pharmacotherapy Options Targeting Sleep Abnormalities
- Psychotherapy Options for the Treatment of Sleep Problems in Cocaine Users
- Applications to Other Addictions and Substance Abuse
- Definition of Terms
- Key Facts about Subjective and Objective Assessments of Sleep
- Summary Points
- References

22. Motivations for Use of Crack Cocaine
Alissa M. Greer, Gina Martin, Chantele Joordens and Scott Macdonald

- Introduction
- Cocaine and Cocaine Dependence
- Route of Administration
- Neurological Basis of Motivations to Use Cocaine
- Pavlovian Cue-Induced Cravings and Instrumental Behavior
- Social Factors and Measuring Motivations for Cocaine Use
- Research Findings
- Motivations for Use in a Mainly Cocaine-Using Population
- Applications to Other Addictions and Substance Misuse
- Definition of Terms
- Key Facts
- Summary Points
- References

23. Cocaine and Postmortem Levels in Neurological Tissues
Eduardo Alvear Serrano, Dietrich von Baer, Claudia Mardones and Carola Vergara Rosales

- Introduction
- Applications to Other Addictions and Substance Misuse
- Presentation of the Problem
- COC and BZE Concentrations in Neurological Tissues and Other Matrices
- Postmortem Distribution of COC and BZE in Neurological Tissues
- Definition of Terms
- Key Facts of Cocaine Abuse
- Summary Points
- References

24. Cerebral Gray Matter Volumes in Cocaine Dependence: Clinical and Functional Implications
Chiang-Shan R. Li

- Neuroinflammatory and Vasoactive Effects of Cocaine
- Key Facts
- References

Boris B. Quednow

- Introduction
- The Zurich Cocaine Cognition Study
- Basal Cognitive Functions
- Color Vision and Early Information Processing
- Social Cognition and Interaction
- Applications to Other Substance Addictions and Misuses
- Conclusion
- Definition of Terms
- Key Facts of Cocaine Use
- Summary Points
- Acknowledgments
- References

26. Amphetamine-Induced Psychosis
Vahid Farnia and Senobar Golshani

- Introduction
- Clinical Features
- Functional and Structural Aspects
- Treatment
- Applications to Other Addictions and Substance Misuse
- Definition of Terms
- Key Facts
- Summary Points
- References

27. The Role of Environmental Context in Amphetamine Abuse
Daniela F. Fukushiro, Lais F. Berro, Renan Santos-Baldia, André W. Hollais and Raphael Wuo-Silva

- Introduction
- Applications to Other Addictions and Substance Misuse
- Definition of Terms
- Key Facts
- Summary Points
- References
Section D
Methods

34. Quantitative Colorimetric Assays for Methamphetamine
Aree Choodum and Niamh NicDaeid

Introduction 349
Colorimetric Assays for MA 350
Quantification of MA by Colorimetric Assay 352
Applications to Other Addictions and Substance Misuse 355
Conclusions 355
Definition of Terms 356
Key Facts 357
Summary Points 358
References 358

35. Assays for Methamphetamine and Amphetamine in Blood
Takeshi Kumazawa

Introduction 360
Chromatographic Methods for Methamphetamine and Amphetamine 360
Internal Standards for Quantitative Analysis of Methamphetamine and Amphetamine 366
Extraction Method for Methamphetamine and Amphetamine in Human Blood 366
Conclusion 369
Applications to Other Addictions and Substance Misuse 369
Definition of Terms 370
Key Facts 371
Summary Points 371
References 372

Part II
Club Drugs

Section A
General Aspects

36. Gamma-Hydroxybutyrate Abuse and Dependence
Martijn van Noorden, Rama Kamal, Boukje Dijkstra, T.M. Brunt and Cor de Jong

General Aspects 379
Molecular and Cellular Aspects 380
Structural and Functional Aspects 383
Applications to Other Addictions and Substance Misuse 385
Definition of Terms 385
Summary Points 385
References 386

Section B
Molecular and Cellular Aspects

37. Effects of Club Drugs on Dopaminergic and Serotonergic Systems: Use of \[^{18}\text{F}]\text{FDOPA}, \[^{99}\text{mTc}]\text{TRODAT-1}, and [I*]ADAM
Skye Hsin-Hsien Yeh, Chun-Kai Fang and Jeng-Jong Hwang

Introduction 391
Club Drugs and Their Imaging Applications 393
Methamphetamine 393
Ketamine 395
Advanced Multimodalities of Molecular Imaging: PET versus QAR 395
Neuroimaging with Selected Radiotracers 395
Imaging of DA Synthesis 397
Imaging of SERTs with [I*]ADAM 399
Conclusions 401
Applications to Other Addictions and Substance Misuse 401
Definition of Terms 401
Key Facts 401
Summary Points 401
Acknowledgments 402
References 402

38. MDMA and Glutamate
John H. Anneken, Stuart A. Collins, Bryan K. Yamamoto and Gary A. Gudelsky

Introduction 406
Mechanisms of MDMA 5-HT Toxicity 407
MDMA and Gamma-Aminobutyric Acid Toxicity 407
MDMA and Hippocampal Glutamate Toxicity 408
Potential Consequences of MDMA GABA Toxicity 409
Conclusion 410
Applications to Other Addictions and Substance Misuse 410
Definition of Terms 411
Key Facts About MDMA Abuse 411
Summary Points 412
References 412
39. MDMA (Ecstasy) and Gene Expression in the Brain: An Overview of Microarray and Candidate Gene Studies Assessing Transcriptional Changes in Rodents

Noelia Fernàndez-Castillo, Marta Ribasés and Bru Cormand

Introduction 415
Acute MDMA Administration 417
Repeated and Chronic MDMA Administration 420
MDMA Self-Administration 424
Prenatal Exposure to MDMA 424
Molecular and Cellular Events Triggered by Exposure to MDMA 424
Application to Other Addictions and Substance Misuse 426
Definition of Terms 426
Key Facts 427
Summary Points 428
References 428

40. Mitochondrial Trails in the Neurotoxic Mechanisms of MDMA

Daniel José Barbosa, João Paulo Capela, Maria de Lourdes Bastos and Félix Carvalho

Introduction 431
Mitochondrial Electron Transport Chain Function 431
The Outer Mitochondrial Membrane Enzyme MAO 434
Mitochondrial Fusion/Fission 436
Neuronal Mitochondrial Trafficking 436
Mitochondrial Regulators and Apoptotic Pathways 437
Concluding Remarks 440
Applications to Other Addictions and Substance Misuse 440
Key Facts about Mitochondria 440
Summary Points 440
References 442

41. Flunitrazepam–Membrane Binding

Anahí V. Turina, Daniel A. García and Maria A. Perillo

Introduction 445
Conclusions 449
Applications to Other Addictions and Substance Misuse 449
Definition of Terms 450
Key Facts About FNZ Binding 450
Summary Points 450
Acknowledgment 450
References 450

42. Neurotoxicity due to Repeated Comas Following Excessive Use of Gamma-Hydroxybutyric Acid

J.G.C. van Amsterdam, T.M. Brunt, M.T.B. McMaster and W. van den Brink

Introduction 453
Mode of Action 453
Intoxications and Coma 454
GHB-Induced Neurotoxicity 455
GHB, General Anesthesia, and Neurotoxicity 455
Other Sedative Substances 456
Discussion 456
Accountability 457
Applications to Other Addictions and Substance Misuse 457
Definition of Terms 457
Key Facts 457
Summary Points 457
References 457

Section C

Structural and Functional Aspects

43. The Behavioral Effects of MDMA in Humans Under Controlled Laboratory Conditions

Matthew Kirkpatrick, Casey Guillot and Carl Hart

Introduction 463
MDMA’s Chemical Structure and Mechanism of Action 463
A Brief History of MDMA Use and Legal Control 464
Concerns About MDMA Use 464
Human Behavioral Pharmacology Studies of Acute MDMA Effects 465
Physiological Effects 465
Subjective Effects 466
Psychomotor and Cognitive Performance on Standardized Computer Tasks 468
Effects on Social and Emotional Processing 468
Conclusion 469
Applications to Other Addictions and Substance Misuse 470
Definition of Terms 470
Key Facts About MDMA and its Recreational Use 470

Acknowledgment 470
References 470
Summary Points

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.</td>
<td>Recreational Use of Ecstasy (MDMA) and Hippocampal Memory</td>
<td>470</td>
</tr>
<tr>
<td>45.</td>
<td>Catalepsy and Comparing Gamma-Hydroxybutyrate, 1,4-Butanediol, and Gamma-Butyrolactone</td>
<td>480</td>
</tr>
<tr>
<td>46.</td>
<td>Epidemiology of Gamma-Hydroxybutyrate (GHB) Use and Misuse and Characteristics of GHB-Dependent Inpatients</td>
<td>490</td>
</tr>
<tr>
<td>47.</td>
<td>Assays for MDMA and Its Metabolites</td>
<td>500</td>
</tr>
<tr>
<td>48.</td>
<td>Assays for Flunitrazepam</td>
<td>510</td>
</tr>
<tr>
<td>49.</td>
<td>Detection of GHB by Optical Methods</td>
<td>520</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.</td>
<td>Recreational Use of Ecstasy (MDMA) and Hippocampal Memory</td>
<td>471</td>
</tr>
<tr>
<td>45.</td>
<td>Catalepsy and Comparing Gamma-Hydroxybutyrate, 1,4-Butanediol, and Gamma-Butyrolactone</td>
<td>481</td>
</tr>
<tr>
<td>46.</td>
<td>Epidemiology of Gamma-Hydroxybutyrate (GHB) Use and Misuse and Characteristics of GHB-Dependent Inpatients</td>
<td>491</td>
</tr>
<tr>
<td>47.</td>
<td>Assays for MDMA and Its Metabolites</td>
<td>501</td>
</tr>
<tr>
<td>48.</td>
<td>Assays for Flunitrazepam</td>
<td>511</td>
</tr>
<tr>
<td>49.</td>
<td>Detection of GHB by Optical Methods</td>
<td>521</td>
</tr>
</tbody>
</table>

Section D

Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.</td>
<td>Assays for MDMA and Its Metabolites</td>
<td>503</td>
</tr>
<tr>
<td>48.</td>
<td>Assays for Flunitrazepam</td>
<td>514</td>
</tr>
<tr>
<td>49.</td>
<td>Detection of GHB by Optical Methods</td>
<td>529</td>
</tr>
</tbody>
</table>
Part III: Dissociative Drugs

Section A: General Aspects

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.</td>
<td>Ketamine Analgesia</td>
<td>Linda C.J. Oudejans, Monique van Velzen and Albert Dahan</td>
<td>541-569</td>
</tr>
<tr>
<td>51.</td>
<td>The Plant Salvia divinorum (Lamiaceae)—Chemistry and Pharmacology</td>
<td>Adam W. Keasling and Jordan K. Zjawiony</td>
<td>573-591</td>
</tr>
</tbody>
</table>

Section B: Molecular and Cellular Aspects

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>Pathophysiology of Ketamine Neurotoxicity: An Overview</td>
<td>Mustafa Aydin and Ugur Deveci</td>
<td>563-581</td>
</tr>
</tbody>
</table>
55. Phencyclidine (Also Called Angel Dust or PCP) and the Firing Activity of Neurons

Eiichi Jodo

Effects of PCP on Electroencephalogram Activity 593
Effects of Systemic PCP on Neuronal Firing 594
Effects of Locally Applied PCP on Neuronal Firing 597
A Role of Tonic mPFC Activation in PCP-Induced Behavioral Abnormalities 597
Neural Mechanisms Mediating PCP-Induced Excitation of mPFC Neurons 597
Applications to Other Addictions and Substance Misuse 601
Definition of Terms 601
Key Facts 601
Summary Points 601
References 601

56. Phencyclidine (Angel Dust, PCP) and Fos Immunoreactivity

Hideko Yamamoto, Wakako Sawada, Etsuko Kamegaya, Yoko Hagino, Kazutaka Ikeda, Ichiro Sora, Masayoshi Mishina and Toshifumi Yamamoto

Introduction 604
Serotonergic and Cholinergic Innervations are Involved in PCP-Induced Hyperlocomotion 605
Lack of PCP-Induced Hyperlocomotion and Motor Impairment in GluN2D Knock Out Mice 606
Applications to Other Addictions and Substance Misuse 608
Definition of Terms 611
Key Facts 611
Summary Points 612
Acknowledgment 612
References 612

57. Effect of Phencyclidine on Neuregulin Expression, Cortical Interneurons, and Redox Dysregulation

Nataša Petronijević and Nevena V. Radonjić

Introduction 614
Effect of PCP on Neuregulin-1 Expression and Cortical Interneurons 614
PCP-Induced Redox Dysregulation in an Animal Model of Schizophrenia 616
PV Interneurons are Susceptible to the Harmful Effects of Free Radicals 619
Applications to Other Addictions and Substance Misuse 620
Definition of Terms 621
Key Facts 621
Summary Points 621
Acknowledgments 622
References 622

58. Involvement of Glutamate Transporters in Neuropathology of Phencyclidine Abuse

Akihiro Mouri, Hirotake Hida and Yukihiro Noda

Introduction 625
Behavioral Abnormalities and Expression Changes of Glutamate Transporter 626
Physiological Localization and Regulation of Glutamate Transporters, and the Efficacy of a Glutamate Transporter Inhibitor 629
Conclusion 631
Applications to Other Addiction/Dependence and Substance Misuse 631
Definition of Terms 632
Key Facts 633
Summary Points 633
References 633

Section C Structural and Functional Aspects

59. Antidepressant and Abuse Potential of Ketamine

H.W.W. Hasselmann

Introduction 639
Ketamine as an Antidepressant—Betting on the Wrong Horse? 639
Applications to Other Addictions and Substance Misuse 643
Conclusions 644
Definition of Terms 645
Key Facts 645
Summary Points 646
References 646

60. Ketamine and the Dissociatives: Comparisons with Schizophrenia

Joel Frohlich and John Darrell Van Horn

Introduction 649
Ketamine 649
Psychomimetic Effects 650
Glutamate and Dopamine Action 650
Other Neurotransmitter Action 652
Excitotoxicity 655
61. Ketamine Mediates Psychosis through the Medial Septum, Hippocampus, and Nucleus Accumbens

L. Stan Leung and Jingyi Ma

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>661</td>
</tr>
<tr>
<td>Ketamine in Animals</td>
<td>662</td>
</tr>
<tr>
<td>Conclusions</td>
<td>667</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>668</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>668</td>
</tr>
<tr>
<td>Key Facts</td>
<td>668</td>
</tr>
<tr>
<td>Summary Points</td>
<td>668</td>
</tr>
<tr>
<td>References</td>
<td>669</td>
</tr>
</tbody>
</table>

62. Recreational Use of Ketamine and Its Interaction with NMDA Receptors

Luis Félix, Luis Antunes, Sónia Campos, Carlos Venâncio and Ana Maria Coimbra

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>672</td>
</tr>
<tr>
<td>NMDA Receptor Overview</td>
<td>672</td>
</tr>
<tr>
<td>Ketamine Characterization</td>
<td>674</td>
</tr>
<tr>
<td>Ketamine Pharmacology</td>
<td>674</td>
</tr>
<tr>
<td>Ketamine and Human Abuse</td>
<td>676</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>677</td>
</tr>
<tr>
<td>Conclusions</td>
<td>677</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>677</td>
</tr>
<tr>
<td>Key Facts</td>
<td>678</td>
</tr>
<tr>
<td>Summary Points</td>
<td>678</td>
</tr>
<tr>
<td>References</td>
<td>678</td>
</tr>
</tbody>
</table>

63. Ketamine Usage at Subanesthetic Doses and Psychoactive Effects

Daniel Flack and Elias Dakwar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>681</td>
</tr>
<tr>
<td>History and Pharmacology</td>
<td>681</td>
</tr>
<tr>
<td>Subanesthetic Use</td>
<td>682</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>682</td>
</tr>
<tr>
<td>Psychoactive Effects</td>
<td>683</td>
</tr>
<tr>
<td>Conclusion</td>
<td>685</td>
</tr>
</tbody>
</table>

64. The Acute and Chronic Effects of Ketamine as Revealed by Noninvasive Brain Imaging

Meng Li and Martin Walter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>689</td>
</tr>
<tr>
<td>Methods</td>
<td>690</td>
</tr>
<tr>
<td>Results</td>
<td>691</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>698</td>
</tr>
<tr>
<td>Conclusion</td>
<td>698</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>698</td>
</tr>
<tr>
<td>Key Facts</td>
<td>699</td>
</tr>
<tr>
<td>Summary Points</td>
<td>699</td>
</tr>
<tr>
<td>References</td>
<td>699</td>
</tr>
</tbody>
</table>

65. Psychosis Induced by Phencyclidine (Also Called PCP or Angel Dust)

Tadahiro Katayama, Yoshiaki Suzuki and Eiichi Jodo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Features</td>
<td>703</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>704</td>
</tr>
<tr>
<td>Treatment</td>
<td>704</td>
</tr>
<tr>
<td>Course and Prognosis</td>
<td>704</td>
</tr>
<tr>
<td>Etiology, Pathology, and Pharmacology</td>
<td>704</td>
</tr>
<tr>
<td>Differences Between Acute and Chronic PCP Exposure</td>
<td>705</td>
</tr>
<tr>
<td>Effects of PCP Exposure on Neurotransmission</td>
<td>705</td>
</tr>
<tr>
<td>Implications for Schizophrenia</td>
<td>706</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>710</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>710</td>
</tr>
<tr>
<td>Key Facts About Phencyclidine (PCP)-Induced Psychosis</td>
<td>710</td>
</tr>
<tr>
<td>Summary Points</td>
<td>710</td>
</tr>
<tr>
<td>References</td>
<td>711</td>
</tr>
</tbody>
</table>

66. Serotonin Projections, the Dorsal and Median Raphe Nuclei, and Phencyclidine (Also Called Angel Dust or PCP)

Snezana Kusljic, Wendy Adams and Maarten van den Buuse

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Phencyclidine</td>
<td>714</td>
</tr>
<tr>
<td>Serotonin and Its Physiological Role</td>
<td>715</td>
</tr>
<tr>
<td>Central Serotonergic Neurons and Projections</td>
<td>715</td>
</tr>
</tbody>
</table>
Section D

67. Phencyclidine (PCP)–Induced Deficits in Novel Object Recognition

Nichole M. Neugebauer, Lakshmi Rajagopal, Mei Huang and Herbert Y. Meltzer

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>723</td>
</tr>
<tr>
<td>PCP Models of Cognitive Impairment</td>
<td>724</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>728</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>728</td>
</tr>
<tr>
<td>Key Facts About Phencyclidine and Novel Object Recognition</td>
<td>729</td>
</tr>
<tr>
<td>Summary Points</td>
<td>729</td>
</tr>
<tr>
<td>Disclosures/Acknowledgments</td>
<td>730</td>
</tr>
<tr>
<td>References</td>
<td>730</td>
</tr>
</tbody>
</table>

68. Behavioral and Psychological Effects of *Salvia divinorum*: A Focus on Self-Reported Subjective Acute Behavioral Effects and Laboratory Studies

Peter H. Addy

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>733</td>
</tr>
<tr>
<td>Prevalence and Use Patterns for Salvia divinorum</td>
<td>733</td>
</tr>
<tr>
<td>Self-Reported Subjective Effects of Salvia divinorum</td>
<td>734</td>
</tr>
<tr>
<td>Observed Acute Behavioral Effects of Salvia divinorum</td>
<td>735</td>
</tr>
<tr>
<td>Human Subjects Laboratory Studies with Salvinorin A</td>
<td>735</td>
</tr>
<tr>
<td>Summary of Research</td>
<td>735</td>
</tr>
<tr>
<td>Application to Other Addictions and Substance Misuse</td>
<td>736</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>736</td>
</tr>
</tbody>
</table>

69. The Widely Available Hallucinogenic Plant *Salvia divinorum* and Its Main Component, Salvinorin A

Eduardo R. Butelman and Mary Jeanne Kreek

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>739</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>742</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>743</td>
</tr>
<tr>
<td>Key Facts About the κ-Opioid Receptor (KOP-κ)/Dynorphin System</td>
<td>743</td>
</tr>
<tr>
<td>Summary Points</td>
<td>743</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>744</td>
</tr>
<tr>
<td>References</td>
<td>744</td>
</tr>
</tbody>
</table>

Part IV

Hallucinogens

Section A

General Aspects

71. Hallucinogenic Plants in the Mediterranean Countries

Ioannis D. Passos and Maria Mironidou-Tzouveleki

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phalaris aquatica</td>
<td>761</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>762</td>
</tr>
</tbody>
</table>
Key Facts About *Phalaris aquatica*
Peganum harmala
Applications to Other Addictions and Substance Misuse
Key Facts About *Peganum harmala*
Anadenanthera colubrina and *Anadenanthera peregrina*
Applications to Other Addictions and Substance Misuse
Key Facts About *Anadenanthera colubrina* and *Anadenanthera peregrina*
Plants Containing Atropine and Scopolamine
Applications to Other Addictions and Substance Misuse
Key Facts About Plants Containing Atropine and Scopolamine
Mandragora officinarum
Atropa belladonna
Applications to Other Addictions and Substance Misuse
Hyoscyamus niger
Datura stramonium
Definition of Terms
Summary Points
References

73. **Neurobiology of the Effects of Psilocybin in Relation to Its Potential Therapeutic Targets**
Filip Tyls, Tomas Palenicek and Jiri Horacek
Introduction
Neurobiology of Psilocybin’s Action
Therapeutic Targets
New Insights
Conclusions
Definition of Terms
Key Facts
Summary Points
Acknowledgment
References

74. **A Profile of Those Who Use Hallucinogenic Mushrooms**
Mitchell G. Spring, Rory D. Ostrow and Robert M. Hallock
Introduction
Recreational Use
Self-Medication
Accidental Ingestion
Summary/Discussion
Applications to Other Addictions and Substance Misuse
Definition of Terms
Key Facts About Hallucinogenic Mushroom Use
Summary Points
References

Section B
Molecular and Cellular Aspects

75. **Molecular and Cellular Basis of Hallucinogen Action**
James B. Hanks and Javier González-Maeso
Introduction
Historical Point of View
Chemical Structure
Receptor Target
Signaling Mechanisms
Applications to Other Addictions and Substance Misuse
Definition of Terms
Key Facts of Hallucinogen Action
Summary Points
Acknowledgment
References
76. Hallucinogens: Circuits, Behavior, and Translational Models

James B. Hanks and Javier González-Maeso

Neuronal Circuits 813
Transcriptome Fingerprint as Hallucinogen Predictor 814
Behavior Models 816
Clinical Potential 817
New Hallucinogens and Their Potential Risk 818
Conclusions 818
Applications to Other Addictions and Substance Misuse 818
Definition of Terms 819
Key Facts of Hallucinogen Action 819
Summary Points 819
Acknowledgment 819
References 819

Pharmacokinetic Aspects of LSD and Other Psychedelics 835
The Psychedelic Trip 836
Risks of Psychedelic Drug Use 836
Psychedelic Mystical Experiences 836
Mechanisms of LSD Action 837
Discovery of the Psychedelic Properties of LSD 838
LSD and a “Model Psychosis” 838
LSD as a Chemical Catalyst for Change 839
LSD, Mysticism, and Society 839
LSD and Mystical Experiences in the Twenty-first Century 840
Two Sides of LSD 842
Applications to Addictions and Substance Misuse 842
Definition of Terms 843
Key Facts 843
Summary Points 843
References 843
Further Reading 845

77. Hippocampal Neurogenesis: Effects of Psychedelic Drugs

Briony J. Catlow, Ahmad Jalloh and Juan Sanchez-Ramos

Discovery of Adult Neurogenesis 821
The Anatomy of Hippocampal Neurogenesis 821
Regulation of Neurogenesis in the DG 822
Serotonergic Innervation in the DG 824
Serotonin and Neurogenesis in the DG 824
Effects of Psychedelic Drugs on Hippocampal Neurogenesis 825
The Neurobiological Significance of Altered Hippocampal Neurogenesis Induced by Psychedelic Drugs 828
Summary 828
Applications to Other Addictions and Substance Misuse 829
Definition of Terms 829
Key Facts of Hippocampal Drugs and Neurogenesis 829
Summary Points 829
Acknowledgment 830
References 830

Tolerance to Lysergic Acid Diethylamide: Overview, Correlates, and Clinical Implications

T. Buchborn, G. Grecksch, D.C. Dieterich and V. Höllt

Introduction 846
Tolerance to LSD in Humans 846
Tolerance to LSD in Animals 849
Possible Mechanisms of Tolerance to LSD 852
Pathological and Therapeutic Implications of Repeated LSD Administration 855
Applications to Other Addictions and Substance Misuse 856
Definition of Terms 856
Key Facts of LSD 856
Summary Points 856
References 857

78. Lysergic Acid Diethylamide and Mystical Experiences

Michael Lyvers

Introduction: Lysergic Acid Diethylamide in the Context of Other Psychedelic Agents 835
The History of Lysergic Acid Diethylamide, Serotonin, and Mental Disease 859
Human Models of Schizophrenia and Psychosis Using LSD 861
Early Animal Models 862
Current Rodent Models of Schizophrenia or Psychosis Using LSD 863
Summary 863
Summary Points 864
References 864

Schizophrenia Modeling Using Lysergic Acid Diethylamide

Charles D. Nichols

The History of Lysergic Acid Diethylamide, Serotonin, and Mental Disease 859
Human Models of Schizophrenia and Psychosis Using LSD 861
Early Animal Models 862
Current Rodent Models of Schizophrenia or Psychosis Using LSD 863
Summary 863
Summary Points 864
References 864
81. Psilocybin and Peak Experiences
 Jennifer Lyke
 Introduction 866
 Peak Experiences 866
 Psychological Effects of Psilocybin 867
 Experimental Research 867
 Naturalistic Investigations 868
 Long-Term Effects 871
 Mechanisms 871
 Applications to Other Hallucinogens and Substance Misuse 871
 Conclusion 871
 Definition of Terms 872
 Key Facts of Psilocybin History 872
 Summary Points 873
 References 873

82. Psilocybin as an Inducer of Ego Death and Similar Experiences of Religious Provenance
 Katarzyna Stebelska and Krzysztof Łabuz
 Introduction 875
 The Connection between Schizophrenia-Like Psychosis and Religious Experiences 877
 The Phenomenon of Ego Death Practicing for Social Life 879
 Possible Consequences of Ego Death Practicing for Social Life 879
 Psilocybin-Induced Psychosis and Ego Death 880
 Psilocybin-Induced Cognitive Deficits and Its Oneirogenic Activity 885
 Concluding Remarks 886
 Applications to Other Addictions and Substance Misuse 886
 Definition of Terms 886
 Key Facts of Scientific Interest on Psilocybin as an Adjuvant in Psychotherapy and Religious Practices 887
 Summary Points 887
 References 887

83. Psilocybin, Lysergic Acid Diethylamide, Mescaline, and Drug-Induced Synesthesia
 Berit Brogaard and Dimitria Electra Gatzia
 Introduction 890
 Drug-Induced Synesthetic Experiences and Other Hallucinogenic Effects 892
 The Causal Role of Serotonin Receptors in Hallucinogenic Effects 894
 The Mechanisms of Drug-Induced Synesthesia 897
 Inhibition and Embodied Cognition 898
 Conclusion 899
 Applications to Other Addictions and Substance Misuse 900
 Definition of Terms 900
 Key Facts 900
 Summary Points 901
 References 901

Section D
Methods

84. Assays for Detection of Fungal Hallucinogens Such as Psilocybin and Psilocin
 Katarzyna Stebelska
 Introduction 909
 Preparation of Fungal Samples 911
 Preliminary Qualitative Analysis 911
 Purification and Isolation 914
 Preparation and Preliminary Purification of Body Fluid Samples 914
 Derivatization of a Sample 917
 Quantitative Analysis 917
 Applications to Other Addictions and Substance Misuse 923
 Definition of Terms 923
 Key Facts About Psilocin/Psilocybin Isolation From Natural Sources and Findings Regarding Their Biosynthesis 924
 Summary Points 924
 References 924

Part V
Anabolic Steroids, Inhalants and Solvents

Section A
General Aspects

85. Inhalant Use Disorders in the United States
 Scott E. Bowen, Matthew O. Howard and Eric L. Garland
 Epidemiology of Inhalant Use in the United States 931
 Acute Inhalant Intoxication 932
 Inhalant Use Disorder 932
 Natural History of Inhalant Use Disorder 934
 Correlates of Inhalant Use 934
 Pharmacology and Toxicology 935
 Neuropathology and Other Organ Pathology 937
 Screening and Assessment 939
Section B
Molecular and Cellular Aspects

86. The Neuropathology of Adolescent Anabolic/Androgenic Steroid Abuse: Altered Development of the Reciprocal Hypothalamic Neural Circuit Controlling Aggressive Behavior
Richard H. Melloni Jr., Thomas R. Morrison and Lesley A. Ricci

Introduction	945
Applications to Other Addictions and Substance Misuse	954
Definition of Terms	954
Key Facts	955
Summary Points	955
Acknowledgment	955
References	955

87. Addiction to, Neurobiology of, and Genetics of Inhalants
Rasmon Kalayasiri and Michael Maes

Introduction	958
Mechanisms of Action	959
Genetic Markers for Inhalant Abuse	960
Applications to Other Addictions and Substance Misuse	961
Definition of Terms	961
Key Facts of Inhalant Addiction	962
Summary Points	962
References	962

88. The Effects of Abused Inhalants on Neurons Within the Addiction Neurocircuitry of the Brain
John J. Woodward and Jacob T. Beckley

Introduction	964
Definition and Classes of Abused Inhalants	964
Patterns of Abused Inhalant Use	965

Section C
Structural and Functional Aspects

89. Anabolic Androgenic Steroids and Stroke
Carlos García Esperón, Elena López-Cancio M., Pablo García Bermejo and Antonio Dávalos E.

Stroke	981
Anabolic Androgenic Steroids	982
Stroke and AAS	983
Stroke Associated With Other Drug Addictions	984
Conclusions	987
Definition of Terms	988
Key Facts of Stroke	988
Summary Points	988
References	988

90. Testosterone and Striatal Dopaminergic Neurotoxicity
Dean E. Dluzen

<p>| Introduction | 991 |
| Testosterone: Neurotoxic or Neuroprotectant Agent? | 991 |
| Testosterone and NSDA Neurotoxicity: Background | 991 |
| Testosterone or Estrogen? | 992 |
| Testosterone: Modulation of Striatal Dopaminergic Function | 992 |
| Testosterone: Neurotoxicity Mechanisms as Revealed in Other Models | 994 |
| Testosterone: Intracellular versus Membrane Effects | 994 |
| Applications to Other Addictions and Substance Misuse | 994 |
| Definition of Terms | 995 |
| Key Facts | 995 |
| Summary Points | 995 |
| References | 995 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.</td>
<td>Acute and Long-Term Toxicity Caused by Addictive Inhalation of Nitrous Oxide and Impact on Neuropathology</td>
<td>Barbara Potocka-Banaś, Teresa Dembińska and Krzysztof Borowiak</td>
<td>998-1002</td>
</tr>
<tr>
<td>92.</td>
<td>Toluene Abuse and White Matter Degeneration</td>
<td>Marc R. Del Bigio</td>
<td>1004-1009</td>
</tr>
<tr>
<td>93.</td>
<td>Chronic Toluene Exposure and the Hippocampal Structure in Adolescent and Adult Brains</td>
<td>Mzia Zhvania, Nadezhda Japaridze, Lela Chilachava, Lia Gelazonia and Nino Pochkhidze</td>
<td>1012-1019</td>
</tr>
<tr>
<td>94.</td>
<td>Addictions in India</td>
<td>Debasish Basu, Abhishek Ghosh and Siddharth Sarkar</td>
<td>1025-1033</td>
</tr>
<tr>
<td>95.</td>
<td>Correlates and Gender Differentials of Opium Use Among Tribal Communities</td>
<td>Himanshu K. Chaturvedi, Ram C. Bajpai and Arvind Pandey</td>
<td>1036-1037</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Initiation</td>
<td>1041</td>
</tr>
<tr>
<td>Risk of Opium Use</td>
<td>1041</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>1043</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1043</td>
</tr>
<tr>
<td>Key Facts</td>
<td>1043</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1043</td>
</tr>
<tr>
<td>References</td>
<td>1043</td>
</tr>
<tr>
<td>Further Reading</td>
<td>1044</td>
</tr>
<tr>
<td>96. Genetic Aspects of Smoking Behavior in the Japanese Population</td>
<td></td>
</tr>
<tr>
<td>Naomi Sato, Tomonori Sato and Haruhiko Sugimura</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1046</td>
</tr>
<tr>
<td>Nicotine-Metabolizing Enzymes</td>
<td>1047</td>
</tr>
<tr>
<td>Nicotinic Acetylcholine Receptors</td>
<td>1049</td>
</tr>
<tr>
<td>Dopamine Pathway</td>
<td>1050</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>1051</td>
</tr>
<tr>
<td>Genetic Polymorphisms and Polymorphisms in Smoking Behaviors</td>
<td>1051</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>1051</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1052</td>
</tr>
<tr>
<td>Key Facts of the Measurement of Nicotine Addiction</td>
<td>1052</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1052</td>
</tr>
<tr>
<td>References</td>
<td>1052</td>
</tr>
<tr>
<td>97. New Designer Drugs in Japan</td>
<td></td>
</tr>
<tr>
<td>Ruri Kikura-Hanajiri</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1055</td>
</tr>
<tr>
<td>The Prevalence of New Designer Drugs and Their Legal Status in Japan</td>
<td>1056</td>
</tr>
<tr>
<td>Conclusions</td>
<td>1062</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>1062</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1062</td>
</tr>
<tr>
<td>Key Facts of the Measurement of Nicotine Addiction</td>
<td>1062</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1063</td>
</tr>
<tr>
<td>References</td>
<td>1063</td>
</tr>
<tr>
<td>98. Addictions in South America</td>
<td></td>
</tr>
<tr>
<td>Martin Nizama-Valladolid</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1066</td>
</tr>
<tr>
<td>Production</td>
<td>1066</td>
</tr>
<tr>
<td>Trafficking and Distribution</td>
<td>1068</td>
</tr>
<tr>
<td>Consumption</td>
<td>1068</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1073</td>
</tr>
<tr>
<td>Key Facts</td>
<td>1073</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1073</td>
</tr>
<tr>
<td>References</td>
<td>1073</td>
</tr>
<tr>
<td>Further Reading</td>
<td>1074</td>
</tr>
<tr>
<td>99. Inhalant Drug Use and Street Youth: Ethnographic Insights from Mexico City</td>
<td></td>
</tr>
<tr>
<td>Roy Gigengack</td>
<td></td>
</tr>
<tr>
<td>Normalcy of Inhalants in Mexico City</td>
<td>1075</td>
</tr>
<tr>
<td>Solvents and Glues</td>
<td>1076</td>
</tr>
<tr>
<td>Inhalant Use and Youth</td>
<td>1078</td>
</tr>
<tr>
<td>The “Taste” for “That Junk”</td>
<td>1079</td>
</tr>
<tr>
<td>Vicio and Inhalant Fiends</td>
<td>1081</td>
</tr>
<tr>
<td>Application to Other Addictions and Substance Use</td>
<td>1082</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1082</td>
</tr>
<tr>
<td>Key Facts About Inhalant Drug Use</td>
<td>1082</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1083</td>
</tr>
<tr>
<td>References</td>
<td>1083</td>
</tr>
<tr>
<td>100. Illegal Stimulants Use in Brazil: Epidemiological Aspects and Possible Reasons for High Consumption of Crack/Cocaine and Amphetamine-type Stimulants</td>
<td></td>
</tr>
<tr>
<td>Renata Rigacci Abdalla, Raul Caetano, Luciana Massaro, Sandro Mitsuhiro, Ilana Pinsky, Ronaldo Ramos Laranjeira and Clarice Sandi Madruga</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1085</td>
</tr>
<tr>
<td>Results</td>
<td>1086</td>
</tr>
<tr>
<td>Final Considerations</td>
<td>1088</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1092</td>
</tr>
<tr>
<td>Key Facts About Cocaine Use in Brazil</td>
<td>1092</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1092</td>
</tr>
<tr>
<td>References</td>
<td>1092</td>
</tr>
<tr>
<td>101. Addiction in Thailand</td>
<td></td>
</tr>
<tr>
<td>Rasmon Kalayasiri</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1094</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1094</td>
</tr>
<tr>
<td>Tobacco</td>
<td>1095</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>1096</td>
</tr>
<tr>
<td>Cannabis, Kratom, Inhalants, Opioids</td>
<td>1097</td>
</tr>
<tr>
<td>Applications to Other Addictions and Substance Misuse</td>
<td>1098</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>1098</td>
</tr>
<tr>
<td>Summary Points</td>
<td>1098</td>
</tr>
<tr>
<td>References</td>
<td>1098</td>
</tr>
</tbody>
</table>
102. Misuse of Benzodiazepines in France

Joëlle Micallef, Elisabeth Frauger and Maryse Lapeyre-Mestre

Introduction 1101
Overview of Benzodiazepine Use in Europe and in France 1101
Pharmacoepidemiological View of Benzodiazepine Exposure in France 1102
Characteristics of Benzodiazepine Use among Population Subgroups 1103

BZD Diversion in France 1105
Interventions and Strategies to Reduce Benzodiazepine Misuse in France 1108
Conclusion 1108
Key Facts 1108
Summary Points 1109
References 1109

Index 1113
List of Contributors

Renata Rigacci Abdalla National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Tomohiro Abekawa Department of Psychiatry, Kotoku-kai, Aiko Hospital, Matsue, Japan

Przemyslaw Adamczyk Department of Community Psychiatry, Collegium Medicum of the Jagiellonian University, Kraków, Poland

Wendy Adams Department of Psychology, University of British Columbia, Vancouver, BC, Canada

Peter H. Addy Yale University School of Medicine, West Haven, CT, USA

Yukio Ago Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan

María Álvaro-Bartolomé Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain

Martina Andellini Medical Physics Department, Enterprise Risk Management, Bambino Gesù Children’s Hospital, Rome, Italy

Matthew E. Andrzejewski Department of Psychology, University of Wisconsin–Whitewater, Whitewater, WI, USA

Gustavo A. Angarita Department of Psychiatry, Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA

Mariana Angoa-Pérez Research & Development Service, John D. Dingell VA Medical Center and Department of Psychiatry & Behavioral Neurosciences, Detroit, MI, USA

John H. Anneken Department of Psychiatry, Wayne State University, Detroit, MI, USA

Luís Antunes Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (I3S), University of Porto (UP), Porto, Portugal

Yalda Hosseinzadeh Ardakani Biopharmaceutics and Pharmacokinetics Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Mustafa Aydin Department of Paediatrics-Neonatology, Firat University School of Medicine, Elazig, Turkey

Nima Badri Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

Ram C. Bajpai National Institute of Medical Statistics, Indian Council of Medical Research, New Delhi, India

Daniel José Barbosa UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Cell Division Mechanisms Group, Institute for Molecular and Cell Biology – IBMC, Porto, Portugal

Alfonso Barrós-Loscertales Dpto. Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castellon, Spain

Debasish Basu Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Drug De-addiction & Treatment Centre, Chandigarh, India

Benjamin Becker Key Laboratory for NeuroInformation, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China

Jacob T. Beckley Department of Neurology, University of California – San Francisco, San Francisco, CA, USA

Pablo García Bermejo Stroke Medicine Department, Airedale General Hospital, West Yorkshire, UK

Lais F. Berro Department of Psychobiology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Amanda L. Blaker Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA

Ede Bodoki Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
Krzysztof Borowiak Department of Clinical and Forensic Toxicology, Pomeranian Medical University, Szczecin, Poland

Scott E. Bowen Behavioral and Cognitive Neuroscience, Department of Psychology, Wayne State University, Detroit, MI, USA

Patricia A. Broderick Department of Physiology, Pharmacology & Neuroscience, The City University of New York School of Medicine, The Sophie Davis School of Biomedical Education, The City College of New York; Department of Biology, Neuroscience Division, The City University of New York Graduate School; Department of Neurology, New York University Langone Medical Center and Comprehensive Epilepsy Center, New York, NY, USA

Berit Brogaard Brogaard Lab for Multisensory Research, University of Miami, Coral Gables, FL, USA; Department of Philosophy, University of Oslo, Oslo, Norway

Giovana Brollese Center for Drug and Alcohol Research, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil

T.M. Brunt Trimbos Institute (Netherlands Institute of Mental Health and Addiction), Utrecht, The Netherlands

T. Buchborn Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany

Eduardo R. Butelman Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA

Raul Caetano University of Texas School of Public Health, Dallas, TX, USA

Sónia Campos Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (I3S), University of Porto (UP), Porto, Portugal

Sofija V. Canavan University of Chicago, Chicago, IL, USA

João Paulo Capela UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; FP-ENAS (Unidade de Investigação UFP em energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal

Manolo Carta Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, Monserrato, Italy

Félix Carvalho UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal

Lucia Carvelli Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine, Grand Forks, ND, USA

Briony J. Catlow University of South Florida, Tampa, FL, USA

Young-Tae Chang Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, Singapore; Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore

Himanshu K. Chaturvedi National Institute of Medical Statistics, Indian Council of Medical Research, New Delhi, India

Lela Chilachava Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia

Aree Choodum Faculty of Technology and Environment, Prince of Songkla University, Phuket, Thailand

Shannon J. Clough Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA

Vanessa Coelho-Santos Institute of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Ana Maria Coimbra Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal

Stuart A. Collins Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA

Brú Cormand Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain

Albert Dahan Department of Anaesthesiology, Leiden University Medical Center, Leiden, The Netherlands

Elias Dakwar Division on Substance Abuse, Columbia College of Physicians and Surgeons, New York State Psychiatric Institute, New York, NY, USA

Antonio Dávalos E. Neurosciences Department, Germans Trias i Pujol Hospital, Universitat Autònoma Barcelona, Badalona (Barcelona), Spain
Cor de Jong Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA) and Radboud University Nijmegen, Nijmegen, The Netherlands

Maria de Lourdes Bastos UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal

Marc R. Del Bigio Department of Pathology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Diagnostic Services Manitoba, Winnipeg, MB, Canada; Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada

Teresa Dembińska Department of Clinical and Forensic Toxicology, Pomeranian Medical University, Szczecin, Poland

Ugur Deveci Department of Paediatrics, Firat University School of Medicine, Elazig, Turkey

D.C. Dieterich Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany

Boukje Dijkstra Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA) and Radboud University Nijmegen, Nijmegen, The Netherlands

Dean E. Dluzen Department of Life Sciences, John A. Logan College, Carterville, IL, USA

Margarita L. Dubocovich Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA

Carlos García Esperón Neurology Department, Cantonal Hospital Aarau, Aarau, Switzerland

Chun-Kai Fang Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan

Vahid Farnia Substance Abuse Prevention Research Center, Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran

Luís Félix Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (I3S), University of Porto (UP), Porto, Portugal

Noelia Fernández-Castillo Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain

Daniel Flack Division on Substance Abuse, Columbia College of Physicians and Surgeons, New York State Psychiatric Institute, New York, NY, USA

Elisabeth Frauger Center of Addictovigilance Paca Corse, Department of Clinical Pharmacology and Pharmacovigilance, APHM, Neurosciences Institut, UMRS CNR 7289, PIICI, Aix Marseille University, Marseille, France

Joel Frohlich Center for Autism Research and Treatment, University of California, Los Angeles, CA, USA

Daniela F. Fukushima Department of Pharmacology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Daniel A. García IIBYT (CONICET-Universidad Nacional de Córdoba) Cátedra de Química Biológica, Dep. Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina

M. Julia García-Fuster Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain

Jesús A. García-Sevilla Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain

Eric L. Garland College of Social Work, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

Dimitria Electra Gatzia Department of Philosophy, The University of Akron Wayne College, Orrville, OH, USA

Lia Gelazonia Laboratory of Neuron Ultrastructure and Nanostructure, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia

Abhishek Ghosh Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Drug De-addiction & Treatment Centre, Chandigarh, India

Roy Gigengack Department of Social and Cultural Anthropology, Vrije Universiteit; VU University Amsterdam, Amsterdam, The Netherlands

Senobar Golshani Substance Abuse Prevention Research Center, Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran

Joana Gonçalves Institute for Biomedical Imaging and Life Science (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Javier González-Maeo Virginia Commonwealth University School of Medicine, Richmond, VA, USA

Ingmar Gorman Department of Social Psychiatry, National Institute of Mental Health, Klecany, Czech Republic
David K. Grandy Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA

G. Grecksch Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany

Alissa M. Greer School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada

Gary A. Gudelsky James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA

Casey Guillot Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA

Joshua M. Gulley Department of Psychology and Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA

Yoko Hagino Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Robert M. Hallock Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA; Psychology Department, Purdue University Calumet, Hammond, IN, USA

Emily R. Hankosky Department of Psychology, University of Illinois, Urbana-Champaign, IL, USA

James B. Hanks Icahn School of Medicine at Mount Sinai, New York, NY, USA

Carl Hart Department of Psychology, Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA

H.W.W. Hasselmann Department of Psychiatry, Charité University Medicine Berlin, Berlin, Germany

Hirotake Hida Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan

Sarah E. Hodges Yale University School of Medicine, New Haven, CT, USA

Nicole Holder Department of Psychology, University of Wisconsin–Whitewater, Whitewater, WI, USA

André W. Hollais Department of Pharmacology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil

V. Höltt Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany

Jiri Horacek National Institute of Mental Health (NIMH), Klicany, Czech Republic; 3rd Medical Faculty, Charles University in Prague, Prague, Czech Republic

Matthew O. Howard School of Social Work, University of North Carolina, Chapel Hill, NC, USA

Fleur Margaret Howells Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Skye Hsin-Hsien Yeh Brain Research Center and Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan

Mei Huang Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Anthony J. Hutchinson Department of Pharmacology & Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, USA

Jeng-Jong Hwang Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan

Kazutaka Ikeda Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Jennifer E. Iudicello The University of Houston, Houston, TX, USA

Ahmad Jalloh University of South Florida, Tampa, FL, USA

Bardia Jamali Biopharmaceutics and Pharmacokinetics Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Nadezhda Japaridze Laboratory of Neuron Ultrastructure and Nanostructure, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia; New Vision University, Tbilisi, Georgia

Eiichi Jodo Department of Systems Neuroscience, Fukushima Medical University, School of Medicine, Fukushima, Japan

Chantele Joordens Center for Addictions Research of British Columbia, University of Victoria, Victoria, BC, Canada

Rasmon Kalayasiri Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Rama Kamal Novadic-Kentron Addiction Center, Vught, The Netherlands

Etsuko Kamegaya Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Tadahiro Katayama Department of Systems Neuroscience, Fukushima Medical University, School of Medicine, Fukushima, Japan

Adam W. Keasling Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS, USA

Ruri Kikura-Hanajiri Division of Pharmacognocy, Phytochemistry and Narcotics, National Institute of Health Sciences, Tokyo, Japan
Matthew Kirkpatrick Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA

Béla Kiss Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania

Rita Kočárová Department of Social Psychiatry, National Institute of Mental Health, Kłecany, Czech Republic

Saurabh S. Kokane Department of Psychology, University of Texas at Arlington, Arlington, TX, USA

Mary Jeanne Kreek Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA

Peter R. Kufahl Department of Psychology, Arizona State University, Tempe, AZ, USA

Donald M. Kuhn Research & Development Service, John D. Dingell VA Medical Center and Department of Psychiatry & Behavioral Neurosciences, Detroit, MI, USA

Takeshi Kumazawa Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan

Snezana Kusljic School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia

Krzysztof Łabuz Unit for Treatment of Addiction, Sahlgrenska University Hospital, Gothenburg, Sweden

Maryse Lapeyre-Mestre Département de Pharmacologie médicale et clinique, CHU de Toulouse, équipe de Pharmacopédiométrie (INSERM 1027), Université de Toulouse, Toulouse, France

Ronaldo Ramos Laranjeira National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Andrew J. Lawrence Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia

Byung Dae Lee Department of Psychiatry, College of Medicine, Pusan National University & Hospital, Busan, South Korea

Ricardo Alexandre Leitão Institute of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBIL), Faculty of Medicine, University of Coimbra, Coimbra, Portugal

L. Stan Leung Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada

Chiang-Shan R. Li Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartment Neuroscience Program, Yale University, New Haven, CT, USA

Meng Li Department of Neurology, Otto v. Guericke University, Magdeburg, Saxony-Anhalt, Germany; Clinical Affective Neuroimaging Laboratory, Department for Behavioral Neurology, Leibniz Institute for Neurobiology, Otto v. Guericke University, Magdeburg, Saxony-Anhalt, Germany

Qing Lin Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA

Felicia Loghin Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania

Elena López-Cancio M. Neurosciences Department, Germans Trias i Pujol Hospital, Universidad Autónoma Barcelona, Badalona (Barcelona), Spain

Jennifer Lyke School of Social and Behavioral Sciences, Stockton University, Galloway, NJ, USA

Michael Lyvers School of Psychology, Bond University, Gold Coast, QLD, Australia

Scott Macdonald Center for Addictions Research of British Columbia, University of Victoria, Victoria, BC, Canada

Clarice Sandi Madruga National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Michael Maes Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Timothy J. Maher Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston MA, USA

Jingyi Ma Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada

Chitra D. Mandyam Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA

Claudia Mardones Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile

Gina Martin University of St Andrews, St Andrews, Fife, UK

Luciana Massaro National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil
List of Contributors

Toshio Matsuda Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan

M.T.B. McMaster Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Academic Medical Center, Amsterdam, The Netherlands

Richard H. Melloni Jr. Department of Psychology, Northeastern University, Boston, MA, USA

Herbert Y. Meltzer Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Joëlle Micallef Center of Addictovigilance Paca Corse, Department of Clinical Pharmacology and Pharmacovigilance, APHM, Neurosciences Institut, UMRS CNR 7289, PIICI, Aix Marseille University, Marseille, France

Maria Mironidou-Tzouveleki A’ Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Masayoshi Mishina Ritsumeikan University Research Organization of Science and Technology, Kusatsu, Japan

Sandro Mitsuhiro National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Christian Montag Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany

Elisabeth Moore Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA

Erin E. Morgan The University of Houston, Houston, TX, USA

Peter T. Morgan Department of Psychiatry, Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA

Satoshi Morimoto Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Thomas R. Morrison Department of Psychology, Northeastern University, Boston, MA, USA

Anna Moszczynska Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA

Akihiro Mouri Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan

Antonio Napolitano Medical Physics Department, Enterprise Risk Management, Bambino Gesù Children’s Hospital, Rome, Italy

Nichole M. Neugebauer Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Niamh NicDaeid Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Dundee, UK

Charles D. Nichols Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA

Martin Nizama-Valladolid Department of Executive Management of Investigation, Teaching and Specialized Care for Addictions, National Institute of Mental Health “Honorio Delgado-Hideyo Noguchi”, Lima, Peru

Yukihiro Noda Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan; Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan

Nicole A. Northrop Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA

M. Foster Olive Department of Psychology, Arizona State University, Tempe, AZ, USA

Rory D. Ostrow Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA

Linda C.J. Oudejans Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands

Tomas Palenicek National Institute of Mental Health (NIMH), Klecany, Czech Republic; 3rd Medical Faculty, Charles University in Prague, Prague, Czech Republic

Arvind Pandey National Institute of Medical Statistics, Indian Council of Medical Research, New Delhi, India

Mariusz Papp Behavioral Pharmacology Laboratory, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

Ioannis D. Passos A’ Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Madan Kumar Paudel Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Maria A. Perillo IIBYT (CONICET-Universidad Nacional de Córdoba) Cátedra de Quimica Biológica, Depto. Quimica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Christina J. Perry Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia

Nataša Petronijević Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia

Siripan Phattanarudee Department of Pharmacy Practice, Chulalongkorn University, Pathumwan, Bangkok, Thailand

Ilana Pinsky National Research Institute on Alcohol and Drugs (INPAD), Psychiatry Department – Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Nino Pochkhidze Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia

Anca Pop Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania

Marianne Possa Center for Drug and Alcohol Research, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil

Barbara Potocka-Banaś Department of Clinical and Forensic Toxicology, Pomeranian Medical University, Szczecin, Poland

Boris B. Quednow Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland

Nevena V. Radonjić Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA

Lakshmi Rajagopal Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Marta Ribasés Psychiatric Genetics Unit, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain; Institut de Recerca Vall d’Hebron (IRVH), Barcelona, Catalonia, Spain

Lesley A. Ricci Department of Psychology, Northeastern University, Boston, MA, USA

Carola Vergara Rosales Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile

Mohammad-Reza Rouini Biopharmaceutics and Pharmacokinetics Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Juan Sanchez-Ramos University of South Florida, Tampa, FL, USA

Renan Santos-Baldaia Department of Pharmacology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Siddharth Sarkar Department of Psychiatry, All India Institute of Medical Sciences, National Drug Dependence Treatment Centre, Delhi, India

Kaori Sasaki-Tabata Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Naomi Sato Department of Clinical Nursing, Hamamatsu University School of Medicine, Shizuoka, Japan

Tomonori Sato Department of Shizuoka Physical Therapy, Faculty of Health Science, Tokoha University, Shizuoka, Japan

Wakako Sawada Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Silvia Bassani Schuch Center for Drug and Alcohol Research, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil

Setsuko Sekita Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima bunri University, Sanuki City, Kagawa, Japan

Eduardo Alvear Serrano Departamento de Laboratorio Servicio Médico Legal, Iquique, Región de Tarapacá, Chile

Behjat Sheikholeslami Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran

Osamu Shirota Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima bunri University, Sanuki City, Kagawa, Japan

Ana Paula Silva Institute for Biomedical Imaging and Life Science (IBILI); Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Nicola Simola Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy

Derek P. Simon Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA

Ichiro Sora Department of Psychiatry, Graduate School of Medicine, Kobe University, Kobe, Japan

Anne Orgler Sordi Center for Drug and Alcohol Research, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil

Mitchell G. Spring Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
Katarzyna Stebelska Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Opole, Poland

Haruhiko Sugimura Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan

Yoshiaki Suzuki Department of Systems Neuroscience, Fukushima Medical University, School of Medicine, Fukushima, Japan

Kazuhiro Takuma Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan

Hiroyuki Tanaka Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

Meshkat Torkamanian Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

Pasarapa Towiwat Department of Pharmacology and Physiology, Chulalongkorn University, Pathumwan, Bangkok, Thailand

Anahi V. Turina IIBYT (CONICET-Universidad Nacional de Córdoba) Cátedra de Química Biológica, Depto. Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina

Filip Tyls National Institute of Mental Health (NIMH), Klecany, Czech Republic; 3rd Medical Faculty, Charles University in Prague, Prague, Czech Republic

J.G.C. van Amsterdam Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Academic Medical Center, Amsterdam, The Netherlands

W. van den Brink Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Academic Medical Center, Amsterdam, The Netherlands

Maarten van den Buuse School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia

John Darrell Van Horn Keck School of Medicine, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA

Martijn van Noorden Leiden University Medical Center, Leiden, The Netherlands

Monique van Velzen Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands

Carlos Venâncio Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal

Dietrich von Baer Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile

Lisia von Diemen Center for Drug and Alcohol Research, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil

Martin Walter Department of Neurology, Otto v. Guericke University, Magdeburg, Saxony-Anhalt, Germany; Clinical Affective Neuroimaging Laboratory, Department for Behavioral Neurology, Leibniz Institute for Neurobiology, Otto v. Guericke University, Magdeburg, Saxony-Anhalt, Germany; Department of Psychiatry, Otto v. Guericke University, Magdeburg, Saxony-Anhalt, Germany; Department of Psychiatry, University of Tübingen, Baden-Württemberg, Germany

Fang Wang Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China

Erica Weber The University of Houston, Houston, TX, USA

Petr Winkler Department of Social Psychiatry, National Institute of Mental Health, Klecany, Czech Republic

Steven Paul Woods The University of Houston, Houston, TX, USA

John J. Woodward Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA

Chun-Fu Wu Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China

Raphael Wuo-Silva Department of Pharmacology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil

Wang Xu Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, Singapore; Singapore Peking Oxford Research Enterprise (SPORE), NUS Environmental Research Institute (NERI), Singapore

Bryan K. Yamamoto Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA

Hideko Yamamoto Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Toshifumi Yamamoto Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Laboratory of Molecular Psychopharmacology, Graduate School of Nanosciences, Yokohama City University, Yokohama, Japan
Jing-Yu Yang Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China

Duanting Zhai Department of Chemistry & MedChem Program of Life Sciences Institute, National University of Singapore, Singapore

Mzia Zhvania Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia; Laboratory of Neuron Ultrastructure and Nanostructure, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia

Jordan K. Zjawiony Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS, USA
This page intentionally left blank
Preface

The well-being of the individual is highly dependent on maintaining neurophysiological processes in a functional state but also on the ability to adapt to changes in the internal and external environments. However, adaptive changes may be pathological in some circumstances, with devastating consequences for the individual. Triggers for these neurological abnormalities are varied and may be due to life stages (e.g., aging), nutrition (e.g., nutrient deficiency or excess such as iodine and iron, respectively), trauma (e.g., metabolic or physical trauma, such as that due to hypoglycemia or blunt instruments), or drugs of addiction and substance misuse (e.g., nicotine, alcohol, caffeine, inhalants, and myriad others). The latter are common and preventable to some extent. For example, in the United States alone, there are an estimated 22 million illegal drug users. Of these, 60 million use tobacco, and 50 million misuse alcohol. Millions of individuals are also addicted to, or misuse, caffeine and prescription or over-the-counter medications.

As a consequence of addictions and substance misuse, adverse changes occur in affected tissues. These range from molecular and cellular perturbations to structural and functional abnormalities. It is possible that some of the science behind these changes may be applicable to other modes of neurophysiological imbalance. That is, lessons and features in one form of addiction and substance misuse may be transferable to another. Indeed, there are other forms of nonsubstance addictions such as gambling, gaming, and workaholism that may share common features, mechanisms, or outcomes. Understanding commonality provides a platform for studying specific addictions in more depth and allows one to speculate about new modes of understanding, causation, prevention, and treatment.

There is some difficulty in describing changes in human tissues, as this sort of information is rather limited in scope and analytical depth. Preclinical or nonclinical studies have advanced the detailed understanding of addictions and substance misuse considerably. These range from isolated structures, cells, and perfusions to invertebrates, rodents, and primates. It is thus essential to have both clinical and preclinical information within the same authoritative textual platform to advance our understanding of addictions and substance misuse.

Understanding neuropathology by itself can be somewhat problematic, especially in terms of addictions. This information needs to be placed within its wider context—from procurement of drugs, to altered behavior and psychosocial conditions. For some substances, there is very little molecular information, whereas for other drugs there is an abundance. The information on behavioral and psychosocial aspects is similarly divergent among the different addictions. Thus, any textual information on addictions and substance misuse/use requires a scientific continuum of information; with neurological features as a central core.

However, marshalling all the aforementioned information is somewhat difficult due to the wide array of material. To address this, the Editor has compiled The Neuropathology of Drug Addictions and Substance Misuse. It has three separate volumes:

Volume 1: Foundations of Understanding, Tobacco, Alcohol, Cannabinoids, and Opioids

Volume 2: Stimulants, Club and Dissociative Drugs, Hallucinogens, Steroids, Inhalants, and International Aspects

Volume 3: General Processes and Mechanisms, Prescription Medications, Caffeine and Areca, Polydrug Misuse, Emerging Addictions, and Nondrug Addictions

In compiling these volumes, we interspersed chapters to aid the holistic understanding of addictions and substance misuse. We present material not only on specific substances but also in major sections on the following:

- **Foundations for Understanding Substance Misuse and Their Effects**
- **Emerging Addictions and Drugs of Abuse**
- **International Aspects**
- **Principles of Addictions, Overviews, Detailed Processes, and Mechanisms**
- **Dual and Polydrug Abuse**
- **Nondrug Addictions as Comparative Neuropathology**

For Volume 1, the main parts are:

1—[1] Setting the Scene: Foundations for Understanding Substance Misuse and Their Effects
1—[2] Tobacco
1—[3] Alcohol
1—[4] Cannabinoids
1—[5] Opioids

For Volume 2, the main parts are:

2—[1] Stimulants
2—[2] Club Drugs
2—[3] Dissociative Drugs
2—[4] Hallucinogens
2—[5] Anabolic Steroids, Inhalants, and Solvents
2—[6] International Aspects

For Volume 3, the main Parts are:

3—[2] Prescription Medications
3—[3] Caffeine and Areca (Betal Nut)
3—[4] Dual and Polydrug Abuse
3—[5] Emerging Addictions and Drugs of Abuse
3—[6] Nondrug Addictions as Comparative Neuropathology

Each part is split into different subsections:

General Aspects
Molecular and Cellular Aspects
Structural and Functional Aspects
Methods

It is tempting to focus exclusively on detection, prevention, and treatment. However, this would far extend the remit of the book. For example, the analysis of markers in alcoholism itself would merit a single book, as would public health prevention or treatment regimens. Instead, the book is focused on neuropathology with upstream and downstream causative scenarios, effects, and consequences. In the section General Aspects, basic information is provided to place the substance in context or to set the scientific scene. The section Molecular and Cellular Aspects provides greater detail. The section Structural and Functional aspects is more broad-based and includes imaging, psychosocial, and behavioral aspects and other wider information. The section Methods contains selective techniques for screening and/or analysis. Of course, these are generalized divisions, and this is recognized by the Editor. Some articles in one section may also be well suited to many other sections. Indeed, in a few cases we have located chapters within sections to complement other chapters; to impart a broader example of ideas, coverage, or concepts; to provide a more in-depth discourse that may be relevant to other drugs and their interactions; or to provide a greater understanding of substance and poly-substance misuse in general. However, the well-structured and professional index, provided by Elsevier, addresses issues in locating information, and so relevant material can be quickly found.

Each chapter has the following subheadings:

Applications to Other Addictions and Substance Misuse
Definition of Terms
Key Facts
Summary Points

These subheadings encompass unique features in the book that bridge the intellectual divide, so experts in one area of addiction may become more knowledgeable in another. These features will be very useful for the novice, student, or newly qualified health care professional. Others who wish to gain a broader understanding of addictions and substance misuse will also find these features of benefit.

The subheading Application to Other Addictions and Substance Misuse is intended to provide practical, speculative, or broader information. This is particularly useful when applied to those addictions in which there is a paucity of scientific material. For example, detailed molecular or functional information gathered from studying one addiction may be applicable to another.

Contributors are either international or national experts, leaders in the field, or trendsetters, and from respected institutions. Emerging fields of addictions and substance misuse are also incorporated in Neuropathology of Drug Addictions and Substance Misuse. This book is essential reading for addiction scientists, health care professionals, research scientists, molecular and cellular biochemists, and medical professionals including physicians and other practitioners, as well as those interested in health in general. It is also designed for professors, teachers, and lecturers; undergraduates, graduates, postgraduates, and libraries.

The Editor
Chapter 39

MDMA (Ecstasy) and Gene Expression in the Brain: An Overview of Microarray and Candidate Gene Studies Assessing Transcriptional Changes in Rodents

Noelia Fernàndez-Castillo¹,²,³, Marta Ribasés⁴,⁵, Bru Cormand¹,²,³
¹Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; ²Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; ³Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; ⁴Psychiatric Genetics Unit, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain; ⁵Institut de Recerca Vall d’Hebron (IRVH), Barcelona, Catalonia, Spain

Abbreviations

BCL B cell leukemia/lymphoma
BDNF Brain-derived neurotrophic factor
CREB cAMP response element-binding protein
ERK Extracellular signal-regulated kinase
Fos FBJ osteosarcoma oncogene
GABA Gamma-aminobutyric acid
IEGs Induced early genes
KO Knockout
LTD Long-term depression
LTP Long-term potentiation
MAPK Mitogen-activated protein kinase
MDMA 3,4-Methylenedioxymethamphetamine (ecstasy)
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NMDA N-Methyl-d-aspartate
SERT Serotonin transporter

INTRODUCTION

MDMA or 3,4-methylenedioxymethamphetamine (ecstasy) is a recreational drug of abuse that is widely used among adolescents and young adults. MDMA is a psychostimulant that induces euphoria, self-confidence, friendliness, empathy, and happiness in humans. MDMA also induces hyperthermia, which can eventually lead to toxicity and death. Chronic exposure to MDMA is related to hallucinations and to verbal, visual, and memory impairment, as well as psychiatric disorders such as psychosis and depression in humans (Baylen & Rosenberg, 2006). Much evidence supports the neurotoxic effects of MDMA in serotonergic neurons and the degeneration of neuronal fibers (dopaminergic neurons in mice) (Green, Mechan, Elliott, O’Shea, & Colado, 2003). MDMA has a high affinity for the serotonin transporter (SERT) and it increases serotonin release to the synaptic cleft. MDMA self-administration and its stimulant locomotor effect were abolished in mice lacking Sert (−/−), showing the importance of SERT and the serotonergic system for the behavior and reward effects of MDMA (Trigo et al., 2007).

Compared to other drugs of abuse, such as cocaine, few studies have assessed the changes induced by MDMA in gene expression in brain. Most of them focus on specific candidate genes, selected on the basis of their function or their relation to MDMA targets or effects. This approach leads to bias and complicates the elaboration of hypotheses about the effect of the drug on gene expression and the possible mechanisms involved. In contrast, high-throughput approaches such as microarray studies allow examination of a wide range of genes without prior assumptions.

Here we review the main studies that have assessed changes in gene expression induced by MDMA intake by using high-throughput approaches, as well as some work that focuses on specific candidate genes. The studies analyze different brain regions involved in the behavioral and rewarding effects of MDMA (see Table 1 for details): (1) the brainstem (including raphe nuclei), which contains the serotonergic cell bodies that send axons to the cortex, limbic areas, and spinal cord; (2) the ventral striatum and the nucleus accumbens, which are the main areas involved in reward and are mostly mediated by dopaminergic neurons; (3) the amygdala, which is involved in mood; (4) the hippocampus, which is involved in memory; and (5) the frontal cortex, which regulates cognition, memory, and perception, exerts inhibitory control, and is involved in decision making.

Since acute effects of MDMA differ from those of chronic exposure, which causes serotonin or dopamine depletion in rodents, here we discuss separately the results obtained after passive acute and chronic administration, self-administration, and prenatal exposure to MDMA. Most of the studies reported here considered acute administration of the drug; a few examined chronic administration; and only one assessed self-administration or prenatal exposure (Table 1). We conclude our review by considering the outputs of all the studies to draw some hypotheses...
<table>
<thead>
<tr>
<th>Animal Model</th>
<th>Brain Region</th>
<th>MDMA Dose</th>
<th>Treatment</th>
<th>Time after Last Administration (Animals Killed)</th>
<th>Array Platform</th>
<th>Noteworthy Changes in Gene Expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Frontal cortex</td>
<td>20 mg/kg intraperitoneally</td>
<td>Acute</td>
<td>0.5 h, 1 h, 2 h, 4 h, 8 h, 16 h, 1 day, 3 days, 7 days</td>
<td>Clontech Ratox12 microarray. 1176 genes</td>
<td>Cytokines, cytoskeleton, Egr, serotonin receptor 3</td>
<td>Thiriet et al. (2002)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Substantia nigra (dopamine neurons)</td>
<td>47 mg/kg subcutaneously</td>
<td>Acute</td>
<td>8 h</td>
<td>15K Mouse Developmental cDNA Microarray. 15,264 genes</td>
<td>Metallothioneines</td>
<td>Xie et al. (2004)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Dorsal striatum</td>
<td>9 mg/kg intraperitoneally</td>
<td>Acute</td>
<td>2 h</td>
<td>Affymetrix Mouse GeneChips, MGU74A. v2 and MG-U74B. v2. 24,000 genes</td>
<td>ERK signaling; transcription factors Fos and Egr; heat shock protein</td>
<td>Salzmann et al. (2006)</td>
</tr>
<tr>
<td>Rat</td>
<td>Frontal cortex, hippocampus, raphe</td>
<td>15 mg/kg intraperitoneally</td>
<td>Acute</td>
<td>3 weeks</td>
<td>Illumina RatRef-12 v1 beadarray expression chip. 15,983 genes</td>
<td>LTP, calcium, and ephrin signaling and neurotransmission</td>
<td>Petschner et al. (2013)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Cerebral cortex, pons, cerebellum, midbrain, and hippocampus</td>
<td>1.25, 5, and 20 mg/kg orally</td>
<td>Chronic. Adolescent mice. Daily injection during 4 weeks.</td>
<td>11 days</td>
<td>AB Mouse Genome survey microarray. 32,381 genes</td>
<td>Cerebral cortex (20 mg/kg) MAPK, Wnt signaling, LTP, LTD</td>
<td>Eun et al. (2009)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Frontal cortex, hippocampus, ventral striatum, dorsal raphe</td>
<td>0.125 mg/kg intravenously Total cumulative 19.7 mg/kg avg</td>
<td>Chronic. Active and passive (yoked self-administration). 3 h sessions during 11 days.</td>
<td>8 h</td>
<td>Affymetrix GeneChip Mouse Expression Set 430 array. 34,000 genes</td>
<td>Inflammatory and immune response LTP and MAPK signaling in active administration only in hippocampus and raphe</td>
<td>Fernández-Castillo et al. (2012)</td>
</tr>
<tr>
<td>Rat</td>
<td>Hippocampus</td>
<td>10 mg/kg intraperitoneally</td>
<td>Binge administration. 4 injections, each every 2 h.</td>
<td>18 h</td>
<td>Affymetrix GeneChip Rat Gene 1.0 ST array. 27,342 genes</td>
<td>Heat shock proteins and chaperones. Neuropeptide signaling. When previously chronically stressed: neuronal ensheathment</td>
<td>Weber et al. (2014)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Cerebral cortex</td>
<td>20 mg/kg orally (mother)</td>
<td>Prenatal exposure (indirect). Daily for 4 weeks, from gestation day 6 to 3 weeks after birth.</td>
<td>8 weeks</td>
<td>AB Mouse Genome survey microarray. 32,381 genes</td>
<td>MAPK and Wnt signaling, axon guidance, cytoskeleton</td>
<td>Eun et al. (2010)</td>
</tr>
</tbody>
</table>

This table includes all microarray studies that have assessed MDMA-induced changes in gene expression, along with the main details of the experimental conditions, such as the animal used as a model, brain regions assessed, drug dose, and treatment. The main genes showing altered expression are highlighted.
regarding the mechanisms that underlie the response to MDMA exposure, from the first few hours to several days or weeks after administration.

ACUTE MDMA ADMINISTRATION

The main changes in gene expression observed after acute MDMA administration can be classified according to the functions that are affected (Table 2).

The first large-scale study that assessed the effect of MDMA on gene expression was performed in rats by Thiriet, Ladenheim, McCoy, and Cadet (2002); it assessed changes in gene expression in the frontal cortex of rats that had received a single injection of MDMA. A wide range of time points were considered after MDMA treatment. A total of 28 genes, divided into nine functional groups, showed differential expression over time: cytokines (Mip1α and Mip3), cell surface antigens (Cd28 and Iap), BCL2 family proteins (Bok), cytoskeleton and matrix proteins (Fib, Lamα3, Nglyc, and Tubal), G-proteins (Gγ9 and Rab12), intracellular kinase and the phosphatase network (Calcβ, Mos, Pip, Ptcβ3 and Rpppα), metabolism (Rps29, Gpx1, Hmox2, Hprt, Gapdh, Ldh-b, and Pab), receptors (5-htr3 and Pgd2), and transcription (Hox1.3, Erg-1 or Ngf-I and Ngf-I-b).

Those authors highlight changes in the expression of the gene for the serotonin receptor, 5-htr3, which displays a 50% upregulation 4 h after MDMA administration, then returns to its normal range and increases again after 3–7 days. The serotonergic system is the main MDMA target and is responsible for its behavioral effects. Other serotonin-related genes have also been assessed in different studies. Transcription of the serotonin receptor genes 5-htr1a and 5-htr2c was found to be diminished in the hippocampus after acute MDMA administration (Yau, Noble, & Seckl, 1997). A study performed by García-Osta, Del Rio, and Frechilla (2004) identified enhanced expression of Tph, encoding tryptophan hydroxylase, in the frontal cortex, and decreased expression in the hippocampus in rats after 2 days of acute MDMA administration. Also, expression of Sert increased in the raphe pallidus and obscurus 7 days after a single MDMA administration (Kovacs et al., 2007).

Peng and Simantov (2003) assessed gene expression changes in the frontal cortex and midbrain of mice 2 h after acute MDMA treatment. Using Droplet Digital PCR (DD-PCR) they cloned 11 cDNA sequences that showed differential expression. Four of them corresponded to the genes coding for synaptotagmin 4 (Syt4), dystrophin (Dmd), septin (Nedd5), and GABA transporter (Gat1). The authors then focused on GABA transporters (GAT) and identified changes in gene expression in Gat1 and Gat4, but not in Gat2. Both Gat1 and Gat4 displayed increased expression in the frontal cortex and midbrain, and expression of Gat1 was sustained for 7 days after treatment. Furthermore, when Gat1 expression was assessed in Sert knockout mice (−/−), which do not respond to MDMA, no significant induction of this GABA transporter was seen. They also studied the possible role of GAT in the toxic effects of MDMA and observed that after treatment with GAT inhibitors, a lethal MDMA dose decreased its toxicity significantly. The expression of the genes for the synaptic vesicle proteins SYT4 and SYT1 were further assessed by the group (Peng et al., 2002). It was observed that Syt4 expression decreased, at RNAm and protein levels, in the midbrain and frontal cortex, whereas expression of Syt1 increased in the midbrain, and that these changes in gene expression did not occur in the Sert KO mice.

Xie et al. (2004) performed a microarray study to identify genes involved in murine MDMA-induced toxicity in dopaminergic neurons. Mice were treated with a high dose of MDMA that produced significant dopaminergic depletion 1 week later. Substantia nigra was isolated 8 h after treatment to compare transcriptomic profiles, and 10 genes showing differential expression were identified: Mt1 and Mt2 (metallothioneins), Efg1 and Efg4 (translation factors), Sog, Csa3, Nd1, Mapk14, Hat1 and Macf7. Mt1 and Mt2 showed an upregulation peak 4 h after MDMA administration and may protect dopaminergic neurons against MDMA-induced toxicity, since Mi-KO mice (Mt1 (−/−) + Mt2 (−/−)) showed larger dopamine deficits after repeated MDMA administration.

Salzmann, Marie-Claire, Le Guen, Roques, and Noble (2003) demonstrated that extracellular signal-regulated kinase (ERK) signaling plays an important role in MDMA-induced reward and behavioral responses in mice. Based on this, a subsequent study detected ERK activation by MDMA in dorsal striatum (Salzmann, Canestrelli, Noble, & Marie-Claire, 2000). Microarray technology was then used to study MDMA-induced changes in gene expression that were dependent on or independent of the ERK pathway. To that end, dorsal striatum profiles were analyzed in mice treated with an acute injection of MDMA with or without the ERK inhibitor SL327. Twenty-seven genes were identified, most upregulated, with differences in expression after acute MDMA administration; 16 of them were partially or totally inhibited by SL327 pretreatment. Nine of the ERK-dependent genes were validated (Fos, Fos2, Fosb, Egr1, Egr2, Rhoe, Dnajb5, Nts and Ttr).

Among the genes altered by MDMA treatment that are affected by ERK inhibition, Fos and Egr-related transcripts (Fos, Fos2, Fosb, Egr1 and Egr2) deserve to be highlighted. Consistently, in the previous study, Salzmann et al. (2003) observed that 1 h after acute MDMA administration, c-fos expression was greatly induced in the nucleus accumbens, caudate putamen, and hippocampus, and the expression of the Egr1 and Egr3 genes was increased in the caudate putamen. Other studies also identified c-fos induction in several brain regions after acute MDMA administration in mice and rats (Dragunow, Logan, & Laverty, 1991; Erndt-Maaschiotis, Mayer, Riechert, & Holt, 1999; Hashimoto, Tomitaka, Narita, Minabe, & Iyo, 1997; Stephenson, Hunt, Topple, & McGregor, 1999). Increased expression of Egr1 after acute MDMA exposure was also observed in the prefrontal cortex, striatum, and hippocampus of mice and also in the rat frontal cortex (Shirayama et al., 2000; Thiriet et al., 2002). Fos and Egr encode transcription factors and are MDMA-induced early genes (IEGs) that control late-response gene expression and may play an important role in the transition from short-term neuronal stimulation to long-lasting changes in neuronal function (O’Donovan, Tourtellotte, Millbrandt, & Baraban, 1999).

Another interesting result, which was explored further in another study by the same group (Marie-Claire, Benturquia, Lundqvist, Courtin, & Noble, 2008), is the increased expression of genes coding for several phosphatases in striatum following acute MDMA treatment. Upregulation of Dusp14 depends on ERK, whereas Dusp1 and Dusp5 upregulation is ERK-independent. These three phosphatase-encoding genes are involved in the negative regulation of MAPK signaling; and regulation of protein
<table>
<thead>
<tr>
<th>Molecular Function</th>
<th>Representative Genes</th>
<th>Gene Symbol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurotransmission</td>
<td>Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4</td>
<td>Slc6a3 (Sert)</td>
<td>Garcia-Osta, Del Rio, and Frechilla (2004), Kovacs et al. (2007), Marie-Claire, Palminteri, et al. (2008), Nawata et al. (2010), Peng et al. (2002), Peng and Simantov (2003), Petschner et al. (2013), Thiriet et al. (2002), and Yau et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 3A</td>
<td>5-ht3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 1A</td>
<td>5-ht1a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 2C</td>
<td>5-ht2c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryptophan hydroxylase 1</td>
<td>Tph1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryptophan hydroxylase 2</td>
<td>Tph2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 6 (neurotransmitter transporter, GABA), member 1</td>
<td>Slc6a1 (Gat1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 6 (neurotransmitter transporter, GABA), member 11</td>
<td>Slc6a11 (Gat2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamma-aminobutyric acid (GABA) A receptor, subunit epsilon</td>
<td>Gabre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, AMPA 3</td>
<td>Gria3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, N-methyl d-aspartate 1</td>
<td>Grin1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, N-methyl d-aspartate 2a</td>
<td>Grin2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, N-methyl d-aspartate 2b</td>
<td>Grin2b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 1 (glial high affinity glutamate transporter), member 3</td>
<td>Slc1a3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 1 (glial high affinity glutamate transporter), member 2</td>
<td>Slc1a2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cannabinoid receptor 1 (brain)</td>
<td>Cnr1 (Cb1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synaptotagmin IV</td>
<td>Syt4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neurotensin</td>
<td>Nts</td>
<td></td>
</tr>
<tr>
<td>Inflammatory and immune response and apoptosis</td>
<td>Chemokine (C–C motif) ligand 3</td>
<td>Ccl3 (Mip-1a)</td>
<td>Thiriet et al. (2002) and Torres et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Chemokine (C–C motif) ligand 20</td>
<td>Ccl20 (Mip-3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd28 antigen</td>
<td>Cd28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd47 molecule</td>
<td>Cd47 (Iap)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCL2-related ovarian killer protein</td>
<td>Bok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cannabinoid receptor 2 (macrophage)</td>
<td>Cnr2 (Cb2)</td>
<td></td>
</tr>
<tr>
<td>Protection from toxicity and hyperthermia</td>
<td>Metallothionein 1a</td>
<td>Mt1</td>
<td>Adori et al. (2006), Escobedo et al. (2007), Stetler et al. (2010), Thiriet et al. (2002), Torres et al. (2010), and Xie et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>Metallothionein 2</td>
<td>Mt2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 5</td>
<td>DnaJb5 (Hsc40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat shock protein 1b</td>
<td>Hspa1b (Hsp70)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat shock protein 2</td>
<td>Hspb2 (Hsp27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat shock protein 90, alpha (cytosolic), class A member 1</td>
<td>Hsp90aa1 (Hspca)</td>
<td></td>
</tr>
</tbody>
</table>
phosphorylation by phosphatase activity seems to be crucial for synaptic plasticity (Gurd, 1997).

Neurotensin (Nts), which modulates dopaminergic neurotransmission and is involved in several behavioral functions (reward, stress, and locomotion), was found to be upregulated in the microarray experiment (Salzmann, Canestrelli, Noble, & Marie-Claire, 2006) showing an overexpression peak 6 h after acute MDMA treatment. Moreover, increased Nts expression was observed after chronic treatment, and treatment with a neurotensin receptor antagonist modulated MDMA-conditioned place preference (CPP) and hyperlocomotor activity (Marie-Claire, Palminteri, et al., 2008). In rats, neurotensin also showed increased expression in the striatum 3 h after acute treatment, as did two other neuropeptide genes: Ppd (preprodynorphin) and Ppt (preprotachykinin) (Adams, Hanson, & Keefe, 2005). Ppd was also found to be upregulated in rats in the prefrontal cortex, brainstem, and caudate, and downregulated in the ventral tegmental area, 2 h after acute MDMA.

<table>
<thead>
<tr>
<th>Molecular Function</th>
<th>Representative Genes</th>
<th>Gene Symbol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat shock factor 2</td>
<td>Hsf2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glia fibrilliary acidic protein</td>
<td>Gfap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain derived neurotrophic factor</td>
<td>Bdnf</td>
<td>Adori et al. (2010) and Martinez-Turrillas et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>Eph receptor A4</td>
<td>Epha4</td>
<td>Marie-Claire, Benturquia, et al. (2008) and Petschner et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>Eph receptor A5</td>
<td>Epha5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eph receptor A6</td>
<td>Epha6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium/calmodulin-dependent protein kinase II inhibitor 1</td>
<td>Camk2n1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium/calmodulin-dependent protein kinase II inhibitor 2</td>
<td>Camk2n2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium/calmodulin-dependent protein kinase II gamma</td>
<td>Camk2g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium/calmodulin-dependent protein kinase II beta</td>
<td>Camk2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual specificity phosphatase 1</td>
<td>Dusp1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual specificity phosphatase 5</td>
<td>Dusp5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual specificity phosphatase 14</td>
<td>Dusp14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBJ osteosarcoma oncogene</td>
<td>Fos (c-fos)</td>
<td>Dragunow et al. (1991), Erdmann-Vourliotis et al. (1999), Hashimoto et al. (1997), Rodriguez-Alarcon, Canales, and Salvador (2007), Salzmann et al. (2003), Shirayama et al. (2000), Stephenson et al. (1999), and Thiriet et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>FBJ osteosarcoma oncogene B</td>
<td>Fosb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fos-like antigen 2</td>
<td>Fosl2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early growth response 1</td>
<td>Egr1 (Ngfia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early growth response 2</td>
<td>Egr2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early growth response 1</td>
<td>Egr3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear receptor subfamily 4, group A, member1</td>
<td>Nr4a1 (Ngfib)</td>
<td>Beveridge et al. (2004), Marie-Claire et al. (2007), and Thiriet et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>Rho family GTPase 3</td>
<td>Rnd3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rad and gem related GTP binding protein 2</td>
<td>Rem2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulin, alpha 1A</td>
<td>Tubal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity regulated cytoskeletal-associated protein</td>
<td>Arc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table shows the main genes showing differences in gene expression after an acute MDMA administration. Genes are classified according to their molecular function, and references are specified for each functional category.
transport, cell growth, chromatin maintenance, dendrite and localization, transmembrane and nucleocytoplasmic import. MDMA administration (Yamamoto, 2010) that CB2 activation reduces neuroinflammatory response following acute MDMA administration in rats, and showed the cognitive deficits induced by MDMA (Di Benedetto, Bastias Candia Sdel, et al., 2010). Another gene involved in cytokesin reorganization (Rem2) also showed MDMA-induced expression in the microarray experiment.

The DnaJ5 gene, encoding the heat shock protein HSC40, was upregulated, and another heat shock protein gene, Hspa1b, coding for HSP70, also showed increased expression in the frontal cortex 3 h and 7 days after acute MDMA administration in rat; this increase was dependent on the hyperthermic response (Escobedo, Peraile, Orio, Colado, & O’Shea, 2007). Elevated Hsp27 was also identified in rat frontal cortex and hippocampus in astrocytes, as was GFAP in hippocampal astrocytes (Adori, Ando, Kovacs, & Bagdy, 2006). Heat-shock proteins can protect against damage caused by hyperthermia, free radicals, and ischemia (Stetler et al., 2010). Another study showed that MDMA induced significant hyperthermia, together with serotonin depletion and increased expression of the Arc gene in cortical regions, and the caudate putamen and hippocampus (Beveridge et al., 2004).

The last microarray study that evaluated acute MDMA effects on gene expression was performed by Petschner et al. (2013). Rats were treated with a single dose of MDMA and gene expression profiles of the hippocampus, frontal cortex, and dorsal raphe were assessed 3 weeks afterward. The authors identified a total of 615 genes differentially expressed in the MDMA-treated group: 481 of them in the hippocampus, 155 in the frontal cortex, and 14 in the dorsal raphe.

In the hippocampus, enrichment analysis identified clusters of genes involved in protein phosphorylation, dendrite and synapse development, synaptic plasticity, and transmembrane transport. Several genes encoding neurotransmitter receptors showed altered expression, such as the glutamate receptor genes Gr1a3 and Grin2a, which were upregulated after acute MDMA administration, or the gene coding for the GABA-A receptor, epsilon subunit (Gabre), which was downregulated. The genes for several ephrin receptors (EphA4, EphA5, and EphA6), which modulate synapse formation and long-term potentiation (LTP) of glutamate, were found to be upregulated. Also, genes for members of the calcium signaling pathway (Camk2n1, Camk2n2, Camk2g, and Camk2b) and for calcium transporting ATPases (Atp2b1 and Atp2b3) showed altered expression, as did genes encoding voltage-gated potassium transporters (Kcn2 and Kcnnd2). The cannabinoid receptor 1 gene (Cnr1 or Cb1) was upregulated in this study and was also found to be increased in mouse hippocampus 7 days after repeated MDMA administration, whereas a CB1 receptor antagonist attenuated the cognitive deficits induced by MDMA (Nawata, Hiranita, & Yamamoto, 2010). Another study revealed increased expression of the CB2 receptor in the frontal cortex and hypothalamus in microglia after acute MDMA administration in rats, and showed that CB2 activation reduces neuroinflammatory response following MDMA administration (Torres et al., 2010).

In the frontal cortex, gene sets were related to protein synthesis and localization, transmembrane and nucleocytoplasmic transport, cell growth, chromatin maintenance, dendrite and synapse development, and oxidoreductase activity. In this brain region, expression changes were also identified in genes related to calcium signaling (Camk2g and Camk1g), as well as an NMDA glutamate receptor (Grin2b) and a glutamate transporter (Slc1a3).

A study performed in cortical cells in vitro identified an increase in the NMDA glutamate receptor NR1 (Grin1) and a decrease in the glutamate transporter EAAT2-1 (Slc1a2 or Glt1) (Kindlindh-Hogberg et al., 2010).

Also, the genes coding for the heat shock protein HSPCA and the heat shock factor HSF2 were upregulated. In agreement with the results obtained by Thiriet et al. (2002), several growth factor gene sets showed upregulation, and others related to cytokesin transport showed downregulation.

In the dorsal raphe, only a few genes showed altered expression, among them the one encoding the glycine neurotransmitter transporter (Slc6a5).

If we consider all the above studies, which were performed following acute MDMA administration, it is possible to group the observed gene expression changes according to the distinct biological processes that they affect, which helps to elucidate the underlying molecular mechanisms (Table 2). The early events that occur after MDMA administration appear to be related to ERK activation and signal transmission (both ERK dependent and independent), which involve several kinases, phosphatases, and transcription factors (Fos- and Egr-related transcripts) and are an early response to MDMA. Afterward, some events involve changes in the regulation of neurotransmission: the serotonergic, glutamatergic, GABAergic, and cannabinoid systems. Also, MDMA-induced toxicity and hyperthermia activate inflammatory and immune responses, since some cytokines and cell surface antigens were found to be upregulated, as were some genes encoding proteins that protect against toxicity, such as heat shock proteins and metallothioneins. The later response to MDMA seems to involve synapic plasticity, possibly mediated through calcium and ephrin signaling, and changes in the cytokesin and matrix proteins involved in neuroadaptation.

REPEATED AND CHRONIC MDMA ADMINISTRATION

The main gene expression changes that occur after repeated and chronic administration of MDMA are listed in Table 3.

Several studies that focus on repeated and chronic MDMA administration have assessed serotonergic, dopaminergic, and glutamatergic candidate genes. The serotonergic system is affected by long-term exposure to MDMA, which causes neurotoxicity due to serotonin depletion, leading to neurotransmitter dysregulation. After four binge administrations to rats (one per week), Kindlindh-Hogberg, Svenningsson, and Schioth (2006) observed increased expression of the 5-HT1B gene in several brain regions (cortex, caudate putamen, and hypothalamus). In the same study, the 5-HT2A and 5-HT2C genes were also upregulated in the cortex; 5-HT2C and 5-HT3 were upregulated in the hypothalamus; and 5-HT6 showed increased expression in the forebrain cortex and the amygdala. In another study, MDMA intake was found to diminish 5-HT1A mRNA in the hippocampus and brainstem and to increase its expression in the frontal cortex (Aguirre, Frechilla, Garcia-Osta, Lasheras, & Del Rio, 1997). An in vitro study of rat cortical cells exposed to MDMA for 5 days identified a significant
TABLE 3 Gene Expression Changes in Response to Repeated and Chronic MDMA Administration

<table>
<thead>
<tr>
<th>Molecular Function</th>
<th>Representative Genes</th>
<th>Gene Symbol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurotransmission</td>
<td>5-Hydroxytryptamine (serotonin) receptor 1A</td>
<td>5-ht1a</td>
<td>Aguirre et al. (1997), Biezonski and Meyer (2010), Bonkale and Austin (2008), Cuyas et al. (2014), Eun et al. (2009), Kindlundh-Hogberg et al. (2008), Kindlundh-Hogberg et al. (2010), and Kindlundh-Hogberg et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 1B</td>
<td>5-ht1b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 2A</td>
<td>5-ht2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 2C</td>
<td>5-ht2c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Hydroxytryptamine (serotonin) receptor 3</td>
<td>5-ht3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-hydroxytryptamine (serotonin) receptor 6</td>
<td>5-ht6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4</td>
<td>SLC6A4 (Sert)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryptophan hydroxylase 2</td>
<td>TPH2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyrosine hydroxilase</td>
<td>TH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monoamine oxidase b</td>
<td>MAOB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 18 (vesicular monoamine), member 2</td>
<td>SLC18A2 (Vmat2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor ionotropic, AMPA1 (alpha1)</td>
<td>GRIA1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor ionotropic, AMPA2 (alpha2)</td>
<td>GRIA2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor metabotropic 1</td>
<td>GRM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor metabotropic 3</td>
<td>GRM3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor metabotropic 5</td>
<td>GRM5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor ionotropic, NMAD1 (zeta1)</td>
<td>GRIN1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, NMDA2A (epsilon 1)</td>
<td>GRIN2A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutamate receptor, ionotropic, NMDA2B (epsilon 2)</td>
<td>GRIN2B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 1 (glial high affinity glutamate transporter), member 3</td>
<td>SLC1A3 (Eaat1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 1 (glial high affinity glutamate transporter), member 2</td>
<td>SLC1A2 (Eaat2-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholinergic receptor, muscarinic 3, cardiac</td>
<td>CHM3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycine receptor beta</td>
<td>GLRB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuropeptide Y</td>
<td>NPY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 7</td>
<td>SLC17A7</td>
<td></td>
</tr>
<tr>
<td>Inflammatory and immune response</td>
<td>Lipocalin 2</td>
<td>LCN2</td>
<td>Fernandez-Castillo et al. (2012), Soleimani Asl et al. (2012), and Stumm et al. (1999)</td>
</tr>
<tr>
<td>and apoptosis</td>
<td>Cytotoxic T lymphocyte-associated protein 2 alpha</td>
<td>CTLA2A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guanylate binding protein 2</td>
<td>CGBP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferon gamma induced GTPase</td>
<td>IGBP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferon inducible GTPase 1</td>
<td>IGBP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferon inducible GTPase 2</td>
<td>IGBP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T cell specific GTPase 1</td>
<td>TGBP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B cell leukemia/lymphoma 2</td>
<td>BCL2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCL2-associated X protein</td>
<td>BAX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCL2-like 1</td>
<td>BCL2L1 (Bcl-x)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3 Gene Expression Changes in Response to Repeated and Chronic MDMA Administration—cont’d

<table>
<thead>
<tr>
<th>Molecular Function</th>
<th>Representative Genes</th>
<th>Gene Symbol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection from toxicity and hyperthermia</td>
<td>Heat shock protein 8</td>
<td>Hspa8</td>
<td>Weber et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 1</td>
<td>Dnajb1 (Hsp40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat shock protein 1 (chaperonin)</td>
<td>Hspd1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat shock protein 90 alpha (cytosolic), class B member 1</td>
<td>Hsp90ab1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily A, member 4</td>
<td>Dnaja4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 11</td>
<td>Dnajb11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily B, member 4</td>
<td>Dnajb4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DnaJ (Hsp40) homolog, subfamily A, member 2</td>
<td>Dnaja2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serine (or cysteine) peptidase inhibitor, clade H, member 1</td>
<td>SerpinH1 (Hsp47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaperonin containing Tcp1, subunit 5 (epsilon)</td>
<td>Cct5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chaperonin containing Tcp1, subunit 6a (zeta)</td>
<td>Cct6a</td>
<td></td>
</tr>
<tr>
<td>Neurotrophic factors</td>
<td>Brain derived neurotrophic factor</td>
<td>Bdnf</td>
<td>Eun et al. (2009) and Hatami et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Neurotrophin 4</td>
<td>Nt-4</td>
<td></td>
</tr>
<tr>
<td>Signal transduction</td>
<td>Purinergic receptor P2X, ligand-gated ion channel, 7</td>
<td>P2rx7</td>
<td>Eun et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Vasoactive intestinal peptide receptor 1</td>
<td>Vipr1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycogen synthase kinase 3 beta</td>
<td>Gsk3b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seven in absentia 1A</td>
<td>Siah1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitogen activated protein kinase kinase 7</td>
<td>Map2k7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitogen activated protein kinase kinase 2</td>
<td>Map2k2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protein phosphatase 3, regulatory subunit B, alpha</td>
<td>Ppp3r1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protein kinase C, beta</td>
<td>Prkcb1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNA damage inducible transcript 3</td>
<td>Ddit3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAO kinase 1</td>
<td>Taok1</td>
<td></td>
</tr>
</tbody>
</table>

This table includes the main genes showing differences in gene expression after repeated or chronic MDMA administration. Genes are classified according to their molecular function, and references are specified for each functional category.

decrease in 5-ht3 expression and an increase in 5-ht1a (Kindlundh-Hogberg et al., 2010). Seven days after a binge administration to rats, increased expression of the genes for tryptophan hydroxylase 2 (Tph2) and monoamine oxidase B (Maob), enzymes involved in serotonin synthesis and degradation, respectively, was observed in the hippocampus. The gene for tyrosine hydroxylase (Th), involved in dopamine synthesis, was downregulated in the striatum, and the serotonin transporter gene Sert and the vesicular monoamine transporter gene Vmat2 showed diminished expression in the brainstem (Cuyas et al., 2014). Also, both in rat dorsal and medial raphe, Tph2 expression was increased and Sert decreased 2 weeks after chronic and binge MDMA exposure, respectively (Biezonski & Meyer, 2010; Bonkale & Austin, 2008).

In rats, MDMA induces pronounced overexpression of the glutamate receptor and transporter genes Gria2, Grm1, Grm5, Grin1, Grin2a, Grin2b, Eaat1, and Eaat2 in the cortex. The receptor genes Gria2, Grin2a, and Grin2b were increased in the caudate putamen, and Gria1, Gria3, Grm1, and Grm3 were upregulated in the hypothalamus, whereas Gria1 was downregulated in the hippocampus (Kindlundh-Hogberg, Blomqvist, Malki, & Schioth, 2008). The expression of dopamine receptor genes was altered only in the hypothalamus (Kindlundh-Hogberg et al., 2006).

The first high-throughput study of gene expression changes was performed in adolescent mice several days after chronic MDMA exposure (Eun et al., 2009). The drug was administered daily at different doses for 4 weeks, and the highest dose showed the largest number of gene expression changes. The main changes were observed in the cerebral cortex, involving a total of 1028 genes, approximately half upregulated and half downregulated. These genes were involved mainly in signal transduction, transcription, protein modification, cell proliferation and differentiation, cell communication, transport, immunity, defense, apoptosis, and neurogenesis. The signaling pathways that were most altered were those of MAPK, Wnt, long-term potentiation (LTP),
long-term depression (LTD), and the neuroactive ligand–receptor interaction pathway. The set of differentially expressed genes included the following: Npy, Chrm3, Grm1, P2rx7, Grib, and Vipr1 (neuroactive ligand receptor interaction pathway); Gsk3b and Siah1 (Wnt pathway); and Bdnf, Map2k7, Map2k2, Ppp3r1, Prkcb1, Ddit3, and Tauc1 (MAPK pathway). The MAPK signaling pathway is activated by growth factors, inflammation, stress, and cytokines and modulates several processes such as apoptosis, inflammation, differentiation, and cell growth (Bonni et al., 1999; Kaminska, 2005; Karin, 1998). This microarray experiment also showed upregulation of Bdnf, encoding a neurotrophic factor involved in the regulation of synaptic plasticity, survival, and the functioning of serotonergic neurons, together with many other processes. Bdnf is upregulated in response to brain damage and neuronal injury as a compensatory effect (Hicks, Martin, Zhang, & Seroogy, 1999). In the parietal cortex of MDMA-treated rats, BDNF protein levels showed a robust peak increase 8 weeks after an acute administration (Adori et al., 2010). Another study (Martinez-Turrillas, Moyano, Del Rio, & Frechilla, 2006) focused on Bdnf expression and its relation with serotonin after MDMA administration in rats, since BDNF induces serotonin synthesis by enhancing Tph expression (Siciak, Clark, Rind, Whittimore, & Russo, 1998). The study identified increased Bdnf expression in the frontal cortex 24–48 h after acute MDMA administration, and decreased expression in the hippocampus 2–7 days after drug intake. The investigators also studied the effect of MDMA on serotonin levels, and observed that upregulation of Bdnf in the frontal cortex seemed to play a role in the recovery of the levels of this neurotransmitter in this brain region, in contrast to the hippocampus, which showed no recovery after 7 days and which correlated with no increased expression of this gene. Augmented Bdnf expression correlated with higher levels of active CREB, enhanced expression of the Tph gene, and recovery of serotonin levels. Tph expression was increased after acute, repeated, and chronic MDMA administration in rats, as discussed above (Bonkale & Austin, 2008; Cuyas et al., 2014). Another neurotrophin gene, Nr4, which encodes a molecule that acts through the same receptor as BDNF (TRKB), also showed increased expression in the brainstem, cerebellum, and cerebral hemisphere of rats after chronic MDMA administration for 5 days (Hatami, Hossainpour-Faizi, Azarfarin, & Azarfar, 2010). Neurotrophins might be involved both in protecting against MDMA-induced brain damage and in the neuronal remodeling that occurs after chronic drug use.

Another microarray study, performed by Fernandez-Castillo et al. (2012), evaluated changes in gene expression in the frontal cortex, ventral striatum, hippocampus, and dorsal raphe nucleus of mice after chronic MDMA administration (both passive and active) using a yoked control operant intravenous self-administration paradigm for 11 days. Gene expression was evaluated 8 h after the last administration. In the experiment, contingent mice were trained to self-administer MDMA. Each contingent mouse was connected to two other mice, one passively receiving an identical dose of MDMA and another receiving saline solution. This set-up allowed the identification of gene expression changes in active and passive administration. In what remains of this section, we focus on the effects of chronic MDMA administration on gene expression (shared between active and passive administration), and we leave for the next section the discussion on specific changes due to active self-administration. Changes in gene expression due to direct effects of chronic MDMA, and displaying the same direction in both active and passive administration compared to the effects observed with saline, were identified in the ventral striatum (101 genes), frontal cortex (129), hippocampus (183), and dorsal raphe nucleus (16); most genes were upregulated in all brain regions. Similar enriched functions were observed in all brain regions, most of them involving immune and inflammatory responses, response to wounding, and stress. Similar enriched pathways were also identified, such as natural killer-mediated cytotoxicity, complement and coagulation cascades, and B cell receptor signaling. These functions and pathways emphasize the immunological and inflammatory nature of the response to chronic MDMA administration. The NF-κB complex was a central node of gene networks for all four regions, and NF-κB and RELA transcription factors (NF-κB complex) were predicted to be responsible for the gene upregulation in all brain structures. Inflammatory and immunological responses might be modulated by NF-κB, considering these results and previous studies showing that MDMA may induce NF-κB activation (Montiel-Duarte, Ansorena, Lopez-Zabalza, Canarruzabeitia, & Iraburu, 2004; Orio et al., 2010; Tiangco et al., 2005).

Some of the genes showing differential expression have immunological functions (Lcn2, Cila2a, Gbp2, Igtpp, Iigp1, Iigp2, and Tgpt), whereas others are involved in neurological processes (Sgk1, Sgk3, and Slc17a7). Most of the cited genes involved in immunological functions code for GTPases inducible by interferon-γ (INF-γ) and mediate interferon control of inflammatory and immunological responses. The lipocalin 2 gene (Lcn2), which is strongly overexpressed in all four brain regions, is induced after chronic and thermal stress and mediates astrocytosis under inflammatory conditions (Krishnan et al., 2007; Lee et al., 2009; Roudkenar et al., 2009).

Other studies showed that chronic MDMA exposure in rats induced neurotoxicity and apoptosis and altered the expression of some apoptotic genes. Long-term exposure to MDMA decreased cell viability in cultured rat cortical cells in a dose-dependent manner, and cell death was accompanied by differential expression of anti- and pro-apoptotic Bcl-x splice variants (Stumm et al., 1999). In the hippocampus of rats treated chronically, MDMA increased the expression of the pro-apoptotic gene Bax and decreased the expression of the anti-apoptotic gene Bcl-2, also in a dose-dependent manner (Soleimani Asl et al., 2012). As mentioned above, another gene of the Bcl-2 family, Bok, was also altered after acute MDMA administration (Thiriet et al., 2002).

Another microarray study, by Weber, Johnson, Yamamoto, and Gudelsky (2014), assessed MDMA transcriptional changes in the hippocampus of rats exposed to chronic stress, which has been shown to increase MDMA-induced serotonergic toxicity. Rats under chronic stress were exposed to binge, repeated MDMA administration and killed 18 h after the last injection. The authors observed that MDMA alone (in nonstressed rats) induced changes in 1225 genes in the hippocampus, approximately half upregulated and half downregulated, involving functions such as calmodulin activity, protein kinase activity, protein folding, and neuropeptide signaling pathways. According to protein folding, a large number of genes for heat shock proteins and chaperones showed MDMA-induced overexpression (e.g., Hspa8, Hsp40, Hspd1, Hsp90ab1, Cct5, Dnajb1, Dnajc4, Dnajb11, Dnajb4, Cct6a, SerpinH1, or Dnaj2), in agreement with the results of other studies mentioned above (Adori et al., 2006; Escobedo et al., 2007; Salzmann et al., 2003).
MDMA combined with chronic stress induced altered expression of genes involved in responses to brain damage, especially neuronal ensheathment, categories in which changes were not observed when MDMA was administered to nonstressed rats. Also, in a context of chronic stress, MDMA altered the expression of genes involved in neurotransmission and sensory perception. Chronic stress seems to enhance neuronal damage caused by MDMA.

Taking into account all these studies of repeated and chronic administration, we can highlight some of the most notable gene expression changes induced by the drug, most of them related to its neurotoxic effects (Table 3). A few hours after the last administration, we observe pronounced immune and inflammatory responses that are probably induced by axonal serotonergic or dopaminergic depletion. These responses may be mediated by NF-κB activation induced by MDMA. There is also increased neuronal death, accompanied by alterations in the expression of apoptotic genes. Brain damage can increase even more if the drug is consumed under stress conditions, altering neuronal ensheathment. Also, some heat shock proteins and chaperones are induced to provide protection against MDMA-induced toxicity. Neurotransmission-related genes, such as those encoding proteins related to serotonin and glutamate, are altered both as an adaptation to repeated exposure to the drug and also due to the depletion of the neurotransmitter. After a few days, several processes aid recovery from the damage, involving neuroadaptations and plasticity. These changes involve functions or molecules such as MAPK signaling and neurotrophins, Wnt signaling, LTP, LTD, and neuroactive ligand receptor signaling.

MDMA SELF-ADMINISTRATION

The only study of changes after MDMA self-administration that more closely mimics human MDMA intake was performed by Fernàndez-Castillo et al. (2012). As mentioned above, both chronic active self-administration (contingent) and passive administration induced changes in the expression genes involved in immune and inflammatory responses. That study also examined those genes involved in active self-administration learning processes compared to passive administration and saline solution. Positive genes were identified only in the hippocampus (645) and dorsal raphe nucleus (61), most of them downregulated and upregulated, respectively, in contingent mice. No significant differences in gene expression were identified in the frontal cortex or ventral striatum. Genes differentially expressed in the hippocampus were involved in neurological functions such as neurotransmission, regulation of synaptic plasticity, axonogenesis, learning, and memory. Also, several pathways were found to be altered both in the hippocampus and dorsal raphe nucleus, such as long-term potentiation (LTP), the MAPK signaling pathway, and the Wnt signaling pathway, in which most genes were downregulated in the hippocampus of contingent mice. All these pathways were found to be altered in adolescent mice after chronic MDMA administration (see above, Eun et al., 2009). Altered LTP genes included glutamate receptors (Grin1, Grin2a, and Grin2b) and phosphatases (Ppp1cb and Ppp3ca). Genes altered in the MAPK signaling pathway included Ntrk2 (encoding a BDNF receptor), Akt1, and Jund.

Some of the genes involved in neurological processes that show differences in gene expression in the hippocampus were Clpx2, Vamp2, Nrxn1, Nrx2, Amigo1, Bzip1, Grin1, Mapk8ip1, Nlgn2, Vgf, Madd, and Asxin2; and in the dorsal raphe nucleus they were Camk2a, Kalrn, Ddn, and Egr3. These results suggest that both the hippocampus and dorsal raphe nucleus are involved in the motivation and learning processes associated with active MDMA seeking behavior, and that those processes are mediated through LTP, MAPK, and Wnt signaling pathways.

PRENATAL EXPOSURE TO MDMA

The effect of prenatal exposure to MDMA on gene expression has been investigated only by Eun et al. (2010). Unborn mice (male and female) were exposed indirectly to MDMA from gestation day 6 until 21 days after birth (during pregnancy and lactation), and cerebral cortex expression profiles were assessed 11 weeks later, using microarray technology. Prenatal exposure to MDMA induced differences in gene expression in 1784 genes in the female group and in 804 genes in the male group. Of these, 54 upregulated genes and 36 downregulated genes were common to both males and females. Enriched pathways shared by the male and female gene sets were the MAPK signaling pathway, Wnt signaling pathway, neuroactive ligand–receptor interaction pathway, calcium signaling pathway, and axon guidance and focal adhesion. This suggests that, although the genes showing differential expression are in general not the same between males and females, the processes involved in transcriptomic changes in both sexes are similar. Some of the genes differentially expressed under prenatal MDMA exposure were Akt1, Atp1a2, H2afy, Ifit1, Rnase1, and Dcn1 in females and Egr2, Arc, Rps2, Ppp3r1, Prkcb1, and Bcds3 in males. Atp1a2, Dcn1, and Akt1 were highly upregulated (six- to sevenfold) in females.

Changes in gene expression that are present several days after prenatal MDMA exposure would involve neuroadaptive events, such as remodeling and synaptic plasticity. These events would help the brain to adapt to the effects caused by the drug during brain development.

MOLECULAR AND CELLULAR EVENTS TRIGGERED BY EXPOSURE TO MDMA

In the previous sections, we have seen how acute or chronic exposure to MDMA alters gene expression in the brain. This has been assessed using different experimental procedures and timings. Although MDMA-induced toxicity is much more pronounced after repeated and chronic administration, we have observed that common pathways are altered under both acute and chronic administration. The results obtained in each individual study provide only a static picture of the alterations in gene expression for a given time and experimental situation. By considering the data produced by all the above studies together, some conclusions can be drawn concerning the molecular events that take place upon MDMA administration, from the very first hours after exposure to the drug to several days or weeks afterward.

Early Response to MDMA Administration (Up to 2 Hours)

After MDMA administration, in which neurotransmission alterations such as increased serotonergic activity occur, the main downstream mechanism that is activated seems to be signal transmission
MDMA (Ecstasy) and Gene Expression in the Brain Chapter | 39 425

(either through ERK activation or independently). MDMA induces changes in gene expression all along this signaling pathway, from kinases and phosphatases to transcription factors, such as FOS and EGR-related transcripts, forming the early response to the drug. Figure 1 shows some neuronal and glial cells, and the signaling pathway and transcription factors that are altered in the postsynaptic neuron.

FIGURE 1 Early response to MDMA administration. Changes in gene expression up to 2 hours after drug administration affect mainly signal transmission (ERK and MAPK pathways) and Fos- and Egrs-related transcription factors, which produce the early response to MDMA. Neurons are indicated in blue, astrocytes in green, oligodendrocytes in purple, and microglia in orange.

Later Response to MDMA Administration (More than 8 Hours)

After MDMA administration, several events take place. We observe expression changes in neurotransmission-related molecules, including receptors, transporters, neurotransmitter enzymes, and neuropeptides (Figure 2). These changes involve most neurotransmission systems, including the serotonergic, glutamatergic, GABAergic, dopaminergic, and cannabinoid systems, and they may be involved in compensating MDMA stimulation. Also, several signaling pathways are altered, such as MAPK, Wnt, and LTP, that are associated with learning and memory processes in active administration (such as memories related to the drug consumption involved in cue-induced craving). Finally, neurotoxicity-related processes occur, which are more intense at higher doses and with repeated administration. MDMA causes axonal depletion, and this induces an inflammatory and immune response that tries to control brain damage. Glial cells probably help to remove cell debris and cellular content and act as a barrier to avoid toxicity in neighboring cells. Also, there is a cellular response that protects against MDMA-induced hyperthermia, which causes cell death.

Long-Term Response to MDMA Administration (Several Days to Weeks)

After brain damage, some neurotrophins help to recover synaptic function. Also, other synapses are potentiated (Figure 3). Several signaling pathways are required for neuroadaptations and synaptic plasticity, including the MAPK, Wnt, LTP, and LTD pathways, as well as cytoskeleton and matrix proteins.

Overall, only a few studies have assessed the effect of MDMA administration on gene expression. Microarray studies have some limitations, and better technologies are currently available, such as RNA-seq, which allows gene expression to be followed both quantitatively and qualitatively (i.e., by providing data about alternative splicing events). Future studies should consider different time points after the last drug administration; self-administration paradigms in rodents need to be explored further, as they mimic human MDMA use more closely. Also, studies of post mortem human brains should be performed.
In summary, MDMA causes numerous alterations in gene expression, the most notable ones indicating induced toxicity in the brain and neuroadaptive processes that are activated to promote recovery from brain damage. These molecular and cellular alterations may have an impact on brain function, as several studies report cognitive impairments in ecstasy users.

APPLICATION TO OTHER ADDICTIONS AND SUBSTANCE MISUSE

MDMA is an amphetamine derivate. Amphetamines and methamphetamines are, like MDMA, directly neurotoxic; and expression changes caused by these drugs of abuse seem to involve the same mechanisms as those involved in the effects of MDMA on brain (Yuferov, Nielsen, Butelman, & Kreek, 2005). Amphetamines alter the expression of some of the same genes altered after MDMA administration, such as Ngfi-a, Ngfib, Arc, and Sgk. Methamphetamine-induced gene expression changes detected a few hours after drug intake involve transcription factors such as Fos and Jun, whereas genes related to apoptosis, inflammation, and neuroprotection become important only after several hours; similar to the expression changes induced by MDMA. Methamphetamine also activates microglia and increases Bdnf expression.

DEFINITION OF TERMS

Binge administration Administration of multiple doses within 24h or less.

Expression microarray Matrix containing DNA fragments used as targets to hybridize a sample that allows the expression of thousands of genes to be tested.

Gene expression Process in which the information encoded in a gene is used to synthesize a gene product, which in most cases is, ultimately, a protein. When a gene is upregulated, its expression is
increased, whereas when it is downregulated, its expression is decreased.

Long-term potentiation or depression Long-lasting potentiation or reduction, respectively, of the efficacy of the synapses between two neurons. They are considered the main mechanisms underlying learning and memory.

Neurotransmission Process of communication between neurons in which neurotransmitters are released by a presynaptic neuron and bind receptor molecules in one or more postsynaptic neurons.

Neurotrophic factor Growth factors involved in survival, growth, differentiation, and maintenance of neurons.

Signal transduction or signaling pathway Biochemical chain of events inside the cell triggered by an extracellular molecule that activates a receptor. The activation results in a response such as alteration of gene expression, cell shape, cell cycle, or metabolism.

Synaptic plasticity Changes in synapses resulting from increases or decreases in their activity: for instance, changes in receptor or transporter densities or in the amount of neurotransmitter released.

KEY FACTS

Key Facts about Drugs of Abuse
- All drugs of abuse converge on the activation of the reward system of the brain, causing pleasure, reward, and reinforcement.
- Drugs of abuse induce neuronal adaptations in the brain that can become stable over time.

Key Facts about Neurotransmission
- Neurons connect to each other through the release and capture of chemical compounds called neurotransmitters.
- Drugs of abuse alter the way that neurons communicate.

Key Facts about Gene Expression
- Drugs of abuse induce changes in gene expression in the brain.
- Expression of all genes in the genome can be easily monitored using microarrays.
SUMMARY POINTS

- This chapter focuses on the effects of MDMA on gene expression in the brain.
- No human studies are available yet, but animal models using different paradigms and conditions help to elucidate the molecular and cellular events that occur upon MDMA administration.
- Acute MDMA effects on gene expression differ from those caused by chronic exposure, in which neuronal depletion and cytotoxic effects are enhanced.
- During the first few hours after MDMA intake, the changes in gene expression involve signal transmission, which activates transcription factors that trigger an early response.
- Several hours after these initial molecular events, many neurotransmission-related genes show altered expression.
- At this point, genes related to the inflammation and immune responses are upregulated due to the cytotoxic effect of MDMA.
- Changes in the expression of specific genes occur as a response to MDMA-induced hyperthermia.
- Days after MDMA intake, the expression of genes involved in neuroadaptation and synaptic plasticity is altered to promote recovery from brain damage and adaptation of neuronal circuits.
- Therefore, MDMA causes brain damage and toxicity that can lead to cognitive impairments.

REFERENCES

Erdmann-Vouriotis, M., Mayer, P., Riechert, U., & Hollt, V. (1999). Acute injection of drugs with low addictive potential (delta(9)-tetrahydrocannabinol, 3,4-methylenedioxyamphetamine, lysergic acid diamide) causes a much higher c-fos expression in limbic brain areas than highly addicting drugs (cocaïne and morphine). Brain Research, Molecular Brain Research, 71(2), 313–324.

Neuropathology of
DRUG ADDICTIONS AND
SUBSTANCE MISUSE

Stimulants, Club and Dissociative Drugs,
Hallucinogens, Steroids, Inhalants
and International Aspects

Edited by Victor R. Preedy, BSc, PhD, DSc, FSB, FRSH, FRIPH, FRSPH, FRCPath, FRSC

Research shows that the neuropathological features of one addiction are often applicable
to those of others, and understanding these commonalities provides a platform for studying
specific addictions in more depth and may ultimately lead researchers toward new modes
of understanding, causation, prevention, and treatment. However, marshaling data on the
complex relationships between addictions is difficult owing to the myriad of materials and
substances. The three volumes that make up Neuropathology of Drug Addictions and
Substance Misuse address this challenge, offering comprehensive coverage on the adverse
consequences of the most common drugs of abuse. Each volume serves to update the
reader’s knowledge on the broader field of addiction as well as to deepen understanding of
specific addictive substances. Volume 2 addresses stimulants, club and dissociative drugs,
hallucinogens, inhalants, and international aspects, with each section providing data on
the general, molecular/cellular and structural/functional neurological aspects of a given
substance, with a focus on the adverse consequences of addictions.

Other Volumes in the Series:

• Neuropathology of Drug Addictions and Substance Misuse, Volume 1:
 Foundations of Understanding, Tobacco, Alcohol, Cannabinoids and Opioids —
 ISBN: 9780128002131

• Neuropathology of Drug Addictions and Substance Misuse, Volume 3: General
 Processes and Mechanisms, Prescription Medications, Caffeine and Areca, Polydrug

About the Editor:

Victor R. Preedy is a senior member of King’s College London. He is also Director of the
Genomics Centre and a member of the Faculty of Life Sciences and Medicine.

Professor Preedy has longstanding academic interests in substance misuse especially in
relation to health and well-being. He is a member of the Editorial Board of Drug and
Alcohol Dependence and a founding member of the Editorial Board of Addiction Biology. In
his career Professor Preedy was Reader at the Addictive Behaviour Centre at the University
of Roehampton and also Reader at the School of Pharmacy (now part of University College
London). Professor Preedy is Editor of the multivolume seminal work, Comprehensive

To his credit, Professor Preedy has published over 600 articles, which include peer-reviewed
manuscripts based on original research, abstracts and symposium presentations, reviews and
numerous books and volumes.