Newelski's analysis of Lascar strong types^{*}

Enrique Casanovas University of Barcelona

September 15, 2002

1 Introduction

Definition 1 E_L is the finest bounded invariant equivalence relation and E_{KP} is the finest bounded type-definable equivalence relation. A *Lascar strong type* is an E_L -equivalence class and $Lstp(a) = a/E_L$.

Definition 2 A formula $\theta(x, y)$ is *thick* if it is reflexive and symmetric and for some $n < \omega$ there are no a_i (i < n) such that $\models \neg \theta(a_i, a_j)$ for all i < j < n. nc(x, y) is the set of all thick formulas $\theta(x, y)$ and $nc^n(x, y)$ is its composition:

- 1. $nc^{1}(x, y) = nc(x, y)$
- 2. $\operatorname{nc}^{n+1}(x,y) = \exists z (\operatorname{nc}^n(x,z) \wedge \operatorname{nc}(z,y)).$

The distance d(a, b) is defined in a such a way that d(a, a) = 0 and for different a, b, d(a, b) is the least $n < \omega$ (if there is some) for which there are a_0, \ldots, a_n such that $a = a_0, b = a_n$ and for all $i < n, a_i, a_{i+1}$ start an infinite indiscernible sequence. If there is no such n we put $d(a, b) = \infty$.

Facts 1.1 1. nc(x, y) is a type and for all a, b, nc(a, b) if and only if a = b or there is an infinite indiscernible sequence starting with a, b.

- 2. $d(a,b) \leq n$ if and only if $\models nc^n(a,b)$.
- 3. $E_L(a,b)$ if and only if $d(a,b) < \infty$ if and only if $\models \bigvee_{n < \omega} \operatorname{nc}^n(a,b)$.
- 4. $E_L = E_{KP}$ if and only if E_L is type-definable.
- 5. For any type $p(x) \in S(\emptyset)$, E_{KP} is finer than any type-definable bounded equivalence relation on realizations of p(x).

Definition 3 The *diameter* of a set X is the supremum of all distances d(a, b) of elements $a, b \in X$.

^{*}Notes from the Research Seminar in Model Theory organized by T. Scanlon. Sessions from September 6, 2002 and September 20, 2002 dedicated to discuss Newelski's preprint *The diameter of a Lascar strong type.* Revised in December 10, 2002.

2 Newelski's derivative

Definition 4 Let K be an arbitrary topological space and let \mathcal{A} be a family of subsets of K covering K. The open analysis of K with respect to \mathcal{A} is the family $(Z_{\alpha} : \alpha \in \text{On})$ of open sets Z_{α} defined as follows:

- 1. $Z_0 = \bigcup_{A \in \mathcal{A}} \operatorname{int}(A)$
- 2. $Z_{\alpha+1} = \bigcup_{A \in A} \operatorname{int}(A \cup Z_{\alpha})$
- 3. $Z_{\beta} = \bigcup_{\alpha < \beta} Z_{\alpha}$ for limit β .

Clearly there is an ordinal β such that $Z_{\beta} = Z_{\beta+1}$. The least such β is called the *height* of the analysis. The *core* of the analysis is the set $C = K \setminus \bigcup_{\alpha \in \text{On}} Z_{\alpha}$. We say that K is \mathcal{A} -analyzable if the core is empty, i.e., if $K = \bigcup_{\alpha \in \text{On}} Z_{\alpha}$. We define the *rank* of an element $a \in K \setminus C$ as the least ordinal $\alpha = \operatorname{rk}(a)$ such that $a \in Z_{\alpha}$ and the rank of a non-empty $X \subseteq K \setminus C$ as $\operatorname{rk}(A) = \min_{a \in X} \operatorname{rk}(a)$. Clearly $\operatorname{rk}(a)$ (and $\operatorname{rk}(A)$) is always zero or a successor ordinal.

Remark 2.1 The Cantor-Bendixson derivative is a particular case of A-analysis, namely, it is the analysis with respect to the family of all singletons $A = \{\{a\} : a \in K\}$.

Definition 5 Let \mathcal{A} and \mathcal{A}' be two families covering the topological space K. We say that \mathcal{A}' is *finer* than \mathcal{A} if every member of \mathcal{A}' is contained in some member of \mathcal{A} .

Lemma 2.2 If \mathcal{A}' is finer than \mathcal{A} then the core of an \mathcal{A} -analysis of K is contained in the core of an \mathcal{A}' -analysis of K. In particular, if K is \mathcal{A}' -analyzable, then K is \mathcal{A} -analyzable.

Proof. Let $(Z_{\alpha} : \alpha \in \text{On})$ the \mathcal{A} -analysis of K and let $(Z'_{\alpha} : \alpha \in \text{On})$ be its \mathcal{A}' -analysis. Is easy to see by induction that $Z'_{\alpha} \subseteq Z_{\alpha}$.

Remark 2.3 It follows from the previous lemma that the core of the Cantor-Bendixson analysis contains any other core coming from an analysis. A scattered space is analyzable with respect to any family.

Lemma 2.4 Let $(Z_{\alpha} : \alpha \in On)$ be the \mathcal{A} -analysis of K and let C be its core. Let $X \subseteq K$ a subspace with the induced topology, let $\mathcal{A}_X = \{A \cap X : A \in \mathcal{A}\},\$ let $(Z_{\alpha}^X : \alpha \in On)$ be the \mathcal{A}_X -analysis of X and let C_X be its core. Then

- 1. $C_X \subseteq C$
- 2. If $C \subseteq X$, then $C_X = C$.
- 3. If $X \cap C = \emptyset$ then $C_X = \emptyset$ and X is \mathcal{A}_X -analyzable.

Proof. 1. By induction on α we show that $X \cap Z_{\alpha} \subseteq Z_{\alpha}^{X}$. Consider the case $\alpha + 1$. Assume $a \in X \cap Z_{\alpha+1}$. Then for some $A \in \mathcal{A}$ and some open $U \subseteq K$, $a \in U \subseteq A \cup Z_{\alpha}$. By inductive hypothesis $a \in U \cap X \subseteq (A \cap X) \cup Z_{\alpha}^{X}$. Hence $a \in \operatorname{int}_{X}((A \cap X) \cup Z_{\alpha}^{X})$. Since $A \cap X \in \mathcal{A}_{X}$, we conclude that $a \in Z_{\alpha+1}^{X}$. The case $\alpha = 0$ is similar and the case α limit is clear.

2. Assume $C \subseteq X$ and assume also $C \smallsetminus C_X \neq \emptyset$. Let $a \in C \cap \bigcup_{\alpha \in \text{On}} Z_{\alpha}^X$ be an element of minimal rank $\operatorname{rk}(a) = \beta = \operatorname{rk}(C)$ in the \mathcal{A}_X -analysis of X. Assume $\beta = \alpha + 1$ (the case $\beta = 0$ is similar). Then $a \in Z_{\alpha+1}^X \cap C$ and $C \cap Z_{\alpha}^X = \emptyset$. There is an open $U \subseteq K$ and some $A \in \mathcal{A}$ such that $a \in U \cap X \subseteq A \cup Z_{\alpha}^X$. Then $\emptyset \neq U \cap C \subseteq A$, which implies $C \cap \bigcup_{\alpha \in \text{On}} Z_{\alpha} \neq \emptyset$, a contradiction.

3 is clear by 1.

Lemma 2.5 Let $(Z_{\alpha} : \alpha \in \text{On})$ be an \mathcal{A} -analysis of K. Let $Z = \bigcup_{\alpha \in \text{On}} Z_{\alpha}$.

- 1. Z_0 is dense in Z.
- 2. $Z_{\alpha+1} \smallsetminus Z_{\alpha}$ is dense in $Z \smallsetminus Z_{\alpha}$ for all α .

Proof. We prove 1. The proof of 2 is similar. We show that for any open set O, if $Z \cap O \neq \emptyset$ then $Z \cap O$ has rank zero. Assume $\operatorname{rk}(Z \cap O) = \alpha + 1$. Choose $a \in O \cap Z$ of minimal rank $\alpha + 1$ and choose $U \subseteq K$ open and $A \in \mathcal{A}$ such that $a \in U \subseteq A \cup Z_{\alpha}$. Then $O \cap U$ is open and $a \in O \cap U \subseteq A$. Hence $a \in Z_0$ and $\operatorname{rk}(a) = 0$, a contradiction.

Lemma 2.6 Let $(Z_{\alpha} : \alpha \in \text{On})$ be an \mathcal{A} -analysis of K, let $Z = \bigcup_{\alpha \in \text{On}} Z_{\alpha}$ and assume \mathcal{A} is closed under finite unions.

- 1. If for some $A \in \mathcal{A}$, $Z_{\beta} \subseteq A$, then $Z_{\beta} = Z$.
- 2. If U is open and for some $A \in \mathcal{A}$, $U \cap (Z_{\alpha+1} \setminus Z_{\alpha}) \subseteq A$, then $U \cap Z \subseteq Z_{\alpha+1}$.

Proof. 1. We show that $Z_{\beta+1} = Z_{\beta}$. Let $a \in Z_{\beta+1} \setminus Z_{\beta}$. For some $B \in \mathcal{A}$ and some open set $U, a \in U \subseteq B \cup Z_{\beta}$. Since $Z_{\beta} \subseteq A$ and $A \cup B \in \mathcal{A}$, a is in the interior of some element of \mathcal{A} and therefore $a \in Z_0 \subseteq Z_{\beta}$.

2. We first show that $U \cap Z_{\alpha+2} \subseteq Z_{\alpha+1}$. Let $a \in U \cap Z_{\alpha+2}$. For some open W and some $B \in \mathcal{A}$, $a \in W \subseteq B \cup Z_{\alpha+1}$. Then $a \in U \cap W \subseteq B \cup A \cup Z_{\alpha}$ and $B \cup A \in \mathcal{A}$. Therefore $a \in Z_{\alpha+1}$. Now by lemma 2.5 we know that $Z_{\alpha+2} \setminus Z_{\alpha+1}$ is dense in $Z \setminus Z_{\alpha+1}$. Therefore if the open set $U \cap Z$ has elements in $Z \setminus Z_{\alpha+1}$ then it has elements in $Z_{\alpha+2} \setminus Z_{\alpha+1}$, which is impossible, since $U \cap Z_{\alpha+2} \subseteq Z_{\alpha+1}$.

Lemma 2.7 If a compact space K is A-analyzable, its height β is zero or a successor ordinal and its last level $Z_{\beta} \setminus \bigcup_{\alpha < \beta} Z_{\alpha}$ is covered by finitely many elements of A.

Proof. The first point follows from the fact that $\{Z_0\} \cup \{Z_{\alpha+1} : \alpha < \beta\}$ is an open cover of K. For the second, let $Z_{\beta-1} = \bigcup_{\alpha < \beta} Z_{\alpha}$. Since $K = Z_{\beta}$, for any $a \in K$ there is an open U and some $A \in \mathcal{A}$ such that $a \in U \subseteq A \cup Z_{\beta-1}$. By compactness, for some $k < \omega$ there are open sets U_i and $A_i \in \mathcal{A}$ (i < k) such that $U_i \subseteq A_i \cup Z_{\beta-1}$ and $K \subseteq \bigcup_{i < k} U_i$. Hence $Z_\beta \smallsetminus Z_{\beta-1} \subseteq \bigcup_{i < k} A_i$.

Proposition 2.8 Let $f: K' \to K$ be a surjective continuous mapping between the topological spaces K, K'. Let $\mathcal{A}, \mathcal{A}'$ be families covering K and K', let $(Z_{\alpha} : \alpha \in \text{On}), (Z'_{\alpha} : \alpha \in \text{On})$ be its analysis and let C, C' be its cores.

- 1. If $\{f^{-1}[A] : A \in \mathcal{A}\}$ is finer than \mathcal{A}' then $f[C'] \subseteq C$.
- 2. Assume K, K' are compact Hausdorff spaces and $\mathcal{A}' = \{f^{-1}[A] : A \in \mathcal{A}\}$. Then f[C'] = C. In particular, K' is \mathcal{A}' -analyzable if and only if K is \mathcal{A} -analyzable.
- 3. Assume K, K' are compact Hausdorff spaces and $\mathcal{A} = \{f[A] : A \in \mathcal{A}'\}$. If K' is \mathcal{A}' -analyzable, then K is \mathcal{A} -analyzable.

Proof. 1. We show by induction on α that $f^{-1}[Z_{\alpha}] \subseteq Z'_{\alpha}$ for all α . From this it follows immediately that $f[C'] \subseteq C$. We consider the case $\alpha + 1$. The case $\alpha = 0$ is similar and the case α limit is clear. Using the inductive hypothesis and all other hypotheses we see that $f^{-1}[Z_{\alpha+1}] = f^{-1}[\bigcup_{A \in \mathcal{A}} \operatorname{int}(A \cup Z_{\alpha})] = \bigcup_{A \in \mathcal{A}} f^{-1}[\operatorname{int}(A \cup Z_{\alpha})] \subseteq \bigcup_{A \in \mathcal{A}} \operatorname{int}(f^{-1}[A \cup Z_{\alpha}]) = \bigcup_{A \in \mathcal{A}} \operatorname{int}(f^{-1}[A] \cup f^{-1}[Z_{\alpha}]) \subseteq \bigcup_{A \in \mathcal{A}} \operatorname{int}(f^{-1}[A] \cup Z'_{\alpha}) \subseteq \bigcup_{A \in \mathcal{A}'} \operatorname{int}(A \cup Z'_{\alpha}) = Z'_{\alpha+1}.$ 2. By 1 we know that $f[C'] \subseteq C$. Assume $C \smallsetminus f[C'] \neq \emptyset$. We will reach

2. By I we know that $f[C'] \subseteq C$. Assume $C \setminus f[C'] \neq \emptyset$. We will reach a contradiction. First observe that we may assume K = C. This follows from lemma 2.4 since we may restrict to the subspace C of K and the subspace $f^{-1}[C]$ of K'. Both are compact Hausdorff, its cores are C and C' and the corresponding restricted covering families \mathcal{A}_C and $\mathcal{A}'_{f^{-1}[C]}$ still verify that $\mathcal{A}'_{f^{-1}[C]} = \{f^{-1}[A] :$ $A \in \mathcal{A}_C\}$. We will use frequently the fact that in a compact Hausdorff space if U is open and $a \in U$ there is a closed set F such that $a \in \operatorname{int}(F) \subseteq F \subseteq U$. Since f[C'] is closed (because f is continuous, K' is compact and K is Hausdorff) and it is a proper subset of K, there is a closed set $F \subseteq K$ such that $\operatorname{int}(F) \neq \emptyset$ and $F \cap f[C'] = \emptyset$. Clearly $f^{-1}[F] \subseteq K' \smallsetminus C' = \bigcup_{\alpha \in On} Z'_{\alpha}$ and from this it follows that $f^{-1}[F] \subseteq Z'_{\alpha}$ for some ordinal α . We assume we have chosen α minimal with the property that there is a closed set F in K such that

$$\operatorname{int}(F) \neq \emptyset, F \cap f[C'] = \emptyset \text{ and } f^{-1}[F] \subseteq Z'_{\alpha}.$$

By compactness, $\alpha = 0$ or is a successor ordinal. Let $Z'_{\alpha-1} = \bigcup_{\beta < \alpha} Z'_{\beta}$. Hence $Z'_{\alpha-1} = \emptyset$ if $\alpha = 0$ and $Z'_{\alpha-1} = Z'_{\beta}$ if $\beta+1 = \alpha$. In any case, for every $a \in f^{-1}[F]$ there is some $A \in \mathcal{A}'$ such that $a \in \operatorname{int}(A \cup Z'_{\alpha-1})$ and therefore there is a closed set G such that $a \in \operatorname{int}(G) \subseteq G \subseteq \operatorname{int}(A \cup Z'_{\alpha-1})$. The open sets $\operatorname{int}(G)$ cover the closed set $f^{-1}[F]$. By compactness finitely many of them suffice. Hence for some $k < \omega$ there are $A_0, \ldots, A_{k-1} \in \mathcal{A}'$ and closed sets G_0, \ldots, G_{k-1}

such that $f^{-1}[F] \subseteq \bigcup_{i < k} \operatorname{int}(G_i)$ and for all $i < k, G_i \subseteq \operatorname{int}(A_i \cup Z'_{\alpha-1})$. Let $G = f[\bigcup_{i < k} G_i \smallsetminus Z'_{\alpha-1}]$. It is a closed subset of K. We will see now that G is nowhere dense, i.e., $\operatorname{int}(G) = \emptyset$. Since the union of two nowhere dense sets is again nowhere dense and $G = \bigcup_{i < k} f[G_i \smallsetminus Z'_{\alpha-1}]$, if G is not nowhere dense, for some i < k some $f[G_i \smallsetminus Z'_{\alpha-1}]$ has non-empty interior. Since $G_i \subseteq A_i \cup Z'_{\alpha-1}$, it follows that $f[G_i \smallsetminus Z'_{\alpha-1}] \subseteq f[A_i]$. But $f[A_i] \in \mathcal{A}$, so we have find an element of \mathcal{A} with non-empty interior, which contradicts our first assumption that C = K. Hence we have to admit that G is nowhere dense. Clearly there are points in $\operatorname{int}(F) \smallsetminus G$ and we can separate any of them from G by disjoint open sets. Therefore we can find $H \subseteq F$ closed such that $\operatorname{int}(H) \neq \emptyset$ and $H \cap G = \emptyset$. Now $H \cap f[C'] = \emptyset$ (because $H \subseteq F$) and $f^{-1}[H] \subseteq Z'_{\alpha-1}$ (because $f^{-1}[H]$ is contained in $\bigcup_{i < k} G_i$ and H is disjoint to G), and this shows that $\alpha > 0$ and contradicts its minimality.

3. Let $\mathcal{A} = \{f[A] : A \in \mathcal{A}'\}$. Observe that \mathcal{A}' refines $\{f^{-1}[A] : A \in \mathcal{A}\}$ and use lemma 2.2 and point 2.

3 Lascar strong types

Theorem 3.1 Let X be a union of Lascar strong types of infinite diameter. Assume that all elements of X have the same type over the empty set and that X is type-definable over some parameters. Let $\bar{a} = (a_i : i \in I)$ be a sequence of representatives of the different Lascar strong types in X. Then

- 1. If $\mathcal{A} = \{Y_i^n : i \in I, n < \omega\}$ where for any $i \in I$ and any $n < \omega$, $Y_i^n = \{\operatorname{tp}(b/\bar{a}) : d(b,a_i) \leq n\}$ then $Y = \{\operatorname{tp}(b/\bar{a}) : b \in X\}$ is not \mathcal{A} -analyzable.
- 2. There is a $X' \subseteq X$ type-definable over \bar{a} such that for every formula $\varphi(x)$ over \bar{a} , if some element of X' realizes $\varphi(x)$ then there are at least two realizations of $\varphi(x)$ in X' with different Lascar strong type.

Proof. 1. Since X is \bar{a} -invariant and it is type-definable over some set of parameters, it is also type-definable over \bar{a} . Let $Y_i = \{tp(b/\bar{a}) : \text{Lstp}(b) = \text{Lstp}(a_i)\}$. Hence $Y_i = \bigcup_{n < \omega} Y_i^n$ and $Y = \bigcup_{i \in I} Y_i^n$. Y and every Y_i^n are closed subsets of the Stone space $S(\bar{a})$. Fix some $i \in I$ and consider the restriction mapping $f : S(\bar{a}) \to S(a_i)$ defined by $f(p) = p \upharpoonright a_i$. It is a continuous surjection. Let $U = f(Y) = \{\text{tp}(b/a_i) : b \in X\}$, let $U_i = f[Y_i] = \{\text{tp}(b/a_i) : \text{Lstp}(b) = \text{Lstp}(a_i) \text{ and let } U_i^n = f[Y_i^n] = \{\text{tp}(b/a_i) : d(b, a_i) \leq n\}$. U is a closed subspace of $S(a_i), U_i^n$ is a closed subspace of U and U_i is a subspace not necessarily closed $U_i^n \subseteq U_i \subseteq U$. If Y is \mathcal{A} -analizable then, by lemma 2.2, it is also analyzable with respect to $\{U_i^n : n < \omega\} \cup \{\bigcup_{j \neq i} Y_j\}$ and by proposition 2.8 U is analyzable with respect to $\{U_i^n : n < \omega\} \cup \{\bigcup(b/a_i) : b \in X \text{ and Lstp}(b) \neq \text{Lstp}(a_i)\}$. By lemma 2.4 U_i is analyzable with respect to $\{U_i^n : n < \omega\} \cup \{(tp(b/a_i) : b \in X \text{ and Lstp}(b) \neq \text{Lstp}(a_i)\}\}$. By lemma 2.4 U_i is analyzable with respect to $\{U_b^n : n < \omega\}$ where $U_b^n = \{\text{tp}(c/b) : d(c, b) \leq n\}$. On the other hand, by lemma 2.2, if $Y^n = \bigcup_{i \in I} Y_i^n$ then Y is also analyzable with respect to

 $\{Y^n : n < \omega\}$. Let $(Z_\alpha : \alpha \in \text{On})$ be this last analysis of Y and let $\alpha^* + 1$ be its height.

Now we claim that we can find $b \in X$, ordinals $\alpha < \beta \leq \alpha^*$, formulas $\varphi(x, \bar{y})$, $\psi(x, z)$ and natural numbers n, m such that

- 1. $\operatorname{tp}(b/\bar{a}) \in Z_{\beta+1} \smallsetminus Z_{\beta}$
- 2. $\psi(x,b) \vdash \varphi(x,\bar{a})$
- 3. $\emptyset \neq U_b \cap [\psi(x, b)] \subseteq U_b^m$
- 4. $Y \cap [\varphi(x, \bar{a})] \subseteq Z_{\alpha} \cup Y^n$

We take $\beta = \alpha^*$ and choose $b \in X$ arbitrary with $\operatorname{tp}(b/\bar{a}) \in Z_{\beta+1} \smallsetminus Z_{\beta}$. Since this is the last level of the analysis, by lemma 2.7 it is covered by just one Y^k . This means that for every $c \in X$ with $\operatorname{tp}(c/\bar{a}) \in Z^{\beta+1} \smallsetminus Z_{\beta}$ there is $i \in I$ such that $d(c, a_i) \leq k$. Let $(Z^b_{\alpha} : \alpha \in On)$ be the analysis of U_b with respect to $\{U_b^n : n < \omega\}$. If there is a bound n on d(c, b) for $c \in X$ such that $\operatorname{tp}(c/b) \in Z_0^b$ then, by lemma 2.6, $Z_0^b \subseteq U_b^n$ and the analysis stops in one step and $U_b = Z_0^b$. But in this case $\{c \in X : Lstp(c) = Lstp(b)\}$ has a diameter bounded by n, contrarily to the initial assumption. Therefore there is no such bound and we can find $c \in X$ such that $\operatorname{tp}(c/b) \in Z_0^b$ and d(c,b) > 2k. Choose $i \in I$ such that $Lstp(b) = Lstp(a_i)$. Since $tp(b/\bar{a}) \in Z_{\beta+1} \setminus Z_{\beta}$, by choice of $k, d(b, a_i) \leq k$. It follows that $d(c, a_i) > k$ and therefore $tp(c/\bar{a}) \in Z_{\beta}$. For the same reason, for any other $c' \models p(x) = \operatorname{tp}(c/b)$ we have $\operatorname{tp}(c'/\bar{a}) \in Z_{\beta}$. Now $Y \smallsetminus Z_{\beta}$ is a closed subset of $S(\bar{a})$ and therefore it is the set of types in Y extending a partial type $\pi(x, \bar{a})$. We have seen that $\pi(x, \bar{a}) \cup p(x)$ is inconsistent. Hence there are $\psi(x,b) \in \operatorname{tp}(c/b)$ and $\varphi(x,\bar{a}) \in \pi(x,\bar{a})$ such that $\psi(x,b) \vdash \varphi(x,\bar{a})$ and $Y \cap [\varphi(x,a)] \subseteq Z_{\beta}$. Since $\operatorname{tp}(c/b) \in Z_0^b$, there is some open set W in S(b) and some $m < \omega$ such that $\operatorname{tp}(c/b) \in W \cap U_b \subseteq U_b^m$. We may assume that W is a clopen set defined by $\psi(x, b)$. Hence $\emptyset \neq [\psi(x, b)] \cap U_b \subseteq U_b^m$. Now $Y \cap [\varphi(x, \bar{a})]$ is compact and it is contained in Z_{β} . If β is limit, clearly it is also contained in Z_{α} for some $\alpha < \beta$. In the case $\beta = \alpha + 1$ we apply the definition of the analysis and compactness to obtain some $n < \omega$ such that $Y \cap [\varphi(x, a)] \subseteq Z_{\alpha} \cup Y^{n}$. Therefore all conditions 1 to 4 are satisfied and the claim is proven.

Let β be minimal for which there are $\alpha < \beta$, $b \in X$, ψ and φ with the properties 1-4. We will show that we still can find a smaller β , which is a contradiction and will finish the proof. We start choosing $\theta(z,\bar{a}) \in \operatorname{tp}(b/\bar{a})$ such that $\psi(x, z) \wedge \theta(z, \bar{a}) \vdash \varphi(x, \bar{a})$. For $\gamma < \beta$, $Y \cap [\theta(z, \bar{a})]$ is not contained in $Z_{\gamma+1}$ and therefore, by lemma 2.6, $[\theta(z, \bar{a})] \cap (Z_{\gamma+1} \smallsetminus Z_{\gamma})$ can not be covered by just one Y_k . This means that there is no bound on $d(c, a_i)$ for c and a_i such that $\models \theta(c, \bar{a})$, $\operatorname{Lstp}(c) = \operatorname{Lstp}(a_i)$ and $\operatorname{tp}(c/\bar{a}) \in Z_{\gamma+1} \smallsetminus Z_{\gamma}$. In case β is a successor ordinal we take as β' the predecessor of β and in case β is a limit ordinal we choose β' such that $\alpha < \beta' < \beta$. Choose now some b' and $i \in I$ such that $\operatorname{tp}(b'/\bar{a}) \in Z_{\beta'+1} \smallsetminus Z_{\beta}$, $\models \theta(b', \bar{a})$, $\operatorname{Lstp}(b') = \operatorname{Lstp}(a_i)$ and $d(b', a_i) > n + m$. Since $b \equiv b'$, we still have that $\emptyset \neq U_{b'} \cap [\psi(x, b')] \subseteq U_{b'}^m$. We claim that there is no c' such that $\operatorname{Lstp}(c') = \operatorname{Lstp}(b')$, $\models \psi(c', b')$ and $\operatorname{tp}(c'/\bar{a}) \notin Z_{\alpha}$. If there is such a c', we see that $\models \varphi(c', \bar{a})$ and hence $\operatorname{tp}(c'/\bar{a}) \in Y \cap [\varphi(x, \bar{a})] \smallsetminus Z_{\alpha}$ and

by point 4 tp(c'/\bar{a}) $\in Y^n$. But this means that $d(c', a_i) \leq n$ which contradicts the facts that $d(b', a_i) > n + m$ and $d(c', b') \leq m$. So, there is no such c'. Take some c' such that Lstp(c') = Lstp(b') and $\models \psi(c', b')$, and let p'(x) =tp(c'/b'). If $\pi'(x, \bar{a})$ is a partial type characterizing the closed set $Y \setminus Z_\alpha$, then $p'(x) \cup \pi'(x, \bar{a})$ is inconsistent. As above, we find $\psi'(x, b') \in p'(x)$ and $\varphi'(x, \bar{a})$ such that $\psi'(x, b') \vdash \varphi'(x, \bar{a})$ and $Y \cap [\varphi'(x, \bar{a})] \subseteq Z_\alpha$. As in the initial situation from this follows that $Y \cap [\varphi(x, \bar{a})] \subseteq Z_{\alpha'} \cup Y^n$ for some $\alpha' < \alpha$ and some $n' < \omega$. We may assume that $\psi'(x, b') \vdash \psi(x, b')$ and therefore $\emptyset \neq U_{b'} \cap [\psi'(x, b')] \subseteq U_{b'}^m$ is still true.

2. We know that Y is not \mathcal{A} -analyzable and therefore the core C is a nonempty closed subset of $S(\bar{a})$. Hence the set $X' = \{b \in X : \operatorname{tp}(b/\bar{a}) \in C\}$ is typedefinable over \bar{a} . Assume $\varphi(x)$ is a formula over \bar{a} which is realized in X' but all whose realizations in X' have the same Lascar strong type over the empty set, say the same Lascar strong type as a_i . Then $\emptyset \neq C \cap [\varphi(x)] \subseteq Y_i = \bigcup_{n < \omega} Y_i^n$. Now we use the Baire category theorem in C. Since $C \cap [\varphi(x)]$ is a non-empty open set in C, it is not meager, i.e., it is not a countable union of nowhere dense sets. Hence for some $n, C \cap Y_i^n$ has non-empty interior in C, that is, there is some non-empty open set W in $S(\bar{a})$ such that $W \cap C \subseteq Y_i^n$. Then $W \cap Y \subseteq Y_i^n \cup (Y \smallsetminus C)$, which means that the analysis continues beyond $Y \smallsetminus C$, a contradiction.

Theorem 3.2 Let X be a union of Lascar strong types of infinite diameter. Assume that all elements of X have the same type over the empty set and that X is type-definable over some parameters. Then there are at least 2^{ω} Lascar strong types realized in X.

Proof. Let X' as in point 2 of theorem 3.1. We first observe that whenever we have $a, b \in X'$ with different Lascar strong type, then for every $n < \omega$ we can find formulas $\varphi(x) \in \operatorname{tp}(a/\bar{a})$ and $\psi(x) \in \operatorname{tp}(b/\bar{a})$ such that d(a', b') > n for all $a', b' \in X'$ such that $\models \varphi(a')$ and $\models \psi(b')$. This follows from the fact that if $p(x) = \operatorname{tp}(a/\bar{a})$ and $q(x) = \operatorname{tp}(b/\bar{a})$ then $\operatorname{nc}^n(x, y) \cup p(x) \cup q(y)$ is inconsistent. Now this allows us to construct a tree of formulas $(\varphi_s(x) : s \in {}^{<\omega}2)$ such that

- 1. $\varphi_s(x)$ is a formula over \bar{a} and it is realized in X'.
- 2. $\varphi_s(x) \vdash \varphi_t(x)$ if $t \subseteq s$.
- 3. If $s, t \in {}^{n}2$ are different then $d(a, b) \ge n$ for all $a, b \in X'$ such that $\models \varphi_s(a)$ and $\models \varphi_t(b)$.

Let $\Phi(x, \bar{a})$ a type over \bar{a} defining X'. For all $\eta \in {}^{\omega}2$, we have a type $p_{\eta}(x) = \Phi(x, \bar{a}) \cup \{\varphi_{\eta \upharpoonright n}(x) : n < \omega\}$ and for different η, η' if $a \models p_{\eta}$ and $a' \models p'_{\eta}$, then $Lstp(a) \neq Lstp(a')$.

Corollary 3.3 1. If a Lascar strong type is type-definable over some parameters, then it has finite diameter.

- 2. If a E_{KP} -class is not a Lascar strong type, then it splits into at least 2^{ω} Lascar strong types.
- 3. If for each $n < \omega$ there is a Lascar strong type of diameter at least n, then there is a Lascar strong type which is not type-definable, even with parameters, and therefore $E_L \neq E_{KP}$.
- 4. If E_L is type-definable over some parameters, then for some n it is defined by $\operatorname{nc}^n(x, y)$.

Proof. 1 follows directly from theorem 3.2.

2. Consider a E_{KP} -class a/E_{KP} which is not a Lascar strong type. It is a union of Lascar strong types and it is type-definable over a. To apply theorem 3.2 we have to show that all its Lascar strong types have infinite diameter. Assume not. Let p(x) = tp(a) and let X be the set of all realizations of p(x). Since X includes a/E_{KP} and all Lascar strong types contained in X are isomorphic, all have diameter bounded by n for some fixed n. Therefore in X the relation E_L of equality of Lascar strong types is type-definable by $\text{nc}^n(x, y)$. Since E_L restricted to X is a bounded type-definable relation, it is refined by E_{KP} restricted to X. But this means that on X they coincide and therefore that a/E_{KP} is a Lascar strong type, which is a contradiction.

3. For each $n < \omega$ fix a sequence a_n whose Lascar strong type $Lstp(a_n) = a_n/E_L$ has diameter at least n and consider $a = (a_n : n < \omega)$. It is easy to check that Lstp(a) has infinite diameter. By point 1 it is not type-definable.

4 Assume E_L is type-definable. By 3 there is a bound $n < \omega$ for the diameter of any Lascar strong type. Therefore $\operatorname{nc}^n(x, y)$ defines E_L .