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Abstract 
 

  

Objective: Multiple interconnected key metrics are frequently available to 

track the pandemic progression and one of the difficulties health planners 

face is determining which provides the best description of the status of the 

health challenge. In this study three COVID-19 indicators broadly used to 

monitor the evolution of the pandemic are analysed: the numbers of daily 

hospitalisations, ICU admissions and deaths attributable to the disease. The 

aim of the paper is to capture the information provided by these magnitudes 

in a single metric that reveals the underlying severity. Methods: Drawing on 

official Spanish data, we use one-sided dynamic principal components to 

convert a multivariate framework in a univariate scheme. The time-varying 

relationship between underlying severity and the number of positive cases is 

estimated. Results: A single component adequately explained the variability 

of the indicators during the analysed period (May 2020–March 2022). The 

severity indicator was stable up to mid-March 2021, fell sharply until October 

2021, before stabilising again. The period marked by a fall coincided with the 

period of massive vaccination. By age group, the association between 

underlying severity and positive cases in those aged 80+ was almost 20 

times higher than in those aged 20-49. Conclusions: Our methodology can 

be used in other infectious diseases to provide policy makers with a single 

metric that describes the severity status of the disease and enabling them to 

monitor the evolution. The synthetic indicator may be useful for prioritizing 

the vaccination of high-risk groups and evaluating the severity reduction. 
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INTRODUCTION 

The coronavirus (COVID-19) pandemic declared by the World Health Organization in 2020 has 

been a public health emergency of international concern affecting all areas of health and 

wellbeing. The unfavourable evolution of this infectious disease, caused by the SARS-CoV-2 

virus, represented a major public health challenge including, among others, pressure on the 

health system, loss of human lives and a decrease in life expectancy [1,2]. 

Most people infected with the virus experienced mild to moderate respiratory illness and 

recover without needing hospitalization; however, a significant number fallen seriously ill and 

required regular hospitalization or admission to an intensive care unit (ICU). Some failed to 

survive the disease. One of the difficulties encountered in monitoring the evolution of COVID-

19 has been selecting an indicator that best describes the pandemic status when multiple 

intercorrelated metrics are available [3]. Here, we undertake a joint analysis of three COVID-19 

severity indicators: namely, the number of hospitalizations, the number of ICU admissions and 

the number of deaths. These three metrics provide complementary information on the 

evolution of the pandemic and are closely correlated, and suggest that a dimension reduction 

approach could result in a synthetic univariate indicator that is capable of capturing the severity 

of the disease at any given point in time.  

Previous research has, in the main, attempted to assess the evolution of disease severity based 

on single magnitudes, addressing, for example, either the number of hospital admissions [4-6], 

hospital bed occupancy [7,8], the number of ICU admissions [9-11], ICU bed occupancy [12-14], 

or the number of deaths [15-17]. Other studies have used multivariate principal component 

techniques, but again focusing on a single COVID-19 indicator, albeit for multiple countries [18-

20]. This approach sheds light on the underlying patterns common to all countries for the specific 

COVID-19 indicator under consideration and allows countries to be clustered according to their 

similarities in evolution. Adopting a static approach, the first two principal component 

coefficients has been used to identify different groups of countries depending on the behaviour 

of their respective numbers of positive cases and deaths in different periods of the pandemic 

[20]. Adopting a non-static approach, other studies have used dynamic functional principal 

components over a single COVID-19 indicator in multiple countries to forecast the cumulative 

number of diagnosed cases per million individuals [21] or the daily growth rate in the number 

of positive cases [22]. 

The aim of our study differs from this preceding line of investigation. We seek to construct a 

synthetic indicator that, based on the multivariate information provided by the numbers of 

hospitalizations, ICU admissions and deaths due to COVID-19, captures the evolution of disease 

severity in a single magnitude. As one-sided dynamic principal components (ODPC) is a 

methodology that allows the decomposition of multivariate time-series data into a few principal 

component series [23], we aim to explore whether its application to official Spanish data for the 

period May 2020 to March 2022 results in a single component capable of explaining the joint 

evolution of the three disease-severity time series. This would, first, provide us with a 

component that reveals the underlying severity of COVID-19 and, second, enable us to analyse 

in a straightforward fashion the relationship between the synthetic indicator proposed and the 

number of positive cases detected at each point in time. As a result, we would be able to quantify 

the impact of the COVID-19 vaccination program on this underlying severity, considering the 

Spanish population as a whole and by age groups.  
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To the best of our knowledge, this is the first time that this method has been applied to time 

series of different COVID-19 indicators. Even the static principal component analysis (SPCA) 

approach, widely used in climatology when dealing with time data [24, 25], has been rarely 

applied to reduce the dimensionality of a set of COVID-19 indicators. One exception is Swallow 

et al. [3] who conduct their analysis on the number of daily positive cases, deaths, 

hospitalizations and hospital occupancy with mechanical ventilation support in the United 

Kingdom. To account for the temporal dimension, the data were rotated to remove the effect 

of the temporal correlation and an SPCA was conducted on the weighted data matrix. The 

temporal weighting matrix in that approach uses the correlation of residuals of a smoothed 

regression model to introduce dependency on previous time points. Our proposal follows a 

different approach. Given that we extend the original time series matrix by including their lagged 

values, original time series can be easily expressed in terms of the components and their lags. 

We believe that this approach may have advantages in the interpretation of results when, as is 

the case here, there is sequentiality in the time series data, i.e., deaths occur later than 

hospitalizations and ICU admissions.  

 

METHODS 

Data 

In conducting this study, free-access datasets have been used. The daily number of COVID-19 

detected cases, hospital admissions, ICU admissions and deaths were obtained from Spain’s 

National Centre of Epidemiology (https://cnecovid.isciii.es). Information for each of these time 

series is disaggregated in the dataset by province of residence, age and gender for a period that 

extends from 11 May 2020 to 27 March 2022. Multiplicative weekly seasonality was observed 

in time-series with lower values being presented during weekends. The seasonal effect was 

adjusted using the LOESS method for seasonal-trend decomposition (STL) [26]. In addition, the 

Nadaraya–Watson kernel smoother was applied to remove the noise of the resulting time series 

[27,28]. Figure 1 shows the original and smoothed COVID-19 time series for the period of 

observation. Stationarity of the time series was investigated to avoid spurious results when 

analysing the association between time series [29]. Once weekly seasonality and noise were 

removed from the original COVID-19 indicators, the stationarity of the resulting time series was 

confirmed using the augmented Dickey-Fuller (ADF) test. 

 

https://cnecovid.isciii.es/
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Figure 1. Original COVID-19 time series with smoothed values (red lines) for Spain. Period from 

11 May 2020 to 27 March 2022. 

 

One-sided dynamic principal components 

Dimension reduction is critical in multivariate vector time series for finding simplifying structures 

or factors. The application of ODPC is useful when the variability of different time series can be 

explained with a small number of components [23]. This occurs when time series are highly 

correlated. Let’s consider the vectors of stationary time series 𝒛1, … , 𝒛𝑇, with 𝒛𝑡 =

(𝑧𝑡,1, … , 𝑧𝑡,𝑚)′, 𝑡 = 1, … , 𝑇. The ODPC can be defined as linear combinations of present and 

previous values of the series that minimize the mean square error of the reconstruction. We 

define the first on-sided dynamic principal component as: 

𝑓𝑡(𝒂) = ∑ 𝒛𝑡−ℎ
′ 𝒂ℎ,     𝑡 = 𝑘1 + 1, … , 𝑇

𝑘1
ℎ=0    (1) 

where 𝒂′ = (𝒂0
′ ,…, 𝒂𝑘1

′ ), being 𝒂ℎ
′ = (𝑎ℎ,1, … , 𝑎ℎ,𝑚), ℎ = 0, … , 𝑘1, the coefficients associated 

with the lagged values of the time series, and 𝑘1 ≥ 0 an integer denoting the number of lags 

used to compute the dynamic principal component. Only the first component is shown, given 

that it is the only one computed in this study. More details about how to perform ODPC using 

more than one component can be found in [23]. 

Then, defining a matrix 𝑩′ = [𝒃0, … , 𝒃𝑘2
], 𝒃ℎ ∈ ℝ𝑚, ℎ = 0, … , 𝑘2, the lagged values of the 

dynamic principal component can be used to reconstruct the original time series 𝒛𝑡 as 

𝒛𝑡
𝑅(𝒂, 𝑩) = ∑ 𝒃ℎ𝑓𝑡−ℎ(𝒂)

𝑘2
ℎ=0 ,     𝑡 = 𝑘1 + 𝑘2 + 1, … , 𝑇   (2) 

where 𝑘2 ≥ 0 is an integer indicating the number of lags of the principal component to be used 

in the reconstruction.  

The optimal values (�̂�, �̂�) of 𝒂 and 𝑩 are defined as those that minimize the mean squared error 

(MSE) in the reconstruction of the data, which is defined as 

𝑀𝑆𝐸(𝒂, 𝑩) =
1

𝑇′𝑚
∑ ‖𝒛𝑡 − 𝒛𝑡

𝑅(𝒂, 𝑩)‖2

𝑇

𝑡=(𝑘1+𝑘2)+1

 

where 𝑇′ = 𝑇 − (𝑘1 + 𝑘2) and ‖ · ‖ is the Euclidean norm. Note that if 𝑘1 = 𝑘2 = 0, the first 

ODPC is simply the first ordinary principal component of the data. 

 

Time-varying coefficient linear model 

To meet our second objective and study how the underlying severity indicator and the number 

of COVID-19 positive cases are related, a time-varying coefficient linear model (TVLM) is used. 

Compared to the classical linear model, the TVLM is distinctive insofar as it allows the 

coefficients associated with the independent variable to vary over time.  

Thus, a TVLM with one regressor of the form 𝒚𝑡 = 𝒙𝑡𝛽𝑡 + 𝜺𝑡 , 𝑡 = 1, … , 𝑇, is proposed, where 

𝒚𝑡 is the response variable, 𝒙𝑡 is the independent variable and 𝜺𝑡 is the error term [30]. Note 

that the 𝛽𝑡 = 𝛽 (
𝑡

𝑇
) depends on a smoothing real-valued function that varies over time,  

𝛽: [0,1] → ℝ. The regressor 𝒙𝑡 is rescaled by its expected value to be centred at one. This model 
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is best estimated by combining ordinary least squares and the local polynomial kernel estimator 

[31]. A bandwidth must be selected to indicate the size of the window in which weighted local 

regressions are estimated. The selection takes at most k previous and k future observations for 

the estimation of the local regression at each period, where k is an integer number [32].  

 

RESULTS 

The analysis was conducted using the R software package. Package odpc version 2.0.5. was used 

to compute the ODPC [33]. R Package tvReg, version 0.5.7. was used to carry out to compute 

the TVLM [30].  

 

Synthetic indicator of underlying severity 

High pairwise correlation coefficients were obtained between the number of hospital 

admissions, ICU admissions and number of deaths, with values between 0.87 and 0.95. Thus, we 

performed an ODPC analysis to construct a single severity indicator capable of capturing the 

information from these three COVID-19 series. After rescaling the three time series, the 

alternating least-squares algorithm and the minimization of the information criteria were 

applied to select the optimal number of lags [23]. Both approaches led to the conclusion that 

the optimal number was one. The optimal estimated coefficients of vector a were: 

�̂�′ = (0.03 −0.45 −0.21 0.22 0.65 0.52) 

This vector �̂� contains the estimated weights in the linear combination to construct the dynamic 

principal component in (1), which captures the underlying severity of COVID-19. Its first three 

values are the coefficients associated, respectively, with the number of hospitalizations, ICU 

admissions and deaths in period t, while the following three coefficients are those associated 

with the one-lagged values of the same series. 

The MSE of the optimal ODPC was 0.031. This value is considerably lower than the MSE 

associated with one component in SPCA (0.051). Of the variability of the three corrected severity 

time series, 95.83% was explained by the optimal model. Figure 2 shows the three standardized 

series used to capture the severity of COVID-19, plus the component obtained from the ODPC 

analysis, which captures this evolution in a synthetic indicator. 
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Figure 2. Standardized smoothed COVID-19 time series and ODCP indicator for underlying 
severity. Period from 11 May 2020 to 27 March 2022. 
 

The number of positive cases diagnosed presented a moderate correlation with the respective 

numbers of hospital admissions (0.56), ICU admissions (0.36) and deaths (0.30), which seems to 

suggest that disease severity is not constant over time. This moderate degree of correlation 

between positive cases and the other indicators can also be observed in Figure 1. 

 

Reconstruction and prediction of severity indicators 

The underlying severity indicator can be used with matrix �̂� to reconstruct the standardized 

corrected COVID-19 time series, as shown in (2). The resulting estimation of matrix 𝑩 was the 

following: 

�̂� = (
7.94 −6.77
6.80 −5.66

−1.81 3.31
) 

Thus, to reconstruct the hospitalization and ICU admissions time series, the underlying severity 

indicator has to be multiplied by a positive scalar (7.94 and 6.80, respectively) and the one-

lagged indicator by a negative scalar (-6.77 and -5.66, respectively). The series of deaths, on the 

other hand, is reconstructed by multiplying the underlying severity indicator by a negative scalar 

(-1.81) and the one-lagged indicator by a positive scalar (3.31). The different signs of the 

coefficients for reconstructing these original time series indicate that deaths occur after hospital 

and ICU admissions. In contrast with non-dynamic principal components, the flexibility of ODPC 

allows us to capture this sequentiality between the time series.  

The reconstructed standardized time series of the number of hospitalizations, ICU admissions 

and deaths are shown in Figure 3 (upper panel). Note that an accurate reconstruction of these 

three COVID-19 time series is achieved, especially as regards hospitalizations and deaths. The 

MSE was 0.022 for the number of hospital admissions, 0.038 for the number of ICU admissions 

and 0.033 for the number of deaths. The underlying severity indicator can then be used to 

predict the number of hospitalizations, ICU admissions and deaths. First, time series forecasting 

of the future behaviour of the severity indicator is conducted using a SARIMA model [34]. The 

predicted severity indicator is multiplied by �̂� to reconstruct the forecasted COVID-19 time 

series. SARIMA-based forecast residuals are included in the predictions of the COVID-19 time 

series. Based on the first one hundred observations made in the period of study, one-step-ahead 

predictions of the number of hospitalizations, ICU admissions and deaths were performed from 

19 August 2020 to 27 March 2022. These results are shown in Figure 3 (lower panel). A good 

forecasting performance is observed. When comparing actual observations with the predicted 

values, the mean squared prediction error was 0.028 for the number of hospital admissions, 

0.019 for the number of ICU admissions and 0.001 for the number of deaths. 
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Figure 3. Reconstructed and predicted COVID-19 smoothed time series for Spain. Figures (a), (b) 

and (c) show the rescaled smooth original time series (black) and reconstructed time series 

(dashed blue) of COVID-19 for the period 13 May 2020 to 27 March 2022. Figures (d), (e) and (f) 

show the rescaled smooth original time series (black) and the predicted time series (dashed 

green) of COVID-19 for the period from 19 August 2020 to 27 March 2022. 

 

Association between positive cases and underlying severity 

The relationship between the number of positive cases and the underlying severity of COVID-19 

indicator is analysed. We use a TVLM where the dependent variable 𝒚𝑡  corresponds to the 

estimated underlying severity series 𝑓𝑡(�̂�), and the regressor 𝒙𝑡  is the rescaled number of 

diagnosed cases at time t. As symptoms of severity usually appear later than the onset of the 

disease [4], we observe that the underlying severity time series reacts a few days later than the 

number of positive cases. For this reason, the correlations between underlying severity and the 

lagged series of positive cases are estimated with lags from 0 to 20. As a result, the highest 

correlation value is obtained with 8 lags (0.440). Hence, the explanatory variable included in the 

time-varying coefficient regression model is the eight-lagged number of positives, 𝒚𝑡 =

𝒙𝑡−8𝛽𝑡−8 + 𝜺𝑡 , 𝑡 = 9, … , 𝑇, for 𝛽𝑡−8 = 𝛽 (
𝑡−8

𝑇−8
). The selected bandwidth in the framework of 

the kernel smoothing estimation of the TVLM is 0.25, so that the integer k corresponds to one 

quarter of the total observations. This window size is selected to prevent the particular phase of 

the pandemic wave from having an impact on the estimation of the time-varying coefficient.  

The estimated model has a good explanatory capacity (pseudo-R2=0.93). The estimated vector 

of coefficients 𝛽𝑡 contains values from 0.22 (minimum) to 1.67 (maximum), with a mean value 

of 1.04 and a median of 1.37. Figure 4 shows this evolution over period of study. It can be 

observed that the relationship between the underlying severity 𝑓𝑡(�̂�) and the number of 

positive cases is quite stable until around mid-March 2021. Up to that point, the estimated 

coefficient is almost constant around 1.5, before it falls sharply. The drop in value of the 

coefficient and, therefore, in the expected underlying severity of COVID-19, continues until the 
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beginning of October 2021. After this date, the value of the coefficient stabilizes at around 0.22 

until the end of the period.  

 

 

 
Figure 4. Estimated time-varying coefficient of the regression model in which the underlying 

COVID-19 severity is regressed by the rescaled series of positive cases. Red dashed lines are set 

at 15 March 2021 and 1 October 2021. 

 

 

 

To conclude, the underlying severity indicator and its relationship with the number of positives 

is estimated for the following age groups: 20–49, 50–69, 70–79 and 80 years or more (80+). To 

obtain comparable results, COVID-19 time series by age group were rescaled by the expected 

value of the time series for the whole population. Figure 5 shows the estimated coefficients of 

the TVLM between underlying severity and the number of positive cases in each age group. First, 

time varying coefficients seem clearly associated with age. Note that the estimated coefficients 

are higher for the older age groups at any point in time, particularly for the 80+. In addition, all 

age group coefficients present the same ‘constant-drop-constant’ pattern, albeit at different 

moments in time: the younger the age group, the later the drop in the coefficient value begins. 

In Figure 5, the approximate date when the time-varying coefficient associated with each age 

group starts to decrease is indicated with a dashed vertical line – 15 March 2021 for the 80+ 

population (vaccination rate of 23.8%, brown dashed line); 7 May 2021 for 70-79 age interval 

(37.22%, yellow); 13 June 2021 for the 50–69 age interval (32.8%, green); and 17 July 2021 for 

the 20–49 age group (37.79%; blue). 
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Figure 5. Estimated time-varying coefficients for age-group based regression models in which 

the underlying COVID-19 severity is regressed by the rescaled series of positive cases. Brown, 

yellow, green and blue dashed lines are set at March 15, 2021; May 7, 2021; June 13, 2021 and 

July 20, 2021, respectively. 

 

 

DISCUSSION 

Policy decisions taken by health authorities during the coronavirus pandemic were at least, in 

part, based on the evolution of COVID-19 indicators. Traditionally, these indicators have been 

analysed individually [5,10,13,16]; however, here, dynamic principal component techniques 

have been used to synthesize the information from a set of highly correlated indicators in an 

effort to monitor the evolution of COVID-19 with a single metric that can capture the underlying 

severity of the pandemic. We show that the information provided by the respective numbers of 

hospitalizations, ICU admissions and deaths is adequately represented by the first principal 

component and its first lag when one-sided dynamic principal components are applied [23]. 

Static dimensional reduction techniques are unable to capture the serial dependence of the 

COVID-19 indicators or such features as the pattern of deaths being sequential to 

hospitalizations and ICU admissions; thus, time series techniques are required for successful 

dimensionality reduction transform. Previous studies reporting the dimensional reduction of a 

set of pandemic indicators are scarce [3]. In this study, we show that one-sided dynamic principal 

components when used to reduce the dimensionality of a time series correctly capture serial 

dependence and the sequential nature of death. Moreover, because this technique only uses 

past values to obtain components, it can be used in forecasting. Any statistical technique applied 

to COVID-19 data should have sufficient explanatory power to understand transmission patterns 

and disease severity but also be adequate for forecasting, so as to help anticipate future 

epidemic outcomes [35,36]. Yet, some previous dynamic reduction techniques have been 

defined as functions of past and future time series values, making them appropriate for series 

reconstruction but not for forecasting purposes [37,38]. In this study, we have shown that one-

sided dynamic dimensionality reduction performs correctly in terms of both its reconstruction 

accuracy and forecasting the evolution of COVID-19 indicators. 

The number of cases diagnosed positive presented a weak linear correlation with the other three 

metrics of the severity of coronavirus analysed here. As shown, this can be attributed to the fact 

that their relationship was not constant over the period of observation. For this reason, we 
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opted not to include this number of positives in the dimensional reduction analysis and we 

analysed separately the time-varying association between this metric and the underlying 

severity indicator to determine how this relationship changed over time. We found that the 

relationship between the number of positives and the underlying severity indicator was almost 

constant until March 2021, presenting, as such, a high linear correlation between these 

indicators during that period. However, as of March 2021, the relationship steadily decreased 

until October 2021, reflecting a decline in the consequences for the population with a positive 

diagnosis. From October 2021 onwards, the relationship between these metrics was once again 

constant over time, albeit at a much lower intensity. The period marked by a fall in the estimated 

association broadly coincided with that of the massive vaccination of the Spanish population 

[39], so massive vaccination seems to have reduced severity of reported cases. Many studies 

have highlighted the effectiveness of vaccination against the serious health consequences 

associated with coronavirus [40-41]. However, there are other factors that also contribute to 

covid disease outcomes, such as change of testing capacity and strategies, change of COVID-19 

death criteria, improvement of treatments, natural immunity developed from previous 

infection, etc. In this study, we have developed a tool to monitor the underlying severity of 

detected positives which could be useful to assess the impact of vaccination and other factors 

on the severity evolution of detected cases.   

Age is a well-known risk factor of serious illness/death after coronavirus infection. Indeed, older 

people, as well as those presenting with other medical conditions, were more likely to develop 

a serious illness or die [42]. In our study, we detected three relevant features associated with 

age. First, older age groups presented higher values of the underlying severity indicator for the 

same number of people diagnosed with COVID-19, with this ratio being especially high for the 

over eighties. Second, the same pattern – i.e. a decrease in the severity of COVID-19 depending 

on the number of positive cases after a period of stable association – was observed in all age 

groups; however, the older the group, the earlier the onset of the fall in the coefficients of the 

relationship between positives and underlying severity. This could be partially attributable to 

the fact that Spain’s vaccination program was initiated among the oldest age groups, with 

vaccines being made progressively available to younger groups once a high percentage of older 

people had been vaccinated. Third, the reduction in underlying severity associated with positive 

diagnoses was more intense (in absolute numbers) with increasing age. However, if we analyse 

the reduction in relative terms, we find that this association fell by 84% among those aged 20 to 

49, by almost 83% among those aged 50 to 69, by almost 80% among those aged 70 to 79 and 

by 75% in those aged over eighty, indicating that the relative reduction was lower among the 

older age groups [43,44].  

The methodology employed in the current study to create a synthetic metric can be used in 

other fields of public health. Multiple interconnected metrics are frequently available in relation 

to public health issues and one of the difficulties health planners face is determining which 

provides the best description of the status of the health challenge. This study has shown how 

these alternative metrics can be unified while retaining most of their information, thus, 

providing policy makers with a single metric that describes the severity status of the health issue 

and enabling them to monitor the evolution of the disease. Analysis of this synthetic indicator 

may be useful for prioritizing the vaccination of high risk groups and evaluating the impact of 

vaccination in terms of reducing disease severity. This information could also be useful for 

identifying the optimum point in time to initiate vaccination of the next group at greatest risk.  
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We use publicly available Spanish data from the National Epidemiology Centre from 2020 to 

2022 and propose the use of one-sided dynamic principal components to demonstrate that a 

single metric adequately explain the variability contained in three alternative indicators of the 

severity of COVID-19 frequently used to monitor the evolution of the pandemic: the numbers of 

daily hospitalisations, ICU admissions and deaths attributable to the disease. We show that this 

metric can be used as a composite indicator to monitor the underlying severity of detected 

positives and to assess the impact of vaccination and other factors on the fall in the severity risk 

indicator by age groups. The study is not free of limitations. In constructing the composite index 

of underlying severity, it would be useful for policy-making in pandemic settings if the single 

metric could include more information. The selection of only three time-series in the 

construction of the single metric was due to the availability of reliable information of the Spanish 

surveillance system. In addition, the same importance is attached to all three time-series; yet, 

hospitalizations, ICU admissions and deaths reflect different degrees of severity of coronavirus. 

This limitation could be addressed using time-series dimensional reduction techniques that 

weight the different degrees of severity of the three indicators. However, the underlying severity 

index is certainly useful for analysing the evolution of the indicators during the period of 

observation, albeit that its value is not easily and directly interpretable, given that the 

reconstruction of the coronavirus time series involves the underlying severity indicator and its 

one period lagged value. 

 

Significance for public health 

The methodology employed in the current study to create a synthetic metric can be used in 

other fields of public health. Multiple interconnected metrics are frequently available in relation 

to public health issues and one of the difficulties health planners face is determining which 

provides the best description of the status of the health challenge. This study has shown how 

these alternative metrics can be unified while retaining most of their information, thus, 

providing policy makers with a single metric that describes the severity status of the health issue 

and enabling them to monitor the evolution of the disease. Analysis of this synthetic indicator 

may be useful for prioritizing the vaccination of high risk groups and evaluating the impact of 

vaccination in terms of reducing disease severity. This information could also be useful for 

identifying the optimum point in time to initiate vaccination of the next group at greatest risk.  
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