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THE IMPACT OF DELAYS ON AIRLINE FREQUENCIES UNDER
DIFFERENT ROUTE STRUCTURES

1. Introduction

Network airlines have increasingly concentratedrtiervices in a small number of
hub airports in which they channel a high proportiof total flights. In their hub
airports, the dominant network carrier exploits trensfer traffic through coordinated
banks of arrivals and departures. By operating dmdbspoke route configurations
(HS), they are able to reduce their costs takingaathge of density economies, and
they can offer higher flight frequencies which drghly valued by business and
connecting passengers.

Unlike network airlines (which operate HS route fogurations), low-cost carriers
operate fully-connected (FC) route structures inctvimost air services are point-to-
point. While low-cost carriers may also concentrdueir traffic in a few airports, the
exploitation of density economies is particularglevant for network carriers. As
pointed out in Flores-Fillol (2010), by adding ammoute to an existing hub-and-spoke
network carriers gain access to one new local manke to many connecting markets.

Baumgarten et al. (2014) suggest that hub-and-tpesamay aggravate congestion
problems at peaks times because more flights aeeatgd for a given capacity during
banks. Furthermore, a larger number of connectagsgngers lead to an increasing
complexity of airport and airline operationglence, congestion problems are
particularly associated to hub airports. In thigar@, such congestion problems may be
generated by the strategic behavior followed byhiligbing airline. Daniel and Harback
(2008) show dominant airlines at many major US &inports concentrate their flights
at peak times, constraining non-hubbing airlines ctaster their traffic in the
uncongested periods. They do not observe thistaffetn-hub airport.

The potentially negative effects associated withgestion may be substantial both
for passengers and airlines. In this regard, séwenpirical studies have assessed the
effects of delays on both airlines and passend&ss.example, Britto et al. (2012)
examine the impact of delays on consumer and peydwelfare for a sample of US

routes. They find that delays raise prices andaediemand. From their results, a 10%

! It is generally accepted that the route operatiwfnairlines are subject to density economies
(Brueckner and Spiller, 1994), and that airlines atiract more connecting passengers in a hub-
and-spoke structure by increasing service frequénay by increasing aircraft size (Wei and
Hansen, 2006).



decrease in delays would imply a benefit of $1.8(®B8 per passenger, while the gains
for airlines of reducing delays are about threeeirhigher. Peterson et al. (2013) use a
recursive-dynamic model to examine the costs ghflidelays for both airlines and
passengers. They find that a 10% reduction in @eldlyghts increases net US welfare
by $17.6 billion.

The studies of airport congestion center primattily attention on the relationship
between delays and airport concentration (seexamele Brueckner, 2002; Mayer and
Sinai, 2003; Daniel, 1995; Rupp, 2009; Santos aobiiR 2010; Ater, 2012; Bilotkach
and Pai, 2014). While several studies have analyzeddeterminants of delays, less
attention has been put on the impact of delaysidinefrequencie$. The exceptions
are the works of Pai (2010) and Zou and Hansen4(201

Pai (2010) finds that every 1 min delay increasthatorigin and destination airports
could result in 2 and 3 fewer flights per monthngsilata for a sample of US routes. On
the contrary, Zou and Hansen (2014) find a positelationship between frequencies
and delays using also a sample of US routes. Inatter study, it is suggested that
airlines could reduce frequencies when delays asgedue to higher operation costs.
However, they justify the positive relationship tthiaey find by noting that congested
flight segments may be associated with higher gield addition, the airline operating
the congested flight segment may be very conceabedt losing market power as the
abandoned slots could be taken over by its congpstit

Our contribution is set in the context of this sealfiterature that examines the
impact of delays on airline frequencies. In patacuwe run regressions to examine the
relationship between airline frequencies and delayder different route structures
using aggregated data of large US airports forpéseod 2005-2013. We study how
airlines adjust frequencies to airport congestiodesr HS and FC route structures.

The hypothesis to test is that airlines operatii®yrt¢tworks may have incentives to
keep frequencies high even if congestion at thal hirports is worsening. In this
regard, Fageda and Flores-Fillol (2014) show tlwines may prefer to develop HS
networks because of the exploitation of economfdsaffic density, even if this comes

at the expense of higher congestion costs botpadssengers and airlines.

Z Several empirical studies have examined the détants of airline frequencies at the route
level. These previous studies have generally fatuse the effects of route or airport
competition (see for example; Schipper et al., 2@¥dtkach et al., 2010, 2013; Brueckner and
Luo, 2013; Fageda, 2014).



The rest of this paper is organized as followghinext section, we explain the data
used in the empirical analysis. Then, we speciy émpirical model and state our
expectations for the explanatory variables. Théowahg section deals with various
econometric issues and then we report the regressgults. The last section contains

our concluding remarks.

2. Data

We have data for 50 large US continental airparisjuding all hubs and the
country’s most congested, during the period 200632@ata on airline frequencies and
flight shares at the airport level have been okthifrom RDC Aviation (Capstats
statistics) that represent an aggregation of th#OO-dataset collected by the US
Department of Transportation. Since we focus ondd®estic traffic, intercontinental
flights are excluded from the analysis. We justsider airlines that at least provide one
flight per week in the considered airport. The wfitbbservation of our regressions is
the pair airline-airport so that our final samptenprises 4259 observations.

We also consider variables that may affect demdritights in the airports of our
sample. In this regard, we use data on populaton@DP per capita, obtained from the
US census, which refer to the Metropolitan Stai@dtArea (MSA) where the airport is
located.

An important issue in our analysis is the distioictbetween network airlines that
operate under hub-and-spoke route structures aher atirlines (usually low-cost
airlines) that operate under fully-connected raattectures. Table 1 provides a list of
the airlines included in our dataset. Alaska a@dinAmerican Airlines, Continental,
Delta, Northwest, United and US airways are consdi@etwork airlines.

Insert Table 1 here

All network airlines are integrated in an Interoatl alliance (i.e., Oneworld, Star
Alliance, and SkyTeam) in the period under studye ©nly exception is Alaska airlines
that have code-share agreements with several egrlintegrated in airline alliances.
Note also that all network airlines rely extensyveh regional carriers to feed their
flights. These regional carriers may be subsidsagethey may have signed contracts

with the major network carriér.

® Our data set assigns the flight to the major eriin those cases where it is operated by a
regional carrier on behalf of the major carrier.



By definition, hub airports are those airports ihielh a dominant network carrier
exploits the transfer traffic through coordinatenhks of arrivals and departures. In this
regard, hub airports usually have two charactessthey are big and a network carrier
concentrates a high proportion of its flights.

Hence, our dataset includes the following hub atgpdPortland (PDX) and Seattle
(SEA) for Alaska airlines; Dallas (DFW), Miami (M)A and Chicago (ORD) for
American Airlines; Cleveland (CLE), Houston (IAHgand Newark (EWR) for
Continental; Atlanta (ATL), Cincinnati (CVG), Nework (JFK), and Salt Lake City
(SLC) for Delta; Detroit (DTW), Memphis (MEM), an¥linneapolis (MSP) for
Northwest; Chicago (ORD), Denver (DEN), San Framwi¢SFO), and Washington
Dulles (IAD) for United; and Charlotte (CLT), Phdelphia (PHL), and Phoenix (PHX)
for US Airways?

Our analysis assumes that network airlines operan HS manner at their hub
airports, while the rest of airlines provide paiatpoint connectionsThis is a
simplification because all airlines can offer coctingy services at any airport when their
frequencies are sufficiently high. However, we ddes this a sensible assumption
given that the bulk of HS operations in the US dstieemarket are the services of
network airlines at their hub airports

Concerning airlines operating under fully-connectedte structures, Southwest is
the airline with the largest volume of passengar&J§& domestic traffiand it has a
leading position in several airports of our sampléhough Southwest passengers could
take advantage of some connecting flights, its agtwean still be considered as FC.
Southwest only uses one type of plane, it doesaweé regional subsidiaries to feed its
main airports, and flights are not clustered in rdowmted banks of arrivals and
departures. In this same vein, Boguslaski et 8042 show that the bulk of Southwest’s
traffic is found on dense point-to-point routes.

We measure congestion at the airport level. Wenddhe levels of congestion as the

percentage of originating flights that have beelaykxl by more than fifteen minutes at

* Several network airlines have undertaken a deihghrocess in the considered period. For
example, the share of American airlines in Saintitavas 57% in 2005 and it is just 12% in
2013, while that the share of US Airways in Pittgbwas 68% in 2005 and it is just 29% in
2013. Thus, we do not consider these two airpartsud airports although they were hubs in a
previous period. Note that the share of Delta inctinati was 92% in 2005 and it is 64% in
2013. Although it seems that Delta is graduallyrdiatling its hub in Cincinnati, still maintains
a high volume of connection operations at thisairprhus, this airport is considered as a hub
airport.



a given airporf. Data regarding delays have been obtained fronu@epartment of
Transportation. Figure 1 shows the evolution ofagletl flights at airports of our
sample. While data in this figure shows a peak 0072 the percentage of delayed
flights has been higher than 20% in all years efdbnsidered period with the exception
of 2012. Thus, a high proportion of flights in th&S domestic market are affected by
delays in a relatively long period of time.
Insert figure 1 here

Table 2 shows some features of the airports indudeour samplé.In the case of
hub airports, the share of the dominant airlinet@inms of total airport departures) is
usually well above 50%. The exceptions are New Y@fkK), Chicago (ORD) and
Phoenix (PHX) where two airlines have relativelsgashares, and Denver (DEN) and
Portland (PDX). In the period considered, the pataage of delayed flights at hub
airports was well above 20%, and it was close t% 30 the most congested airports
(New York - EWR and JFK), Chicago (ORD), and Phaliptia (PHL). Salt Lake City
(SLC), Seattle (SEA), Portland (PDX) and Phoenik X are the only hub airports
with a percentage of delayed flights below 20%.

Insert Table 2 here

Several non-hub airports are dominated by Southwksteed, the share of
Southwest is above 50% in Albuquerque (ABQ), Battien (BWI), Dallas (DAL),
Houston (HOU), Chicago (MDW), Oakland (OAK) and &anento (SMF). Southwest
is also clearly the leading airline in other aifgoas Las Vegas (LAS), San Diego
(SAN) and San Antonio (SAT) with a share highemtl#%. Overall, the levels of
concentration in airports dominated by Southwest beas high as in hub airports. The

percentage of delayed flights at Southwest-doméhatgoorts is usually around 20% or

® Previous empirical studies of the determinantdasflys (Mayer and Sinai, 2003; Rupp, 2009;
Santos and Robin, 2010) use data at the flight lend measure congestion as the difference
between the actual and scheduled time and/or tfierehice between the actual and the
minimum feasible time of the flight. For the purpesof our empirical analysis, which is the
study of the influence of delays on the frequengices of airlines at the airport level, such a
disaggregated analysis is not needed.

® Several merger operations have taken place inctéimsidered period. Indeed, since 2010
flights of Northwest are operated by Delta so thatdominant network carrier in Minneapolis
(MSP), Detroit (DTW) and Memphis (MEM) is Delta amdt Northwest since 2010. In the
same vein, since 2012 flights of Continental arerafed by United so that the dominant
network carrier in Cleveland (CLE), Houston (IAHpdaNewark (EWR) is United and not
Continental since 2012. The merger between Amerkigimes and US Airways was made
effective at the end of 2013 but the integrationasyet completed so that is does not affect our
analysis.



less, so that it seems that the levels of congestie generally lower than those at hub
airports. The non-hub airports where Southweshbistime clearly the dominant airline
generally present low concentration levels andrthengestion levels are similar to
those reported by Southwest dominated airports. édew Boston (BOS) and New
York (LGA) report relatively high percentages ofajesd flights.

3. The empirical model

Table 3 reports the results of a regression useig dt the airport level. In this
estimation, we consider the determinants of airpl@tays including the size of the
airport, the concentration index in terms of tofeéquencies, climatic variables
(temperature, precipitatioh)and a dummy for slot-controlled airpoft&ontrolling for
all these variables, we find that the percentagalefyed flights is higher in hub
airports. While this regression is made just fosalptive purposes, it provides some
evidence that congestion is particularly worryindhub airports and that the problem of
congestion is not only related to the size of tingaat, the levels of concentration or the
weather.

Insert Table 3 here

The hypothesis that we want to test is that aisliogerating under HS structures tend
to react less to delays than airlines operatingeuC structures. This could explain
why the percentage of delayed flights is highehub airports than in other airports,
even after controlling for other variables that magve a strong impact on such
percentage. Hence, we estimate the following eqnédtr airline i at airport a from
urban area u:

Freq,a,t = BO + Blpopj,t—l + BZGDPpQI,t—l + BSHHIa,t—l +B4Daslot + BSDi’ahubs_smaller_merged_airline

+ BeDelays, .1+ BrDia > + PaDia X Delays,i1 +BoDia -+ PioDia ~X Delays,i1 +

+U'ite

The dependent variable (Freg is the total number of annual flights that each

airline offers at the corresponding airport. Théadar the explanatory variables are for

" Data for climatic variables have been obtainedhftbe web site of the National Oceanic and
Atmospheric Administration (NOAA)

® Only four airports are slot-constrained in US: Twofothem can be considered hub airports
(ChicagoO’Hare, and New York-JFK) and the other tare not hub airports Washington-

Ronald Reagan, New York —La Guardia).



the previous year because airline frequencies atadinport level in period t are
influenced by airport and airline features in périel.

Among the explanatory factors, we include variabtelted to local demand:
population (Pop:.1) and GDP per capita (GDRpg). We can expect a positive sign for
the coefficients associated with the population imedme variables. Airlines may have
incentives to increase the number of flights orteswdeparting from airports located in
areas with a higher local demand. Thus, the derfaralrline services should be higher
in airports located in more populated and richéauarareas.

A variable for the concentration index at the aitpevel is also considerehil,.,).
The Hirschman-Herfindalh index is calculated assilma of the squares of the shares of
airlines in terms of flight frequencies. Frequescief airlines operating in more
concentrated airports may be higher because yrmekag be higher and also due to a
better exploitation of density economies. We afsdude a dummy variable that takes
the value one for slot-constrained airpor.'{) as slot constraints may affect
frequency choices of airlines.

Furthermore, we include a variable that is aimedawatrol for the mergers that have
taken place during the considered periDg(>s-smaler-mersed_ariye Thig variable takes the
value one for merged airlines operating in the hofothe smaller airline (see footnote
4). In this regard, Bilotkach et al. (2013) showattthe merger of Delta and Northwest
led to a re-organization of the route structuréairor of the hubs of the larger airline

Along with these control variables, we consider aasure of airport congestion
(Delays,+1), which is constructed as the percentage of tbiights at the airport
suffering a delay in excess of fifteen minutes. é&ding to Zou and Hansen (2014),
airlines could reduce frequencies when delays aszeue to higher operation costs but
they could also increase frequencies when delagiease due to higher yields and
avoid losing market power.

Furthermore, we consider dummy variables for adithat operate under HS and FC
networks (R4 and D4 ©). Finally, we include two variables that are fodhfeom the
interaction between the dummy variable for airlingserating under HS and FC
networks and the measure of congestion{tX Delays,1and D4 X Delays,.).

Controlling for local demand, the frequencies dfvgek airlines at their hub airports
(i.e., airlines operating HS networks) should bghkr than the frequencies of other
airlines. The reason for this is the exploitatioh annnecting traffic, which is

independent of local demand. Thus, we expect atipessign for the coefficient



associated with Q. The expected sign of the coefficient associatied B . ©is less
clear because this variable captures differentsyd-C route structures, depending on
the econometric specification chosen (as we exeiow).

The relationship between frequencies and delaysaiidines operating under HS
networks is determined by coefficienig and Bs, while the same relationship for
airlines operating under FC networks is determimgdoefficients3s andpio. Thus, we
can test whether airlines react differently to cestgpn according to the network
structure they operate by examining the estimatedficients offg andpio. If network
airlines react less to delays at their hubs, weldvedpects > 0 andBg > B1o. This is
the main hypothesis to test in this study.

Equation (1) also includes time fixed effects (jihe time fixed effects capture
shocks common to all airports and airlines thatehaaken place in the period
considered.

4. Estimation and results

The estimation of Eq. (1) is made using the fixddats estimator, which allows us
to control for any omitted time-invariant variatiteat is correlated with the variables of
interest. Another advantage of the fixed effectslehds that it allows us to account for
different types of heterogeneity in the data. Whowo two different approaches to
control for heterogeneities in our data.

First, we use airline fixed effects to control fairline heterogeneity. In this
regression, we can identify the different behawérairlines operating at the same
airport. The dummy variable;B' refers to network airlines’ flights from/to theiubs
(e.g., Delta’s flights from/to Atlanta-ATL), whil®; . “-?refers to the flights of non-
hubbing airlines operating at the same hub airp@tg., American Airline’s flights
from/to Atlanta-ATL). We may consider that airlineering flights in hub airports that
are not the hubbing airline are operating underdi@e structures in such airports. For
example, Delta exploits the transfer traffic thrbugpordinated banks of arrivals and
departures in Atlanta so that it concentrates gelahare of total flights there. On the
contrary, American Airlines use Atlanta mainly toopide direct services to its hubs
while Frontier may be offering some point-to-paetvices with origin or destination in
Atlanta. Thus, this regression does not distingbistwwveen network or low-cost carriers
in the identification of airlines operating undet Foute structures.

Second, we use airport fixed effects to controldioport heterogeneity. Here, we can

identify the different behavior of airlines operagiin different airports. Hence, P°is



the same as that in the regression with airlineiipeeffects and "~ is associated

with dominant airlines operating in non-hub airgoftVe consider as dominant those
airlines that have a share greater than 50% of fiogts originating at the airport.
Hence, this regression makes the distinction betvmetwork airlines operating in their
hub airports (eg., American Airlines’s flights frém Dallas-DFW) and low-cost
airlines operating in their main airports (e.g.utwvest’s flights from/to Dallas-DAL).
American Airlines and Southwest both concentrateeey high proportion of total
flights in Dallas-DFW and Dallas-DAL, respectivelifowever, American Airlines
exploits the transfer traffic through coordinateginks of arrivals and departures in
Dallas-DFW while the bulk of the activity of Southst in Dallas-DAL is based on
point-to-point services.

We follow these two different but complementary @gghes as a robustness check.
Certainly, network airlines in their hub airporte @perating under HS route structures.
On the contrary, airlines operating in differenhtaxts are primarily operating under
FC route structures.

An important econometric challenge in our analysighe possible simultaneous
determination of frequencies and delays. Note Hwtthe frequency variable is at the
airline-airport level, while the delays variableatsthe airport level. This should mitigate
any endogeneity problem.

This being said, we deal with this potential bigsusing further lags of the delays
variable as instruments. A typical shortcoming b tlags approach is that the
correlation between several lags may be high ifwhaeable of interest has a strong
inertia. However, this is not the case in the dlaééd we use. The correlation between the
delays variable and its lagged values is 0.76,,0058), and 0.24 for one, two, three,
and four lags, respectively. Lagged delays of mtben four years are highly non-
significant in the first-stage regression of thetinmental variables procedure. In the
table of results, we report tests of instrumentrappateness: the Hansen test where the
null hypothesis is that the instruments are exogsnand the Kleibergen-Paap LM
where the null hypothesis is that the instrumemts r@ot strong. The Hansen test
determines the selection of the lags that we usesasiments of the delays variable.

Another econometric issue that should be mentiasgke high correlation between
the variables R™° and D."° X Delays,..1, and between the variables.I¥ and 0. X
Delays. .1, respectively. This may pose a multicollinearitglpgem that could distort the

individual identification of these variables. Hoveey the results of the regressions



excluding either P/'° and D, © or D™ X Delays..: and D4 © X Delays, 1 are
qualitatively identical to the regressions thatude all the variable$.

Table 4 shows the descriptive statistics of theiabdes used in the empirical
analysis. All the variables show sufficient variapito provide robust estimations.
Recall here that the unit of observation of ourlgsia is the pair airline-airport

although some variable of our analysis are takeéhea&irport or urban level.
Insert Table 4 here

Table 5 shows the results of the estimation of (Eyjusing airline and airport fixed
effects. Standard errors are robust to heterodedgsind clustered by year to account
for any autocorrelation problem. The overall explany power of the model is high in

both airline and airport fixed-effects regressions.

Insert Table 5 here

The impact of the population and income variabledsrequencies does not seem to
be relevant in our regressions, although the aoefft of the population variable is
positive and statistically significant at the 10%vdl in the airline fixed effects
regression. It should be borne in mind that theregtons capture the within rather than
the between data variation. In this regard, theoairand year fixed effects may capture
part of the effect of population and income. Thencwy variables for slot constrained
airports and for merged airlines operating in thishof the smaller airline are not
significant either in any regression.

The coefficient associated to the airport concéiomavariable is positive and
statistically significant both in the airport anidiae fixed effects regressions. Hence, it
seems that frequencies of airlines in more conatedr airports are higher. Higher
yields and a better exploitation of density ecoremmby airlines operating in more
concentrated airports could explain this result.

As expected, the coefficient of, D°is positive and statistically significant in alleth

regressions. Additionally, the coefficients ofs-*and D; . -

are also positive and
statistically significant. As expected, frequenc#sairlines operating under HS route

structures will be higher than those of other agd as they be offering both direct and

® The results of these additional regressions améadle from the authors on request.



connecting services. Less clear is the interpatatf results for the R *?and D; ;/°-°
as they refer to different types of airlines.

The coefficient associated with the delays variaislepositive and statistically
significant in the airline fixed effects regressiaovhile such coefficient is negative but
not statistically significant in the airport fixedffects regression. However, the
relationship between frequencies and delays iglyoohetermined by the coefficients
associated with the delays and the interactioratségs. In fact, our main interest lies on
the interaction variable since we focus on idemijythe different behavior of airlines
operating under HS and FC networks.

We find that airlines operating HS networks inceefrequencies as the percentage
of delayed flights in their hub airports increasébe coefficient associated with the
interaction variable R X Delays, .1 is positive and statistically significant bothtire
airline and airport fixed effects regressions. tk@mmore, note that the magnitude of the
coefficient of this interaction variable is highttian that of the delays variable in the
airport fixed effects regression.

By contrast, the coefficient associated with theriaction variable R X Delays, .1
is always negative and statistically significantthe airline fixed effects regression, the
magnitude of the coefficient of the interactionighle is similar to that of the delays
variable. Recall that iljc—a refers to non-hubbing airlines operating at hubghe
airline fixed effects regressions. Thus, our resimtlicate that airlines operating in other
airlines’ hub airports may be more prone to cutjfiencies than hubbing airlines in
reaction to more frequent delays at such airports.

In the airport fixed effects regressions..,a'rlﬁ—b refers to dominant airlines in non-hub
airports. Hence, dominant airlines operating in-hab airports (ie; Southwest) clearly
decrease frequencies as delays at such airporeaseas long as the coefficients of the
delays and interaction variables are negative.

In short, we find evidence of a differentiated bebabetween airlines operating HS
and FC networks. Indeed, the estimated coefficiehtbe interaction variables clearly
indicate this result sind& > 0 andBs > f10. Hence, we conclude that airlines operating
HS networks may have strong incentives to mairtteggh frequencies in their hubs even
when congestion at those hubs increases.

Results of our analysis may provide an explanabbrdifferent results found in
previous studies that examine the impact of detaysirline frequencies. While Pai

(2010) find a negative relationship between fregieshand delays, Zou and Hansen



(2014) obtain evidence of the opposite result. Wd & positive relationship between
airline frequencies and delays when airlines openatier HS route structures, while we
find that this relationship is negative when agBroperate under FC route structures.

5. Concluding remarks

The dominance of the network airlines has benefittee hub airports and their
corresponding urban areas. Indeed, the trafficighdr than that generated solely by
local demand because a large proportion of passemgdiub airports are connecting
passengers. Furthermore, the number and geograpiciope of destinations may be
also higher in hub airports. However, a negativiectfassociated with hub airports
concerns congestion which imposes costs to botbepgers and airlines. In congested
hubs, a high proportion of flights are affected dsiays, cancellations and missed
connections.

Results of our empirical analysis show airlinesrapeg HS route structures increase
frequencies in response to more frequent delaygse wirlines operating FC networks
do reduce frequencies. Thus, airlines operatinghet®orks seem to ignore the costs in
terms of airport congestion implied by their rosteicture choice.

Our results are in line of those obtained by Daared Harback (2008), which show
that dominant airlines at many major US hub aipodoncentrate flights in
departure/arrival banks in peak periods, consimgimon-hubbing airlines to cluster
their traffic in the uncongested periods. It cobédthat our aggregate measure of delays
serves as a proxy for concentrated flight bankdoohinant hub carriers. In such a case,
the positive effect of delays on frequencies that fimd for airlines operating HS
networks could be related to the benefits from h@vidominated banks of
departures/arrivals at their hub airports.

The empirical findings of this study are also cetesit with the analysis of Zou and
Hansen (2014) which find a positive relationshipaeen airline frequencies and airport
delays. It may be the case that yields are paatilyuhigh in congested flight segments
operated by network airlines in their hub airpamsl hubbing airlines may particularly
reluctant to give up slots in their hub airports.

Our results suggest that policy measures promdatirgct connections away from
hubs may have social benefits in case that thelgmolof congestion becomes too
severe. Policy makers and airport operators coskl such tools as congestion tolls,

capacity investment, and a better marketing ofcities in which non-hub airports are



located. Additionally, the rules determining théoehtion and use of slots in the US
could also be re-designed so as to create incentoreairlines to increase the size of
their aircraft and reduce their flight frequencies.
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TABLES AND FIGURES

Table 1. List of airlines included in our sample

Network airlines Low-cost airlines
Alaska airlines AirTran
American Airlines Allegiant air
Continental Cape air
Delta Frontier
Northwest Great Lakes airlines
United Jet Blue
US airways Pacific Wings
Republic airlines
Southwest
Spirit airlines
Sun Country airlines
USA3000 Airlines
Virgin America

Figure 1. Evolution of the percentage of delayedifhts at airports of our sample
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Table 1. Characteristics of the airports includedm the sample (mean values in

2005-2013)
Airport Delays Departures HHI Share dominant airline
Alburquerque (ABQ) 16.5 50,729 0.33 Southwest (%9).3
Atlanta (ATL) 25.4 423,500 0.57 Delta (73.3%)
Austin (AUS) 17.2 60,882 0.24 Southwest (40.3%)
Hartford (BDL) 19.9 43,728 0.18 US Airways
(23.2%)/Southwest (22.7%)
Nashville (BNA) 20.4 78,370 0.26 Southwest (45.8%)
Boston (BOS) 24.5 160,641 0.13 US Airways (19.7%)i®
(17.4%)
Baltimore (BWI) 21.3 134,066 0.35 Southwest (56.5%)
Cleveland (CLE) 20.8 99,099 0.43 Continental (669.692005-
2011/United (73.3%) in 2012}
2013
Charlotte (CLT) 23.4 224,642 0.73 US Airways (85)7%
Columbus (CMH) 21.2 58,940 0.16 Delta (21.4%)/Souetst
(19.8%)
Cincinatti (CVG) 21.8 110,485 0.65 Delta (79.1%)
Dallas (DAL) 20.6 62,191 0.82 Southwest (90.2%)
Washington (DCA) 21.9 138,096 0.28 US Airways (46)6
Denver (DEN) 22.4 288,766 0.29 United (47.1%)
Dallas (DFW) 24.9 295,620 0.69 American Airline8.@%)
Detroit (DTW) 25.3 209,909 0.60 Northwest (74.4%8l2a
(81.4%)
New York (EWR) 311 156,175 0.50 Continental (69) 9%2005-
2011/United (76.2%) in 2012}
2013
Fort Lauderdale (FLL) 22.6 99,059 0.13 Southwe3t4%)
Houston (HOU) 22.9 72,963 0.76 Southwest (87.1%)
Washington (IAD) 24.5 136,697 0.52 United (70.2%)
Houston (IAH) 21.9 217,221 0.72 Continental (86.7f%62005-
2011/United (87.5%) in 2012}
2013
Indianapolis (IND) 20.1 63,014 0.15 Northwest (24)8n 2005-
2009/Delta (26.7%) in 2010-
2013
New York (JFK) 28.7 124,180 0.27 Jet Blue (35.0%)i®
(34.9%)
Las Vegas (LAS) 21.3 183,366 0.29 Southwest (49.9%)
Los Angeles (LAX) 19.3 239,165 0.18 United (28.9%)
New York (LGA) 27.2 182,981 0.23 US Airways (29.228Ita
(27.9%)
Kansas (MCI) 20.2 86,363 0.19 Southwest (36.2%)
Orlando (MCO) 20.2 149,058 0.16 Southwest (30.2%)
Chicago (MDW) 22.7 111,033 0.67 Southwest (81.1%)




Memphis (MEM) 20.8 84,778 0.58 Northwest (76.6%)iBe
(76.4%)
Miami (MIA) 26.7 83,076 0.50 American airlines (680)
Milwaukee (MKE) 22.3 69,267 0.25 Frontier (47.3%)2005-
2010/AirTran (21.7%) from
2011-2013
Minneapolis (MSP) 23.4 200,386 0.58 Northwest (79.4h 2005-
2009/Delta (77.5%) in 2010-
2013
New Orleans (MSY) 19.5 51,819 0.19 Southwest (34.5%
Oakland (OAK) 17.4 74,808 0.59 Southwest (76.1%)
Chicago (ORD) 29.2 391,806 0.40 American Airlines
(39.4%)/United (49.6%)
Portland (PDX) 15.3 92,987 0.25 Alaska airlines.§460)
Philadephia (PHL) 27.5 204,892 0.50 US Airways 868
Phoenix (PHX) 19.2 196,410 0.34 Southwest (41.2%)/U
Airways (33.3%)
Pittsburg (PIT) 22.1 75,874 0.23 US Airways (38.9%)
Raleigh-Durham (RDU) 22.1 76,019 0.17 AmericaniAes
(22.3%)/Delta (21.1%)
Fort Myers (RSW) 19.3 36,973 0.12 Delta (16.5%)IAém
(13.9%)
San Diego (SAN) 17.5 99,464 0.23 Southwest (42.3%)
San Antonio (SAT) 17.1 55,153 0.24 Southwest (42.5%
Seattle (SEA) 19.7 158,026 0.33 Alaska Airlines.$54)
San Francisco (SFO) 24.5 154,485 0.32 United (58.4%
Salt Lake City (SLC) 17.2 154,485 0.55 Delta (7217%
Sacramento (SMF) 17.3 56,477 0.33 Southwest (54.1%)
Santa Ana (SNA) 16.9 51,754 0.19 Southwest (34.1%)
St. Louis (STL) 20.1 113,701 0.25 American Airlines

(30.3%)/Southwest (32.5%)




Table 3. Results of estimates of delays at the aop level (Ordinary Least

Squares)
All airports
Frequencies 0.000014
(2.18e-06)***
HHI 1.80
(0.86)**
Rain, 0.08
(0.009)***
Temperaturg, -0.04
(0.018)**
D> 3.74
(0.59)***
D" 0.77
(0.39)**
Intercept 18.48
(1.27)***
Time fixed effects YES
R® 0.58
Test F (joint significance) 43.12%**
450

Number observations

Note 1: Standard errors in parenthesis (robuseterbscedasticity and clustered

by year).

Note 2: Statistical significance at 1% (***), 5%*{F 10% (*)




Table 4. Descriptive statistics of the variables sl in the empirical analysis

Variable Mean Standard Deviation
Annual frequencies of the 13622.7 31553.06
airline at the airport level
(Freday)
Annual Frequencies at the 139939.7 89542
airport level
Concentration at the 0.34 0.18
airport level (HHI index)
Population of the 4707663 4536939
metropolitan area —million
inhabitants (Pop,.1)
Per capita income of the 50326.8 8811.3
metropolitan area —US
current dollars (GDPpG 1)
Percentage of delayed 21.77 4.74
flights at the
airport( Delays, 1)
Dummy for dominant 0.045 0.20
network airlines operating
at the hub airport (D;,°
Dummy for airlines 0.012 0.11
operating at the hub airport
(Di,aFC_a)
Dummy for dominant non- 0.036 0.48

network airlines operating
at their base airports
(Di,aFC_t)




Table 5. Results of estimates of airline frequencseat the airport level

(Instrumental variables regression)

Airline fixed effects Airport fixed effects
Pop.t1 0.00013 -0.0002
(0.00008)* (0.0011)
GDPpPG +1 -0.003 0.11
(0.03) (0.17)
HHI 1 12379.67 13317.55
(2103.63)*** (6899.69)**
D 1475.57 -
(1430.66)
D hubs_smaller_merged_airT -9849.46 2103.07
L,a . .
(9959.81) (14274.09)
Delays, i1 1010.01 -207.41
(232.39)*** (679.21)
Dia "~ 60937.35 37869.9
(20536.06)*** (18478.9)**
Dia -* 12570.39 -
(3795.39)***
Do - - 59358.91
(2750.07)***
Dia ~X Delays, 2132.43 3378.78
(874.64)*** (771.12)**=
Dia — X Delays 1 -877.25 -
(186.42)***
Dia - X Delays .1 - -302.21
(82.13)***
Time fixed effects YES YES
R® 0.66 0.66
Test F (joint significance) 47 .25%** 73.23%**
Kleibergen-Paap LM statistic
(Ho: equation is 569.93*** 104.55***
underidentified)
Hansen J statistic
(Ho: equation is 1.82 0.21
overidentified)
Number observations 4259 4259

Note 1. Standard errors in parenthesis (robuseterbscedasticity and clustered
by year).

Note 2: Statistical significance at 1% (***), 5%*fF 10% (*)

Note 3: Instruments of lagged delays are threefamddelays.



