Teaching plan for the course unit

 

Close imatge de maquetació

 

Print

 

General information

 

Course unit name: Probabilistic Graphical Models

Course unit code: 572671

Academic year: 2017-2018

Coordinator: Jesus Cerquides Bueno

Department: Department of Mathematics and Computer Science

Credits: 3

Single program: S

 

 

Estimated learning time

Total number of hours 75

 

Face-to-face learning activities

28

 

-  Lecture

 

6

 

-  Lecture with practical component

 

6

 

-  Problem-solving class

 

6

 

-  IT-based class

 

6

 

-  Student presentation and discussion

 

4

Supervised project

11

Independent learning

36

 

 

Competences to be gained during study

 

CB6 ­ Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación

CB9 ­ Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades

CB10 ­ Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CE1 ­ Que los estudiantes sepan entender el proceso de valorización de los datos y su papel en la toma de decisiones.

CE2 ­ Que los estudiantes sepan recoger, extraer información y datos de fuentes de información estructuradas y no estructuradas.

CE7 ­ Que los estudiantes sepan entender, desarrollar y modificar los algoritmos analíticos y exploratorios que trabajan sobre conjuntos de datos y aplicar el pensamiento crítico en estas tareas.

 

 

 

 

Learning objectives

 

Referring to knowledge

To know what probabilistic graphical models (PGMs) are and what queries can we ask them.

 

 

To know when (and how) these queries can be answered exactly in polynomial time (exact inference).

 

To know what to do when they can not (approximate inference).
 

 

To know the basic techniques to learn probabilisitic graphical models from data.

 

Referring to abilities, skills

To be able to apply PGM algorithms to problems of your interest.

 

 

To be able to translate PGMs and related algorithms into code.

 

 

Teaching blocks

 

No..

Title

1

Representation

*  The objective of this first thematic block is to understand what a probabilisitic graphical model communicates in terms of statistical conditional independence assumptions. 

2

Inference

*  This second block deals with exact and approximate algorithms for answering probabilisitic queries to an already known PGM.  

3

Learning

*  This third block deals with how to learn PGM parameters and structure from data.

4

Modern applications

*  This fourth block overviews some state-of-the-art applications and tools in the area of PGMs.

 

 

Teaching methods and general organization

 

Lectures will be all encompassing iteratively including lecturing, problem solving and programming.

The students will be allowed to voluntarily provide a presentation on application of PGMs to problems of their interest or on a recently introduced PGM technique. 

 

 

Official assessment of learning outcomes

 

The subject will be evaluated based on a final exam (in the 0-10 scale). If the students decide to do the optional presentation, this activity can reward them up to 3 additional points which will be added to the exam note.

 

Examination-based assessment

The subject will be evaluated based on a final exam (in the 0-10 scale).