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Abstract 
 

  

Objectives: With the outbreak of the SARS-CoV-2 pandemic, the 

unprecedented rise in demand for hospital care brought health systems 

worldwide to the brink of collapse. The dynamics of the COVID-19 pandemic 

have alternated periods of high incidence with others of low incidence, 

making it difficult to separate short- and long-run relationship between the 

number of COVID-19 cases diagnosed and the demand for hospital beds. 

The aim of this study is to model the risk of hospitalization of diagnosed 

cases during the pandemic. Methods: Time series techniques are applied to 

evaluate the short- and long-run relationship between daily number of 

COVID-19 cases diagnosed and daily number hospital admissions. Drawing 

on daily Spanish data from 11 May 2020 to 20 March 2022, we propose an 

error correction model that introduces a short-run mechanism to adjust 

transitory disequilibrium in the long term. The impact of the Omicron variant 

and vaccination on the need for in-patient care are assessed. To examine 

changes during different life stages, the same analysis is performed by age 

group. Results: Dynamics between the number of positive cases and 

demand for hospital beds tends to the equilibrium in the long run, with 9% of 

any deviation being corrected after one period. Individuals aged between 50 

and 69 have benefited most from the reduced severity of the Omicron 

variant, while vaccination had proved to be less effective for people aged 

over 80. Conclusions: Models discriminating between the short- and long-run 

dynamics provide health planners with a valuable demand forecasting tool 

which should be useful for developing both structural programs and 

emergency interventions. 
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INTRODUCTION  

The SARS-CoV-2 pandemic marked a turning point in health planning worldwide. The limited 

capacity of healthcare and hospital resources and the unforeseen levels of demand resulted in 

situations bordering on collapse at the most critical moments of the crisis, forcing healthcare 

services to increase the availability of hospital beds without their being able to implement correct 

processes of planning [1,2]. In response to these unprecedented circumstances, the scientific 

literature has hastened to provide health planners with methods for predicting hospital demand at 

each specific moment of the developing pandemic. Several authors have employed an 

econometric methodology to model the relationship between the incidence of the disease and the 

resulting need for hospital in-patient care. Disease incidence and hospital demand recorded during 

an observation period are both time indexed sequences of data points, so time series techniques 

are required to analyze their association. Santolino et al. [3], for example, proposed a regression 

model with multiplicative structure to predict the number of hospitalizations likely to be required 

nine days in advance. Other authors have studied how the hospital care required by patients with 

COVID-19 during the pandemic has impacted the number of admissions for other pathologies 

[4,5]. 

 

The aim of this paper is to model the relationship between the number of positive cases of 

COVID-19 infection and the number of patients hospitalized because of the disease by drawing 

on Spanish data. The dynamics of the COVID-19 pandemic alternates periods of high incidence 

with others of low incidence, making it difficult to separate short- and long-run relationship 

between the number of COVID-19 cases diagnosed and the demand for hospital beds.  Given that 

the number of COVID-19 cases detected and the number of hospital admissions recorded exhibit 

a common stochastic trend consistent with cointegration, we opt to define an Error Correction 

Model (ECM) so as to better adjust the long-term equilibrium detected. The ECM separates short- 

and long-run relationship between detected COVID-19 cases and hospital admissions. We 

evaluate the potential impact on the long-relationship of the SARS-CoV-2 Omicron variant [6], 
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as well as that of increasing vaccination rates among the Spanish population. Further, by 

introducing improvements in the short-run dynamics, we aim to correct the transitory deviations 

that may present themselves and, in this way, validate the model proposed. Finally, the analysis 

is carried out by different age groups to determine whether there are any differences of note in 

the relationship between the incidence of the disease during different life stages and the need for 

in-patient care.  

 

Particular attention is paid here to estimating the speed at which the relationship between the 

number of diagnosed cases and the demand for hospital beds returns to its long-run equilibrium 

after a change in incidence of the coronavirus. This estimation should constitute a valuable 

contribution to health planning, as it can help shed new light on how best to improve predictions 

of hospital demand, which has been shown to be subject to stochastic shocks that are not easily 

anticipated.  

 

Some studies have used ECM to measure the impact of the spread of SARS-CoV-2 on the 

healthcare system [7-9]. Such models can be useful in healthcare management for anticipating 

marked increases in the demand for care services and responding appropriately. For example, 

Nguyen et al. [10] drew on local data from the metropolitan area of Charlotte (United States) to 

estimate a vector ECM for studying the relationship between the daily infection incidence and the 

aggregate number of hospital beds occupied by SARS-CoV-2 patients, while Mills [11] explored 

the changing relationship between infections, hospital admissions and deaths using data from 

England. However, to date, there have been few attempts to explain the number of hospital 

admissions in relation to the daily SARS-CoV-2 infection incidence.  

 

METHODS 

Time-series data 
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Two free-access datasets from official organizations are used in this study. The daily number of 

detected cases and hospital admissions are obtained from Spain’s National Epidemiology Centre 

(https://cnecovid.isciii.es). Positive cases are registered by date of diagnosis and hospitalizations 

by date of admission. Information is disaggregated by gender, age intervals and province of 

residence. The percentage of the population fully vaccinated against COVID-19 is obtained from 

the weekly reporting data of the number of doses administered by age groups provided by the 

European Centre for Disease Prevention and Control (https://opendata.ecdc.europa.eu/). Our 

series covers the time period from 11 May 2020 to 20 March 2022. Records of positive cases and 

hospital admissions are actually available from 1 January 2020, but these initial months are 

excluded because of the low diagnostic capacity attributable to severe testing restrictions [12]. 

Moreover, the criteria for registering positive cases were modified as of the 10 May 2020 [3]. 

 

Our preliminary analysis of the series revealed that the number of positive cases and hospital 

admissions presented a multiplicative weekly seasonality with cases being underreported at 

weekends. A log transformation was applied to both time series and the seasonal effect was 

adjusted. Seasonal and trend decomposition using the Loess method (STL) was applied in order 

to decompose the time series [13].  Weekly vaccination information was converted to a daily time 

series assuming that the same number of doses was administered daily throughout the week. 

Figure 1 plots the positive cases, hospital admissions and the percentage of population fully 

vaccinated against COVID-19. For comparison purposes, positive cases and hospital admissions 

are shown on a 0-100 scale in Figure 1. 

 

[INSERT FIGURE 1] 

 

Fig. 1 Time series* for COVID-19 detected positives, hospital admissions and percentage of 

population fully vaccinated in Spain for the period from 11 May 2020 to 20 March 2022  
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Note: * For comparison purposes, positive cases and hospital admissions were 

transformed on a standardized scale from 0 to 100. 

 

Short- and long-run relationships 

When two time series present a long-run relationship their dynamic common behaviour can be 

described using an error correction model [14]. Such a model includes a term that accounts for 

deviations from that long-run relationship and provides an estimate of the speed at which the 

disequilibrium dissipates. When multiple time series are analysed jointly their order of integration 

needs to be examined, which is usually achieved using the augmented Dickey-Fuller (ADF) test 

[15]. If non-stationary variables are included in a regression model, spurious outcomes may occur. 

When these non-stationary variables are integrated of order 1 and there is a linear relationship,        

such that their residuals are stationary (cointegration), an ECM may constitute an appropriate 

methodological approach [16].  

 

Given the cointegration here between our two time series – that is, positive cases of COVID-19 

and hospital admissions – we propose employing an ECM. This model can link the long-run 

equilibrium between the two time series with the short-run adjustment mechanism that describes 

how the relationship reacts to stochastic fluctuations in the incidence of the disease. 

 

The long-run equilibrium relationship between positive cases and number of hospitalizations is 

represented by the cointegration equation as follows: 

 

𝑦𝑡 = 𝑏0 + 𝑏1𝑥t + 𝑏2𝑥𝑡 𝐼𝑜𝑚𝑖𝑐,𝑡  + 𝑏3𝑧𝑡 + 𝑒𝑐𝑡𝑡    

 

(1)  

where 𝑦𝑡 corresponds to the logarithm of new hospital admissions on day t and 𝑥𝑡 is the logarithm 

of the number of daily positive COVID-19 cases and t=1,…,T, where T=679, given that this is 

the number of days in the period under study. To analyse the effect of the Omicron variant on the 
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long-term relationship between the number of hospitalizations and positive cases, the dummy 

variable 𝐼𝑜𝑚𝑖𝑐,𝑡 takes a value of 1 if t occurs on or after 29 November 2021 (t ≥ 112), the earliest 

date from which the Omicron variant was detected in Spain, and zero otherwise. The constant 

term is 𝑏0 and 𝑧𝑡 indicates the percentage of fully vaccinated population at time t.  Finally, the 

error correction term (𝑒𝑐𝑡) captures the regression residuals.  

 

If the residuals in (1) are stationary, the variables are cointegrated. An ECM can then be specified 

to analyse the short-run adjustment mechanism and the long-run equilibrium between these 

variables as follows: 

 

∆𝑦𝑡 = 𝑐 + ∑ 𝜓𝑖∆𝑦𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝑤𝑗∆𝑥𝑡−𝑗

𝑞

𝑗=0

+ 𝛾 · 𝑒𝑐𝑡𝑡−1 + 𝜀𝑡 

 

(2) 

In our case, the first difference of log hospital admissions (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1) is regressed on the 

lagged error correction term from (1), k-lagged values of the same variable and current and q-

lagged values of the log hospital admissions, all in differences. The optimal numbers for k and q 

are determined when estimating the model. Coefficients 𝜓𝑖 and 𝑤𝑗 measure short-run reactions 

of the dependent variable with its previous changes and with changes in the explanatory variables, 

respectively. The intercept included in the regression is c, while 𝛾 corresponds to the error 

correction rate that indicates the speed of adjustment in the short term when there is a 

disequilibrium in the long term, i.e.,  𝑒𝑐𝑡𝑡−1 ≠ 0 [17]. Finally, 𝜀𝑡 is the error term which is 

normally distributed with zero mean and variance  𝜎𝑡
2, 𝜀𝑡~𝑁(0, 𝜎𝑡

2). A generalized autoregressive 

conditional heteroscedasticity (GARCH) [18] model specification is used to deal with the 

presence of heteroscedasticity. A GARCH(1,1) is proposed here to model the variance as 𝜎𝑡
2 =

𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛼2𝜎𝑡−1

2 . To conclude, it should be borne in mind that an autoregressive distributed 

lag model specification could be obtained from (2) by rearranging the variables [19]. 
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RESULTS 

Error correction model 

The statistical analysis was conducted using R statistical software, version 4.1.1. [20,21]. The first 

step in this analysis involved examining the order of integration of the series. The values of the 

ADF test statistics for the logarithm of hospital admissions yt and the logarithm of positive cases 

xt were -0.031 and 0.453, respectively. As a result, the null hypothesis, which states the presence 

of a unit root, was not rejected at a significance level of 5%. However, the null hypothesis was 

rejected when Δxt and Δyt were analyzed, indicating that the first difference of the time series 

were stationary (ADF(Δyt)=-23.094 and ADF(Δxt)=-23.660). Threfore, both variables xt and yt 

are integrated of order one. 

 

Log-run equilibrium 

The cointegration equation expressed in (1) is estimated using fully modified least squares [22]. 

Table 1 reports the coefficient estimates and the ADF test performed on the cointegration 

residuals. The results show that the residuals are integrated of order zero (stationary), thus 

cointegration exists.  

 

Table 1. Estimation of the cointegrating equation (long-run relationship) between time series of 

positive COVID-19 cases and hospital admissions, and ADF test on residuals 

 

Coefficient Description Estimate 

b0 Intercept -1.228** 

b1 Positive cases (log)  0.855** 

b2 Omicron variant -0.076** 

b3 % vaccinated population -0.008** 

   

ADF ADF test on ect -5.413** 

Note: ** p-value < 0.01. 
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The long-run coefficient of the (log) number of positive cases is greater than 0, meaning that an 

increase in the number of COVID-19 cases diagnosed implies an increase in the number of 

hospitalizations. However, the long-run coefficient for the percentage of fully vaccinated is 

negative, which indicates that the greater the number of people with full vaccination status, the 

fewer the number of people that have to be hospitalized. Additionally, the coefficient associated 

with the Omicron variant presents a significant negative sign, suggesting that after 29 November 

2021 an increase in the number of positive cases is associated with a smaller increase in the 

number of patients requiring hospitalization. However, if first we only consider the period before 

the appearance of the Omicron variant (𝐼𝑜𝑚𝑖𝑐,𝑡 = 0), the long-run relationship between hospital 

admissions and positive cases can be represented as follows: 

 

𝑒𝐸[𝑦𝑡] = 𝑒−1.228+0.855𝑥𝑡−0.008𝑧𝑡 =
𝑒−1.228(𝑒𝑥𝑡)0.855

(𝑒0.008)𝑧𝑡
,   i.e., 𝐻𝑜𝑠𝑡 = 0.293

𝑃𝑜𝑠𝑡
0.855

1.008𝑧𝑡
, 

where 𝐻𝑜𝑠𝑡 indicates the exponential of the expected log number of hospitalizations in t, 𝑒𝐸[𝑦𝑡], 

and 𝑃𝑜𝑠𝑡 indicates the number of positive cases, 𝑃𝑜𝑠𝑡 = 𝑒𝑥𝑡. This means that to estimate the 

number of hospital admissions, the number of positive cases must be raised to 0.855 and then 

divided by 1.008𝑧𝑡. Thus, 29.3% of this corrected number of positive cases (𝑃𝑜𝑠𝑡
0.855 1.008𝑧𝑡⁄ ) 

is estimated as being admitted to hospital. After 29 November 2021 (𝐼𝑜𝑚𝑖𝑐,𝑡 = 1), the log-run 

relationship is: 

𝐻𝑜𝑠𝑡 = 𝑒−1.228+(0.855−0.076)𝑥𝑡−0.008𝑧𝑡 = 0.293
𝑃𝑜𝑠𝑡

0.779

1.008𝑧𝑡
. 

 

Error correction model estimation 

The estimated coefficients of the ECM corrected for heteroscedasticity through a GARCH(1,1) 

specification are shown in Table 2. The selection of the order (k,q) was based on the Bayesian 

information criterion (BIC) [23]. The model specification with the lowest BIC had 11 lags on the 

difference of log hospital admissions and 1 lag on the difference of log positive cases.  
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Table 2. Error correction model (short-run relationship) between time series of positive COVID-

19 cases and hospital admissions (in log scale) 

Coefficient Description Estimate 

c Intercept -0.003 

𝜓1 1-lagged hospitalization difference  -0.591** 

𝜓2 2-lagged hospitalization difference -0.298** 

𝜓3 3-lagged hospitalization difference    -0.074 

𝜓4 4-lagged hospitalization difference      0.009 

𝜓5 5-lagged hospitalization difference 0.115* 

𝜓6 6-lagged hospitalization difference 0.160** 

𝜓7 7-lagged hospitalization difference 0.349** 

𝜓8 8-lagged hospitalization difference 0.232** 

𝜓9 9-lagged hospitalization difference 0.183** 

𝜓10 10-lagged hospitalization difference 0.179** 

𝜓11 11-lagged hospitalizations difference 0.105** 

w0 Difference of positive cases  0.304** 

w1 1-lagged difference of positive cases -0.047** 

Error correction 

𝛾 Error correction term -0.088** 

Variance equation 

𝛼0 Variance equation intercept 1.6·10-4** 

𝛼1 Variance equation error term 0.110** 

𝛼2 Variance equation variance term 0.866** 

AIC AIC of the ECM -2.169 

BIC BIC of the ECM -2.049 

HC HQ of the ECM -2.123 

R2 ECM coefficient of determination 0.425 

Note: ** p-value < 0.01; * p-value < 0.05. 

 

Table 2 shows that the coefficient associated with the error correction term is significant and takes 

a value between -1 and 0, which are the necessary conditions for stating that the dynamics between 

the analysed variables tend to equilibrium. Specifically, the estimated coefficient reflects the 

speed of adjustment in case of long-run disequilibrium. Its value suggests that around 9% of any 
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deviation from the long-run relationship dissipates after one period. In the case of the short-run 

coefficients, the 1- and 2-period lagged differences of the (log) number of hospitalizations have 

a negative impact on the expected difference of the (log) number of hospital admissions. 

However, their impact is positive when the 5- to 11-period lagged differences of the (log) number 

of hospitalizations are considered. Finally, the difference between the (log) number of positive 

cases and this series lagged one period serves to explain the difference in the (log) number of 

hospitalizations.   

Model diagnostics 

To obtain both consistent and efficient estimates, the residuals in (2) should follow an 

uncorrelated white noise process. Figure 2 shows the partial autocorrelations of the model (2) 

residuals. The rejection limits of the null hypothesis stating that the residuals follow a white noise 

process are computed under the independent and identically distributed (IID) and GARCH 

assumptions [24]. Under the IID hypothesis, the partial autocorrelations for 1, 7, 17 and 24 lags 

are significant. However, these partial autocorrelations are not-significant when a GARCH 

process is considered, which leads to the conclusion that the null hypothesis cannot be rejected. 

 

[INSERT FIGURE 2] 

Fig. 2 Partial autocorrelation function of residuals and rejection limits of white noise process 

under IID and GARCH hypotheses 

 

The adjusted Pearson goodness-of-fit test can be used to check if the selected conditional error 

distribution is appropriate [25]. This test is based on the chi-squared goodness-of-fit test which 

compares the empirical distribution of standardized and theoretical residuals. For all the bins 

considered when classifying the values (from 20 to 50, from ten at a time), the normal conditional 

distribution of residuals in the ECM with GARCH(1,1) was not rejected at the 5% significance 

level.  
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The Ljung-Box test of standardized residuals analyses the serial dependence for the residuals of 

the mean process [25]. The null hypothesis of no serial correlation was not rejected with either 1 

lag (p-value: 0.345), 32 lags (p-value: 0.999) or 54 lags (p-value: 0.723), suggesting that the ECM 

specification for the conditional mean process is adequate. The Ljung-Box test on squared 

standardized residuals and the auto-regressive conditional heteroscedasticity (ARCH)-LM test 

provide a means of detecting a time-varying phenomenon in the residuals of the variance process. 

The null hypothesis of no autocorrelation was not rejected at the 5% of significance level with 

either 1, 5 or 9 lags in the Ljung-Box test, nor with 1, 5 and 7 lags in the ARCH-LM test. Thus, 

it can be concluded that the ECM with GARCH(1,1) captures the dynamics of the variance 

process.  

 

The sign bias test proposed by Engle and Ng [26] is useful for evaluating the presence of leverage 

effects by regressing the squared standardized residuals on lagged negative and positive shocks. 

The null hypothesis of no leverage effects was not rejected at the 5% significance level; hence, 

there was no evidence of misspecification of the conditional variance process. 

 

Age groups 

The ECM was further calibrated for different age groups with a twofold goal: 1) to evaluate 

whether there are differences in the way the number of positive cases and vaccination status affect 

the number of hospital admissions and, 2) to compare the speed of adjustment in the case of long-

run disequilibrium. The age intervals considered are 20–49, 50–69, 70–79 and 80 years or more1. 

The results of the estimation of the ECM and the cointegration equation for each age group are 

shown in Table 

 3. The selection of the number of lags in each ECM was based on BIC. It is evident that the 

number of lags falls drastically compared to results of the ECM for the whole population. The 

                                                           
1 Information on the number of positive cases and the number of hospitalizations was specifically available for 

these age groups. In the case of the fully vaccinated population, information was available for the following age 

groups: 25–49, 50–69, 70–79 and 80 years or more.  
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selected models now include two/three lags of the difference of (log) hospitalizations and zero/one 

lag of the difference of (log) positive cases.  

 

Table 3. Error correction model for positive cases and hospital admissions (in log scale), and 

long-run coefficients by age groups 

Coeff. Description Estimates 

  20-49 50-69 70-79 80+ 

Long-run coefficients 

b0 Intercept -1.970** -2.198** -1.372** -1.004** 

b1 Positive cases (log) 0.829** 1.005** 1.005** 0.998** 

b2 Omicron variant -0.114** -0.146** -0.133** -0.117** 

b3 % vaccinated population -0.005** -0.005** -0.004** -0.001* 

Short-run coefficients  

c Intercept -0.001 - - 0.001 

𝜓1 1-lagged hospitalization difference -0.665** -0.637** -0.776** -0.548** 

𝜓2 2-lagged hospitalization difference -0.316** -0.266** -0.433** -0.234** 

𝜓3 3-lagged hospitalization difference - - -0.162** - 

w0 Difference of positive cases 0.301** 0.365** 0.410** 0.314** 

w1 1-lagged difference of positive cases - - - 0.091** 

Error correction 

𝛾 Error correction term -0.076** -0.072** -0.112** -0.112** 

Variance equation 

𝛼0 Variance equation intercept 4·10-4* 5·10-4** 4·10-4* 2·10-4* 

𝛼1 Variance equation error term 0.126** 0.110** 0.126** 0.121** 

𝛼2 Variance equation variance term 0.861** 0.866** 0.868** 0.878** 

AIC AIC of the ECM -0.858 -1.126 -0.717 -1.008 

BIC BIC of the ECM -0.804 -1.072 -0.656 -0.948 

HQ HQ of the ECM -0.837 -1.105 -0.693 -0.985 

R2 ECM coefficient of determination 0.436 0.409 0.478 0.290 

Note: ** significance level at 1%; * significance level at 5%. 
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A number of differences by age group in the long-run relationship and the speed of adjustment in 

the short-run are worth highlighting. For example, in the case of the long-run equilibrium 

coefficients, the intercept estimates present higher values for the older age groups. Thus, the value 

𝑒𝑏0, corresponding to the proportion of corrected positive cases (𝑃𝑜𝑠𝑡
𝑏1+𝑏2𝐼𝑜𝑚𝑖𝑐,𝑡 𝑒−𝑏3𝑧𝑡⁄ ) 

estimated as being admitted to hospital, is higher for older ages. Additionally, the coefficients 𝑏1, 

associated with the correction of positive cases, indicate that an increase in the number of cases 

is associated with an increase in the number of hospitalizations; however, this increment is smaller 

in the case of the youngest age group. This impact on the number of hospitalizations falls after 29 

November 2021, as the coefficients 𝑏2, associated with the Omicron variant, are significant and 

negative in all ages groups, most notably in the 50–69 age group.  It is also evident that the 

beneficial effects of an increase in the percentage of fully vaccinated 𝑏3 on falling numbers of 

hospitalizations holds for all ages, albeit that this effect decreases as people get older. 

 

Additionally, all the error correction term coefficients are significant and negative. The number 

of days required to close the gap between current and equilibrium hospital admissions for the 

different group ages are shown in Figure 3. The number of days required to correct a long-run 

disequilibrium are computed using the approach devised by Galeotti et al. [27]. These results are 

obtained using the equation 

𝐷𝑎𝑦𝑠 =
l n (

𝑦𝑡 − 𝑦𝑡
∗

𝑦0 − 𝑦𝑡
∗)

𝛾
=

ln (1 − 𝑔𝑎𝑝)

𝛾
 

where gap represents the difference between current and equilibrium (log) hospitalizations 

defined as 𝑔𝑎𝑝 =
𝑦0−𝑦𝑡

𝑦0−𝑦𝑡
∗, 𝑦𝑡 is the logarithm of current hospitalizations, 𝑦0 is the logarithm of 

initial hospitalizations and 𝑦𝑡
∗ represents equilibrium (log) hospitalizations. Finally,  𝛾 is the error 

correction term that shows the speed of adjustment to the long-run equilibrium. We find that 

adjustment to the long-run equilibrium is more rapid in the case of the two oldest age groups (i.e. 

70–79 and 80+) than in that of the two youngest (20–49 and 50–69), placing the speed adjustment 
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line for the general model approximately in the middle. For instance, an 80% gap between current 

hospitalizations and the number of hospital admissions in the long-run equilibrium takes over 14 

days to be closed in the case of the two oldest groups, while approximately 21 days are required 

for the 20–49 age group, 22 days for the 50–69 age group and 18 days for all ages. 

 

[INSERT FIGURE 3] 

Fig. 3 Speed of adjustment to equilibrium in days  

 

These particular results obtained after disaggregating by age should, however, be treated with 

some caution, given that residual autocorrelation that might affect the efficiency of estimates was 

detected [25]. This effect in all likelihood is attributable to the low number of lagged regressors 

selected based on the best goodness-of-fit performance of the models.  

 

DISCUSSION 

 

This article has examined the relationship between the number of COVID-19 cases detected in 

Spain and the number of hospital admissions due to the virus between May 2020 and March 2022. 

Short- and long-run dynamics were separated by means of an ECM corrected for 

heteroscedasticity using a GARCH variance process. The long-run relationship followed a 

multiplicative model (additive after logarithmic transformations), in line with Santolino et al. [3] 

who linked hospital admissions and nine-period-lagged positive cases. The dynamics of the 

relationship between our time series proved to be stable and tended to long-run equilibrium. When 

a disequilibrium in the long-run relationship was observed, around 9% of the gap was corrected 

after one period. 
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The behaviour of the pandemic indicators was not steady over time as periods of high incidence 

alternated with others of low incidence. We detected two distinct factors impacting the long-run 

equilibrium between the number of cases and the number of hospitalizations: that is, vaccination 

and the presence of the Omicron variant. The vaccination program against COVID-19 was 

initiated in Spain on 27 December 2020. Previous studies have shown that vaccination reduces 

the risk of hospitalization [28,29]. Our research also shows that hospital pressure decreased as the 

vaccination program was progressively rolled out. Hence, while a 1% increase in the fully 

vaccinated population reduced the risk of hospitalization by 0.8%. The Omicron variant appeared 

in Europe at the end of November 2021, and by January 2022 it was already considered dominant 

[30]. Some studies suggest that this variant presents a lower risk of hospitalization and death than 

earlier variants of the virus [31]. Here, we found that the number of positive cases has to be raised 

to a power to compute the number of hospitalizations. This power value ranged from 0.885 before 

29 November 2021 to 0.779 after this date. The fact that both values are lower than one means 

that any increase in the number of positive cases generates a lower increase in the number of 

hospitalizations, with this reduction being greater following the appearance of the Omicron 

variant.  

 

Alternative designs of the long-run equilibrium equation were investigated to capture other forms 

of relationship between the number of hospitalizations and the number of positives detected, 

vaccination status and the Omicron variant, but a poorer performance was observed in terms of 

goodness-of-fit in all cases. The effect of the Delta variant on the number of hospitalizations was 

also analysed and its effect was found not to be statistically significant at the 5% level in any 

model design. However, we did not find any effect of the Omicron and Delta variants on the short-

run dynamics of the number of hospitalizations. In fact, the difference in number of 

hospitalizations was essentially explained by the previous (lagged) differences of the 

hospitalization time series.  
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COVID-19 hospitalization rates are known to be exponentially associated with age [32]. In this 

study, we analysed the long- and short-run relationships between positive cases and hospital 

admissions for four different age groups. Results show that the percentage of individuals with a 

positive diagnosis requiring hospitalization was higher for those aged over 50. The appearance of 

the Omicron variant seemed to reduce the severity of the disease in all groups, but particularly 

among those aged 50 to 69. Sievers et al. [33], likewise, worked with different age groups and 

found this reduction to be apparently greater for those aged over 35. Finally, in line with other 

studies [34,35], our results showed that vaccination proved to be less effective for older people. 

As for the speed of correction in the presence of deviations, we observed that the return to the 

long-run equilibrium path by way of short-run adjustments was faster for the two oldest age 

groups. 

 

To date, the different waves of the virus have produced fluctuating and unpredictable levels of 

pressure on hospitals [36,37]. At given moments the resources available have been insufficient, 

bringing hospitals to the brink of collapse, with an obvious detrimental impact for patients and 

healthcare personnel alike. The dynamic model proposed here seeks to be a useful health planning 

tool that can forecast the amount of hospital resources required at any specific moment based on 

the prevailing incidence of the disease, the virulence of the dominant variant, and the proportion 

of the population with full vaccination status. By differentiating between the long- and short-run 

effects, our methodology furnishes healthcare decision-makers with a dual mechanism that 

facilitates their evaluations of the impact of (i) the structural health policies aimed at addressing 

the long-run relationship between positive cases of COVID-19 and the demand for hospital beds, 

and (ii) emergency interventions with a short-run impact on the demand for hospital admissions.  

 

This study is not exempt from limitations, not least the fact that access to reliable data is essential 

for developing an accurate, realistic model. As Hyafil and Moriña [38] stress, the number of tests 

performed has a direct effect on the number of positive cases detected, which suggests there are 

likely to have been undiagnosed cases not considered in this study. Additionally, here we have 
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had to use weekly vaccination information to estimate daily rates of inoculation, as complete daily 

data on the number of individuals with full vaccination status were unavailable. Finally, risk 

factors, other than age, were not analysed as they were not registered by the databases. For 

example, the effect of gender on hospitalization risk was not investigated, although some studies 

suggest that being male represents a risk factor for COVID-19 [39]. All in all, this study highlights 

the importance of having reliable, homogeneous, disaggregated and up-to-date information when 

evaluating the behaviour of indicators of such great interest for public health. 

 

CONCLUSIONS 

The application of the error correction model introduces a short-run mechanism to adjust 

transitory disequilibrium in the long-run relationship between the number of COVID-19 cases 

diagnosed and the consequent demand for hospital beds. Results reveal that the dynamics between 

the number of positive cases and demand for hospital beds tends to the equilibrium in the long 

run, with 9% of any deviation being corrected after one period. The dynamic modelling approach 

proposed herein should represent a valuable instrument for planning hospital resources in any 

pathology that necessitates in-patient care, especially epidemics with waves of contagion. Based 

on the cases detected in primary care, it would be possible to predict the number of hospital 

admissions, thus allowing health planners to anticipate both the long- and short-run impact on 

hospital pressure created by any disease. 
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