
Newelski’s analysis of Lascar strong types∗

Enrique Casanovas
University of Barcelona

September 15, 2002

1 Introduction

Definition 1 EL is the finest bounded invariant equivalence relation and EKP

is the finest bounded type-definable equivalence relation. A Lascar strong type
is an EL-equivalence class and Lstp(a) = a/EL.

Definition 2 A formula θ(x, y) is thick if it is reflexive and symmetric and for
some n < ω there are no ai (i < n) such that |= ¬θ(ai, aj) for all i < j < n.
nc(x, y) is the set of all thick formulas θ(x, y) and ncn(x, y) is its composition:

1. nc1(x, y) = nc(x, y)

2. ncn+1(x, y) = ∃z(ncn(x, z) ∧ nc(z, y)).

The distance d(a, b) is defined in a such a way that d(a, a) = 0 and for different
a, b, d(a, b) is the least n < ω (if there is some) for which there are a0, . . . , an

such that a = a0, b = an and for all i < n, ai, ai+1 start an infinite indiscernible
sequence. If there is no such n we put d(a, b) = ∞.

Facts 1.1 1. nc(x, y) is a type and for all a, b, nc(a, b) if and only if a = b
or there is an infinite indiscernible sequence starting with a, b.

2. d(a, b) ≤ n if and only if |= ncn(a, b).

3. EL(a, b) if and only if d(a, b) <∞ if and only if |=
∨

n<ω ncn(a, b).

4. EL = EKP if and only if EL is type-definable.

5. For any type p(x) ∈ S(∅), EKP is finer than any type-definable bounded
equivalence relation on realizations of p(x).

Definition 3 The diameter of a set X is the supremum of all distances d(a, b)
of elements a, b ∈ X.

∗Notes from the Research Seminar in Model Theory organized by T. Scanlon. Sessions
from September 6, 2002 and September 20, 2002 dedicated to discuss Newelski’s preprint The
diameter of a Lascar strong type. Revised in December 10, 2002.

1



2 Newelski’s derivative

Definition 4 Let K be an arbitrary topological space and let A be a family
of subsets of K covering K. The open analysis of K with respect to A is the
family (Zα : α ∈ On) of open sets Zα defined as follows:

1. Z0 =
⋃

A∈A int(A)

2. Zα+1 =
⋃

A∈A int(A ∪ Zα)

3. Zβ =
⋃

α<β Zα for limit β.

Clearly there is an ordinal β such that Zβ = Zβ+1. The least such β is called the
height of the analysis. The core of the analysis is the set C = K r

⋃
α∈On Zα.

We say that K is A-analyzable if the core is empty, i.e., if K =
⋃

α∈On Zα. We
define the rank of an element a ∈ K r C as the least ordinal α = rk(a) such
that a ∈ Zα and the rank of a non-empty X ⊆ KrC as rk(A) = mina∈X rk(a).
Clearly rk(a) (and rk(A)) is always zero or a successor ordinal.

Remark 2.1 The Cantor-Bendixson derivative is a particular case of A-analysis,
namely, it is the analysis with respect to the family of all singletons A = {{a} :
a ∈ K}.

Definition 5 Let A and A′ be two families covering the topological space K.
We say that A′ is finer than A if every member of A′ is contained in some
member of A.

Lemma 2.2 If A′ is finer than A then the core of an A-analysis of K is con-
tained in the core of an A′-analysis of K. In particular, if K is A′-analyzable,
then K is A-analyzable.

Proof. Let (Zα : α ∈ On) the A-analysis of K and let (Z ′α : α ∈ On) be its
A′-analysis. Is easy to see by induction that Z ′α ⊆ Zα.

Remark 2.3 It follows from the previous lemma that the core of the Cantor-
Bendixson analysis contains any other core coming from an analysis. A scattered
space is analyzable with respect to any family.

Lemma 2.4 Let (Zα : α ∈ On) be the A-analysis of K and let C be its core.
Let X ⊆ K a subspace with the induced topology, let AX = {A ∩X : A ∈ A},
let (ZX

α : α ∈ On) be the AX-analysis of X and let CX be its core. Then

1. CX ⊆ C

2. If C ⊆ X, then CX = C.

3. If X ∩ C = ∅ then CX = ∅ and X is AX-analyzable.
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Proof. 1. By induction on α we show that X ∩ Zα ⊆ ZX
α . Consider the case

α + 1. Assume a ∈ X ∩ Zα+1. Then for some A ∈ A and some open U ⊆ K,
a ∈ U ⊆ A ∪ Zα. By inductive hypothesis a ∈ U ∩X ⊆ (A ∩X) ∪ ZX

α . Hence
a ∈ intX((A ∩X) ∪ ZX

α ). Since A ∩X ∈ AX , we conclude that a ∈ ZX
α+1. The

case α = 0 is similar and the case α limit is clear.
2. Assume C ⊆ X and assume also C rCX 6= ∅. Let a ∈ C ∩

⋃
α∈On Z

X
α be

an element of minimal rank rk(a) = β = rk(C) in the AX -analysis ofX. Assume
β = α + 1 (the case β = 0 is similar). Then a ∈ ZX

α+1 ∩ C and C ∩ ZX
α = ∅.

There is an open U ⊆ K and some A ∈ A such that a ∈ U ∩X ⊆ A∪ZX
α . Then

∅ 6= U ∩ C ⊆ A, which implies C ∩
⋃

α∈On Zα 6= ∅, a contradiction.
3 is clear by 1.

Lemma 2.5 Let (Zα : α ∈ On) be an A-analysis of K. Let Z =
⋃

α∈On Zα.

1. Z0 is dense in Z.

2. Zα+1 r Zα is dense in Z r Zα for all α.

Proof. We prove 1 . The proof of 2 is similar. We show that for any open set
O, if Z ∩O 6= ∅ then Z ∩O has rank zero. Assume rk(Z ∩O) = α+ 1. Choose
a ∈ O ∩Z of minimal rank α+ 1 and choose U ⊆ K open and A ∈ A such that
a ∈ U ⊆ A ∪ Zα. Then O ∩ U is open and a ∈ O ∩ U ⊆ A. Hence a ∈ Z0 and
rk(a) = 0, a contradiction.

Lemma 2.6 Let (Zα : α ∈ On) be an A-analysis of K, let Z =
⋃

α∈On Zα and
assume A is closed under finite unions.

1. If for some A ∈ A, Zβ ⊆ A, then Zβ = Z.

2. If U is open and for some A ∈ A, U∩(Zα+1rZα) ⊆ A, then U∩Z ⊆ Zα+1.

Proof. 1. We show that Zβ+1 = Zβ . Let a ∈ Zβ+1 rZβ . For some B ∈ A and
some open set U , a ∈ U ⊆ B ∪ Zβ . Since Zβ ⊆ A and A ∪ B ∈ A, a is in the
interior of some element of A and therefore a ∈ Z0 ⊆ Zβ .

2. We first show that U ∩ Zα+2 ⊆ Zα+1. Let a ∈ U ∩ Zα+2. For some open
W and some B ∈ A, a ∈ W ⊆ B ∪ Zα+1. Then a ∈ U ∩W ⊆ B ∪ A ∪ Zα and
B∪A ∈ A. Therefore a ∈ Zα+1. Now by lemma 2.5 we know that Zα+2 rZα+1

is dense in ZrZα+1. Therefore if the open set U ∩Z has elements in ZrZα+1

then it has elements in Zα+2rZα+1, which is impossible, since U∩Zα+2 ⊆ Zα+1.

Lemma 2.7 If a compact space K is A-analyzable, its height β is zero or a
successor ordinal and its last level Zβ r

⋃
α<β Zα is covered by finitely many

elements of A.
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Proof. The first point follows from the fact that {Z0} ∪ {Zα+1 : α < β} is an
open cover of K. For the second, let Zβ−1 =

⋃
α<β Zα. Since K = Zβ , for any

a ∈ K there is an open U and some A ∈ A such that a ∈ U ⊆ A ∪ Zβ−1. By
compactness, for some k < ω there are open sets Ui and Ai ∈ A (i < k) such
that Ui ⊆ Ai ∪ Zβ−1 and K ⊆

⋃
i<k Ui. Hence Zβ r Zβ−1 ⊆

⋃
i<k Ai.

Proposition 2.8 Let f : K ′ → K be a surjective continuous mapping between
the topological spaces K,K ′. Let A, A′ be families covering K and K ′, let
(Zα : α ∈ On), (Z ′α : α ∈ On) be its analysis and let C, C ′ be its cores.

1. If {f−1[A] : A ∈ A} is finer than A′ then f [C ′] ⊆ C.

2. Assume K,K ′ are compact Hausdorff spaces and A′ = {f−1[A] : A ∈ A}.
Then f [C ′] = C. In particular, K ′ is A′-analyzable if and only if K is
A-analyzable.

3. Assume K,K ′ are compact Hausdorff spaces and A = {f [A] : A ∈ A′}. If
K ′ is A′-analyzable, then K is A-analyzable.

Proof. 1. We show by induction on α that f−1[Zα] ⊆ Z ′α for all α. From
this it follows immediately that f [C ′] ⊆ C. We consider the case α + 1. The
case α = 0 is similar and the case α limit is clear. Using the inductive hy-
pothesis and all other hypotheses we see that f−1[Zα+1] = f−1[

⋃
A∈A int(A ∪

Zα)] =
⋃

A∈A f
−1[int(A ∪ Zα)] ⊆

⋃
A∈A int(f−1[A ∪ Zα]) =

⋃
A∈A int(f−1[A] ∪

f−1[Zα]) ⊆
⋃

A∈A int(f−1[A] ∪ Z ′α) ⊆
⋃

A∈A′ int(A ∪ Z ′α) = Z ′α+1.
2. By 1 we know that f [C ′] ⊆ C. Assume C r f [C ′] 6= ∅. We will reach

a contradiction. First observe that we may assume K = C. This follows from
lemma 2.4 since we may restrict to the subspace C ofK and the subspace f−1[C]
ofK ′. Both are compact Hausdorff, its cores are C and C ′ and the corresponding
restricted covering families AC and A′

f−1[C] still verify that A′
f−1[C] = {f−1[A] :

A ∈ AC}. We will use frequently the fact that in a compact Hausdorff space if U
is open and a ∈ U there is a closed set F such that a ∈ int(F ) ⊆ F ⊆ U . Since
f [C ′] is closed (because f is continuous, K ′ is compact and K is Hausdorff) and
it is a proper subset of K, there is a closed set F ⊆ K such that int(F ) 6= ∅ and
F ∩ f [C ′] = ∅. Clearly f−1[F ] ⊆ K ′ r C ′ =

⋃
α∈On Z

′
α and from this it follows

that f−1[F ] ⊆ Z ′α for some ordinal α. We assume we have chosen α minimal
with the property that there is a closed set F in K such that

int(F ) 6= ∅, F ∩ f [C ′] = ∅ and f−1[F ] ⊆ Z ′α.

By compactness, α = 0 or is a successor ordinal. Let Z ′α−1 =
⋃

β<α Z
′
β . Hence

Z ′α−1 = ∅ if α = 0 and Z ′α−1 = Z ′β if β+1 = α. In any case, for every a ∈ f−1[F ]
there is some A ∈ A′ such that a ∈ int(A∪Z ′α−1) and therefore there is a closed
set G such that a ∈ int(G) ⊆ G ⊆ int(A ∪ Z ′α−1). The open sets int(G) cover
the closed set f−1[F ]. By compactness finitely many of them suffice. Hence
for some k < ω there are A0, . . . , Ak−1 ∈ A′ and closed sets G0, . . . , Gk−1
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such that f−1[F ] ⊆
⋃

i<k int(Gi) and for all i < k, Gi ⊆ int(Ai ∪ Z ′α−1). Let
G = f [

⋃
i<k Gi r Z ′α−1]. It is a closed subset of K. We will see now that G is

nowhere dense, i.e., int(G) = ∅. Since the union of two nowhere dense sets is
again nowhere dense and G =

⋃
i<k f [Gi rZ ′α−1], if G is not nowhere dense, for

some i < k some f [Gi rZ ′α−1] has non-empty interior. Since Gi ⊆ Ai∪Z ′α−1, it
follows that f [Gi rZ ′α−1] ⊆ f [Ai]. But f [Ai] ∈ A, so we have find an element of
A with non-empty interior, which contradicts our first assumption that C = K.
Hence we have to admit that G is nowhere dense. Clearly there are points
in int(F ) r G and we can separate any of them from G by disjoint open sets.
Therefore we can find H ⊆ F closed such that int(H) 6= ∅ and H ∩ G = ∅.
Now H ∩ f [C ′] = ∅ (because H ⊆ F ) and f−1[H] ⊆ Z ′α−1 (because f−1[H] is
contained in

⋃
i<k Gi and H is disjoint to G), and this shows that α > 0 and

contradicts its minimality.
3. Let A = {f [A] : A ∈ A′}. Observe that A′ refines {f−1[A] : A ∈ A} and

use lemma 2.2 and point 2.

3 Lascar strong types

Theorem 3.1 Let X be a union of Lascar strong types of infinite diameter.
Assume that all elements of X have the same type over the empty set and that
X is type-definable over some parameters. Let ā = (ai : i ∈ I) be a sequence of
representatives of the different Lascar strong types in X. Then

1. If A = {Y n
i : i ∈ I, n < ω} where for any i ∈ I and any n < ω,

Y n
i = {tp(b/ā) : d(b, ai) ≤ n} then Y = {tp(b/ā) : b ∈ X} is not A-

analyzable.

2. There is a X ′ ⊆ X type-definable over ā such that for every formula ϕ(x)
over ā, if some element of X ′ realizes ϕ(x) then there are at least two
realizations of ϕ(x) in X ′ with different Lascar strong type.

Proof. 1. Since X is ā-invariant and it is type-definable over some set of
parameters, it is also type-definable over ā. Let Yi = {tp(b/ā) : Lstp(b) =
Lstp(ai)}. Hence Yi =

⋃
n<ω Y

n
i and Y =

⋃
i∈I Y

n
i . Y and every Y n

i are closed
subsets of the Stone space S(ā). Fix some i ∈ I and consider the restriction
mapping f : S(ā) → S(ai) defined by f(p) = p � ai. It is a continuous surjection.
Let U = f(Y ) = {tp(b/ai) : b ∈ X}, let Ui = f [Yi] = {tp(b/ai) : Lstp(b) =
Lstp(ai} and let Un

i = f [Y n
i ] = {tp(b/ai) : d(b, ai) ≤ n}. U is a closed subspace

of S(ai), Un
i is a closed subspace of U and Ui is a subspace not necessarily closed

Un
i ⊆ Ui ⊆ U . If Y is A-analizable then, by lemma 2.2, it is also analyzable

with respect to {Y n
i : n < ω}∪{

⋃
j 6=i Yj} and by proposition 2.8 U is analyzable

with respect to {Un
i : n < ω} ∪ {{tp(b/ai) : b ∈ X and Lstp(b) 6= Lstp(ai)}}.

By lemma 2.4 Ui is analyzable with respect to {Un
i : n < ω}. By isomorphism,

for any b ∈ X the space Ub = {tp(c/b) : Lstp(c) = Lstp(b)} is analyzable with
respect to {Un

b : n < ω} where Un
b = {tp(c/b) : d(c, b) ≤ n}. On the other

hand, by lemma 2.2, if Y n =
⋃

i∈I Y
n
i then Y is also analyzable with respect to
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{Y n : n < ω}. Let (Zα : α ∈ On) be this last analysis of Y and let α∗ + 1 be its
height.

Now we claim that we can find b ∈ X, ordinals α < β ≤ α∗, formulas ϕ(x, ȳ),
ψ(x, z) and natural numbers n,m such that

1. tp(b/ā) ∈ Zβ+1 r Zβ

2. ψ(x, b) ` ϕ(x, ā)

3. ∅ 6= Ub ∩ [ψ(x, b)] ⊆ Um
b

4. Y ∩ [ϕ(x, ā)] ⊆ Zα ∪ Y n

We take β = α∗ and choose b ∈ X arbitrary with tp(b/ā) ∈ Zβ+1 r Zβ . Since
this is the last level of the analysis, by lemma 2.7 it is covered by just one Y k.
This means that for every c ∈ X with tp(c/ā) ∈ Zβ+1 r Zβ there is i ∈ I such
that d(c, ai) ≤ k. Let (Zb

α : α ∈ On) be the analysis of Ub with respect to
{Un

b : n < ω}. If there is a bound n on d(c, b) for c ∈ X such that tp(c/b) ∈ Zb
0

then, by lemma 2.6, Zb
0 ⊆ Un

b and the analysis stops in one step and Ub = Zb
0.

But in this case {c ∈ X : Lstp(c) = Lstp(b)} has a diameter bounded by n,
contrarily to the initial assumption. Therefore there is no such bound and we
can find c ∈ X such that tp(c/b) ∈ Zb

0 and d(c, b) > 2k. Choose i ∈ I such that
Lstp(b) = Lstp(ai). Since tp(b/ā) ∈ Zβ+1 r Zβ , by choice of k, d(b, ai) ≤ k.
It follows that d(c, ai) > k and therefore tp(c/ā) ∈ Zβ . For the same reason,
for any other c′ |= p(x) = tp(c/b) we have tp(c′/ā) ∈ Zβ . Now Y r Zβ is
a closed subset of S(ā) and therefore it is the set of types in Y extending a
partial type π(x, ā). We have seen that π(x, ā) ∪ p(x) is inconsistent. Hence
there are ψ(x, b) ∈ tp(c/b) and ϕ(x, ā) ∈ π(x, ā) such that ψ(x, b) ` ϕ(x, ā) and
Y ∩ [ϕ(x, a)] ⊆ Zβ . Since tp(c/b) ∈ Zb

0, there is some open set W in S(b) and
some m < ω such that tp(c/b) ∈ W ∩ Ub ⊆ Um

b . We may assume that W is a
clopen set defined by ψ(x, b). Hence ∅ 6= [ψ(x, b)]∩Ub ⊆ Um

b . Now Y ∩ [ϕ(x, ā)]
is compact and it is contained in Zβ . If β is limit, clearly it is also contained in
Zα for some α < β. In the case β = α+1 we apply the definition of the analysis
and compactness to obtain some n < ω such that Y ∩ [ϕ(x, a)] ⊆ Zα ∪ Y n.
Therefore all conditions 1 to 4 are satisfied and the claim is proven.

Let β be minimal for which there are α < β, b ∈ X, ψ and ϕ with the
properties 1-4. We will show that we still can find a smaller β, which is a
contradiction and will finish the proof. We start choosing θ(z, ā) ∈ tp(b/ā) such
that ψ(x, z)∧ θ(z, ā) ` ϕ(x, ā). For γ < β, Y ∩ [θ(z, ā)] is not contained in Zγ+1

and therefore, by lemma 2.6, [θ(z, ā)] ∩ (Zγ+1 rZγ) can not be covered by just
one Yk. This means that there is no bound on d(c, ai) for c and ai such that
|= θ(c, ā), Lstp(c) = Lstp(ai) and tp(c/ā) ∈ Zγ+1 rZγ . In case β is a successor
ordinal we take as β′ the predecessor of β and in case β is a limit ordinal we
choose β′ such that α < β′ < β. Choose now some b′ and i ∈ I such that
tp(b′/ā) ∈ Zβ′+1 r Zβ , |= θ(b′, ā), Lstp(b′) = Lstp(ai) and d(b′, ai) > n + m.
Since b ≡ b′, we still have that ∅ 6= Ub′ ∩ [ψ(x, b′)] ⊆ Um

b′ . We claim that there
is no c′ such that Lstp(c′) = Lstp(b′), |= ψ(c′, b′) and tp(c′/ā) 6∈ Zα. If there is
such a c′, we see that |= ϕ(c′, ā) and hence tp(c′/ā) ∈ Y ∩ [ϕ(x, ā)] r Zα and
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by point 4 tp(c′/ā) ∈ Y n. But this means that d(c′, ai) ≤ n which contradicts
the facts that d(b′, ai) > n + m and d(c′, b′) ≤ m. So, there is no such c′.
Take some c′ such that Lstp(c′) = Lstp(b′) and |= ψ(c′, b′), and let p′(x) =
tp(c′/b′). If π′(x, ā) is a partial type characterizing the closed set Y rZα, then
p′(x) ∪ π′(x, ā) is inconsistent. As above, we find ψ′(x, b′) ∈ p′(x) and ϕ′(x, ā)
such that ψ′(x, b′) ` ϕ′(x, ā) and Y ∩ [ϕ′(x, ā)] ⊆ Zα. As in the initial situation
from this follows that Y ∩[ϕ(x, ā)] ⊆ Zα′∪Y n′ for some α′ < α and some n′ < ω.
We may assume that ψ′(x, b′) ` ψ(x, b′) and therefore ∅ 6= Ub′∩[ψ′(x, b′)] ⊆ Um

b′ is
still true.

2. We know that Y is not A-analyzable and therefore the core C is a non-
empty closed subset of S(ā). Hence the set X ′ = {b ∈ X : tp(b/ā) ∈ C} is type-
definable over ā. Assume ϕ(x) is a formula over ā which is realized in X ′ but all
whose realizations in X ′ have the same Lascar strong type over the empty set,
say the same Lascar strong type as ai. Then ∅ 6= C ∩ [ϕ(x)] ⊆ Yi =

⋃
n<ω Y

n
i .

Now we use the Baire category theorem in C. Since C ∩ [ϕ(x)] is a non-empty
open set in C, it is not meager, i.e., it is not a countable union of nowhere
dense sets. Hence for some n, C ∩ Y n

i has non-empty interior in C, that is,
there is some non-empty open set W in S(ā) such that W ∩ C ⊆ Y n

i . Then
W ∩Y ⊆ Y n

i ∪ (Y rC), which means that the analysis continues beyond Y rC,
a contradiction.

Theorem 3.2 Let X be a union of Lascar strong types of infinite diameter.
Assume that all elements of X have the same type over the empty set and that
X is type-definable over some parameters. Then there are at least 2ω Lascar
strong types realized in X.

Proof. Let X ′ as in point 2 of theorem 3.1. We first observe that whenever we
have a, b ∈ X ′ with different Lascar strong type, then for every n < ω we can
find formulas ϕ(x) ∈ tp(a/ā) and ψ(x) ∈ tp(b/ā) such that d(a′, b′) > n for all
a′, b′ ∈ X ′ such that |= ϕ(a′) and |= ψ(b′). This follows from the fact that if
p(x) = tp(a/ā) and q(x) = tp(b/ā) then ncn(x, y) ∪ p(x) ∪ q(y) is inconsistent.
Now this allows us to construct a tree of formulas (ϕs(x) : s ∈ <ω2) such that

1. ϕs(x) is a formula over ā and it is realized in X ′.

2. ϕs(x) ` ϕt(x) if t ⊆ s.

3. If s, t ∈ n2 are different then d(a, b) ≥ n for all a, b ∈ X ′ such that |= ϕs(a)
and |= ϕt(b).

Let Φ(x, ā) a type over ā defining X ′. For all η ∈ ω2, we have a type pη(x) =
Φ(x, ā) ∪ {ϕη�n(x) : n < ω} and for different η, η′ if a |= pη and a′ |= p′η, then
Lstp(a) 6= Lstp(a′).

Corollary 3.3 1. If a Lascar strong type is type-definable over some param-
eters, then it has finite diameter.
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2. If a EKP -class is not a Lascar strong type, then it splits into at least 2ω

Lascar strong types.

3. If for each n < ω there is a Lascar strong type of diameter at least n,
then there is a Lascar strong type which is not type-definable, even with
parameters, and therefore EL 6= EKP .

4. If EL is type-definable over some parameters, then for some n it is defined
by ncn(x, y).

Proof. 1 follows directly from theorem 3.2.
2. Consider a EKP -class a/EKP which is not a Lascar strong type. It is

a union of Lascar strong types and it is type-definable over a. To apply theo-
rem 3.2 we have to show that all its Lascar strong types have infinite diameter.
Assume not. Let p(x) = tp(a) and let X be the set of all realizations of p(x).
Since X includes a/EKP and all Lascar strong types contained in X are iso-
morphic, all have diameter bounded by n for some fixed n. Therefore in X the
relation EL of equality of Lascar strong types is type-definable by ncn(x, y).
Since EL restricted to X is a bounded type-definable relation, it is refined by
EKP restricted to X. But this means that on X they coincide and therefore
that a/EKP is a Lascar strong type, which is a contradiction.

3. For each n < ω fix a sequence an whose Lascar strong type Lstp(an) =
an/EL has diameter at least n and consider a = (an : n < ω). It is easy to
check that Lstp(a) has infinite diameter. By point 1 it is not type-definable.

4 Assume EL is type-definable. By 3 there is a bound n < ω for the diameter
of any Lascar strong type. Therefore ncn(x, y) defines EL.
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