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1. Introduction 

Although the standards of education attained by the Spanish labour force have improved 

considerably over the last three decades, Spain still lags behind other advanced 

economies in this respect. However, employees’ qualification does not depend solely on 

their schooling (formal education), but also on the quality of their life-long learning, 

including continuous and occupational training. The National Reform Programme for 

Spain (2005), developed within the framework of the Lisbon Agenda, stresses the 

importance of continuous training for already occupied workers as a means of acquiring 

additional knowledge and skills applicable to their present and future posts. Continuous 

training ensures that workers’ skills can be adapted to the constantly evolving 

requirements of the workplace, which enhances their competitive position. As workers 

become more productive, their employers in turn improve their performance. Yet, in 

2004, only 5.2% of the Spanish population received continuous training, while the EU-

15 average stood at 10.7% and the EU-25 average at 9.9%.1 

Workers in small and medium-sized enterprises (SMEs) are less likely to receive 

continuous training. Given that the Spanish economy is characterised by a smaller 

number of large firms and a smaller average firm size than other advanced economies, 

the difficulties faced by SMEs may constitute a limitation for the economy as a whole. 

In this paper, the reasons as to why small firms may be facing greater difficulties 

in accessing continuous training are analysed. Based on the evidence that training is 

generally associated with certain types of firm and employees, the hypothesis 

propounded here is that large firms are more likely to be associated with these 

characteristics, or at least, to be associated with them more intensely, than their smaller 

counterparts. This, we argue, explains in part why small and large firms take different 

decisions regarding their training provision.  

An empirical study conducted by Black et al. (1999) examines the relationship 

between different training measures and firm size for a sample of US firms and finds 

that large firms invest more heavily in training. They argue that such firms have scale 

economies in the provision of formal and informal training and provide more 

opportunities for undertaking co-worker training. Baldwin et al. (1995) contend that as 

large firms might enjoy a higher pay-off from their investment in training, they are 

encouraged to invest more. Holtmann and Idson (1991) maintain that large firms face 

                                                 
1 The National Reform Programme seeks to raise the percentage in receipt of such training to 10% by 
2008 and 12.5% by 2010. 
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lower investment risks as they can pool these risks. Barron et al. (1987) argue that there 

is a higher probability of shirking in large firms: as employees work cooperatively to 

produce a common output, it is more difficult to disentangle the participation of each 

individual worker. Thus, they claim, as large firms face higher monitoring costs, one 

way to reduce these, is providing training to their employees. According to Hashimoto 

(1979), large firms have access to cheaper capital for financing training. In the case of 

Spain, Rigby (2004) reports that small firms typically have access to training plans that 

“do not reflect the specific needs of employers and are promoted actively by social 

partners independently of employers”. 

Another strand of the literature is dedicated to examining the reasons why firms 

decide to train their workers and the amount of training they provide. Empirical studies 

of interest include Bartel (1989), Baldwin et al. (1995), Black and Lynch (1998) and 

Blundell et al. (1999). Evidence regarding the situation in Spain is reported in Alba-

Ramírez (1994), Peraita (2005) and Albert et al. (2005a). These studies estimate the 

impact of certain characteristics of firms (determinants) that are believed to affect 

training decisions. In what follows, the role of these determinants and how they might 

vary with firm size are discussed. 

To start with, training will tend to be provided to those who have previously 

shown an aptitude for formal education as they will benefit most from a firm’s 

expenditure on training (Black and Lynch, 1998; Alba-Ramírez, 1994). Thus, firms that 

employ more qualified workers are more likely to provide training. On the role of firm 

size in this relationship, Evans and Leighton (1989) report evidence of some sorting on 

ability characteristics across firm sizes (with better educated workers being employed in 

larger firms) while Zábojník and Bernhardt (2001) propose a model where workers in 

larger firms and industries acquire more human capital.  

Technological changes are introduced at high speed and require the continuous 

upgrading of the labour force. This use of advanced, specialized technology requires 

specific knowledge and skills that are not readily available in the labour market and so 

training is a way of acquiring such skills (Baldwin et al., 1995; Korpi and Mertens, 

2004). The empirical evidence suggests that technological change leads to workers 

receiving more training (upskilling) (see Osterman, 1995). Additionally, firms that 

launch new products may need to train sales or technical staff, while those that 

implement process innovations may need to provide their production workers with 

technical training (Alba-Ramírez, 1994; Li et al., 2006). Similarly, the specific 
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knowledge that the new process or product requires may not be easily found in the 

labour market. In line with Schumpeter (1942), various authors have argued that large 

firms enjoy an advantage over small companies in terms of innovation and the evidence 

from Spain seems to confirm this (Huergo and Jaumandreu, 2004). The same argument 

holds for a more intense use of advanced technologies in large firms.  

Firms exposed to more competitive markets may invest more in training 

programmes as a strategy to enhance the competitiveness of their employees (see, for 

instance, Bartel, 1989). There are reasons to believe that both small and large firms are 

willing to provide training to increase their competitiveness: the former, because of their 

vulnerability to highly competitive markets; the latter, because they place themselves in 

such competitive markets, such as international markets.  

Other studies argue that foreign-owned firms are more likely to provide training 

for their workers (Görg and Strobl, 2005; Hughes et al., 2004). Typically, such 

companies are multinational firms, characterised by managerial efficiency, the 

recruitment of more qualified workers and a more positive attitude regarding workers’ 

skills than that of domestic firms. 

Finally, firms with a high proportion of temporary workers are assumed to invest 

less in training. This state of affairs might be particularly important in the case of the 

Spanish labour market, which has a high degree of temporary employment (Alba-

Ramírez, 1994; Albert et al., 2005b). Firms will not be interested in providing training 

for workers that may leave their employment in the short term as they will be unable to 

recover the returns from their investment. Furthermore, temporary workers lack 

incentives to acquire firm-specific human capital as they are unlikely to stay with the 

firm. Oi (1983) finds that large firms have less rotation because of internal labour 

markets.2 

To analyse these questions, we use data drawn from the Encuesta sobre 

Estrategias Empresariales (ESEE). This survey gathers information from a sample of 

Spanish industrial firms with at least 10 employees, which has been widely used in 

empirical industrial organisation. This study aligns itself initially with that strand of 

literature that estimates the determinants of firm-related training. What is innovative, 

however, about this study is its consideration of the decision to provide training as a 

                                                 
2 There are determinants of training for which we cannot control: the degree of unionization in the firm 
(Wagar, 1997), the personal characteristics of workers (Oosterbeek, 1996) and the workplace and 
personnel practices (Black and Lynch, 2004).  
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double-decision process: firms first decide whether they will provide training or not 

and, once an affirmative decision has been taken, they decide the amount they want to 

provide. To analyse the training differential between small and large firms, this paper 

decomposes this differential using the Oaxaca-Blinder methodology. This allows us to 

evaluate the individual contribution of each variable to this gap and to distinguish 

between differences due to firms’ characteristics and differences due to the impact of 

these determinants on training. 

In Section 2, the appropriateness of using a two-part model for estimating firms’ 

decisions regarding the provision of training is discussed. Section 3 offers evidence that 

small firms spend less on training and that this is related to firms’ characteristics. 

Section 4 provides the results of the estimation and Section 5 decomposes the training 

gap. Section 6 concludes. 

 

2. Methodological questions and empirical model 

It is common practice to estimate a probit model to analyse the factors that determine 

whether firms provide training to their employees or not. Likewise, in analysing the 

determinants of firms’ expenditure on training, it is a fairly common approach to 

estimate a tobit model, which takes into account the fact that the dependent variable is 

censored at zero as, by nature, it can only take nonnegative values (Alba-Ramírez, 1994; 

Black and Lynch, 1998; Black et al., 1999). Estimating the specification by Ordinary 

Least Squares (OLS) instead, would provide inconsistent estimates, as it assumes that 

the dependent variable can take both positive and negative values. Moreover, as the 

logarithm of zero does not exist, a common solution is to add a small positive constant; 

but this constant is set arbitrarily.  

The main limitation of the tobit model is that it does not consider decisions 

regarding the provision of training as a double-decision process: first, firms decide 

whether they will invest in training or not (participation decision), and once the decision 

has been taken, they decide the amount they wish to invest (quantity decision). This is 

particularly true when the two decisions are motivated by different determinants. For 

instance, when the decision as to whether to provide training involves incurring fixed 

costs, such as designing a training plan. Then, these fixed costs determine the decision 

as to whether to spend a sum of money or not, but they do not necessarily affect the 

decision regarding the quantity. Even in the case that the two decisions are dependent 

on the same factors, the dependent variable may include observations that take a zero 
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value with high frequency and this mass of zeros might respond in a different way to 

covariates than observations with positive values. When this occurs, there are reasons to 

model the decision of training as two separate mechanisms, which can be seen as a 

generalisation of the tobit model. These models, henceforth referred to as two-part 

models, add flexibility in the sense that they allow zeros and non-zeros to be generated 

from different processes (Cameron and Trivedi, 2005).  

Two approaches to these flexible models can be adopted: the sample selection 

model and the two-part model itself. The main difference between them is that the 

former takes the sample selection effect into account, which, when omitted, can cause 

biased estimations. The most popular sample selection model is the bivariate sample 

selection model studied by Heckman (1979). The so-called Heckit model comprises a 

participation equation that determines the sample selection: 

iii XdTR 11
'
1

* �� ��  (1)

where dTRi
* is a censoring latent variable that reflects whether each i-firm is willing to 

provide training, X1i is a vector of variables that determines this decision and �1i is the 

error term. The willingness of firms to provide training cannot be observed, but we can 

observe whether the firm spends money on it. Define dTRi as the censoring observed 

variable, which is a binary indicator that takes value 1 if we observe that the firm 

dedicates some amount of money to training. Thus, dTRi = 1 if dTRi
* > 0 and dTRi = 0 

otherwise. 

Define TRi as the firms’ expenditure on training and lnTRi as its logarithm, 

which is determined by a vector of variables X2i. The quantity equation can be expressed 

as: 

iii XTR 22
'
2ln �� ��  (2)

where �2i is the error term. Assuming that the error terms �1i and �2i follow a bivariate 

normal distribution with zero means, standard deviation �1 and �2, covariance �12 and 

correlation �: 

� �111222 '')1|(ln �	
� iiiii XXdTRTRE ���  (3)

where )()()( 1
'
11

'
11

'
1 ����	 iiii XXX �� is defined as the inverse Mills’ ratio, �  is the 

standard normal density function and � is the standard normal cumulative distribution 

function. 



 

 

Research Institute of Applied Economics 2008                                               Working Papers 2008/08, 33 pages

7

The coefficients �1 are obtained by a first-step probit regression of dTR on X1: 

� � )(1 1
'
1 �iXdTRP ��� . The Heckit model augments the OLS regression on the quantity 

of training by the inverse Mills’ ratio and then uses the positive values of TR to estimate 

the model by OLS. The estimate of �2 is consistent, as it takes the sample selection bias 

into account.3 By introducing the inverse Mills’ ratio, this model corrects for possible 

sample selection effects. Sample selection appears when the error terms of the two 

equations are not independent, and thus the covariance of the error terms, �12, is 

different from zero.  

When �12 equals zero, the Heckit model simplifies to the two-part model, which 

simply uses the positive values of TR to estimate the model by OLS, obtaining 

consistent estimates of the �2 parameters. The two-part model was first proposed by 

Cragg (1971) and was specifically designed for data on expenditure that contains a large 

number of zeros and a right-skewed distribution. The two-part model also starts from a 

participation and a quantity equation and equation (3) simplifies to:  

22')1|(ln �iii XdTRTRE ��  (4)

In this paper, the following quantity equations, corresponding to the Heckit and 

the two-part models respectively, are estimated. For dTR=1: 

� � iiiii vXXTR ��� 111222 ''ln �	
�  

iii XTR 222'ln �� ��  

(5)

(6)

 

 

3. The dataset and descriptive analysis 

For the empirical analysis, I use a sample of Spanish industrial firms drawn from the 

Encuesta sobre Estrategias Empresariales (ESEE), carried out by the Fundación 

Empresa Pública (FUNEP). This survey is an unbalanced panel that covers the period 

1990-2002 and gathers information on the strategic decisions and behaviour of firms. 

The reference population of the ESEE is firms with 10 or more employees dedicated to 

one of the activities corresponding to divisions 15 to 37 from the CNAE-93, excluding 

division 23 (activities related to refinement of oil and fuel treatment). In the base time 

period, all firms with more than 200 employees were required to participate (of which 

70% actually did). The firms with 10 to 200 employees were sampled randomly by 

                                                 
3 The bivariate sample selection model can also be estimated by ML although this would impose stronger 
assumptions on the distribution of the error terms. 
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industry and four size strata, retaining about 5%, so that representativity for every 

industry and firm size was guaranteed.4 In the present paper, we use information 

corresponding to years 2001 and 2002,5 in which data is available for 1,515 and 1,505 

firms respectively, of which 30% are large.  

 The variables used in this analysis are defined as follows: 

- Training is measured as a discrete variable (according to whether the firm provides 

continuous training or not) and as a continuous variable (the log of the real 

expenditure on continuous training per worker). Continuous training is measured as 

the external expenses on training per worker, including five different types of 

training: computation and information technologies, foreign languages, sales and 

marketing, engineering and technical training and other issues. 

- Firm size is defined as the total number of employees, taking into consideration full 

time and part time employees as well as temporary employees. 

- The percentage of white collars in the firm is the proportion of engineers, graduates, 

middle level engineers, experts and qualified assistants on the total number of 

employees.6 

- The intensity of use of advanced technologies is measured by a set of three dummy 

variables labelled as low, medium and high, when firms use 0-1, 2-3 or 4-5 

advanced technologies respectively. The ESEE considers these technologies as 

being: Computer Numerically Controlled (CNC) machines and tools, Robots, 

Computer-Aided Design (CAD), a combination of the previous systems by central 

computer (CAM, flexible manufacturing systems, etc) and Local Area Network 

(LAN) for factory use.  

- Innovation is defined as a dummy variable that takes value 1 if the firm has 

introduced a product or a process innovation.  

- The geographical scope of the market where the firm operates is defined by a 

dummy that takes values 1 when the firm operates in an international market and 

zero otherwise. 

- The participation of foreign capital is defined as the percentage of foreign-owned 

capital in the firm. 
                                                 
4 For further details on the dataset, see Fariñas and Jaumandreu (1999). 
5 The information on the firms’ provision of continuous training in the ESEE is only available for 2001 
and 2002. 
6 This variable enters the equations with one lag. Data on white collar workers are not available for 2000 
and 2001 as they are not assumed to change substantially from one year to the next. We therefore 
interpolate the percentage of white collars, assuming that they change linearly. 
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- The percentage of temporary workers over the total employees is measured at the 

end of the year. When the firm reports that the number of temporary employees has 

changed considerably, it is calculated as a mean of every quarter. 

- Finally, the control variables are: the use of the productive capacity (percentage), a 

dummy reflecting whether the firm is part of a group, a set of 20 sector dummies, a 

set of 17 regional dummies and year dummies. 

Table 1 presents a descriptive analysis of training, both for the discrete variable 

(dTR) and for the expenditure per worker (TR) according to the above-mentioned 

characteristics. First, the data show that around 40% of the firms in the sample provide 

training. In terms of the firms’ characteristics, we see that firms with a percentage of 

white collar above the median (labelled “high % of white collars”), innovative firms, 

firms that make an intense use of advanced technologies,7 firms that operate in 

international markets, those that have a higher participation of foreign capital and those 

with a percentage of temporary workers below the median provide more training. 

Moreover, the differences between firms with these characteristics and without them are 

significant at 1%. This evidence supports the belief that training is associated with 

certain characteristics of the firm. 

[Insert Table 1 about here] 

As this study focuses on differences by firm-size, we divide the sample into two 

subsamples of small and large firms. Around 25% of small and 75% of large firms 

provide some training, while the average real expenditure per worker is 42 euros and 

141 euros respectively. Thus, large firms provide more training and the differences are 

significant at 1%. 

As Table 2 shows, among the firms with a percentage of white collars above the 

median, large firms provide significantly more training than their smaller counterparts. 

Similarly, among the firms with a percentage of white collars below the median, large 

firms also provide significantly more training. Analogue results are obtained for all the 

other firm characteristics considered here (significance at 1%).  

In addition, the statistics of the tests of equality of proportions and means that 

compare the provision of training in small and large firms are smaller for the group of 

firms with a high level of qualified workers than for the group with a low level. This 

indicates that differences between small and large firms reduce for firms with more 

                                                 
7 Firms that make a high use of these technologies provide more training than firms with medium use, and 
firms that make medium use of advanced technologies provide more training than firms with low use. 
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human capital. Thus, having a high percentage of white collars seems to slightly 

mitigate the differences in training provision decisions between small and large firms. 

This result is obtained for all the other characteristics (except for temporary workers). 

Therefore, the results suggest that the presence of certain characteristics makes small 

firms behave as large ones with respect to the provision of training; nevertheless, the 

differences between the two groups remain notable.  

[Insert Table 2 about here] 

The objective here is to determine whether small and large firms present 

different patterns in their training decisions in relation to the characteristics of the firm. 

The hypothesis is that the difficulties faced by small firms in accessing training are 

related to the fact that they are not associated with the above-mentioned characteristics 

(or not associated with the same intensity as large firms). Table 3 confirms this 

reasoning: large firms employ more high-skilled workers, innovate more and use 

advanced technology with an intermediate and high intensity more than small firms do; 

they also operate more in international markets and they have a greater participation of 

foreign capital. As for small firms, they use advanced technology with low intensity 

more than large firms do and they have more temporary workers than large firms. The 

differences in these characteristics between the two groups are significant at 1%. These 

results suggest that large firms may provide more training because they are more 

associated with these characteristics. In the next section, we perform a regression 

analysis to study whether such characteristics are driving the training decisions and 

whether they have different impact on small and large firms.  

[Insert Table 3 about here] 

4. Estimation

4.1. The Heckit and the two-part model 

As commented above, around 60% of the observations of the dependent variable TR 

take value zero. This percentage indicates the existence of a high degree of censoring 

and, thus, the need to consider the possibility that the zeros and positive observations 

are generated by different processes.8 In this Section, we discuss whether it is more 

                                                 
8 The distribution of expenditure on training per worker is clearly right skewed. The median is 90€ per 
worker in 2001 and 109€ per worker in 2002, while the average is 171 and 186 respectively. The 
skewness coefficient is 7 in 2001 and 5.3 in 2002.  
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appropriate to model firms’ training decisions as a two-part model with sample 

selection or not.  

The estimation of expressions (5) and (6) is shown in Table 4. The first and second 

columns show, respectively, the marginal effects and coefficients of the participation 

equation (which is the same in the Heckit and the two-part model). The third and fourth 

columns show the coefficients of the quantity equation in the Heckit model in the two-

part model.9 In the participation equation, all the variables of interest are significant 

(except for the percentage of temporary workers) and have the expected sign. In the 

quantity equation, the percentage of white collars, the innovative activity, the 

participation of foreign capital and the percentage of temporary workers are clearly 

significant. In the Heckit model, the intensive use of advanced technologies and 

operating in an international market also increase firms’ expenditure on training 

significantly. 

[Insert Table 4 about here] 

The choice between the two models is a controversial question and has led to 

intense debate in recent years (Dow and Norton, 2003). First, the type of dependent 

variable to be modelled must be given careful consideration. To put it simply: when 

analysing training expenditure with a large proportion of zeros, do we observe potential 

training-providers that for some reason decided not to provide training? Or do we 

observe firms that do not wish to provide training (observed outcome)? Dow and 

Norton (2003) argue that when the observed zeros do not represent zero values for the 

potential outcome then a sample selection bias might appear. 

Lynch (1993) argues that, in small firms, fixed costs of training are distributed 

across a smaller number of employees: for instance, the production losses associated 

with a worker being away from his or her workplace or the design of a firm’s training 

plan can be more costly in a small than in a large firm. We argue that, in the presence of 

fixed costs, some firms cannot afford to provide training and we observe a zero in the 

variable measuring the expenditure on training. If these fixed costs were smaller, these 

firms would decide to provide training and we would observe a positive value. Seen in 

this light, fixed costs might be hiding a latent potential training provision. Here, we are 

                                                 
9 Notice that the two sets of coefficients of the quantity equation cannot be directly compared: while in 
the two-part model, the coefficients are equal to the conditional marginal effects, in the Heckit, they are 
only part of the conditional marginal effect. For further details, see Cameron and Trivedi (2005).  
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specifically interested in this potential outcome and so the Heckit model appears to be 

more appropriate. 

Secondly, the Heckit model may have problems of identification when the same 

regressors are included in the two equations, while in the case of the two-part model this 

is not a limitation. Although the Heckit model with normal errors is theoretically 

identified without exclusion restrictions on any regressor, when the same regressors are 

included in the two equations, this model is close to unidentified. Cameron and Trivedi 

(2005) explain that sometimes it can be very difficult to make defensible exclusion 

restrictions. In our case, it seems difficult to find at least one regressor that determines 

the decision as to whether or not to provide training, but which does not determine the 

quantity of training provided. 

A t-test on the coefficient of the inverse Mills’ ratio can be used to test the null 

hypothesis that the two-part model is correct against the alternative hypothesis that the 

Heckit is correct.10 However, under collinearity between the covariates and the inverse 

Mills’ ratio, the power of the test is limited and this test cannot be used as a criterion to 

select between the two models; with low collinearity, the test is reliable. According to 

Leung and Yu (1996), imposing no exclusion restrictions is a main source of 

multicollinearity. These authors recommend using the condition number to check for 

multicollinearity between the inverse Mills’ ratio and the covariates in the quantity 

equation. Based on Monte Carlo experiments, Belsley et al. (1980) suggest that a 

condition number beyond 30 is indicative of collinearity problems. For the total sample, 

the condition number for the covariates is 26.9, and after including the inverse Mills’ 

ratio it takes a value of 36.9. As suggested in Cameron and Trivedi (2005), although the 

condition number including the inverse Mills’ ratio takes a value above 30, the increase 

when including this regressor is very small, for which multicollinearity problems can 

not be considered as severe. Then, the test on the inverse Mills’ ratio can be considered 

a useful tool for selecting between the two models. Table 4 shows that the coefficient of 

the inverse Mills’ ratio takes a value of 0.57 and is not statistically significant; thus, the 

null that the two-part model is correct cannot be rejected.  

Finally, using statistical criteria to select between the two models, Dow and Norton 

(2003) recommend the test proposed by Toro-Vizcarrondo and Wallace (1968), which 
                                                 
10 Dow and Norton (2003) stress that if the coefficient of the inverse Mills’ ratio is zero, the Heckit 
reduces exactly to the two-part model, but the two-part model does not require the coefficient to be equal 
to zero. The two models simply make different implicit distributional assumptions and they are only 
partially nested. 
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they name an empirical mean squared error (EMSE) test. The original test statistic was 

derived for OLS models, but the intuition can be extended to the Heckit and two-part 

models. This test involves calculating the EMSE of both estimators, under the 

assumption that one model is consistent and correct. Then, the estimator with the lower 

EMSE is chosen. For most of the variables in the empirical specification (with the sole 

exception of the variable on temporary workers), the EMSE for the two-part model is 

smaller than the EMSE for the Heckit model, indicating that the former seems more 

appropriate. As for the control variables, the same result is obtained, with the exception 

of some regional dummies.11 Under the two assumptions, the results are similar, 

indicating the robustness of the results. 

Therefore, although from a theoretical point of view it can be argued that sample 

selection might exist, a significance test on the inverse Mills’ ratio and the EMSE test 

suggest that in practice it seems more appropriate to estimate a two-part model to model 

firms’ training provision. In the case of the subsamples of small and large firms similar 

results are obtained. 

 

4.2. The two-part model with random effects 

Empirical studies that use firm-level datasets reveal a high degree of heterogeneity 

among firms with similar observed characteristics. This particularity of the data requires 

estimating a model that takes firm-specific effects into account. If there are significant 

unobserved time-invariant, firm-specific effects that are correlated with the explanatory 

variables, the simple pooled regression may produce biased and inconsistent estimates. 

In the case of micro-databases, where firms in the sample are selected randomly from a 

larger population, it is quite common to estimate a random effects model, rather than a 

fixed effects model.12 

The participation equation is estimated by means of a random effects probit 

model, which assumes a normal distribution for the random effects. The model is 

estimated by maximum likelihood (Guilkey and Murphy, 1993).13 As for the quantity 

                                                 
11 Due to limitations of space, the results for the EMSE test have not been included here. However, they 
are available from the author upon request. 
12 See for instance Groot and Maassen van den Brink (2003), Barrios et al. (2003), Máñez et al. (2004) or 
Licandro et al. (2004). 
13 The integral in the likelihood function is approximated with the non-adaptive Gauss-Hermite 
quadrature. The quadrature formula requires that the integrated formula is well approximated by a 
polynomial. As the panel size increases, the quadrature approximation becomes less accurate. If the 
results of the estimation change when the number of quadrature points changes, the results should be 
dismissed. We verified the magnitude of these changes and found that, for most variables, the relative 
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equation, a standard regression model including random effects is estimated by 

generalized least squares. 

Table 5 offers the results of the two-part model including firm-specific effects, 

for the total sample and for the subsamples of small and large firms. In the case of the 

total sample (first set of columns in Table 5), the results are similar to those in Table 4: 

the same variables are significant and they show the same sign. Although the results are 

similar to the model without the inclusion of random effects, the tests reject the null 

hypothesis that firm-specific effects are zero. In the case of the participation equation, 

when the panel-level variance component is unimportant, the panel estimator is not 

significantly different from the pooled estimator. The test rejects the null that the panel-

level variance component is equal to zero at 1%. As for the quantity equation, the 

Breusch and Pagan Lagrange-multiplier test rejects the null hypothesis at 1%. Similar 

conclusions from the tests are obtained for the subsamples of small and large firms. 

Therefore, the two-part model with random effects was chosen to carry out the rest of 

the analysis. 

[Insert Table 5 about here] 

In general, the results obtained here confirm the findings of previous empirical 

studies. See for instance, Bartel (1989), Alba-Ramírez (1994), Baldwin et al. (1995), 

Black and Lynch (1998) and Hughes et al. (2004). More specifically, in the case of the 

total sample, the effect of firm size is positive and significant in the participation 

equation indicating the presence of effects associated with large firms even after 

controlling for the set of possible training determinants. In particular, increasing the 

firm size by one point increases the probability of firms providing training by 0.2. The 

fact that firm size is significantly positive in the participation equation, even after 

controlling for other variables and firm-specific effects, suggests the existence of scale 

economies in the provision of training as well as other effects associated with firm size.  

Apart from this direct effect of firm size, the other covariates may have different 

effects in the subsamples of small and large firms, as suggested by the descriptive 

analysis in Section 3. For example, does an increase in the participation of skilled 

workers lead to a higher probability of training (or higher expenditure) in both small 

and large firms? Is this effect larger in magnitude in either group? To further analyse 

this question, the same equations are estimated for the subsamples of small and large 

                                                                                                                                               
difference between the coefficients using different quadrature points was smaller than 0.01%. So, the 
results of the probit random effects model estimated here are reliable. 
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firms. Given that small firms are acknowledged to have more difficulties in accessing 

training, we are interested in analysing the impact of these variables on training 

decisions and whether they play different roles in firms of different size classes.  

The second and third sets of Columns in Table 5 show the results for the estimation 

of the empirical specification for the subsamples of small and large firms respectively. 

Results suggest the existence of certain differences between small and large firms in 

their training provision decisions. Specifically, firm size has a negative effect on 

training expenditure per worker in small firms, while this is not the case with large 

firms. This could be explained by the high fixed costs of training, especially for the 

smallest firms. 

In the case of the degree of qualification of the labour force, this factor does not 

determine whether large firms will decide to provide training, although it does have an 

impact on the amount of training provided. In small firms, however, the degree of 

qualification of the labour force is a determinant of both decisions. This result can be  

explained by the fact that large firms employ a wide range of employees, and so, ceteris 

paribus, there is a higher probability that they will provide training to at least one 

employee.  

The variables related to technology appear to be important determinants of a firm’s 

decision to provide training, both for small and large firms. However, in the case of the 

latter, the effects seem to be slightly smaller in magnitude than in the case of small 

firms. Moreover, in shifting from being a non-innovative to an innovative large firms 

increase their expenditure on training per worker by almost 22%, whereas in the case of 

small firms, this variable does not have a significant effect. These results suggest a 

relationship between size, technological activities and the training per worker. As we 

discuss below, technological activities appear to explain in part why large firms provide 

more training per worker. 

In the case of small firms, competing in an international market and having foreign 

capital participation affect the two training decisions. This can be explained by the fact 

that small firms with these characteristics may decide to provide training as a way of 

guaranteeing success in their competitive environment. However, the impact of the 

geographical scope of the market on the decision as to whether to provide training is 

much larger in large firms than in their smaller counterparts.  

Finally, the coefficient of the variable for temporary employment is only significant 

(presenting a negative sign) in the decision regarding the quantity of training in large 
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firms. As before, given that large firms employ a wide range of workers, it does not 

affect their probability of providing training but rather the quantity of it.  

With regards to the control variables on the group and the use of productive 

capacity, small and large firms do not differ in their respective behaviour. However, the 

sets of dummy variables on region and sector show differences between the two groups. 

Overall, the technological activities and the geographical scope of the market 

appear to be important determinants of firms’ training decisions. In addition, there are 

certain differences between small and large firms that may explain why small firms 

provide less training per employee than their larger counterparts. In the next Section, the 

training provision gap between small and large firms is decomposed to investigate 

further the contribution of these variables. 

 

5. Decomposition of the training gap between small and large firms 

5.1. The Oaxaca-Blinder decomposition in the two-part model 

The Oaxaca-Blinder methodology is applied here to decompose the training provision 

differential between large and small firms.14 It allows us to decompose the differences 

in the participation decision and in the amount of training into two components: 

differences in the levels of the determinants of training (firm characteristics) and 

differences in the impact of these determinants. The former reflects the fact that small 

and large firms have different characteristics, which are associated with different 

training levels. The latter reflects the differences by firm size in the impact of such 

characteristics on the training provision. For example, supposing that small and large 

firms had the same percentage of qualified workers, would they show a similar 

propensity to invest in training? 

Starting from two auxiliary regressions for the sub-samples of small and large 

firms: 

)ˆ'(ˆ
)ˆ'(ˆ

LLL

SSS

XFT
XFT

�

�

�

�
 (7)

                                                 
14 The Oaxaca-Blinder decomposition methodology has been widely used to study wage gaps associated 
with differences in workers’ characteristics and discrimination by gender or race (Oaxaca, 1973 and 
Blinder, 1973). To the best of our knowledge, Smith et al. (2004) and Castany et al. (2007) are the only 
papers that have applied this method to analyse differences between firms.  
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where T denotes training, both as a discrete (dTR) or continuous variable (lnTR), X is 

the matrix of the regressors, �̂  is the conforming vector of estimated coefficients and 

subscripts L and S refer to large firms and small firms respectively.15 

Notice that F(·) can be both a linear function ––quantity equation–– or a non-

linear function ––participation equation. The traditional detailed Oaxaca-Blinder 

decomposition can be applied in linear models, but it is not suitable for non-linear 

specifications. Instead, for the latter we apply a recent proposal (Yun, 2004) to compute 

detailed decompositions for non-linear models that are linear in their arguments, such as 

the participation equation.16 

According to the standard Oaxaca-Blinder decomposition, the differences in the 

quantity of training between small and large firms can be decomposed as: 

� � � �SLSLSLSL XXXRTRT ��� ˆˆ'ˆ''ˆlnˆln ��  (8)

where the first term on the right-hand side is the part of the training gap due to 

differences in characteristics between the representative small and large firms and the 

second term on the right-hand side is the contribution of differences in the impact 

between both types of firm.  

The standard version of the Oaxaca-Blinder decomposition builds on the 

assumption that one of the two equations is the “natural” model (for instance, in the 

case of the wage gap decomposition by gender, it may appear quite natural to assume 

that women are the “discriminated” group and, thus, to analyse what their wages would 

have been if they had had the returns of men). Nevertheless, in the present case there is 

no compelling reason to calculate the differences in firms’ endowments assuming that 

all the firms had the coefficients of either large or small firms. It is difficult at times to 

establish which is the natural model and the results may often differ considerably. One 

strand of the literature suggests a variation on the standard decomposition that avoids 

having to make this assumption. According to this approach, there exists a “non-

discriminatory structure of coefficients” *�̂  in relation to which one group is 

                                                 
15 The Gardeazábal and Ugidos (2004) transformation has been applied in the estimation of in order to 
distinguish the effects due to the different sets of dummies. 
16 As far as we know Yun’s detailed decomposition was applied for the first time by Motellón and López-
Bazo (2005) and Hernanz and Toharia (2006). 
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“discriminated” while the other is “favoured” (Oaxaca and Ransom, 1994).17 Then, the 

training differential can be expressed as: 

� � � � � �SSLLSLSL XXXXRTRT ����� ˆˆ'ˆˆ'ˆ''ˆlnˆln *** ���  (9)

where SL I ��� ˆ)(ˆˆ * ����  and )''()'( 1
LL XXXX �� . The first term on the right- 

hand side of (9) reflects training differences due to differences in firms’ characteristics. 

The second and third terms are estimates of the large firms’ advantage and small firms’ 

disadvantage in relation to the non-discriminatory coefficients structure. The two terms 

together are considered as differences in the expenditure on training by firm size 

associated with differences in coefficients without imposing a discriminated group.  

As for the decomposition of the participation equation, the Yun’s methodology 

consists of finding the contribution of every n-variable to the total difference. Using the 

variation suggested by Oaxaca and Ransom (1994) for the Yun-Oaxaca-Blinder 

decomposition of the participation equation, we have:  
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where, � is a standard normal cumulative distribution function, n
XW�  and nW �� are the 

weights for each n-variable and subscripts ��fav and ��disc indicate that the weights 

correspond to the effect of large firms’ advantage and small firms’ disadvantage in 

relation to the non-discriminatory coefficients structure. The key question is finding 

proper weights for the variables. Yun (2004) suggests evaluating the value of the 

function using mean characteristics and then using a first order Taylor expansion to 

linearize � around LLX �̂ , SSX �̂  and *�̂SX . In this way, the weights can be expressed 

as: 
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 The first term on the right-hand side of equation (10) reflects training differences 

due to differences in characteristics. This term is an estimate of the differential in the 

probability of providing training between small and large firms in the absence of 

differences in the impact of these characteristics. The second and third terms are 
                                                 
17 It can be easily proved that a consistent estimate of �* can be obtained by OLS in the whole sample of 
firms. 
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estimates of the differential in probability of providing training due to differences in the 

impact of firms’ characteristics. Together, they collect the effect of large firms’ 

advantage and small firms’ disadvantage in relation to the non-discriminatory 

coefficients structure.

5.2. Results of the decomposition of the training gaps 

In this Section, we assess the individual contribution of firms’ characteristics in 

explaining the training gap between small and large firms in two ways: differences in 

the level of the determinants of the training provision and differences in their impact on 

the training provision decisions. To perform this analysis, the detailed decomposition 

described in expressions (9) and (10) is applied.  

 Table 6 shows the results of the Oaxaca-Blinder decomposition based on the 

two-part model with and without firm-specific effects.18,19 The magnitudes of the effects 

of each variable are similar under the two models. The differential in the probability of 

providing training between small and large firms is 2.7. The decomposition for all the 

variables together shows that most of the gap is due to differences in characteristics, 

while differences in the impact of characteristics explain only 5% of the gap (and even 

less in the model including firm-specific effects). However, we are especially interested 

in the individual decomposition for analysing the contribution of each variable.  

[Insert Table 6 about here] 

The fact that large firms employ more white-collar workers explains a very 

small part of the differential of the probability of providing training both as differences 

in characteristics and as differences in the impact of characteristics.  

In the case of the variables related to technological activities, the differences in 

the intensity of their use explain around 20% of the gap, while the global impact of this 

variable has a very small effect. The differences in innovative activity between small 

and large firms explain about 10% of the differential in the probability of providing 

training, while the global impact of this variable is also very small in magnitude.  

The differences in the variable related to the geographical scope of the firms’ 

market explain about 8% of the gap in the probability of training, while differences in 

                                                 
18 In the RE model the transformed residuals have zero mean, but not the residuals from the original 
specification. This prevents obtaining an exact decomposition of the training gap based on the RE 
estimates of the coefficients. 
19 Table 6 shows the most relevant results of the decomposition. For more complete results, see Table A1 
at the Appendix. 
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the global impact of this variable are quite small. The differences in the participation of 

foreign capital and the percentage of temporary workers show a small contribution to 

explain the differences in the probability of providing training.  

The differential in the logarithm of the expenditure on training per worker 

between small and large firms is 0.4. The decomposition for all the variables together 

shows that differences in firms’ characteristics explain around 65% of the differential, 

while differences in the impact of characteristics explain 35%.  

Again, the percentage of white-collar workers has an almost negligible 

contribution in explaining the gap in the quantity of training.  

The use of advanced technologies explains more than 15% of the differential in 

the quantity of training (25% in the case of the RE model). Of this figure, around 5% of 

the differential is due to differences in the impact of using advanced technologies, while 

the rest is due to differences in characteristics (both in favour of large firms). The 

innovative activity also explains about 15% of the gap ––more than 10% is due to 

differences in characteristics and the remaining portion is due to differences in the 

impact. Differences in the geographical scope of firms’ markets explain more than 16% 

of the training gap and both differences in characteristics and differences in the impact 

of these characteristics have a similar contribution, both in favour of large firms.  

The participation of foreign capital explains a fairly sizeable part of the 

differential: around 14% is due to the fact that large firms enjoy a greater participation 

of foreign capital. However, the impact of this variable is also quite large and favours 

small firms, with values around 24%. In other words, under equal impact of 

characteristics (i.e. coefficients), the gap in the probability of providing training would 

be larger favouring large firms.  

Finally, the percentage of temporary workers makes an important contribution in 

explaining the differential in the quantity of training and this is mainly due to 

differences in the impact of characteristics in favour of small firms, taking values of 

almost 40%. Thus, if small and large firms recorded the same impact from the variable 

of temporary workers, ceteris paribus, the gap in the probability of providing training 

between small and large firms would be even wider.  

All in all, the variables that play the most relevant role in explaining the gap 

between small and large firms in terms of the probability of providing training are: the 

use of advanced technology, the innovative activity and the international scope of the 

market in which firms operate. Together they explain about 40% of this gap and their 
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effect is primarily due to differences in characteristics. As for the quantity equation, the 

variables that make the main contribution in explaining the gap are the same as in the 

case above, explaining more than half of the gap. However, here this is due to 

differences in characteristics as well as differences in the impact of these characteristics. 

Additionally, the participation of foreign capital in the firms and the percentage of 

temporary workers seem to explain a large part of the effect, which is due in particular 

to differences in the impact of these characteristics on the quantity of training in favour 

of small firms.  

6. Conclusions 

This paper has sought to understand why small firms provide their employees with less 

training than their larger counterparts. The initial hypothesis holds that large firms 

provide more training opportunities because they are endowed with certain 

characteristics that permit them to expend greater efforts in training their workers. 

These include employing more white-collar workers and engaging fewer temporary 

workers. Furthermore, the provision made by large firms is greater because they are 

endowed with certain characteristics that, in their turn, require more training. These 

include their adoption of more advanced technologies or innovative activity, operating 

in more competitive markets (e.g. internationally) and being partially owned by foreign 

capital. 

The empirical evidence reviewed here seems to support the hypothesis that 

training provision is indeed closely associated with these characteristics. Using the 

ESEE, we have presented evidence that large Spanish industrial firms invest more 

training (per worker) and that they are more closely associated with these characteristics 

than their smaller counterparts. 

The paper has discussed the suitability of adopting two-part models for 

analysing training decisions, both from a theoretical and applied perspective. Although 

the Heckit model seems to be more appropriate from a theoretical point of view, no 

evidence of strong sample selection was apparent in the case of Spain’s industrial firms, 

suggesting that the two-part model might be more appropriate for modelling their 

training decisions. Based on previous evidence that small and large firms follow 

different patterns in their training decisions, we estimated the two subsamples 

separately.  
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The results of these estimations suggest that technological activities and the 

geographical scope of the market are important determinants of firms’ training decisions 

for both small and large firms. Indeed, the effects of technological variables on the 

participation decision are larger in magnitude in the case of small firms. Likewise, a 

large firm that switches from being non-innovative to innovative will increase its 

expenditure on training considerably. In the case of the geographical scope of the 

market, this factor determines both decisions for small firms, while for large firms it has 

a greater effect on the probability of providing training.  

The decomposition of the training gap between small and large firms allows us 

to assess the relative contribution to the gap made by these firms’ characteristics. In the 

case of the decision as to whether to provide training, the most important contributions 

are related to firms’ technological activity and the geographical scope of the market in 

which they operate; these effects are mainly due to differences in characteristics in 

favour of large firms. In the case of the decision regarding the quantity of training per 

worker, the variables related to technological activity and market scope explain a 

sizeable part of the gap. Here the effects are due both to differences in characteristics 

and differences in the impact of these characteristics in favour of large firms. In 

addition, the participation of foreign capital and temporary workers explain a large part 

of the gap, basically as differences in the impact of characteristics in favour of small 

firms. 

Overall, this study confirms the finding that small firms face greater restrictions in 

gaining access to training. The results suggest that the differences in training provision 

between small and large firms are related to differences in the firms’ requirements to 

update the skills of their employees to ensure that they acquire the specific knowledge 

to use new technologies and to make the firms more competitive in international 

markets. And these differences in necessity favour large firms. In other words, the 

differences between small and large firms do not, in general, seem to be related to those 

characteristics that allow firms to provide more training (i.e. the fact of employing more 

qualified workers or non-temporary workers). This can, perhaps, be seen as a factor that 

impedes small firms from becoming more competitive because of a more restricted 

access to training, a tool that enables employees to upgrade their skills and so become 

more competitive. 

References 



 

 

Research Institute of Applied Economics 2008                                               Working Papers 2008/08, 33 pages

23

Alba-Ramirez, Alfonso, (1994). "Formal Training, Temporary Contracts, Productivity and Wages in 
Spain," Oxford Bulletin of Economics and Statistics, Blackwell Publishing, vol. 56(2), pages 
151-70, May. 

Albert, C., García-Serrano, C., and Herranz V., (2005a), “Los determinantes de la formación es España y 
sus rendimientos”, WP Universidad de Alcalá de Henares. 

Albert, C., García-Serrano, C., and Herranz V., (2005b), “Firm-provided training and temporary 
contracts," Spanish Economic Review, Springer, vol. 7(1), p. 67-88, January. 

Baldwin, J. R., Gray, T., and Johnson, J. (1995), “Technology use, training and plant-specific knowledge 
in Manufacturing Establishments”, WP Statistics Canada, No 86. 

Barrios, S. Görg, H. and Strobl, E. (2003), “Explaining Firms' Export Behaviour: R&D, Spillovers and 
the Destination Market”, Oxford Bulletin of Economics and Statistics, vol. 65, p. 475-496, 
September. 

Barron, J.M., Black, D.A and Loewenstein, M.A. (1987), “Gender Differences in Training, Capital, and 
Wages”, Journal of Human Resources, Vol. 28 (2), p. 343-364, Spring. 

Bartel, A. (1989), “Formal employee training programs and their impact on labor productivity: evidence 
from a human resources survey”, NBER Working Paper Series, No. 3026. 

Belsley, D., Kuh, E. and Welsch R. (1980), Regression Diagnostics, Identifying Influential Data and 
Sources of Collinearity. New York: John Wiley and Sons. 

Black, D., B. Noel, and Z. Wang (1999). “On-the-Job Training, Establishment Size, and Firm Size: 
Evidence for Economies of Scale in the Provision of Human Capital,” Southern Economic 
Journal, July  66(1) 82-100 

Black, S.E. and L.M. Lynch (1998), "Beyond the Incidence of Training:  Evidence from a National 
Employers' Survey", Industrial and Labor Relations Review, Oct. 1998, pp. 64-81. 

Black, S.E. and Lynch, L.M. (2004), “What's driving the new economy?: the benefits of workplace 
innovation”, The Economic Journal, Vol. 114(493), p. F97-F116, February. 

Blinder, A. S. (1973), “Wage Discrimination: Reduced Form and Structural Estimates,” The Journal of 
Human Resources, vol. 8(4), p. 436–455. 

Blundell, R., Dearden, L., Meghir, C. and Sianesi, B. (1999). Human Capital Investment: The Returns 
from Education and Training to the Individual, the Firm and the Economy, Fiscal Studies, vol. 
20, no. 1, pp. 1–23 

Cameron, A.C. and P.K. Trivedi (2005), Microeconometrics, Princeton University Press, Princeton. 

Castany, L., López-Bazo, E. and Moreno, R. (2007), “Decomposing differences in total factor 
productivity across firm size”, Working Paper XREAP2007-01. 

Cragg, J. G. (1971). “Some Statistical Models for Limited Dependent Variables with Application to the 
Demand for Durable Goods.” Econometrica 39: 829-44. 

Dow, W., and Norton, E. (2003), “Choosing Between and Interpreting the Heckit and Two-Part Models 
for Corner Solutions”, Health Services and Outcomes Research Methodology, vol. 4(1), p. 5-
18. 

Evans, D. S. and Leighton, L. S. (1989), “Why Do Smaller Firms Pay Less?,” Journal of Human 
Resources, vol. 24(2), p. 299-318. 

Fariñas, J. C. and Jaumandreu, J. (1999), “Diez años de Encuesta sobre Estrategias Empresariales 
(ESEE)”, Economía Industrial, No. 329, p. 29–42.  

Gardeazábal, J. and Ugidos, A. (2004), “More on Identification in Detailed Wage Decompositions”, The 
Review of Economics and Statistics, vol. 86(4), p. 1034–1036. 

Görg, H. and Strobl, E. (2005), “Do Government Subsidies Stimulate Training Expenditure? 
Microeconometric Evidence from Plant Level Data”, IZA DP No. 1606. 

Groot and Maassen van den Brink (2003), “Firm-related training tracks: a random effects ordered probit 
model,” Economics of Education Review, vol. 22, p. 581-589. 



 

 

Research Institute of Applied Economics 2008                                               Working Papers 2008/08, 33 pages

24

Guilkey, D. K. and Murphy, J. L. (1993), “Estimation and testing in the random effects probit model”, 
Journal of Econometrics, Vol. 59, p. 301–317. 

Hashimoto, M. (1979), “Bonus Payments, on-the-Job Training, and Lifetime Employment in Japan”, 
Journal of Political Economy, Vol. 87(5), pp. 1086-1104. 

Heckman, James J. (1979), "Sample Selection Bias as a Specification Error", Econometrica, Vol. 47, No. 
1 (Jan., 1979) , pp. 153-162 

Holtmann, Alphonse G. and Todd L. Idson (1991), "Employer Size and On-the-Job Training Decisions", 
Southern Economic Journal, Vol. 58, No. 2 (Oct., 1991) , pp. 339-355 

Huergo, E. and Jaumandreu, J. (2004b), “How does probability of innovation change with firm age?,” 
Small Business Economics, vol. 22, p.193–207.  

Hughes, G. O´Connell, P.J. and Williams, J. (2004), “Company training and low-skill consumer-service 
jobs in Ireland,” International Journal of Manpower, Vol. 25(1), p. 17-35. 

Korpi, T. and Mertens, A. (2004), “Training and Industrial Restructuring: Structural Change and Labour 
Mobility in West Germany and Sweden”, International Journal of Manpower, v. 25 (1), pp. 
90-103. 

Leung, S. F., and S. Yu, "On the choice between sample selection and two-part models", Journal of 
Econometrics, 72, 1996:197-229. 

Li, Y., Zhao, Y., and Liu, Y. (2006), “The Relationship between HRM, Technology Innovation and 
Performance in China”, International Journal of Manpower, v. 27 (7-8), pp. 679-97. 

Licandro, O., Maroto, R. and Puch, L. (2004), “Innovation, Investment and Productivity: Evidence From 
Spanish Firms.” EUI Working Paper Eco No. 2004/7. 

Lisbon Strategy, “Convergencia y Empleo. Programa Nacional de Reformas para España”, Octubre 
(2005), http://www.fundaciontripartita.org 

Lynch, L.M., (1993), “The Economics of Youth Training in the United States,” Economic Journal, Royal 
Economic Society, vol. 103(420), p. 1292-1302, September. 

Máñez, J. A., Rochina, M. E., Sanchis, A. and Sanchis, J. A. (2004), “A Dynamic Approach to the 
Decision to Invest in R&D: the role of sunk costs”, mimeo. 

Motellón, E. and López-Bazo, E. (2005), “Discriminación por género en el acceso a la contratación 
indefinida”, VIII Encuentro de Economía Aplicada, Murcia. 

Oaxaca, R. (1973), “Male-Female Wage Differentials in Urban Labor Markets”, International Economic 
Review, vol.14, p. 693-709. 

Oaxaca, R., and M. R. Ransom (1994), “On discrimination and the decomposition of wage differentials” 
Journal of Econometrics, vol. 61, p.5-21. 

Oi, W.Y., (1983), “Heterogeneous firms and the organization of production”, Economic Inquiry, vol. 21 
(2), p.147-171. 

Oosterbeek, H. (1996). “A Decomposition of Training Probabilities,” Applied Economics, Taylor and 
Francis Journals, vol. 28(7), p. 799-805, July. 

Osterman, P. (1995), “Skill, Training, and Work Organization in American Establishments”, Industrial 
Relations, Vol. 34(2), p. 125-46, April. 

Peraita, C. (2005): «Firm sponsored training in regulated labor markets: evidence from Spain», Applied 
Economics, 37, 1885-1898. 

Rigby, M (2004), “Training in Spain: an evaluation of the continuous training agreements (1993-2001) 
with particular reference to SMEs”, Human Resource Development International, Vol. 7(1), p. 
23-37. 

Schumpeter, J.A. (1942), Capitalism, Socialism and Democracy, New York, Harper and Brothers.  

Smith, V., Dilling-Hansen, M., Eriksson, T. and Strojer-Madsen, E. (2004), “R&D and productivity in 
Danish �rms: some empirical evidence”, Applied Economics, vol.36, p.1797–1806. 



 

 

Research Institute of Applied Economics 2008                                               Working Papers 2008/08, 33 pages

25

Toro-Vizcarrondo, C., and Wallace, T. (1968), “A Test of the Mean Square Error Criterion for 
Restrictions in Linear Regression”, Journal of the American Statistical Association, Vol. 
63(322), p.558-572. 

Wagar, T.H. (1997), “Determinants of formal training in large Canadian organizations,” International 
Journal of Training and Development, Vol. 1(2), p. 82-90. 

Yun, M. (2004), “Decomposing differences in the first moment,” Economics Letters, Elsevier, vol. 82(2), 
p. 275-280, February.  

Zábojník, J. and Bernhardt, D. (2001), “Corporate Tournaments, Human Capital Acquisition, and the 
Firm Size–Wage Relation”, The Review of Economic Studies, vol. 68 (3), p. 693-716. 



 

 

Research Institute of Applied Economics 2008                                               Working Papers 2008/08, 33 pages

26

Appendix. Decomposition for the two-part model. Detailed results 

[Insert Table A1 about here] 
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Table 1. Expenditure on training by firms’ characteristics. 

Training/worker  dTR Eq prop test 
(euros)

Eq mean test  Num of obs 

Total sample 40.5% 72.4  3,020
% of white collars – low 24.4% 28.8 1,511
% of white collars – high 56.6%

18.0***
116.2

11.9*** 
1,509

Advanced technology – low 24.8% 14.9*** 43.8 5.1*** 1,683
Advanced technology – medium 54.2% 90.5  906
Advanced technology – high 72.6% 6.4*** 146.3 3.5*** 431
No innovation 27.4% 44.5 1,790
Innovation 59.5%

17.7***
113.1

8.5*** 
1,230

National market 29.8% 53.6 2,047
International market 63.0%

17.4***
112.0

7.3*** 
973

% of foreign capital – low 30.8% 50.4 2,368
% of foreign capital – high 75.6%

20.7***
152.5

11.4*** 
652

% of temporary workers – high 37.9% 54.6 1,510
% of temporary  workers – low 43.0%

2.8***
90.3

4.8*** 
1,510

Note: (***) denotes significant at 1%. 
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Table 2. Expenditure on training by firms’ characteristics and size.

Training/worker  dTR Eq prop test 
(euros)

Eq mean test  Num of obs

Total sample 40.5% 72.4  3,020
Small 24.9% 41.9 2,086
Large 75.2%

26.0***
140.7

10.8*** 
934

% of white collars – low - small 13.8% 16.5 1,188
% of white collars – low - large 63.2%

18.3***
73.8

6.8*** 
323

% of white collars – high - small 39.6% 75.4 898
% of white collars – high - large 81.5%

16.1***
176.1

7.2*** 
611

Advanced technology – low - small 17.1% 28.2 1,424
Advanced technology – low - large 67.6%

17.3***
129.6

7.9*** 
259

Advanced technology – medium - small 40.4% 64.8 532
Advanced technology – medium - large 73.8%

9.9***
127.0

3.6*** 
374

Advanced technology – high - small 47.7% 97.7 130
Advanced technology – high - large 83.4%

7.6***
167.4

2.4*** 
301

No innovation - small 17.5% 26.2 1,425
No innovation - large 66.0%

18.6***
115.9

5.5*** 
365

Innovation - small 41.0% 75.6 661
Innovation - large 81.0%

14.3***
156.7

6.0*** 
569

National market - small 20.0% 31.9 1,625
National market - large 67.3%

18.9***
137.3

6.7*** 
422

International market - small 42.3% 77.0 461
International market - large 81.6%

12.7***
143.5

5.0*** 
512

% of foreign capital – low - small 20.7% 32.4 1,875
% of foreign capital – low - large 69.0%

20.6***
119.0

6.3*** 
493

% of foreign capital - high - small 62.1% 126.3 211
% of foreign capital - high - large 82.1%

5.6***
165.0

2.3*** 
441

% of temporary workers - high – small 23.4% 34.9 1,068
% of temporary workers - high - large 73.1%

18.1***
102.1

7.3*** 
442

% of temporary workers – low - small 26.5% 49.2 1,018
% of temporary workers – low - large 77.0%

18.6***
175.5

8.4*** 
492

Note: (***) denotes significant at 1%. 
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Table 3. Firms’ characteristics by firm size 

  Total sample Small firms Large firms   
  Mean Std dev Mean Std dev Mean Std dev Eq mean test (•)

Size 242.5 698.7 47.2 46.8 678.6 1,139.9 16.9***
% of white collars 11.3 12.8 9.7 12.6 14.7 12.8 10.0***

Advanced technology – low 0.6 0.5 0.7 0.5 0.3 0.4 22.7***
Advanced technology - medium 0.3 0.5 0.3 0.4 0.4 0.5 7.8***

Advanced technology - high 0.1 0.3 0.1 0.2 0.3 0.5 16.1***
Innovation 0.4 0.5 0.3 0.5 0.6 0.5 15.4***

International market 0.3 0.5 0.2 0.4 0.5 0.5 17.5***
% of foreign capital 19.2 38.2 8.5 26.7 43.1 48.0 20.7***

% of temporary workers 18.2 21.6 19.8 23.8 14.7 15.3 7.1***
Num of obs 3,020 2,086 934   

Note: (***) denotes significant at 1%. 
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Table 4. Estimation of the determinants of training. The Heckit and two-part models. 

 Participation equation Quantity equation 
Marginal effects Coefficients Heckit model Two-part model 

 
  Coefficients Coefficients 

    
Size 0.1318*** 0.3507*** 0.0812 -0.0246 

 (0.0107) (0.0285) (0.0752) (0.0395) 
White collars 0.0053*** 0.0142*** 0.0236*** 0.0198*** 

 (0.0009) (0.0024) (0.004) (0.0033) 
Advanced technology - medium 0.1324*** 0.3463*** 0.1167 -0.0043 

 (0.025) (0.065) (0.1158) (0.0898) 
Advanced technology - high 0.1511*** 0.3893*** 0.2274* 0.1164 

 (0.0366) (0.0927) (0.1271) (0.1094) 
Innovation 0.1668*** 0.4411*** 0.3209*** 0. 1935*** 

 (0.022) (0.0585) (0.1104) (0.0806) 
International  market 0.1109*** 0.2912*** 0.1719* 0.0792 

 (0.0244) (0.0634) (0.098) (0.0819) 
Foreign capital 0.001*** 0.0027*** 0.0029*** 0.0023*** 

 (0.0003) (0.0009) (0.001) (0.0009) 
Temporary workers -0.0002 -0.0005 -0.0065*** -0.006** 

 (0.0006) (0.0015) (0.0025) (0.0031) 
Controls     

Productive capacity -0.0012 -0.0032 -0.0009 0 
 (0.0008) (0.0021) (0.003) (0.0029) 

Group 0.0361 0.0958 0.1624 0.1218 
 (0.0299) (0.079) (0.1032) (0.0991) 

Year -0.0307 -0.0816 -0.2731*** -0.2525*** 
 (0.0208) (0.0555) (0.0735) (0.0719) 

Sector dummies yes yes yes yes 
Region dummies yes yes yes yes 

Constant  -2.0382*** 2.8695*** 3.9481*** 
  (0.4101) (0.8945) (0.605) 

Num of obs 3,020 1,222 1,222 
Pseudo R 0.34 - 0.17 

Pseudo lnL -1,338.83 - - 
Correlation (�) - 0.44 - 

�2 - 1.29 - 
�12 - 0.57 - 

 (0.35)  
H0: Sector=0 47.80*** 56.89*** 3.11*** 

H0: Region=0 67.08*** 30.48*** 1.83** 
  Note: standard deviation in parentheses;  (***) (**) and (*) denote significant at 1%, 5% and 10%. 
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Table 5. Estimation of the determinants of  training. The two-part model with random effects. 

 Total sample Small firms Large firms 

 Participation eq Quantity eq Participation eq Quantity eq Participation eq Quantity eq

 Mg Eff Coeff Coeff Mg Eff Coeff Coeff Mg Eff Coeff Coeff 

         
Size 0.2024*** 0.6273*** -0.0341 0.0662*** 0.6955*** -0.2347** 0.0681 0.379*** 0.0299 

(0.0212) (0.0683) (0.0484) (0.0149) (0.1161) (0.1075) (0.1897) (0.154) (0.082) 
White collars 0.0089*** 0.0276*** 0.0195*** 0.0036*** 0.0375*** 0.0197*** 0.0011 0.0062 0.0177***

(0.0017) (0.0053) (0.0038) (0.0009) (0.0069) (0.0048) (0.0034) (0.0082) (0.0058) 
Advanced technology 0.2420*** 0.7019*** 0.0436 0.109*** 0.8085*** -0.0142 0.0784 0.4604** 0.1931 

-medium (0.0518) (0.1471) (0.1123) (0.0352) (0.1924) (0.1536) (0.2235) (0.2367) (0.1727) 
Advanced technology 0.2801*** 0.7696*** 0.1576 0.136* 0.8152*** 0.1408 0.0979 0.6219** 0.2403 

-high (0.0794) (0.2073) (0.1395) (0.0805) (0.3249) (0.2488) (0.2868) (0.2709) (0.183) 
Innovation 0.1928*** 0.5832*** 0.1414* 0.0738*** 0.6272*** 0.0567 0.1026 0.529*** 0.2244** 

(0.0365) (0.1078) (0.0795) (0.0239) (0.1406) (0.1285) (0.2662) (0.1701) (0.0968) 
International  market 0.1835*** 0.5413*** 0.096 0.0458* 0.397** 0.2674* 0.1205 0.6401*** 0.051 

(0.0449) (0.1282) (0.0904) (0.0254) (0.1773) (0.1543) (0.3155) (0.1889) (0.1121) 
Foreign capital 0.0014** 0.0043*** 0.0022** 0.0007** 0.0075** 0.0047** 0.0005 0.0028 0.0013 

(0.0006) (0.0018) (0.0011) (0.0003) (0.0032) (0.0022) (0.0014) (0.0021) (0.0013) 
Temporary workers -0.0001 -0.0002 -0.0066* 0.0000 0.0005 -0.002 -0.0005 -0.0029 -0.0156***

(0.0010) (0.003) (0.0034) (0.0003) (0.0036) (0.0042) (0.0018) (0.0062) (0.0053) 

Controls         
Productive capacity -0.0013 -0.004 -0.002 -0.0002 -0.0024 -0.0016 -0.0010 -0.0056 -0.0036 

(0.0013) (0.0041) (0.0031) (0.0005) (0.0051) (0.0043) (0.0031) (0.0075) (0.0042) 
Group 0.0682 0.2078 0.113 0.0137 0.1339 0.0297 0.0114 0.0621 0.1983 

(0.0572) (0.1717) (0.1234) (0.0268) (0.2435) (0.193) (0.0555) (0.2455) (0.1674) 
Year -0.0462* -0.1431* -0.2154*** -0.0062 -0.0656 -0.2004** -0.0541 -0.3019*** -0.2147***

(0.0245) (0.0761) (0.0507) (0.0093) (0.0973) (0.0937) (0.1502) (0.1267) (0.0587) 
Sector dummies yes yes yes yes yes yes yes yes yes 

Region dummies yes yes yes yes yes yes yes yes yes 
Random effects yes yes yes yes yes yes yes yes yes 

Constant -4.0818 4.2892***  -5.0014*** 4.3705***  5.7329 4.7874***
 (0.9042) (0.709)  (1.1196) (0.9879)  (5.09) (0.9618) 

Num of obs 3,020 1,222 2,086 520 934 702 
Num of firms 1,538 734 1,068 335 493 409 

Pseudo lnL -1,223.59  -777.5287  -421.57  
H0:Sector=0 30.81** 39.15** 25.84 40.77*** 15.08 47.09*** 

 H0:Region=0 41.52*** 20.31 36.91*** 16.77 13.46 30.35*** 

H0:RE=0 230.48*** 68.17*** 164.98*** 15.72*** 48.31*** 42.65*** 

Note: standard deviation in parentheses; (***) (**) and (*) denote significant at 1%, 5% and 10%. 
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Table 6. Decomposition of the training gap between small and large firms 

  OLS estimation RE estimation 
Participation eq Quantity eq Participation eq Quantity eq 

Training differential 2.7414 0.4393 2.7414 0.4393 
  Charact Impact Charact Impact Charact Impact Charact Impact 

Total 0.464 0.026 0.294 0.145 0.523 0.005 0.261 0.144 
94.69% 5.31% 66.98% 33.02% 99.05% 0.95% 64.43% 35.56% 

        
White collars 0.015 -0.009 0.005 -0.004 0.018 -0.003 0.004 -0.030 

3.07% -1.80% 1.03% -0.84% 3.43% -0.55% 1.10% -7.42% 
Advanced Technology 0.095 -0.004 0.052 0.018 0.118 -0.006 0.081 0.022 

19.41% -0.73% 11.91% 4.19% 22.32% -1.10% 19.89% 5.32% 
Innovation 0.055 -0.002 0.052 0.021 0.045 -0.001 0.038 0.030 

11.13% -0.47% 11.94% 4.67% 8.47% -0.26% 9.47% 7.31% 
International Market 0.040 0.005 0.035 0.035 0.046 0.005 0.042 0.034 

8.22% 0.92% 7.95% 7.99% 8.80% 1.03% 10.45% 8.46% 
Foreign capital 0.02 -0.001 0.059 -0.105 0.019 0.000 0.058 -0.096 

4.04% -0.19% 13.50% -23.89% 3.69% -0.03% 14.24% -23.77% 
Temporary workers 0.001 -0.001 0.015 -0.175 0.000 0.000 0.017 -0.198 

 0.12% -0.23% 3.48% -39.77% 0.03% -0.04% 4.17% -48.99% 
Note: given that the decomposition is not exact in the case of using the RE estimates, the sum of the shares of the 
components does not equal 100%. 
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Table A.1. Decomposition of the training gap between small and large firms. Complete results 

OLS estimation RE estimation 
Participation eq Quantity eq Participation eq Quantity eq 

Training differential 2.7414 0.4393 2.7414 0.4393 
CharactAdvant Disadv CharactAdvant Disadv CharactAdvant Disadv Charact Advant Disadv

Total 0.464 0.033 -0.007 0.294 -0.009 0.154 0.523 0.017 -0.012 0.261 -0.018 0.162
94.69% 6.71% -1.40%66.98%-2.13% 35.16%99.05% 3.16% -2.21% 64.44% -4.49% 40.05%

            
White collars 0.015 -0.013 0.005 0.005 -0.002 -0.002 0.018 -0.009 0.006 0.004 -0.028 -0.002

3.07% -2.73% 0.93% 1.03% -0.38% -0.46% 3.43% -1.72% 1.17% 1.10% -6.98% -0.44%
Advanced Technology 0.095 -0.001 -0.003 0.052 0.03 -0.011 0.118 -0.001 -0.005 0.081 0.03 -0.009

19.41% -0.19% -0.54%11.91% 6.78% -2.59%22.32%-0.20% -0.90% 19.89% 7.53% -2.21%
Innovation 0.055 -0.001 -0.002 0.052 0.017 0.003 0.045 0 -0.001 0.038 0.026 0.004

11.13% -0.15% -0.33%11.94% 3.91% 0.76% 8.47% -0.06% -0.20% 9.47% 6.42% 0.89%
International Market 0.001 -0.003 0.002 0.015 -0.114 -0.061 0 -0.001 0.001 0.017 -0.124 -0.074

0.12% -0.57% 0.34% 3.48% -25.9% -13.9% 0.03% -0.21% 0.17% 4.17% -30.6% -18.4%
Foreign capital 0.04 0 0.004 0.035 -0.009 0.044 0.046 0 0.005 0.042 -0.009 0.043

8.22% 0.10% 0.83% 7.95% -2.11% 10.11% 8.80% 0.05% 0.98% 10.46% -2.12% 10.58%
Temporary workers -0.001 -0.004 0.003 0 -0.084 0.06 -0.001 -0.004 0.008 -0.003 -0.134 -0.03 

-0.25% -0.75% 0.54% -0.01% -19.0% 13.71%-0.17% -0.74% 1.57% -0.84% -32% -7.44%
            

Size 0.02 -0.002 0.002 0.059 -0.045 -0.06 0.019 -0.002 0.002 0.058 -0.044 -0.053
4.04% -0.51% 0.32% 13.50%-10.3% -13.7% 3.69% -0.36% 0.33% 14.24% -10.8% -13.0%

Productive capacity 0.024 -0.002 0.003 0.111 0.059 -0.037 0.033 -0.002 0.003 0.103 0.052 -0.025
4.96% -0.48% 0.55% 25.28%13.36% -8.37% 6.20% -0.44% 0.58% 25.45% 12.97% -6.09%

Group 0.201 -0.045 0.005 -0.055 0.209 0.743 0.223 -0.044 0.015 -0.076 0.397 0.799
41.10% -9.22% 1.03% -12.5%47.55%169.1%42.32%-8.29% 2.85% -18.8% 98.13% 197.3%

Sector 0.015 -0.02 0.002 0.057 0.201 -0.108 0.021 -0.01 0.001 0.058 0.205 -0.081
3.16% -4.08% 0.48% 13.02%45.70% -24.7% 3.98% -1.84% 0.14% 14.42% 50.66% -20.1%

Region -0.002 -0.325 0.008 -0.039 -0.918 -0.337 -0.001 -0.192 0.012 -0.063 -0.89 -0.328
-0.38% -66.3% 1.73% -8.93% -209% -76.7% -0.11% -36.4% 2.30% -15.4% -219% -80.9%

Year 0.001 0 0 0.001 0 -0.001 0.001 0 0 0.001 0 0 
 0.10% 0.04% 0.01% 0.29% -0.03% -0.18% 0.10% 0.02% 0.01% 0.27% 0.00% -0.07%

Note: given that the decomposition is not exact in the case of using the RE estimates, the sum of the shares of the 
components does not equal 100%. 

 
 


