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The connection between distortion risk measures and ordered

weighted averaging operators�

Jaume Belles-Sampera, José M. Merigó, Montserrat Guillén and Miguel Santolino∗

Department of Econometrics and Department of Business Administration, Riskcenter - IREA
University of Barcelona. Spain.

Abstract

Distortion risk measures summarize the risk of a loss distribution by means of a single value.
In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted
Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a
single value. We show that these concepts can be derived from the Choquet integral, and then
the mathematical relationship between distortion risk measures and the OWA and WOWA
operators for discrete and finite random variables is presented. This connection offers a
new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail
Value-at-Risk can be understood from an aggregation operator perspective. The theoretical
results are illustrated in an example and the degree of orness concept is discussed.

1. Introduction

The relationship between two different worlds, namely risk measurement and fuzzy sys-
tems, is investigated in this paper. Risk measurement evaluates potential losses and is useful
for decision making under probabilistic uncertainty. Broadly speaking, fuzzy logic is a form
of reasoning based on the ’degree of truth’ rather than on the binary true-false principle.
But risk measurement and fuzzy systems share a common core theoretical background. Both
fields are related to the human behavior under risk, ambiguity or uncertainty1. The study
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valuable comments and suggestions from participants to the seminar series of the Riskcenter at the University
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1The expected utility theory by von Neumann and Morgenstern (1947) was one of the first attempts to
provide a theoretical foundation to human behavior in decision-making, mainly based on setting up axiomatic
preference relations of the decision maker. Similar theoretical approaches are, for instance, the certainty-
equivalence theory (Handa, 1977), the cumulative prospect theory (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992), the rank-dependent utility theory (Quiggin, 1982), the dual theory of choice under
risk (Yaari, 1987) and the expected utility without sub-additivity (Schmeidler, 1989), where the respective
axioms reflect possible human behaviors or preference relations in decision-making.
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of this relationship is a topic of ongoing research from both fields. Goovaerts et al. (2010a),
for instance, discuss the hierarchical order between risk measures and decision principles,
while Aliev et al. (2012) propose a decision theory under imperfect information from the
perspective of fuzzy systems.

Previous attempts to link risk management and fuzzy logic approaches are mainly found
in the literature on fuzzy systems. Most authors have focused on the application of fuzzy
criteria to financial decision making (Engemann et al., 1996; Gil-Lafuente, 2005; Merigó and
Casanovas, 2011), and some have smoothed financial series under fuzzy logic for prediction
purposes (Yager and Filev, 1999; Yager, 2008).

In this paper we analyze the mathematical relationship between risk measurement and
aggregation in fuzzy systems for discrete random variables. A risk measure quantifies the
complexity of a random loss in one value that reflects the amount at risk. A key concept
in fuzzy systems applications is the aggregation operator, which also allows to combine
data into a single value. We show the relationship between the well-known distortion risk
measures introduced by Wang (1996) and two specific aggregation operators, the Ordered
Weighted Averaging (OWA) operator introduced by Yager (1988) and the Weighted Ordered
Weighted Averaging (WOWA) operator introduced by Torra (1997).

Distortion risk measures, OWA and WOWA operators can be analyzed using the theory
of measure. Classical measure functions are additive, and linked to the Lebesgue integral.
When the additivity is relaxed, alternative measure functions and, hence, associated integrals
are derived. This is the case of non-additive measure functions2, often called capacities as
it was the name coined by Choquet (1954). We show that the link between distortion
risk measures and OWA and WOWA operators is derived by means of the integral linked
to capacities, i.e. the Choquet integral. We present the concept of degree of orness for
distortion risk measures and illustrate its usefulness.

Our presentation is organized as follows. In section 2, risk measurement and fuzzy
systems concepts are introduced. The relationship between distortion risk measures and
aggregation operators is provided in section 3. An application with some classical risk
measures is given in section 4. Finally, implications derived from these results are discussed
in the conclusions.

2. Background and notation

In order to keep this article self-contained and to present the connection between two
apparently distant theories, we need to introduce the notation and some basic definitions.

2.1. Distortion risk measures

Two main groups of axiom-based risk measures are coherent risk measures, as stated by
Artzner et al. (1999), and distortion risk measures, as introduced by Wang (1996) and Wang
et al. (1997). Concavity of the distortion function is the key element to define risk measures

2See Denneberg (1994).
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that belong to both groups (Wang and Dhaene, 1998). Suggestions on new desirable prop-
erties for distortion risk measures are proposed in Balbas et al. (2009), while generalizations
of this kind of risk measures can be found, among others, in Hürlimann (2006) and Wu and
Zhou (2006).

The axiomatic setting for risk measures has extensively been developed since seminal
papers on coherent risk measures and distortion risk measures. Each set of axioms for
risk measures corresponds to a particular behavior of decision makers under risk, as it has
been shown, for instance, in Bleichrodt and Eeckhoudt (2006) and Denuit et al. (2006).
Most often, articles on axiom-based risk measurement present the link to a theoretical
foundation of human behavior explicitly. For example, Wang (1996) shows the connection
between distortion risk measures and Yaari’s dual theory of choice under risk; Goovaerts
et al. (2010b) investigate the additivity of risk measures in Quiggin’s rank-dependent utility
theory; and Kaluszka and Krzeszowiec (2012) introduce the generalized Choquet integral
premium principle and relate it to Kahneman and Tversky’s cumulative prospect theory.

Basic risk concepts are formally defined below. Let us set up the notation.

Definition 2.1 (Probability space). A probability space is defined by three elements (Ω,A,P).
The sample space Ω is a set of the possible events of a random experiment, A is a family
of the set of all subsets of Ω (denoted as A ∈ ℘ (Ω)) with a σ−algebra structure, and the
probability P is a mapping from A to [0, 1] such that P (Ω) = 1, P (∅) = 0 and P satisfies
the σ − additivity property.

A probability space is finite if the sample space is finite, i.e. Ω = {�1, �2, ..., �n}. Then
℘ (Ω) is the σ−algebra, which is denoted as 2Ω. In the rest of the article, N instead of Ω will
be used when referring to finite probability spaces. Hence, the notation will be

(
N, 2N ,P).

Definition 2.2 (Random variable). Let (Ω,A,P) be a probability space. A random variable
X is a mapping from Ω to R such that X−1 ((−∞, x]) := {� ∈ Ω : X (�) ≤ x} ∈ A, ∀x ∈ R.

A random variable X is discrete if X (Ω) is a finite set or a numerable set without
cumulative points.

Definition 2.3 (Distribution function of a random variable). Let X be a random variable.
The distribution function of X, denoted by FX , is defined by FX (x) := P (X−1 ((−∞, x])) ≡
P (X ≤ x).

The distribution function FX is non-decreasing, right-continuous and lim
x→−∞

FX (x) = 0

and lim
x→+∞

FX (x) = 1. The survival function of X, denoted by SX , is defined by SX (x) :=

1−FX (x), for all x ∈ R. Note that the domain of the distribution function and the survival
function is R even if X is a discrete random variable. In other words, FX and SX are defined
for X (Ω) = {x1, x2, ..., xn, ...} but also for any x ∈ R.

Definition 2.4 (Risk measure). Let Γ be the set of all random variables defined for a given
probability space (Ω,A,P). A risk measure is a mapping ρ from Γ to R, so ρ (X) is a real
value for each X ∈ Γ.
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Definition 2.5 (Distortion risk measure). Let g : [0, 1] → [0, 1] be a non-decreasing function
such that g (0) = 0 and g (1) = 1 (we will call g a distortion function). A distortion risk
measure associated to distortion function g is defined by

ρg (X) := −
∫ 0

−∞
[1− g (SX (x))] dx+

∫ +∞

0

g (SX (x)) dx.

The simplest distortion risk measure is the mathematical expectation, which is obtained
when the distortion function is the identity (see Denuit et al., 2005). The two most widely
used distortion risk measures are the Value-at-Risk (V aRα) and the Tail Value-at-Risk
(TV aRα), which depend on a parameter α ∈ (0, 1) usually called the confidence level.
Broadly speaking, the V aRα corresponds to a percentile of the distribution function. The
TV aRα is the expected value beyond this percentile3 if the random variable is continuous.
The former pursues to estimate what is the maximum loss that can be suffered with a certain
confidence level. The latter evaluates what is the expected loss if the loss is larger than the
V aRα. Both risk measures are distortion risk measures with associated distortion functions
shown in Table 2.1. Unlike the V aRα, the distortion function associated to the TV aRα

is concave and, then, the TV aRα is a coherent risk measure in the sense of Artzner et al.
(1999). Basically, this means that TV aRα is sub-additive (see Acerbi and Tasche, 2002)
while the V aRα is not.

Table 2.1: Correspondence between risk measures and distortion functions.

Risk measure Distortion function g(x)

V aRα ψα (x) =

{
0 if x ≤ 1− α
1 if x > 1− α

}
= �(1−α,1](x)

TV aRα γα (x) =

{ x

1− α
if x ≤ 1− α

1 if x > 1− α

}
= min

{
x

1− α
, 1

}

2.2. The OWA and WOWA operators and the Choquet integral

Aggregation operators (or aggregation functions) have been extensively used as a natural
form to combine inputs into a single value. These inputs may be understood as degrees of
preference, membership or likelihood, or as support of a hypothesis. Let us denote by
R = [−∞,+∞] the extended real line, and by I any type of interval in R (open, closed,
with extremes being ∓∞,...). Following Grabisch et al. (2011), an aggregation operator is
defined.

3We consider TV aRα as defined in Denuit et al. (2005). That is, TV aRα (X) =
1

1− α

∫ 1

α

V aRδ (X) dδ.
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Definition 2.6 (Aggregation operator). An aggregation operator in I
n is a function F (n)

from I
n to I, that is non-decreasing in each variable; fulfills the following boundary conditions,

inf
�x∈In

F (n) (	x) = inf I, sup
�x∈In

F (n) (	x) = sup I; and F (1) (x) = x for all x ∈ I.

Some basic aggregation operators are displayed in Table 2.2.

Table 2.2: Basic F (n) aggregation operators.

Name Mathematical expression Type of interval I

Arithmetic
mean

AM (	x) =
1

n

n∑
i=1

xi Arbitrary I. If I = R, the convention
+∞+(−∞) = −∞ is often considered.

Product Π (	x) =
n∏

i=1

(xi) I ∈ {|0, 1|, |0,+∞|, |1,+∞|}, where
|a, b| means any kind of interval, with
boundary points a and b, and with the
convention 0 · (+∞) = 0.

Geometric
mean

GM (	x) =

(
n∏

i=1

(xi)

)1/n

I ⊆ [0,+∞], with the convention 0 ·
(+∞) = 0.

Minimum
function

Min (	x) = min {x1, x2, ..., xn} Arbitrary I.

Maximum
function

Max (	x) = max {x1, x2, ..., xn} Arbitrary I.

Sum func-
tion

∑
(	x) =

n∑
i=1

xi I ∈ {|0,+∞|, | −∞, 0|, | −∞,+∞|},
with the convention +∞ + (−∞) =
−∞.

k-order
statistics

OSk (	x) = xj, k ∈ {1, ..., n}
where xj is such that
# {i|xi ≤ xj} ≥ k and
# {i|xi > xj} < n− k

Arbitrary I.

k-th pro-
jection

Pk (	x) = xk, k ∈ {1, ..., n} Arbitrary I.

Source: Grabisch et al. (2011), �x denotes (x1, x2, ..., xn).

There is a huge amount of literature on aggregation operators and its applications (see,
for example, Beliakov et al., 2007; Torra and Narukawa, 2007; Grabisch et al., 2009, 2011).
Despite the large number of aggregation operators, we focus on the OWA operator and on
the WOWA operator. Several reasons lead us to this selection. The OWA operator has been
extensively applied in the context of decision making under uncertainty because it provides a
unified formulation for the optimistic, the pessimistic, the Laplace and the Hurwicz criteria
(Yager, 1993), and there are also some interesting generalizations (Yager et al., 2011). The
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WOWA operator combines the OWA operator with the concept of weighted average, where
weights are a mechanism to include expert opinion on the accuracy of information. This
operator is closely linked to distorted probabilities.

2.2.1. Ordered Weighted Averaging operator

The OWA operator is an aggregation operator that provides a parameterized family
of aggregation operators offering a compromise between the minimum and the maximum
aggregation functions (Yager, 1988). It can be defined as follows 4

Definition 2.7 (OWA operator). Let 	w = (w1, w2, ..., wn) ∈ [0, 1]n such that
∑n

i=1wi = 1.
The Ordered Weighted Averaging (OWA) operator with respect to 	w is a mapping from R

n to

R defined by OWA�w (x1, x2, ..., xn) :=
n∑

i=1

xσ(i) · wi, where σ is a permutation of (1, 2, ..., n)

such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), i.e. xσ(i) is the i-th smallest value of x1, x2, ..., xn.

The OWA operator is commutative, monotonic and idempotent, and it is lower-bounded
by the minimum and upper-bounded by the maximum operators. Commutativity is referred
to any permutation of the components of 	x. That is, if the OWA�w operator is applied to
any 	y such that yi = xr(i) for all i, and r is any permutation of (1, ..., n), then OWA�w (	y) =
OWA�w (	x). Monotonicity means that if xi ≥ yi for all i, then OWA�w (	x) ≥ OWA�w (	y).
Idempotency assures that if xi = a for all i, then OWA�w (	x) = a. The OWA operator
accomplishes the boundary conditions because it is delimited by the minimum and the
maximum functions, i.e. mini=1,...,n {xi} ≤ OWA�w (	x) ≤ maxi=1,...,n {xi}.

The OWA�w is unique with respect to the vector 	w (the proof is provided in the Ap-
pendix). The characterization of the weighting vector 	w is often made by means of the
degree of orness measure (Yager, 1988).

Definition 2.8 (Degree of orness of an OWA operator). Let 	w ∈ [0, 1]n such that
∑n

i=1wi =
1, the degree of orness of OWA�w is defined by

orness (OWA�w) :=
n∑

i=1

(
i− 1

n− 1

)
· wi.

Note that the degree of orness represents the level of aggregation preference between the
minimum and the maximum when 	w is fixed. The degree of orness can be understood as
the value that the OWA operator returns when it is applied to 	x∗ =

(
0

n−1
, 1
n−1

, ..., n−2
n−1

, n−1
n−1

)
.

In other words, orness (OWA�w) = OWA�w

(
	x∗
)
. It is very straightforward to see that

orness (OWA�w) ∈ [0, 1], because 	x∗, 	w ∈ [0, 1]n. If 	w = (1, 0, ..., 0), then OWA�w ≡Min and
orness (Min) = 0. Conversely, if 	w = (0, 0, ..., 1), then OWA�w ≡Max and orness (Max) =

4Unlike the original definition, we consider an ascending order in �x instead of a decreasing one. This
definition is convenient from the risk management perspective since �x may be a set of losses in ascending
order. The relationship between the ascending OWA and the descending OWA operators is already provided
by Yager (1993).
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1. And when 	w is such that wi =
1
n
for all i, then OWA�w is the arithmetic mean and its

degree of orness is 0.5. As we will see later, orness is closely related to the α level chosen in
risk measures.

Alternatively to the degree of orness, other measures can be used to characterize the
weighting vector, such as the entropy of dispersion (Yager, 1988) based on the Shannon
entropy (Shannon, 1948) and the divergence of the weighting vector (Yager, 2002).

The OWA operator has been extended and generalized in many ways. For example,
Xu and Da (2002) introduced the uncertain OWA (UOWA) operator in order to deal with
imprecise information, Merigó and Gil-Lafuente (2009) developed a generalization by using
induced aggregation operators and quasi-arithmetic means called the induced quasi-OWA
(Quasi-IOWA) operator and Yager (2010) introduced a new approach to cope with norms
in the OWA operator. Although it is out of the scope of this paper, the OWA operator is
also related to the linguistic quantifiers introduced by Zadeh (1985), and a subset of them
may be interpreted as distortion functions.

2.2.2. Weighted Ordered Weighted Averaging operator

The WOWA operator is the aggregation function introduced by Torra (1997). This
operator unifies in the same formulation the weighted mean function and the OWA operator
in the following way5.

Definition 2.9 (WOWA operator). Let 	v = (v1, v2, ..., vn) ∈ [0, 1]n and 	q = (q1, q2, ..., qn) ∈
[0, 1]n such that

∑n
i=1 vi = 1 and

∑n
i=1 qi = 1. The Weighted Ordered Weighted Averaging

(WOWA) operator with respect to 	v and 	q is a mapping from R
n to R defined by

WOWAh,�v,�q (x1, x2, ..., xn) :=
n∑

i=1

xσ(i) ·
⎡
⎣h
⎛
⎝∑

j∈Aσ,i

qj

⎞
⎠− h

⎛
⎝ ∑

j∈Aσ,i+1

qj

⎞
⎠
⎤
⎦ ,

where σ is a permutation of (1, 2, ..., n) such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), Aσ,i =
{σ (i) , ..., σ (n)} and h : [0, 1] → [0, 1] is a non-decreasing function such that h (0) := 0

and h

(
i

n

)
:=

n∑
j=n−i+1

vj; and h is linear if the points

(
i

n
,

n∑
j=n−i+1

vj

)
lie on a straight line.

Note that this definition implies that weights vi can be expressed as vi = h

(
n− i+ 1

n

)
−

h

(
n− i

n

)
and that h (1) = 1.

5In the original definition �x components are in descending order, while we use ascending order. An
additional subindex to emphasize dependence on function h is also introduced here.
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Remark 1

The WOWA operator generalizes the OWA operator. Given a WOWAh,�v,�q operator on
R

n, if we define

wi := h

⎛
⎝∑

j∈Aσ,i

qj

⎞
⎠− h

⎛
⎝ ∑

j∈Aσ,i+1

qj

⎞
⎠ ,

and OWA�w where 	w = (w1, ..., wn), then the following equality holdsWOWAh,�v,�q = OWA�w.
As it can easily be shown, vector 	w satisfies the following conditions:

(i) 	w ∈ [0, 1]n;

(ii)
n∑

i=1

wi = 1.

Condition (i) is straightforward. Let us denote si =
∑

j∈Aσ,i
qj and sn+1 := 0. Hence,

si ≥ si+1 for all i due to the fact that Aσ,i ⊇ Aσ,i+1 and that qj ≥ 0. Then h (si) ≥ h (si+1)
since h is a non-decreasing function. Finally, as si ∈ [0, 1] and h(s) ∈ [0, 1] for all s ∈ [0, 1],
then it follows that wi = h(si)− h(si+1) ∈ [0, 1] for all i.

To prove condition (ii), note that Aσ,1 = N ,
∑

j∈N qj = 1 and that h (1) = 1 and

h (0) = 0, then
n∑

i=1

wi =
n∑

i=1

(h(si)− h(si+1)) = h(s1)− h(sn+1) = 1− 0 = 1.

Remark 2

Let us analyze the particular case when OWA and WOWA operators provide the ex-
pectation of random variables. Suppose that X is a discrete random variable that takes n
different values and 	x ∈ R

n is the vector of values, where the components are in ascending
order. Let 	p ∈ [0, 1]n be a vector consisting of the probabilities of the components of 	x.
Obviously, it holds that OWA�p (	x) = E (X). Besides,

WOWAh,�v,�p (	x) =
n∑

i=1

xi ·
[
h

(
n∑

j=i

pj

)
− h

(
n∑

j=i+1

pj

)]
=

=
n∑

i=1

xi · [h (SX (xi−1))− h (SX (xi))] .

If h is the identity function then WOWAh,�v,�p (	x) = E (X) since SX (xi−1)− SX (xi) = pi for
all i (with the convention x0 := −∞).

Remark 3

Note that if X is discrete and uniformly distributed then SX (xi−1) =
n− i+ 1

n
for all

i = 2, ..., n + 1, and hence h (SX (xi−1)) = h

(
n− i+ 1

n

)
=

n∑
j=i

vj. This remark is helpful

to interpret the WOWA operator from the perspective of risk measurement. In the WOWA
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operator the subjective opinion of experts may be represented by vector 	v. Let us suppose
that no information regarding the distribution function of a discrete and finite random
variable X is available. If we assume that X is discrete and uniformly distributed, then
vector 	v directly consists of the subjective probabilities of occurrence of the components
xi according to the expert opinion. Another possible point of view in this case is that 	v
represents the subjective importance that the expert gives to each xi.

Remark 4

Since the domain of the survival function is R, then the selected function h is crucial
from the risk measurement point of view, especially for a small n.

2.2.3. The Choquet integral

The Choquet integral has become a familiar concept to risk management experts since
it was introduced by Wang (1996) in the definition of distortion risk measures. OWA and
WOWA operators can also be defined based on the concept of the Choquet integral. In this
subsection we follow Grabisch et al. (2011) to provide several definitions which are needed
in section 3.

Definition 2.10 (Capacity). Let N = {m1, ...,mn} be a finite set and 2N = ℘ (N) be the
set of all subsets of N . A capacity or a fuzzy measure on N is a mapping from 2N to [0, 1]
which satisfies

(i) μ (∅) = 0;

(ii) A ⊆ B ⇒ μ (A) ≤ μ (B), for any A,B ∈ 2N (monotonicity).

If μ (N) = 1, then we say that μ satisfies normalization, which is a frequently required
property.

Definition 2.11 (Dual capacity). Let μ be a capacity on N . Its dual or conjugate capacity
μ̄ is a capacity on N defined by

μ̄ (A) := μ (N)− μ
(
Ā
)
,

where Ā = N\A (i.e., Ā is the set of all the elements in N that do not belong to A).

If we consider a finite probability space
(
N, 2N ,P), note that the probability P is a

capacity (or a fuzzy measure) on N that satisfies normalization. In addition, P is its own
dual capacity.

Definition 2.12 (Choquet integral for discrete positive functions). Let μ be a capacity on
N , and f : N → [0,+∞) be a function. Let σ be a permutation of (1, ..., n), such that
f
(
mσ(1)

) ≤ f
(
mσ(2)

) ≤ ... ≤ f
(
mσ(n)

)
, and Aσ,i =

{
mσ(i), ...,mσ(n)

}
, with Aσ,n+1 = ∅. The

Choquet integral of f with respect to μ is defined by

Cμ (f) :=
n∑

i=1

f
(
mσ(i)

)
(μ (Aσ,i)− μ (Aσ,i+1)) .
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If we let f
(
mσ(0)

)
:= 0, then an equivalent expression for the definition of the Choquet

integral is Cμ (f) =
n∑

i=1

[
f
(
mσ(i)

)− f
(
mσ(i−1)

)]
μ (Aσ,i) .

Following Marichal (2004), the concept of degree of orness introduced for the OWA
operator may be extended to the case of the Choquet integral for positive functions as

orness (Cμ) :=
n∑

i=1

(
i− 1

n− 1

)
· (μ (Aid,i)− μ (Aid,i+1)) . (2.1)

Let us illustrate the degree of orness for three simple capacities. The first one, denoted
as μ∗, is such that μ∗ (A) = 0 if A �= N and μ∗ (N) = 1. In this case, Cμ∗ ≡Min and we find
through expression (2.1) that orness (Min) = 0. The second case, denoted as μ∗, is such
that μ∗ (A) = 0 if A �= {n} and μ∗ ({n}) = 1. In this situation, Cμ∗ ≡Max and, as expected,
we get that orness (Max) = 1. Finally, we consider capacity μ# such that μ# (A) solely
depends on the cardinality of A for all A ⊆ N . Then μ# (Aσ,i)−μ# (Aσ,i+1) is defined by i. If
we denote by wi = μ# (Aσ,i)−μ# (Aσ,i+1) for all i, it follows that Cμ# is equal to OWA�w. In

the particular case where μ# (A) = #A
n

for any A ⊆ N , then wi =
n−(i−1)

n
− n−i

n
= 1

n
. So, in

this situation Cμ# is the arithmetic mean, and we can easily verify that orness
(Cμ#

)
= 0.5:

orness
(Cμ#

)
=

n∑
i=1

(
i− 1

n− 1

)
· (μ# (Aid,i)− μ# (Aid,i+1)

)
=

n∑
i=1

(
i− 1

n− 1

)
· 1
n
=

1

2
.

(2.2)
In order to be able to work with negative functions, the Choquet integral of such functions

needs to be defined also for them. Below we define the asymmetric Choquet integral, which
is the classical extension from real-valued positive functions to negative functions. Note that
symmetric extensions have gained an increasing interest (Greco et al., 2011; Mesiar et al.,
2011), but we are not going to use them in this article.

Definition 2.13 (Asymmetric Choquet integral for discrete negative functions). Let f :
N → (−∞, 0] be a function, μ a capacity on N and μ̄ its dual capacity. The asymmetric
Choquet integral of f with respect to μ is defined by Cμ (f) := −Cμ̄ (−f) .

Given the previous definition, we can now extend the definition of the Choquet integral
to any function f from N to R.

Definition 2.14 (Choquet integral for discrete functions). Let be μ a capacity on N and
f a function from N to R. We denote by f+ (mi) = max {f (mi) , 0} and f− (mi) =
min {f (mi) , 0}. Then the Choquet integral of f with respect to μ is defined by

Cμ (f) := Cμ
(
f+
)
+ Cμ

(
f−) = Cμ

(
f+
)− Cμ̄

(−f−) . (2.3)
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3. The relationship between distortion risk measures, OWA and WOWA oper-
ators

Three results for discrete random variables are presented in this section. First, the
equivalence between the Choquet integral and a distortion risk measure is shown, when
the distortion risk measure is fixed on a finite probability space. Second, the link between
this distortion risk measure and OWA operators is provided. And, third, the relationship
between the fixed distortion risk measure and WOWA operators is given. Finally, we show
that the degree of orness of the V aRα and TV aRα risk measures may be defined as a function
of the confidence level when the random variable is given. To our knowledge, some of these
results provide a new insight into the way classical risk quantification is understood, which
can now naturally be viewed as a weighted aggregation.

The link between the Choquet integral and distortion risk measures for arbitrary random
variables is well-known almost since the inception of distortion risk measures (see Wang,
1996), and has lead to many interesting results. For example, the concept of Choquet
pricing and its associated equilibrium conditions (De Waegenaere et al., 2003); the study of
stochastic comparison of distorted variability measures (Sordo and Suarez-Llorens, 2011);
or the conditions for optimal behavioral insurance (Sung et al., 2011) and the analysis of
competitive insurance markets in the presence of ambiguity (Anwar and Zheng, 2012). Here
we present the discrete version, which is useful for our presentation.

The relationship between the WOWA operator and the Choquet integral is also known
by the fuzzy systems community (Torra, 1998), as well as the relationship between distorted
probabilities and aggregation operators (see, for example, Honda and Okazaki, 2005). How-
ever, the results shown in this section provide a comprehensive presentation that allows for
a connection to risk measurement.

Proposition 3.1. Let
(
N, 2N ,P) be a finite probability space, and let X be a discrete finite

random variable defined on this space. Let g : [0, 1] → [0, 1] be a distortion function, and let
ρg be the associated distortion risk measure. Then, it follows that

Cg◦P (X) = ρg (X) .

Proof. Let N = {�1, ..., �n} for some n ≥ 1 and let us suppose that we can write X (N) =
{x1, ..., xn}, withX ({�i}) = xi, and such that xi < xj if i < j; additionally, let k ∈ {1, ..., n}
be such that xi < 0 if i = {1, ..., k − 1} and xi ≥ 0 if i = {k, , ..., n}. In order to obtain the
Choquet integral of X, a capacity μ defined on N is needed. As previously indicated, P is
a capacity on N that satisfies normalization, although it is not the one that we need.

Since g is a distortion function, μ := g ◦ P is another capacity on N that satisfies
normalization: μ (∅) = g (P (∅)) = g(0) = 0, μ (N) = g (P (N)) = g(1) = 1, and if A ⊆ B,
the fact that P (A) ≤ P (B) and the fact that g is non-decreasing imply that μ (A) ≤ μ (B).

RegardingX+, the permutation σ = id on (1, ..., k − 1, k, ..., n) is such that x+σ(i) ≤ x+σ(i+1)

for all i or, in other words, x+1 ≤ x+2 ≤ ... ≤ x+k−1 ≤ x+k ≤ x+k+1 ≤ ... ≤ x+n . Then,
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Aσ,i = {�i, ..., �n} and taking into account x+i = 0 ∀i < k, we can write Cg◦P (X+) as

Cg◦P (X+) =
n∑

i=1

(
x+i − x+i−1

)
(g ◦ P) (Aσ,i) =

n∑
i=k

(
x+i − x+i−1

)
g

(
n∑

j=i

pj

)
. (3.1)

Additionally, permutation s on (1, ..., k − 1, k, ..., n) such that s (i) = n+ 1− i, satisfies
−x−s(i) ≤ −x−s(i+1) for all i, so −x−n ≤ −x−n−1 ≤ ... ≤ −x−k ≤ −x−k−1 ≤ −x−k−2 ≤ ... ≤ −x−1 .
We have As,i =

{
�s(i), ..., �s(n)

}
= {�n+1−i, ..., �1} and, therefore, Ās,i = {�n+2−i, ..., �n}.

Taking into account that x−i = 0 ∀i ≥ k, we can write Cg◦P (−X−) as

Cg◦P (−X−) =
n∑

i=1

(
−x−s(i) + x−s(i−1)

) (
g ◦ P) (As,i) =

=
n∑

i=1

(−x−n+1−i + x−n+2−i

) (
g ◦ P) (As,i) =

=
1∑

i=n

(−x−i + x−i+1

) (
g ◦ P) (As,n+1−i) =

=
1∑

i=n

(−x−i + x−i+1

) [
1− (g ◦ P)

(
Ās,n+1−i

)]
=

=
1∑

i=n

(−x−i + x−i+1

)
[1− (g ◦ P) ({�i+1, ..., �n})] =

=
1∑

i=k−1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
.

(3.2)

Expressions (3.1) and (3.2) lead to

Cg◦P (X) = Cg◦P (X+)− Cg◦P (−X−) =

= −
k−1∑
i=1

(
x−i+1 − x−i

) [
1− g

(
n∑

j=i+1

pj

)]
+

n∑
i=k

(
x+i − x+i−1

)
g

(
n∑

j=i

pj

)
=

= −
k∑

i=2

(xi − xi−1)

[
1− g

(
n∑

j=i

pj

)]
+ xk

[
1− g

(
n∑

j=k

pj

)]
+

+
n∑

i=k+1

(xi − xi−1) g

(
n∑

j=i

pj

)
+ xkg

(
n∑

j=k

pj

)
=

= −
k∑

i=2

(xi − xi−1)

[
1− g

(
n∑

j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑

j=i

pj

)
.

(3.3)
Now consider ρg (X) as in definition 2.5, and note that random variable X is defined on

the probability space (N, 2N ,P). Given the properties of Riemann’s integral, if we define
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x0 := −∞ and xn+1 := +∞, then the distortion risk measure can be written as

ρg (X) = −
[

k∑
i=1

∫ xi

xi−1

[1− g(SX(x))]dx−
∫ xk

0

[1− g(SX(x))]dx

]
+

+

∫ xk

0

g(SX(x))dx+
n+1∑

i=k+1

∫ xi

xi−1

g(SX(x))dx.

(3.4)

If we consider x ∈ [xi−1, xi), then FX(x) =
i−1∑
j=1

pj, since FX(x) = P (X ≤ x) and SX(x) =

1−
i−1∑
j=1

pj =
n∑

j=i

pj. Given that the distortion function g is such that g(0) = 0 and g(1) = 1,

expression (3.4) can be rewritten as

ρg (X) = −
k∑

i=1

∫ xi

xi−1

[
1− g

(
n∑

j=i

pj

)]
dx+

∫ xk

0

[
1− g

(
n∑

j=k

pj

)]
dx

+

∫ x0

0

g

(
n∑

j=k

pj

)
dx+

n+1∑
i=k+1

∫ xi

xi−1

g

(
n∑

j=i

pj

)
dx =

= −
∫ x1

−∞
[1− g (1)] dx−

k∑
i=2

∫ xi

xi−1

[
1− g

(
n∑

j=i

pj

)]
dx+

+

∫ xk

0

[
1− g

(
n∑

j=k

pj

)]
dx+

∫ xk

0

g

(
n∑

j=k

pj

)
dx+

+
n∑

i=k+1

∫ xi

xi−1

g

(
n∑

j=i

pj

)
dx+

∫ +∞

xn

g (0) dx =

= −
k∑

i=2

(xi − xi−1)

[
1− g

(
n∑

j=i

pj

)]
+ xk

[
1− g

(
n∑

j=k

pj

)
+ g

(
n∑

j=k

pj

)]
+

+
n∑

i=k+1

(xi − xi−1) g

(
n∑

j=i

pj

)
=

= −
k∑

i=2

(xi − xi−1)

[
1− g

(
n∑

j=i

pj

)]
+ xk +

n∑
i=k+1

(xi − xi−1) g

(
n∑

j=i

pj

)
.

(3.5)
And then the proof is finished because ρg (X) = Cg◦P (X) using (3.5) and (3.3).

Let us present Cg◦P (X) in a more compact form. We denote Fi−1 = 1− g

(
n∑

j=i

pj

)
and
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Si−1 = g

(
n∑

j=i

pj

)
for i = 1, ..., n+ 1, so Fi−1 = 1− Si−1. Note that F0 = 0 and Sn = 0, so

k∑
i=2

(xi−1 − xi)Fi−1 =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1,

and
n∑

i=k+1

(xi − xi−1)Si−1 =
n∑

i=k+1

xi (Si−1 − Si)− xkSk.

The previous expressions applied to Cg◦P (X) lead to6

Cg◦P (X) =
k−1∑
i=1

xi (Fi − Fi−1)− xkFk−1 + xk +
n∑

i=k+1

xi (Si−1 − Si)− xkSk =

=
n∑

i=1

xi (Si−1 − Si) =
n∑

i=1

xi

[
g

(
n∑

j=i

pj

)
− g

(
n∑

j=i+1

pj

)]
.

(3.6)

If g = id, then ρid(X) = E (X). The same result for a continuous random variable is easy
to prove using the definition of distortion risk measure and Fubinni’s theorem. Expression
(3.6) is useful to prove the following two propositions.

Proposition 3.2 (OWA equivalence to distortion risk measures). Let X be a discrete finite
random variable and

(
N, 2N ,P) be a probability space as defined in proposition 3.1. Let ρg

a distortion risk measure defined in this probability space, and let pj be the probability of xj
for all j. Then there exist a unique OWA�w operator such that ρg (X) = OWA�w (	x). The
OWA operator is defined by weights

wi = g

(
n∑

j=i

pj

)
− g

(
n∑

j=i+1

pj

)
. (3.7)

The proof is straightforward. From proposition 3.2 it follows that a finite and discrete
random variable X must be fixed to obtain a one-to-one equivalence between a distortion
risk measure and an OWA operator.

Proposition 3.3 (WOWA equivalence to distortion risk measures). Let X be a discrete
finite random variable and

(
N, 2N ,P) be a probability space as in proposition 3.1. If ρg is a

distortion risk measure defined on this probability space, and pj is the probability of xj for all

j, consider the WOWA operator such that h = g, 	q = 	p and vi = g

(
n− i+ 1

n

)
−g
(
n− i

n

)
for all i = 1, ..., n. Then

ρg (X) = WOWAg,�v,�p (	x) . (3.8)

6A similar expression is used by Kim (2010) as an empirical estimate of the distortion risk measure,
where the probabilities are obtained from the empirical distribution function.
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Proof. Using proposition 3.2 it is known that there exists a unique 	w ∈ [0, 1]n such that
OWA�w (	x) = ρg (X):

wi = g

(
n∑

j=i

pj

)
− g

(
n∑

j=i+1

pj

)
= g (SX (xi−1))− g (SX (xi)) . (3.9)

In addition, there exists an OWA�u operator such that OWA�u = WOWAg,�v,�p defined by

ui = g

⎛
⎝ ∑

Ωj∈Aid,i

pj

⎞
⎠− g

⎛
⎝ ∑

Ωj∈Aid,i+1

pj

⎞
⎠ = g (SX (xi−1))− g (SX (xi)) . (3.10)

Expressions (3.9) and (3.10) show that 	w = 	u and, due to the uniqueness of the
OWA operator, we conclude that ρg (X) = OWA�w (	x) = WOWAg,�v,�p (	x), where vi =

g

(
n− i+ 1

n

)
− g

(
n− i

n

)
.

Again, the one-to-one equivalence between a distortion risk measure and a WOWA op-
erator is obtained given that the discrete and finite random variable is fixed.

To summarize the results, for a given distortion function g and a discrete and finite
random variable X, there are three alternative ways to calculate the distortion risk measure
that lead to the same result than using definition 2.5:

1. By means of the Choquet integral of X with respect to μ = g ◦ P using expression
(3.6).

2. Applying the OWA�w operator to 	x, following definition 2.7 with wi = g

(
n∑

j=i

pj

)
−

g

(
n∑

j=i+1

pj

)
, i = 1, ..., n, and pj the probability of xj for all j.

3. And, finally, applying the WOWAg,�v,�p operator to 	x, following definition 2.9, where

vi = g

(
n− i+ 1

n

)
− g

(
n− i

n

)
and pj the probability of xj for all j.

3.1. Interpreting the degree of orness

We can derive an interesting application from expression (3.6). In particular, the concept
of degree of orness introduced for the OWA operator may be formally extended to the case
of Cg◦P (X), as:

orness (Cg◦P (X)) :=
n∑

i=1

(
i− 1

n− 1

)
· [g (SX (xi−1))− g (SX (xi))] . (3.11)

Note that this result is similar to (2.1). This result is now applicable to both positive
and negative values and only the distorted probabilities are considered among capacities.
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Let us show risk management applications of the degree of orness of the distortion risk
measures. Note, for instance, that the regulatory requirements on risk measurement based on
distortion risk measures may be reinterpreted by means of the degree of orness. Given a finite
and discrete random variable X, when distortion risk measure ρg (X) is required there is an
implicit preference weighting rule with respect to the values of X, which takes into account
probabilities. This preference weighting rule can be summarized by orness (OWA�w), where
	w is such that wi = g (SX (xi−1))− g (SX (xi)).

There are some cases of special interest, such as the mathematical expectation, the V aRα

and TV aRα risk measures:

• If g = id, then Cg◦P ≡ E and

orness (E (X)) =
n∑

i=1

(
i− 1

n− 1

)
· [SX (xi−1)− SX (xi)] =

n∑
i=1

(
i− 1

n− 1

)
· pi. (3.12)

In particular, if the random variable X is discrete and uniform, i.e. pi = 1
n
, then

expression (3.12) equals 1/2.

Given a confidence level α ∈ (0, 1), let kα ∈ {1, 2, ..., n} be such that xkα = inf{xi|FX (xi) ≥
α} = inf{xi|SX (xi) ≤ 1− α}, i.e. xkα is the α−quantile of X.

• Regarding V aRα, from Table 2.1 it is known that ψα (SX (xi)) = �(1−α,1] (SX (xi)).
Since ψα (SX (xi−1))−ψα (SX (xi)) = �{kα} (i), the degree of orness of V aRα is obtained
as

orness (V aRα (X)) =
n∑

i=1

(
i− 1

n− 1

)
· [ψα (SX (xi−1))− ψα (SX (xi))] =

kα − 1

n− 1
.

(3.13)

• In the case of TV aRα, from Table 2.1 γα (SX (xi)) = min

{
SX (xi)

1− α
, 1

}
. Taking into

account that

γα (SX (xi−1))− γα (SX (xi)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 i < kα

1− 1

1− α

n∑
j=kα+1

pj i = kα

pi
1− α

i > kα.

,

therefore
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orness (TV aRα (X)) =
n∑

i=1

(
i− 1

n− 1

)
· [γα (SX (xi−1))− γα (SX (xi))] =

=

(
kα − 1

n− 1

)
·
[
1− 1

1− α

n∑
j=kα+1

pj

]
+

n∑
i=kα+1

(
i− 1

n− 1

)
· pi
1− α

=

=
kα − 1

n− 1
+

1

1− α
·

n∑
i=kα+1

(
i− kα
n− 1

)
pi.

(3.14)

Note that for V aRα and TV aRα, the degree of orness is directly connected to the α level
chosen for the risk measure, i.e. the value of the distribution function at the point given by
the quantile. In the following example an application of the degree of orness in the context
of risk measurement is presented.

4. Illustrative example

A numerical example taken from Wang (2002) is provided. This example is selected as
a particular case where common risk measures show drawbacks in the comparison of two
random variables, X and Y . Table 4.1 summarizes the probabilities, distribution functions
and survival functions of both random variables.

Table 4.1: Example of loss random variables X and Y.

Loss px FX SX py FY SY

0 0.6 0.6 0.4 0.6 0.6 0.4
1 0.375 0.975 0.025 0.39 0.99 0.01
5 0.025 1 0
11 0.01 1 0

We can calculate distortion risk measures for X and Y using aggregation operators.
In particular, we are interested in E, V aRα and TV aRα for α = 95%, which follow from
expression (3.6) and ψα and γα as in Table 2.1. In this example E, V aR95% and TV aR95%

have the same value for the two random variables.
The weighting vectors linked to the OWA operators (see expression 3.7) for E, V aR95%

and TV aR95% are displayed in Table 4.2. The values of the distortion risk measures for each
random variable and the associated degree of orness are shown in Table 4.3. In addition,
the weighting vectors linked to the WOWA operators (see expression 3.8) are listed in Table
4.4.
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Table 4.2: Distorted probabilities in the OWA operators for X and Y (�w).

Loss E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
0 0.6 0.6 0 0 0 0
1 0.375 0.39 1 1 0.5 0.8
5 0.025 0 0.5
11 0.01 0 0.2

Table 4.3: Distortion risk measures and the associated degree of orness for X and Y .

Loss E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
Risk value 0.5 0.5 1 1 3 3

Degree of orness 0.2125 0.205 0.5 0.5 0.75 0.6

Table 4.4: WOWA vectors linked to distortion risk measures for X and Y .

Loss E (X) E (Y ) V aR95% (X) V aR95% (Y ) TV aR95% (X) TV aR95% (Y )
	p 	v 	p 	v 	p 	v 	p 	v 	p 	v 	p 	v

0 0.6 1/3 0.6 1/3 0.6 0 0.6 0 0.6 0 0.6 0
1 0.375 1/3 0.39 1/3 0.375 0 0.39 0 0.375 0 0.39 0
5 0.025 1/3 0.025 1 0.025 1
11 0.01 1/3 0.01 1 0.01 1
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First, note that point probabilities are distorted and a weighted average of the random
values with respect to this distortion (OWA�w) is calculated to obtain the distortion risk
measures. Second, the results show that weights 	v for the WOWA represent the risk attitude.
In this example, we are only worried about the maximum loss when we consider V aR95% and
TV aR95%. All values have the same importance in the case of the mathematical expectation.
Note that weights take into account how the random variable is distributed by means of 	p.

Note that V aR95% and TV aR95% have equal 	v and 	p for each random variable, although
the distortion risk measures have different values. It is due to the fact that function h in
WOWA plays an important role to determine the particular distortion risk measure that is
calculated, since function h is the distortion function for V aRα and TV aRα.

Finally, it is interesting to note that the degree of orness of a distortion risk measure
can be understood as another risk measure for the random variable, with a value that
belongs to [0, 1]. The additional riskiness information provided by the degree of orness can
be summarized as follows:

• It is shown that orness (E (X)) �= orness (E (Y )), and both are less than 0.5. Note
that 0.5 is the degree of orness of the mathematical expectation of an uniform random
variable. The greater the difference (in absolute value) between the degree of orness of
the mathematical expectation and 0.5, the greater the difference between the random
variable and an uniform. In the example, both random variables are far from a discrete
uniform, but Y is farther than X;

• The orness (V aR95% (X)) is equal to orness (V aR95% (Y )), because the number of
observations is the same and V aR95% is located at the same position for both variables;

• The degree of orness of TV aR95% is different for both random variables, although
they have the same value for the TV aR95%. Given these two random variables with
the same number of observations, V aR95%, orness of V aR95% and TV aR95%, more
extreme losses are associated to the random variable with the lower degree of orness
of TV aR95%. Therefore, this additional information provided by the degree of orness
may be useful to compare X and Y , given that they are indistinguishable in terms of
E, V aR95% and TV aR95%.

5. Discussion and conclusions

This article shows that distortion risk measures, OWA and WOWA operators in the
discrete finite case are mathematically linked by means of the Choquet integral. Aggregation
operators are used as a natural form to summarize human subjectivity in decision making
and have a direct connection to risk measurement of discrete random variables. From the
risk management point of view, our main contribution is that we show how distortion risk
measures may be derived -and then computed- from Ordered Weighted Averaging operators.
The mathematical links presented in this paper may help to interpret distortion risk measures
under the fuzzy systems perspective. We show that the aggregation preference of the expert
may be measured by means of the degree of orness of the distortion risk measure. Regulatory
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capital requirements and provisions may then be associated to the aggregation attitude of
the regulator and the risk managers, respectively.

In our opinion, the mathematical link between risk measurement and fuzzy systems
concepts presented in this paper offers a new perspective in quantitative risk management.

Appendix 1

Proof of OWA uniqueness
Given two different vectors 	w and 	u from [0, 1]n we wonder if OWA�w = OWA�u, i.e. if the
respective OWA operators on R

n are the same. We show that this is not possible. Suppose
that, for all 	x ∈ R

n, OWA�w (	x) = OWA�u (	x). Let vectors 	zk ∈ R
n, k = 1, ..., n be defined

by

	zk,i =

{
0 if i < k
1/ (n− i+ 1) if i ≥ k

.

Then, iterating from k = n to k = 1, we have that:

• Step k = n. We have 	zn = (0, 0, ..., 0, 1), and permutation σ = id is useful to calculate
OWA�w (	zn) and OWA�u (	zn). Precisely, OWA�w (	zn) = 1 ·wn and OWA�u (	zn) = 1 · un.
If OWA�w = OWA�u, then un = wn.

• Step k = n − 1. We have 	zn−1 =
(
0, 0, ..., 1

2
, 1
)
, and permutation σ = id is still

useful. So OWA�w (	zn−1) = 1
2
· wn−1 + 1 · wn and, taking into account the previous

step, OWA�u (	zn−1) =
1
2
· un−1 +1 ·wn. If the hypothesis OWA�w = OWA�u holds, then

un−1 = wn−1.

• Step k = i. From previous steps we have that uj = wj, j = i + 1, ..., n and in this
step we obtain ui = wi.

• Step k = 1. Finally, supposing again that OWA�w = OWA�u, we obtain that uj = wj

for all j = 1, ..., n. But this is a contradiction with the fact that 	w �= 	u.
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Mesiar, R., Mesiarová-Zemánková, A., Ahmad, K., 2011. Discrete Choquet integral and some of its sym-
metric extensions. Fuzzy Sets and Systems 184 (1), 148–155.

Quiggin, J., 1982. A theory of anticipated utility. Journal of Economic Behaviour & Organization 3 (4),
323–343.

Schmeidler, D., 1989. Subjective probability and expected utility without additivity. Econometrica 57 (3),
571–587.

Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27 (3),
379–423.

Sordo, M. A., Suarez-Llorens, A., 2011. Stochastic comparisons of distorted variability measures. Insurance:
Mathematics and Economics 49 (1), 11–17.

Sung, K., Yam, S., Yung, S., Zhou, J., 2011. Behavioral optimal insurance. Insurance: Mathematics and
Economics 49 (3), 418–428.

Torra, V., 1997. The weighted OWA operator. International Journal of Intelligent Systems 12 (2), 153–166.
Torra, V., 1998. On some relationships between the WOWA operator and the Choquet integral. In: Pro-

ceedings of the IPMU 1998 Conference, Paris, France. pp. 818–824.
Torra, V., Narukawa, Y., 2007. Modeling Decisions: Information Fusion and Aggregation Operators.

Springer, Berlin.
Tversky, A., Kahneman, D., 1992. Advances in prospect theory: cumulative representation of uncertainty.

Journal of Risk and Uncertainty 5 (4), 297–323.
von Neumann, J., Morgenstern, O., 1947. Theory of Games and Economic Behaviour. Princeton University

Press, Princeton, NJ.
Wang, S. S., 1996. Premium calculation by transforming the layer premium density. ASTIN Bullletin 26 (1),

71–92.
Wang, S. S., 2002. A risk measure that goes beyond coherence. In: Proceedings of the 2002 AFIR (Actuarial

approach to financial risks).
Wang, S. S., Dhaene, J., 1998. Comonotonicity, correlation order and premium principles. Insurance: Math-

ematics and Economics 22 (3), 235–242.
Wang, S. S., Young, V. R., Panjer, H. H., 1997. Axiomatic characterization of insurance prices. Insurance:

Mathematics and Economics 21 (2), 173–183.
Wu, X. Y., Zhou, X., 2006. A new characterization of distortion premiums via countable additivity for

comonotonic risks. Insurance: Mathematics and Economics 38 (2), 324–334.
Xu, Z. S., Da, Q. L., 2002. The uncertain OWA operator. International Journal of Intelligent Systems 17 (6),

569–575.
Yaari, M. E., 1987. The dual theory of choice under risk. Econometrica 55 (1), 95–115.
Yager, R. R., 1988. On ordered weighted averaging operators in multicriteria decision-making. IEEE Trans-

actions on Systems, Man and Cybernetics 18 (1), 183–190.
Yager, R. R., 1993. Families of OWA operators. Fuzzy Sets and Systems 59 (2), 125–148.
Yager, R. R., 2002. Heavy OWA operators. Fuzzy Optimization and Decision Making 1, 379–397.
Yager, R. R., 2008. Time series smoothing and OWA aggregation. IEEE Transactions on Fuzzy Systems

16 (4), 994–1007.
Yager, R. R., 2010. Norms induced from OWA operators. IEEE Transactions on Fuzzy Systems 18 (1),

57–66.
Yager, R. R., Filev, D. P., 1999. Induced ordered weighted averaging operators. IEEE Transactions on

Systems, Man and Cybernetics - Part B: Cybernetics 29 (2), 141–150.
Yager, R. R., Kacprzyk, J., Beliakov, G., 2011. Recent Developments in the Ordered Weighted Averaging

Operators: Theory and Practice. Springer, Berlin.
Zadeh, L. A., 1985. Syllogistic reasoning in fuzzy-logic and its application to usuality and reasoning with

22



dispositions. IEEE Transactions on Systems, Man and Cybernetics 15 (6), 754–763.

23



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 26
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 26

26

Llista Document de Treball

List Working Paper

WP 2012/01 “The connection between distortion risk measures and ordered weighted 
averaging operators” Belles-Sampera, J.; Merigó, J.M.; Guillén, M. and 
Santolino, M.

WP 2011/26 “Productivity and innovation spillovers: Micro evidence from Spain” Goya, E.; 
Vayá, E. and Suriñach, J.

WP 2011/25 “The regional distribution of unemployment. What do micro-data tell us?” López-
Bazo, E. and Motellón, E.

WP 2011/24 “Vertical relations and local competition: an empirical approach” Perdiguero, J.

WP 2011/23 “Air services on thin routes: Regional versus low-cost airlines” Fageda, X. and 
Flores-Fillol, R.

WP 2011/22 “Measuring early childhood health: a composite index comparing Colombian 
departments” Osorio, A.M.; Bolancé, C. and Alcañiz, M.

WP 2011/21 “A relational approach to the geography of innovation: a typology of regions”
Moreno, R. and Miguélez, E.

WP 2011/20 “Does Rigidity of Prices Hide Collusion?” Jiménez, J.L and Perdiguero, J.

WP 2011/19 “Factors affecting hospital admission and recovery stay duration of in-patient 
motor victims in Spain” Santolino, M.; Bolancé, C. and Alcañiz, M.

WP 2011/18 “Why do municipalities cooperate to provide local public services? An empirical 
analysis” Bel, G.; Fageda, X. and Mur, M.

WP 2011/17 “The "farthest" need the best. Human capital composition and development-
specific economic growth” Manca, F.

WP 2011/16 “Causality and contagion in peripheral EMU public debt markets: a dynamic 
approach” Gómez-Puig, M. and Sosvilla-Rivero, S.

WP 2011/15 “The influence of decision-maker effort and case complexity on appealed rulings 
subject to multi-categorical selection” Santolino, M. and Söderberg, M. 

WP 2011/14 “Agglomeration, Inequality and Economic Growth: Cross-section and panel data 
analysis” Castells, D. 

WP 2011/13 “A correlation sensitivity analysis of non-life underwriting risk in solvency capital 
requirement estimation” Bermúdez, L.; Ferri, A. and Guillén, M. 

WP 2011/12 “Assessing agglomeration economies in a spatial framework with endogenous 
regressors” Artis, M.J.; Miguélez, E. and Moreno, R. 

WP 2011/11 “Privatization, cooperation and costs of solid waste services in small towns” Bel, 
G; Fageda, X. and Mur, M.

WP 2011/10 “Privatization and PPPS in transportation infrastructure: Network effects of 
increasing user fees” Albalate, D. and Bel, G.

WP 2011/09 “Debating as a classroom tool for adapting learning outcomes to the European 
higher education area”     Jiménez, J.L.; Perdiguero, J. and Suárez, A.

WP 2011/08 “Influence of the claimant’s behavioural features on motor compensation 
outcomes” Ayuso, M; Bermúdez L. and Santolino, M.

WP 2011/07 “Geography of talent and regional differences in Spain” Karahasan, B.C. and
Kerimoglu E.

WP 2011/06 “How Important to a City Are Tourists and Daytrippers? The Economic Impact of 
Tourism on The City of Barcelona” Murillo, J; Vayá, E; Romaní, J. and Suriñach, 
J. 



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 27
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 27

27

WP 2011/05 “Singling out individual inventors from patent data” Miguélez,E. and Gómez-
Miguélez, I.

WP 2011/04 “¿La sobreeducación de los padres afecta al rendimiento académico de sus 
hijos?” Nieto, S; Ramos, R. 

WP 2011/03 “The Transatlantic Productivity Gap: Is R&D the Main Culprit?” Ortega-Argilés, 
R.; Piva, M.; and Vivarelli, M. 

WP 2011/02 “The Spatial Distribution of Human Capital: Can It Really Be Explained by 
Regional Differences in Market Access?” Karahasan, B.C. and López-Bazo, E

WP 2011/01 “If you want me to stay, pay” . Claeys, P and Martire, F

WP 2010/16 “Infrastructure and nation building: The regulation and financing of network 
transportation infrastructures in Spain (1720-2010)”Bel,G

WP 2010/15 “Fiscal policy and economic stability: does PIGS stand for Procyclicality In 
Government Spending?” Maravalle, A ; Claeys, P.

WP 2010/14 “Economic and social convergence in Colombia” Royuela, V;  Adolfo García, G.

WP 2010/13 “Symmetric or asymmetric gasoline prices? A meta-analysis approach”
Perdiguero, J.

WP 2010/12 “Ownership, Incentives and Hospitals” Fageda,X and Fiz, E.

WP 2010/11 “Prediction of the economic cost of individual long-term care in the Spanish 
population” Bolancé, C; Alemany, R ; and Guillén M

WP 2010/10 “On the Dynamics of Exports and FDI: The Spanish Internationalization 
Process” Martínez-Martín, J.

WP 2010/09 “Urban transport governance reform in Barcelona” Albalate, D ;  Bel, G and 
Calzada, J.

WP 2010/08 “Cómo (no) adaptar una asignatura al EEES: Lecciones desde la experiencia 
comparada en España” Florido C. ; Jiménez JL.  and  Perdiguero J.

WP 2010/07 “Price rivalry in airline markets: A study of a successful strategy of a network
carrier against a low-cost carrier” Fageda, X ; Jiménez J.L. ; Perdiguero , J.

WP 2010/06 “La reforma de la contratación en el mercado de trabajo: entre la flexibilidad y 
la seguridad” Royuela V. and Manuel Sanchis M.

WP 2010/05 “Discrete distributions when modeling the disability severity score of motor 
victims” Boucher, J and Santolino, M

WP 2010/04 “Does privatization spur regulation? Evidence from the regulatory reform of 
European airports . Bel, G. and Fageda, X.”

WP  2010/03  “High-Speed Rail: Lessons for Policy Makers from Experiences Abroad”.
Albalate, D ; and Bel, G.”

WP  2010/02 “Speed limit laws in America: Economics, politics and geography”. Albalate, D ; 
and Bel, G.”

WP  2010/01  “Research Networks and Inventors’ Mobility as Drivers of Innovation: Evidence 
from Europe” Miguélez, E. ;  Moreno, R. ”

WP 2009/26 ”Social Preferences and Transport Policy: The case of US speed limits”
Albalate, D. 

WP 2009/25 ”Human Capital Spillovers Productivity and Regional Convergence in Spain” ,
Ramos, R ; Artis, M.; Suriñach, J. 



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 28
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 28

28

WP 2009/24 “Human Capital and Regional Wage Gaps” ,López-Bazo,E. Motellón E. 

WP 2009/23 “Is Private Production of Public Services Cheaper than Public Production? A 
meta-regression analysis of solid waste and water services” Bel, G.; Fageda, 
X.; Warner. M.E.

WP 2009/22 “Institutional Determinants of Military Spending” Bel, G., Elias-Moreno, F.

WP 2009/21 “Fiscal Regime Shifts in Portugal” Afonso, A., Claeys, P., Sousa, R.M.

WP 2009/20 “Health care utilization among immigrants and native-born populations in 11 
European countries. Results from the Survey of Health, Ageing and Retirement 
in Europe” Solé-Auró, A., Guillén, M., Crimmins, E.M.

WP 2009/19 “La efectividad de las políticas activas de mercado de trabajo para luchar contra 
el paro. La experiencia de Cataluña” Ramos, R., Suriñach, J., Artís, M.

WP 2009/18 “Is the Wage Curve Formal or Informal? Evidence for Colombia” Ramos, R., 
Duque, J.C., Suriñach, J.

WP 2009/17 “General Equilibrium Long-Run Determinants for Spanish FDI: A Spatial Panel 
Data Approach” Martínez-Martín, J.

WP 2009/16 “Scientists on the move: tracing scientists’ mobility and its spatial distribution” 
Miguélez, E.; Moreno, R.; Suriñach, J.

WP 2009/15 “The First Privatization Policy in a Democracy: Selling State-Owned Enterprises 
in 1948-1950 Puerto Rico” Bel, G.

WP 2009/14 “Appropriate IPRs, Human Capital Composition and Economic Growth” Manca, 
F.

WP 2009/13 “Human Capital Composition and Economic Growth at a Regional Level” 
Manca, F.

WP 2009/12 “Technology Catching-up and the Role of Institutions” Manca, F. 

WP 2009/11 “A missing spatial link in institutional quality” Claeys, P.; Manca, F.

WP 2009/10 “Tourism and Exports as a means of Growth” Cortés-Jiménez, I.; Pulina, M.; 
Riera i Prunera, C.; Artís, M.

WP 2009/09 “Evidence on the role of ownership structure on firms' innovative performance” 
Ortega-Argilés, R.; Moreno, R.

WP 2009/08 “¿Por qué se privatizan servicios en los municipios (pequeños)? Evidencia 
empírica sobre residuos sólidos y agua” Bel, G.; Fageda, X.; Mur, M.

WP 2009/07 “Empirical analysis of solid management waste costs: Some evidence from 
Galicia, Spain” Bel, G.; Fageda, X.

WP 2009/06 “Intercontinental fligths from European Airports: Towards hub concentration or 
not?” Bel, G.; Fageda, X.

WP 2009/05 “Factors explaining urban transport systems in large European cities: A cross-
sectional approach” Albalate, D.; Bel, G.

WP 2009/04 “Regional economic growth and human capital: the role of overeducation”
Ramos, R.; Suriñach, J.; Artís, M.

WP 2009/03 “Regional heterogeneity in wage distributions. Evidence from Spain” Motellón, 
E.; López-Bazo, E.; El-Attar, M.

WP 2009/02 “Modelling the disability severity score in motor insurance claims: an application 
to the Spanish case” Santolino, M.; Boucher, J.P.

WP 2009/01 “Quality in work and aggregate productivity” Royuela, V.; Suriñach, J.

WP 2008/16 “Intermunicipal cooperation and privatization of solid waste services among 
small municipalities in Spain” Bel, G.; Mur, M.



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 29
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 29

29

WP 2008/15 “Similar problems, different solutions: Comparing refuse collection in the 
Netherlands and Spain” Bel, G.; Dijkgraaf, E.; Fageda, X.; Gradus, R.

WP 2008/14 “Determinants of the decision to appeal against motor bodily injury settlements 
awarded by Spanish trial courts” Santolino, M

WP 2008/13 “Does social capital reinforce technological inputs in the creation of knowledge? 
Evidence from the Spanish regions” Miguélez, E.; Moreno, R.; Artís, M.

WP 2008/12 “Testing the FTPL across government tiers” Claeys, P.; Ramos, R.; Suriñach, J.

WP 2008/11 “Internet Banking in Europe: a comparative analysis” Arnaboldi, F.; Claeys, P.

WP 2008/10 “Fiscal policy and interest rates: the role of financial and economic integration” 
Claeys, P.; Moreno, R.; Suriñach, J.

WP 2008/09 “Health of Immigrants in European countries” Solé-Auró, A.; M.Crimmins, E.

WP 2008/08 “The Role of Firm Size in Training Provision Decisions: evidence from Spain” 
Castany, L.

WP 2008/07 “Forecasting the maximum compensation offer in the automobile BI claims 
negotiation process” Ayuso, M.; Santolino, M.

WP 2008/06 “Prediction of individual automobile RBNS claim reserves in the context of 
Solvency II” Ayuso, M.; Santolino, M. 

WP 2008/05 “Panel Data Stochastic Convergence Analysis of the Mexican Regions” Carrion-
i-Silvestre, J.L.; German-Soto, V.

WP 2008/04 “Local privatization, intermunicipal cooperation, transaction costs and political 
interests: Evidence from Spain” Bel, G.; Fageda, X.

WP 2008/03 “Choosing hybrid organizations for local services delivery: An empirical analysis 
of partial privatization” Bel, G.; Fageda, X.

WP 2008/02 “Motorways, tolls and road safety. Evidence from European Panel Data” 
Albalate, D.; Bel, G.

WP 2008/01 “Shaping urban traffic patterns through congestion charging: What factors drive 
success or failure?” Albalate, D.; Bel, G.

WP 2007/19 “La distribución regional de la temporalidad en España. Análisis de sus 
determinantes” Motellón, E.

WP 2007/18 “Regional returns to physical capital: are they conditioned by educational 
attainment?” López-Bazo, E.; Moreno, R.

WP 2007/17 “Does human capital stimulate investment in physical capital? evidence from a 
cost system framework” López-Bazo, E.; Moreno, R.

WP 2007/16 “Do innovation and human capital explain the productivity gap between small 
and large firms?” Castany, L.; López-Bazo, E.; Moreno, R.

WP 2007/15 “Estimating the effects of fiscal policy under the budget constraint” Claeys, P.

WP 2007/14 “Fiscal sustainability across government tiers: an assessment of soft budget 
constraints” Claeys, P.; Ramos, R.; Suriñach, J.

WP 2007/13 “The institutional vs. the academic definition of the quality of work life. What is 
the focus of the European Commission?” Royuela, V.; López-Tamayo, J.; 
Suriñach, J.

WP 2007/12 “Cambios en la distribución salarial en españa, 1995-2002. Efectos a través del 
tipo de contrato” Motellón, E.; López-Bazo, E.; El-Attar, M.

WP 2007/11 “EU-15 sovereign governments’ cost of borrowing after seven years of 
monetary union” Gómez-Puig, M..



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 30
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 30

30

WP 2007/10 “Another Look at the Null of Stationary Real Exchange Rates: Panel Data with 
Structural Breaks and Cross-section Dependence” Syed A. Basher; Carrion-i-
Silvestre, J.L.

WP 2007/09 “Multicointegration, polynomial cointegration and I(2) cointegration with 
structural breaks. An application to the sustainability of the US external deficit” 
Berenguer-Rico, V.; Carrion-i-Silvestre, J.L.

WP 2007/08 “Has concentration evolved similarly in manufacturing and services? A
sensitivity analysis” Ruiz-Valenzuela, J.; Moreno-Serrano, R.; Vaya-Valcarce, E.

WP 2007/07 “Defining housing market areas using commuting and migration algorithms. 
Catalonia (Spain) as an applied case study” Royuela, C.; Vargas, M.

WP 2007/06 “Regulating Concessions of Toll Motorways, An Empirical Study on Fixed vs. 
Variable Term Contracts” Albalate, D.; Bel, G.

WP 2007/05 “Decomposing differences in total factor productivity across firm size” Castany, 
L.; Lopez-Bazo, E.; Moreno, R.

WP 2007/04 “Privatization and Regulation of Toll Motorways in Europe” Albalate, D.; Bel, G.;
Fageda, X.

WP 2007/03 “Is the influence of quality of life on urban growth non-stationary in space? A
case study of Barcelona” Royuela, V.; Moreno, R.; Vayá, E.

WP 2007/02 “Sustainability of EU fiscal policies. A panel test” Claeys, P.

WP 2007/01 “Research networks and scientific production in Economics: The recent spanish 
experience” Duque, J.C.; Ramos, R.; Royuela, V.

WP 2006/10 “Term structure of interest rate. European financial integration” Fontanals-Albiol, 
H.; Ruiz-Dotras, E.; Bolancé-Losilla, C.

WP 2006/09 “Patrones de publicación internacional (ssci) de los autores afiliados a 
universidades españolas, en el ámbito económico-empresarial (1994-2004)” 
Suriñach, J.; Duque, J.C.; Royuela, V.

WP 2006/08 “Supervised regionalization methods: A survey” Duque, J.C.; Ramos, R.; 
Suriñach, J.

WP 2006/07 “Against the mainstream: nazi privatization in 1930s germany” Bel, G.

WP 2006/06 “Economía Urbana y Calidad de Vida. Una revisión del estado del conocimiento 
en España” Royuela, V.; Lambiri, D.; Biagi, B.

WP 2006/05 “Calculation of the variance in surveys of the economic climate” Alcañiz, M.; 
Costa, A.; Guillén, M.; Luna, C.; Rovira, C.

WP 2006/04 “Time-varying effects when analysing customer lifetime duration: application to 
the insurance market” Guillen, M.; Nielsen, J.P.; Scheike, T.; Perez-Marin, A.M.

WP 2006/03 “Lowering blood alcohol content levels to save lives the european experience” 
Albalate, D.

WP 2006/02 “An analysis of the determinants in economics and business publications by 
spanish universities between 1994 and 2004” Ramos, R.; Royuela, V.; 
Suriñach, J.

WP 2006/01 “Job losses, outsourcing and relocation: empirical evidence using microdata”
Artís, M.; Ramos, R.; Suriñach, J.

 



Institut de Recerca en Economia Aplicada Regional i Pública                            Document de Treball 2012/01 pàg. 31
Research Institute of Applied Economics                                                           Working Paper         2012/01 pag. 31

31


