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THE IMPACT OF DELAYS ON AIRLINE FREQUENCIES UNDER 
DIFFERENT ROUTE STRUCTURES 

 
1. Introduction 
 
Network airlines have increasingly concentrated their services in a small number of 

hub airports in which they channel a high proportion of total flights. In their hub 

airports, the dominant network carrier exploits the transfer traffic through coordinated 

banks of arrivals and departures. By operating hub-and-spoke route configurations 

(HS), they are able to reduce their costs taking advantage of density economies, and 

they can offer higher flight frequencies which are highly valued by business and 

connecting passengers.1  

Unlike network airlines (which operate HS route configurations), low-cost carriers 

operate fully-connected (FC) route structures in which most air services are point-to-

point. While low-cost carriers may also concentrate their traffic in a few airports, the 

exploitation of density economies is particularly relevant for network carriers. As 

pointed out in Flores-Fillol (2010), by adding a new route to an existing hub-and-spoke 

network carriers gain access to one new local market and to many connecting markets.  

Baumgarten et al. (2014) suggest that hub-and-operations may aggravate congestion 

problems at peaks times because more flights are operated for a given capacity during 

banks. Furthermore, a larger number of connecting passengers lead to an increasing 

complexity of airport and airline operations. Hence, congestion problems are 

particularly associated to hub airports. In this regard, such congestion problems may be 

generated by the strategic behavior followed by the hubbing airline. Daniel and Harback 

(2008) show dominant airlines at many major US hub airports concentrate their flights 

at peak times, constraining non-hubbing airlines to cluster their traffic in the 

uncongested periods. They do not observe this effect in non-hub airport.  

 The potentially negative effects associated with congestion may be substantial both 

for passengers and airlines. In this regard, several empirical studies have assessed the 

effects of delays on both airlines and passengers. For example, Britto et al. (2012) 

examine the impact of delays on consumer and producer welfare for a sample of US 

routes. They find that delays raise prices and reduce demand. From their results, a 10% 
                                                           
1 It is generally accepted that the route operations of airlines are subject to density economies 
(Brueckner and Spiller, 1994), and that airlines can attract more connecting passengers in a hub-
and-spoke structure by increasing service frequency than by increasing aircraft size (Wei and 
Hansen, 2006).  
 



decrease in delays would imply a benefit of $1.50-$2.50 per passenger, while the gains 

for airlines of reducing delays are about three times higher. Peterson et al. (2013) use a 

recursive-dynamic model to examine the costs of flight delays for both airlines and 

passengers. They find that a 10% reduction in delayed flights increases net US welfare 

by $17.6 billion.  

The studies of airport congestion center primarily the attention on the relationship 

between delays and airport concentration (see for example Brueckner, 2002; Mayer and 

Sinai, 2003; Daniel, 1995; Rupp, 2009; Santos and Robin, 2010; Ater, 2012; Bilotkach 

and Pai, 2014). While several studies have analyzed the determinants of delays, less 

attention has been put on the impact of delays on airline frequencies.2 The exceptions 

are the works of Pai (2010) and Zou and Hansen (2014).  

Pai (2010) finds that every 1 min delay increase at the origin and destination airports 

could result in 2 and 3 fewer flights per month using data for a sample of US routes. On 

the contrary, Zou and Hansen (2014) find a positive relationship between frequencies 

and delays using also a sample of US routes. In the latter study, it is suggested that 

airlines could reduce frequencies when delays increase due to higher operation costs. 

However, they justify the positive relationship that they find by noting that congested 

flight segments may be associated with higher yields. In addition, the airline operating 

the congested flight segment may be very concerned about losing market power as the 

abandoned slots could be taken over by its competitors.    

Our contribution is set in the context of this scarce literature that examines the 

impact of delays on airline frequencies. In particular, we run regressions to examine the 

relationship between airline frequencies and delays under different route structures 

using aggregated data of large US airports for the period 2005-2013. We study how 

airlines adjust frequencies to airport congestion under HS and FC route structures.  

The hypothesis to test is that airlines operating HS networks may have incentives to 

keep frequencies high even if congestion at their hub airports is worsening. In this 

regard, Fageda and Flores-Fillol (2014) show that airlines may prefer to develop HS 

networks because of the exploitation of economies of traffic density, even if this comes 

at the expense of higher congestion costs both for passengers and airlines.  

                                                           
2 Several empirical studies have examined the determinants of airline frequencies at the route 
level. These previous studies have generally focused on the effects of route or airport 
competition (see for example; Schipper et al., 2002; Bilotkach et al., 2010, 2013; Brueckner and 
Luo, 2013; Fageda, 2014). 
 



The rest of this paper is organized as follows. In the next section, we explain the data 

used in the empirical analysis. Then, we specify the empirical model and state our 

expectations for the explanatory variables. The following section deals with various 

econometric issues and then we report the regression results. The last section contains 

our concluding remarks.      

2. Data 

We have data for 50 large US continental airports, including all hubs and the 

country’s most congested, during the period 2005-2013. Data on airline frequencies and 

flight shares at the airport level have been obtained from RDC Aviation (Capstats 

statistics) that represent an aggregation of the T-100 dataset collected by the US 

Department of Transportation. Since we focus on US domestic traffic, intercontinental 

flights are excluded from the analysis. We just consider airlines that at least provide one 

flight per week in the considered airport. The unit of observation of our regressions is 

the pair airline-airport so that our final sample comprises 4259 observations.  

We also consider variables that may affect demand of flights in the airports of our 

sample. In this regard, we use data on population and GDP per capita, obtained from the 

US census, which refer to the Metropolitan Statistical Area (MSA) where the airport is 

located. 

An important issue in our analysis is the distinction between network airlines that 

operate under hub-and-spoke route structures and other airlines (usually low-cost 

airlines) that operate under fully-connected route structures. Table 1 provides a list of 

the airlines included in our dataset. Alaska airlines, American Airlines, Continental, 

Delta, Northwest, United and US airways are considered network airlines.   

Insert Table 1 here 

All network airlines are integrated in an International alliance (i.e., Oneworld, Star 

Alliance, and SkyTeam) in the period under study. The only exception is Alaska airlines 

that have code-share agreements with several airlines integrated in airline alliances. 

Note also that all network airlines rely extensively on regional carriers to feed their 

flights. These regional carriers may be subsidiaries or they may have signed contracts 

with the major network carrier.3 

                                                           
3 Our data set assigns the flight to the major carrier in those cases where it is operated by a 
regional carrier on behalf of the major carrier.  



By definition, hub airports are those airports in which a dominant network carrier 

exploits the transfer traffic through coordinated banks of arrivals and departures. In this 

regard, hub airports usually have two characteristics; they are big and a network carrier 

concentrates a high proportion of its flights.   

Hence, our dataset includes the following hub airports: Portland (PDX) and Seattle 

(SEA) for Alaska airlines; Dallas (DFW), Miami (MIA), and Chicago (ORD) for 

American Airlines; Cleveland (CLE), Houston (IAH), and Newark (EWR) for 

Continental; Atlanta (ATL), Cincinnati (CVG), New York (JFK), and Salt Lake City 

(SLC) for Delta; Detroit (DTW), Memphis (MEM), and Minneapolis (MSP) for 

Northwest; Chicago (ORD), Denver (DEN), San Francisco (SFO), and Washington 

Dulles (IAD) for United; and Charlotte (CLT), Philadelphia (PHL), and Phoenix (PHX) 

for US Airways.4 

Our analysis assumes that network airlines operate in an HS manner at their hub 

airports, while the rest of airlines provide point-to-point connections. This is a 

simplification because all airlines can offer connecting services at any airport when their 

frequencies are sufficiently high. However, we consider this a sensible assumption 

given that the bulk of HS operations in the US domestic market are the services of 

network airlines at their hub airports. 

Concerning airlines operating under fully-connected route structures, Southwest is 

the airline with the largest volume of passengers in US domestic traffic and it has a 

leading position in several airports of our sample. Although Southwest passengers could 

take advantage of some connecting flights, its network can still be considered as FC. 

Southwest only uses one type of plane, it does not have regional subsidiaries to feed its 

main airports, and flights are not clustered in coordinated banks of arrivals and 

departures. In this same vein, Boguslaski et al. (2004) show that the bulk of Southwest’s 

traffic is found on dense point-to-point routes. 

We measure congestion at the airport level. We define the levels of congestion as the 

percentage of originating flights that have been delayed by more than fifteen minutes at 

                                                           
4 Several network airlines have undertaken a de-hubbing process in the considered period. For 
example, the share of American airlines in Saint Louis was 57% in 2005 and it is just 12% in 
2013, while that the share of US Airways in Pittsburg was 68% in 2005 and it is just 29% in 
2013. Thus, we do not consider these two airports as hub airports although they were hubs in a 
previous period. Note that the share of Delta in Cincinnati was 92% in 2005 and it is 64% in 
2013. Although it seems that Delta is gradually dismantling its hub in Cincinnati, still maintains 
a high volume of connection operations at this airport. Thus, this airport is considered as a hub 
airport.  



a given airport.5 Data regarding delays have been obtained from the US Department of 

Transportation. Figure 1 shows the evolution of delayed flights at airports of our 

sample. While data in this figure shows a peak in 2007, the percentage of delayed 

flights has been higher than 20% in all years of the considered period with the exception 

of 2012. Thus, a high proportion of flights in the US domestic market are affected by 

delays in a relatively long period of time.  

Insert figure 1 here 

Table 2 shows some features of the airports included in our sample.6 In the case of 

hub airports, the share of the dominant airline (in terms of total airport departures) is 

usually well above 50%. The exceptions are New York (JFK), Chicago (ORD) and 

Phoenix (PHX) where two airlines have relatively large shares, and Denver (DEN) and 

Portland (PDX). In the period considered, the percentage of delayed flights at hub 

airports was well above 20%, and it was close to 30% in the most congested airports 

(New York - EWR and JFK), Chicago (ORD), and Philadelphia (PHL). Salt Lake City 

(SLC), Seattle (SEA), Portland (PDX) and Phoenix (PHX) are the only hub airports 

with a percentage of delayed flights below 20%. 

Insert Table 2 here 

Several non-hub airports are dominated by Southwest. Indeed, the share of 

Southwest is above 50% in Albuquerque (ABQ), Baltimore (BWI), Dallas (DAL), 

Houston (HOU), Chicago (MDW), Oakland (OAK) and Sacramento (SMF). Southwest 

is also clearly the leading airline in other airports as Las Vegas (LAS), San Diego 

(SAN) and San Antonio (SAT) with a share higher than 40%. Overall, the levels of 

concentration in airports dominated by Southwest may be as high as in hub airports. The 

percentage of delayed flights at Southwest-dominated airports is usually around 20% or 

                                                           
5 Previous empirical studies of the determinants of delays (Mayer and Sinai, 2003; Rupp, 2009; 
Santos and Robin, 2010) use data at the flight level and measure congestion as the difference 
between the actual and scheduled time and/or the difference between the actual and the 
minimum feasible time of the flight. For the purposes of our empirical analysis, which is the 
study of the influence of delays on the frequency choices of airlines at the airport level, such a 
disaggregated analysis is not needed. 
6 Several merger operations have taken place in the considered period. Indeed, since 2010 
flights of Northwest are operated by Delta so that the dominant network carrier in Minneapolis 
(MSP), Detroit (DTW) and Memphis (MEM) is Delta and not Northwest since 2010. In the 
same vein, since 2012 flights of Continental are operated by United so that the dominant 
network carrier in Cleveland (CLE), Houston (IAH) and Newark (EWR) is United and not 
Continental since 2012. The merger between American Airlines and US Airways was made 
effective at the end of 2013 but the integration is not yet completed so that is does not affect our 
analysis.  



less, so that it seems that the levels of congestion are generally lower than those at hub 

airports. The non-hub airports where Southwest is not the clearly the dominant airline 

generally present low concentration levels and their congestion levels are similar to 

those reported by Southwest dominated airports. However, Boston (BOS) and New 

York (LGA) report relatively high percentages of delayed flights.  

 

3. The empirical model 

Table 3 reports the results of a regression using data at the airport level. In this 

estimation, we consider the determinants of airport delays including the size of the 

airport, the concentration index in terms of total frequencies, climatic variables 

(temperature, precipitation)7, and a dummy for slot-controlled airports.8 Controlling for 

all these variables, we find that the percentage of delayed flights is higher in hub 

airports. While this regression is made just for descriptive purposes, it provides some 

evidence that congestion is particularly worrying in hub airports and that the problem of 

congestion is not only related to the size of the airport, the levels of concentration or the 

weather.  

Insert Table 3 here 

The hypothesis that we want to test is that airlines operating under HS structures tend 

to react less to delays than airlines operating under FC structures. This could explain 

why the percentage of delayed flights is higher in hub airports than in other airports, 

even after controlling for other variables that may have a strong impact on such 

percentage. Hence, we estimate the following equation for airline i at airport a from 

urban area u: 

Freqi,a,t  = β0 + β1Popu,t-1 + β2GDPpcu,t-1 + β3HHIa,t-1 +β4Da
slot + β5Di,a

hubs_smaller_merged_airline    

 + β6Delaysa,t-1 + β7Di,a
HS + β8Di,a

HS X Delaysa,t-1  + β9Di,a
FC + β10Di,a

FC X Delaysa,t-1  +
  

  + µ’t
 + 
ɛ     

 

The dependent variable (Freqi,a,t) is the total number of annual flights that each 

airline offers at the corresponding airport. The data for the explanatory variables are for 

                                                           
7 Data for climatic variables have been obtained from the web site of the National Oceanic and 
Atmospheric Administration (NOAA) 
8 Only four airports are slot-constrained in US: Two of them can be considered hub airports 
(ChicagoO’Hare, and New York-JFK) and the other two are not hub airports Washington-
Ronald Reagan, New York –La Guardia).  



the previous year because airline frequencies at the airport level in period t are 

influenced by airport and airline features in period t-1.  

Among the explanatory factors, we include variables related to local demand: 

population (Popu,t-1) and GDP per capita (GDPpcu,t-1). We can expect a positive sign for 

the coefficients associated with the population and income variables. Airlines may have 

incentives to increase the number of flights on routes departing from airports located in 

areas with a higher local demand. Thus, the demand for airline services should be higher 

in airports located in more populated and richer urban areas.  

A variable for the concentration index at the airport level is also considered (HHIa,t-1). 

The Hirschman-Herfindalh index is calculated as the sum of the squares of the shares of 

airlines in terms of flight frequencies. Frequencies of airlines operating in more 

concentrated airports may be higher because yields may be higher and also due to a 

better exploitation of density economies. We also include a dummy variable that takes 

the value one for slot-constrained airports (Da
slot) as slot constraints may affect 

frequency choices of airlines.  

Furthermore, we include a variable that is aimed to control for the mergers that have 

taken place during the considered period (Di,a
hubs_smaller_merged_airline). This variable takes the 

value one for merged airlines operating in the hubs of the smaller airline (see footnote 

4). In this regard, Bilotkach et al. (2013) show that the merger of Delta and Northwest 

led to a re-organization of the route structure in favor of the hubs of the larger airline 

Along with these control variables, we consider a measure of airport congestion 

(Delaysa,t-1), which is constructed as the percentage of total flights at the airport 

suffering a delay in excess of fifteen minutes. According to Zou and Hansen (2014), 

airlines could reduce frequencies when delays increase due to higher operation costs but 

they could also increase frequencies when delays increase due to higher yields and 

avoid losing market power.  

Furthermore, we consider dummy variables for airlines that operate under HS and FC 

networks (Di,a
HS and Di,a

FC). Finally, we include two variables that are formed from the 

interaction between the dummy variable for airlines operating under HS and FC 

networks and the measure of congestion (Di,a
HS X Delaysa,t-1 and Di,a

FC X Delaysa,t-1). 

Controlling for local demand, the frequencies of network airlines at their hub airports 

(i.e., airlines operating HS networks) should be higher than the frequencies of other 

airlines. The reason for this is the exploitation of connecting traffic, which is 

independent of local demand. Thus, we expect a positive sign for the coefficient 



associated with Di,a
HS. The expected sign of the coefficient associated with Di,a

FC is less 

clear because this variable captures different types of FC route structures, depending on 

the econometric specification chosen (as we explain below). 

The relationship between frequencies and delays for airlines operating under HS 

networks is determined by coefficients β6 and β8, while the same relationship for 

airlines operating under FC networks is determined by coefficients β6 and β10. Thus, we 

can test whether airlines react differently to congestion according to the network 

structure they operate by examining the estimated coefficients of β8 and β10. If network 

airlines react less to delays at their hubs, we would expect β8 > 0 and β8 > β10. This is 

the main hypothesis to test in this study.  

Equation (1) also includes time fixed effects (µ). The time fixed effects capture 

shocks common to all airports and airlines that have taken place in the period 

considered. 

4. Estimation and results  

The estimation of Eq. (1) is made using the fixed effects estimator, which allows us 

to control for any omitted time-invariant variable that is correlated with the variables of 

interest. Another advantage of the fixed effects model is that it allows us to account for 

different types of heterogeneity in the data. We follow two different approaches to 

control for heterogeneities in our data. 

First, we use airline fixed effects to control for airline heterogeneity. In this 

regression, we can identify the different behavior of airlines operating at the same 

airport. The dummy variable Di,a
HS refers to network airlines’ flights from/to their hubs 

(e.g., Delta’s flights from/to Atlanta-ATL), while Di,a
FC_a refers to the flights of non-

hubbing airlines operating at the same hub airports (e.g., American Airline’s flights 

from/to Atlanta-ATL). We may consider that airlines offering flights in hub airports that 

are not the hubbing airline are operating under FC route structures in such airports. For 

example, Delta exploits the transfer traffic through coordinated banks of arrivals and 

departures in Atlanta so that it concentrates a large share of total flights there. On the 

contrary, American Airlines use Atlanta mainly to provide direct services to its hubs 

while Frontier may be offering some point-to-point services with origin or destination in 

Atlanta. Thus, this regression does not distinguish between network or low-cost carriers 

in the identification of airlines operating under FC route structures.  

Second, we use airport fixed effects to control for airport heterogeneity. Here, we can 

identify the different behavior of airlines operating in different airports. Hence, Di,a
HS is 



the same as that in the regression with airline specific effects and Di,a
FC_b is associated 

with dominant airlines operating in non-hub airports. We consider as dominant those 

airlines that have a share greater than 50% of total flights originating at the airport. 

Hence, this regression makes the distinction between network airlines operating in their 

hub airports (eg., American Airlines’s flights from/to Dallas-DFW) and low-cost 

airlines operating in their main airports (e.g., Southwest’s flights from/to Dallas-DAL). 

American Airlines and Southwest both concentrate a very high proportion of total 

flights in Dallas-DFW and Dallas-DAL, respectively, However, American Airlines 

exploits the transfer traffic through coordinated banks of arrivals and departures in 

Dallas-DFW while the bulk of the activity of Southwest in Dallas-DAL is based on 

point-to-point services.  

We follow these two different but complementary approaches as a robustness check. 

Certainly, network airlines in their hub airports are operating under HS route structures. 

On the contrary, airlines operating in different contexts are primarily operating under 

FC route structures.  

An important econometric challenge in our analysis is the possible simultaneous 

determination of frequencies and delays. Note here that the frequency variable is at the 

airline-airport level, while the delays variable is at the airport level. This should mitigate 

any endogeneity problem.  

This being said, we deal with this potential bias by using further lags of the delays 

variable as instruments. A typical shortcoming of the lags approach is that the 

correlation between several lags may be high if the variable of interest has a strong 

inertia. However, this is not the case in the data that we use. The correlation between the 

delays variable and its lagged values is 0.76, 0.58, 0.40, and 0.24 for one, two, three, 

and four lags, respectively. Lagged delays of more than four years are highly non-

significant in the first-stage regression of the instrumental variables procedure. In the 

table of results, we report tests of instrument appropriateness: the Hansen test where the 

null hypothesis is that the instruments are exogenous, and the Kleibergen-Paap LM 

where the null hypothesis is that the instruments are not strong. The Hansen test 

determines the selection of the lags that we use as instruments of the delays variable. 

Another econometric issue that should be mentioned is the high correlation between 

the variables Di,a
HS and Di,a

HS X Delaysa,t-1, and between the variables Di,a
FC and Di,a

FC X 

Delaysa,t-1, respectively. This may pose a multicollinearity problem that could distort the 

individual identification of these variables. However, the results of the regressions 



excluding either Di,a
HS and Di,a

FC or Di,a
HS X Delaysa,t-1 and Di,a

FC X Delaysa,t-1 are 

qualitatively identical to the regressions that include all the variables.9 

Table 4 shows the descriptive statistics of the variables used in the empirical 

analysis. All the variables show sufficient variability to provide robust estimations. 

Recall here that the unit of observation of our analysis is the pair airline-airport 

although some variable of our analysis are taken at the airport or urban level.  

 

Insert Table 4 here 

 

Table 5 shows the results of the estimation of Eq. (1) using airline and airport fixed 

effects. Standard errors are robust to heterocedasticity and clustered by year to account 

for any autocorrelation problem. The overall explanatory power of the model is high in 

both airline and airport fixed-effects regressions.  

 

Insert Table 5 here 

The impact of the population and income variables on frequencies does not seem to 

be relevant in our regressions, although the coefficient of the population variable is 

positive and statistically significant at the 10% level in the airline fixed effects 

regression. It should be borne in mind that the estimations capture the within rather than 

the between data variation. In this regard, the airport and year fixed effects may capture 

part of the effect of population and income. The dummy variables for slot constrained 

airports and for merged airlines operating in the hubs of the smaller airline are not 

significant either in any regression.  

The coefficient associated to the airport concentration variable is positive and 

statistically significant both in the airport and airline fixed effects regressions. Hence, it 

seems that frequencies of airlines in more concentrated airports are higher. Higher 

yields and a better exploitation of density economies by airlines operating in more 

concentrated airports could explain this result.   

As expected, the coefficient of Di,a
HS is positive and statistically significant in all the 

regressions. Additionally, the coefficients of Di,a
FC_a and  Di,a

FC_b are also positive and 

statistically significant. As expected, frequencies of airlines operating under HS route 

structures will be higher than those of other airlines as they be offering both direct and 

                                                           
9 The results of these additional regressions are available from the authors on request. 
 



connecting services. Less clear is the interpretation of results for the Di,a
FC_a and  Di,a

FC_b 

as they refer to different types of airlines.   

The coefficient associated with the delays variable is positive and statistically 

significant in the airline fixed effects regression, while such coefficient is negative but 

not statistically significant in the airport fixed effects regression. However, the 

relationship between frequencies and delays is jointly determined by the coefficients 

associated with the delays and the interaction variables. In fact, our main interest lies on 

the interaction variable since we focus on identifying the different behavior of airlines 

operating under HS and FC networks. 

We find that airlines operating HS networks increase frequencies as the percentage 

of delayed flights in their hub airports increases. The coefficient associated with the 

interaction variable Di,a
HS X Delaysa,t-1 is positive and statistically significant both in the 

airline and airport fixed effects regressions.  Furthermore, note that the magnitude of the 

coefficient of this interaction variable is higher than that of the delays variable in the 

airport fixed effects regression.  

By contrast, the coefficient associated with the interaction variable Di,a
FC X Delaysa,t-1 

is always negative and statistically significant. In the airline fixed effects regression, the 

magnitude of the coefficient of the interaction variable is similar to that of the delays 

variable. Recall that Di,a
FC_a refers to non-hubbing airlines operating at hubs in the 

airline fixed effects regressions. Thus, our results indicate that airlines operating in other 

airlines’ hub airports may be more prone to cut frequencies than hubbing airlines in 

reaction to more frequent delays at such airports.  

In the airport fixed effects regressions, Di,a
FC_b refers to dominant airlines in non-hub 

airports. Hence, dominant airlines operating in non-hub airports (ie; Southwest) clearly 

decrease frequencies as delays at such airports increase as long as the coefficients of the 

delays and interaction variables are negative.  

In short, we find evidence of a differentiated behavior between airlines operating HS 

and FC networks. Indeed, the estimated coefficients of the interaction variables clearly 

indicate this result since β8 > 0 and β8 > β10. Hence, we conclude that airlines operating 

HS networks may have strong incentives to maintain high frequencies in their hubs even 

when congestion at those hubs increases. 

Results of our analysis may provide an explanation of different results found in 

previous studies that examine the impact of delays on airline frequencies. While Pai 

(2010) find a negative relationship between frequencies and delays, Zou and Hansen 



(2014) obtain evidence of the opposite result. We find a positive relationship between 

airline frequencies and delays when airlines operate under HS route structures, while we 

find that this relationship is negative when airlines operate under FC route structures. 

  

5. Concluding remarks 

The dominance of the network airlines has benefitted the hub airports and their 

corresponding urban areas. Indeed, the traffic is higher than that generated solely by 

local demand because a large proportion of passengers in hub airports are connecting 

passengers. Furthermore, the number and geographical scope of destinations may be 

also higher in hub airports. However, a negative effect associated with hub airports 

concerns congestion which imposes costs to both passengers and airlines. In congested 

hubs, a high proportion of flights are affected by delays, cancellations and missed 

connections.  

Results of our empirical analysis show airlines operating HS route structures increase 

frequencies in response to more frequent delays, while airlines operating FC networks 

do reduce frequencies. Thus, airlines operating HS networks seem to ignore the costs in 

terms of airport congestion implied by their route structure choice. 

Our results are in line of those obtained by Daniel and Harback (2008), which show 

that dominant airlines at many major US hub airports concentrate flights in 

departure/arrival banks in peak periods, constraining non-hubbing airlines to cluster 

their traffic in the uncongested periods. It could be that our aggregate measure of delays 

serves as a proxy for concentrated flight banks of dominant hub carriers. In such a case, 

the positive effect of delays on frequencies that we find for airlines operating HS 

networks could be related to the benefits from having dominated banks of 

departures/arrivals at their hub airports.  

The empirical findings of this study are also consistent with the analysis of Zou and 

Hansen (2014) which find a positive relationship between airline frequencies and airport 

delays. It may be the case that yields are particularly high in congested flight segments 

operated by network airlines in their hub airports and hubbing airlines may particularly 

reluctant to give up slots in their hub airports.     

Our results suggest that policy measures promoting direct connections away from 

hubs may have social benefits in case that the problem of congestion becomes too 

severe. Policy makers and airport operators could use such tools as congestion tolls, 

capacity investment, and a better marketing of the cities in which non-hub airports are 



located. Additionally, the rules determining the allocation and use of slots in the US 

could also be re-designed so as to create incentives for airlines to increase the size of 

their aircraft and reduce their flight frequencies. 
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TABLES AND FIGURES 
 

Table 1. List of airlines included in our sample 
Network airlines Low-cost airlines 

Alaska airlines AirTran 
American Airlines Allegiant air 

Continental Cape air 
Delta Frontier 

Northwest Great Lakes airlines 
United Jet Blue 

US airways Pacific Wings 
 Republic airlines 
 Southwest 
 Spirit airlines 
 Sun Country airlines 
 USA3000 Airlines 
 Virgin America 

 
 

Figure 1. Evolution of the percentage of delayed flights at airports of our sample 
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Table 1. Characteristics of the airports included in the sample (mean values in 
2005-2013) 

Airport Delays Departures HHI Share dominant airline 
Alburquerque (ABQ) 16.5 50,729 0.33 Southwest (54.3%) 

Atlanta (ATL) 25.4 423,500 0.57 Delta (73.3%) 

Austin (AUS) 17.2 60,882 0.24 Southwest (40.3%) 

Hartford (BDL) 19.9 43,728 0.18 US Airways 
(23.2%)/Southwest (22.7%) 

Nashville (BNA) 20.4 78,370 0.26 Southwest (45.8%) 

Boston (BOS) 24.5 160,641 0.13 US Airways (19.7%)/Delta 
(17.4%) 

Baltimore (BWI) 21.3 134,066 0.35 Southwest (56.5%) 

Cleveland (CLE) 20.8 99,099 0.43 Continental (66.6%) in 2005-
2011/United (73.3%) in 2012-

2013 

Charlotte (CLT) 23.4 224,642 0.73 US Airways (85.7%) 

Columbus (CMH) 21.2 58,940 0.16 Delta (21.4%)/Southwest 
(19.8%) 

Cincinatti (CVG) 21.8 110,485 0.65 Delta (79.1%) 

Dallas (DAL) 20.6 62,191 0.82 Southwest (90.2%) 

Washington (DCA) 21.9 138,096 0.28 US Airways (46.6%) 

Denver (DEN) 22.4 288,766 0.29 United (47.1%) 

Dallas (DFW) 24.9 295,620 0.69 American Airlines (83.4%) 

Detroit (DTW) 25.3 209,909 0.60 Northwest (74.4%)/Delta 
(81.4%) 

New York (EWR) 31.1 156,175 0.50 Continental (69.9%) in 2005-
2011/United (76.2%) in 2012-

2013 

Fort Lauderdale (FLL) 22.6 99,059 0.13 Southwest (23.4%) 

Houston (HOU) 22.9 72,963 0.76 Southwest (87.1%) 

Washington (IAD) 24.5 136,697 0.52 United (70.2%) 

Houston (IAH) 21.9 217,221 0.72 Continental (86.7%) in 2005-
2011/United (87.5%) in 2012-

2013 

Indianapolis (IND) 20.1 63,014 0.15 Northwest (21.6%) in 2005-
2009/Delta (26.7%) in 2010-

2013 

New York (JFK) 28.7 124,180 0.27 Jet Blue (35.0%)/Delta 
(34.9%) 

Las Vegas (LAS) 21.3 183,366 0.29 Southwest (49.9%) 

Los Angeles (LAX) 19.3 239,165 0.18 United (28.9%) 

New York (LGA) 27.2 182,981 0.23 US Airways (29.2%)/Delta 
(27.9%) 

Kansas (MCI) 20.2 86,363 0.19 Southwest (36.2%) 

Orlando (MCO) 20.2 149,058 0.16 Southwest (30.2%) 

Chicago (MDW) 22.7 111,033 0.67 Southwest (81.1%) 



Memphis (MEM) 20.8 84,778 0.58 Northwest (76.6%)/Delta 
(76.4%) 

Miami (MIA) 26.7 83,076 0.50 American airlines (68.6%) 

Milwaukee (MKE) 22.3 69,267 0.25 Frontier (47.3%) in 2005-
2010/AirTran (21.7%) from 

2011-2013 

Minneapolis (MSP) 23.4 200,386 0.58 Northwest (75.4%) in 2005-
2009/Delta (77.5%) in 2010-

2013 

New Orleans (MSY) 19.5 51,819 0.19 Southwest (34.5%) 

Oakland (OAK) 17.4 74,808 0.59 Southwest (76.1%) 

Chicago (ORD) 29.2 391,806 0.40 American Airlines 
(39.4%)/United (49.6%) 

Portland (PDX) 15.3 92,987 0.25 Alaska airlines (40.8%) 

Philadephia (PHL) 27.5 204,892 0.50 US Airways (68.8%) 

Phoenix (PHX) 19.2 196,410 0.34 Southwest (41.2%)/US 
Airways (33.3%) 

Pittsburg (PIT) 22.1 75,874 0.23 US Airways (38.9%) 

Raleigh-Durham (RDU) 22.1 76,019 0.17 American Airlines 
(22.3%)/Delta (21.1%) 

Fort Myers (RSW) 19.3 36,973 0.12 Delta (16.5%)/AirTran 
(13.9%) 

San Diego (SAN) 17.5 99,464 0.23 Southwest (42.3%) 

San Antonio (SAT) 17.1 55,153 0.24 Southwest (42.5%) 

Seattle (SEA) 19.7 158,026 0.33 Alaska Airlines (54.5%) 

San Francisco (SFO) 24.5 154,485 0.32 United (53.4%) 

Salt Lake City (SLC) 17.2 154,485 0.55 Delta (72.7%) 

Sacramento (SMF) 17.3 56,477 0.33 Southwest (54.1%) 

Santa Ana (SNA) 16.9 51,754 0.19 Southwest (34.1%) 

St. Louis (STL) 20.1 113,701 0.25 American Airlines 
(30.3%)/Southwest (32.5%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Results of estimates of delays at the airport level (Ordinary Least 
Squares) 

 All airports  

Frequenciesa,t 0.000014 

(2.18e-06)*** 

HHIa,t 1.80 

(0.86)** 

Raina,t 0.08 

(0.009)*** 

Temperaturea,t -0.04 

(0.018)** 

Dslot 3.74 

(0.59)*** 

DHub 0.77 

(0.39)** 

Intercept 18.48 

(1.27)*** 

Time fixed effects YES 

R2 

Test F (joint significance) 
Number observations 

0.58 
43.12*** 

450 
Note 1: Standard errors in parenthesis (robust to heteroscedasticity and clustered 
by year).  
Note 2: Statistical significance at 1% (***), 5% (**), 10% (*) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Descriptive statistics of the variables used in the empirical analysis 
Variable Mean Standard Deviation 

Annual frequencies of the 
airline at the airport level 

(Freqi,a,t  ) 

13622.7 31553.06 

Annual Frequencies at the 
airport level 

139939.7 89542 

Concentration at the 
airport level (HHI index) 

0.34 0.18 

Population of the 
metropolitan area –million 

inhabitants  (Popu,t-1) 

4707663 4536939 

Per capita income of the 
metropolitan area –US 

current dollars (GDPpcu,t-1) 

50326.8 8811.3 

Percentage of delayed 
flights at the 

airport( Delaysa,t-1) 

21.77 4.74 

Dummy for dominant 
network airlines operating 
at the hub airport (Di,a

HS) 

0.045 0.20 

Dummy for airlines 
operating at the hub airport 

(Di,a
FC_a) 

0.012 0.11 

Dummy for dominant non-
network airlines operating 

at their base airports 
(Di,a

FC_b) 

0.036 0.48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Results of estimates of airline frequencies at the airport level 
(Instrumental variables regression) 

 Airline fixed effects Airport fixed effects 

Popu,t-1 0.00013 

(0.00008)* 

-0.0002 

(0.0011) 

GDPpcu,t-1 -0.003 

(0.03) 

0.11 

(0.17) 

HHIa,t-1 12379.67 

(2103.63)*** 

13317.55 

(6899.69)** 

Da
Slot 1475.57 

(1430.66) 

- 

Di,a
hubs_smaller_merged_airline -9849.46 

(9959.81) 

2103.07 

(14274.09) 

Delaysa,t-1 1010.01 

(232.39)*** 

-207.41 

(679.21) 

Di,a
HS 60937.35 

(20536.06)*** 

37869.9 

(18478.9)** 

Di,a
FC_a 12570.39 

(3795.39)*** 

- 

Di,a
FC_b - 59358.91 

(2750.07)*** 

Di,a
HS X Delaysa,t-1 2132.43 

(874.64)*** 

3378.78 

(771.12)*** 

Di,a
FC_a X Delaysa,t-1 -877.25 

(186.42)*** 

- 

Di,a
FC_b X Delaysa,t-1 - -302.21 

(82.13)*** 

Time fixed effects YES YES 

R2 

Test F (joint significance) 
Kleibergen-Paap LM statistic 

(Ho: equation is 
underidentified)  
Hansen J statistic 
(Ho: equation is 
overidentified) 

Number observations 

0.66 
47.25*** 

 
569.93*** 

 
 

1.82 
 

4259 

0.66 
73.23*** 

 
104.55*** 

 
 

0.21 
 

4259 
Note 1: Standard errors in parenthesis (robust to heteroscedasticity and clustered 
by year).  
Note 2: Statistical significance at 1% (***), 5% (**), 10% (*) 
Note 3: Instruments of lagged delays are three and four delays.  


