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1 Small theories

Definition 1.1 T is small if for all n < ω, |Sn(∅)| ≤ ω.

Remark 1.2 If T is small, then there is a countable L0 ⊆ L such that for every ϕ(x) ∈ L
there is some ϕ′(x) ∈ L0 such that in T , ϕ(x) ≡ ϕ′(x). Hence, T is a definitional extension
of the countable theory T0 = T � L0.

Proof: See Remark 14.25 in [4]. With respect to the second assertion, consider some
n-ary relation symbol R ∈ LrL0. There is some formula ϕ(x1, . . . , xn) ∈ L0 equivalent to
Rx1 . . . xn in T . If we add all the definitions ∀x1 . . . xn(Rx1 . . . xn ↔ ϕ(x1, . . . , xn)) (and
similar definitions for constants and function symbols) to T0 we obtain T . 2

Lemma 1.3 The following are equivalent:

1. T is small.

2. For all n < ω, for all finite A, |Sn(A)| ≤ ω.

3. For all finite A, |S1(A)| ≤ ω.

4. T has a saturated countable model.

Proof: See Remark 14.26 in [4]. 2

Some topological considerations are helpful for the following discussions. A boolean
topological space X can be decomposed using the Cantor-Bendixson derivative as

X = (
⋃

α∈On
X(α) rX(α+1)) ∪X∞

where X(0) = X, X(α+1) is the set of accumulation points of X(α), X(β) =
⋂
α<β Xα for

limit β and X(∞) =
⋂
α∈OnXα. All Xα are closed. The perfect kernel X(∞) does not

contain isolated points (with respect to the induced topology) and hence it is empty or it
contains a binary tree (Us : s ∈ 2<ω) of nonempty clopen sets Us with Us = Usa0∪̇Usa1,
which gives 2ω many points in X(∞). On the other hand if we fix a basis of clopen sets,
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Joosten, Nuria Mulet, Daniel Palaćın, Juan Francisco Pons, Joris Potier, and Carlos Sáez.
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we can assign to every point a ∈
⋃
α∈On X(α) r X(α+1) some basic clopen set Oa which

isolates a in some X(α). This mapping is one-to-one. In spaces of types X = Sn(A) the size
of a basis of clopen sets is ≤ |T (A)| and therefore |

⋃
α∈On X(α) rX(α+1)| ≤ |T (A)|. If T

and L are countable, Sn(A) is decomposed in a countable set and a perfect kernel which is
either empty or of cardinality 2ω.

Proposition 1.4 The theory T is small if and only if the two following conditions hold:

1. There is a countable L0 ⊆ L such that for every ϕ(x) ∈ L there is some ϕ′(x) ∈ L0

such that in T , ϕ(x) ≡ ϕ′(x).

2. For all n < ω, for all finite A, the space Sn(A) is scattered, that is, every type in
Sn(A) has ordinal Cantor-Bendixson rank.

Proof: See Remark 14.27 in [4] or use the topological description given above. 2

Remark 1.5 1. Countable ω-categorical theories are small.

2. ω-stable theories are small.

Proof: By Ryll-Nardzewski Theorem, if T is countable, then it is ω-categorical iff Sn(∅)
is finite for all n. On the other hand, by definition, T is ω-stable iff S1(A) is countable for
all countable A. 2

Lemma 1.6 Assume ϕ(x) ∈ L(A) is consistent and there is no isolated p(x) ∈ S(A) such
that ϕ ∈ p. Then, there is a binary tree (ϕs(x) : s ∈ 2<ω) of consistent formulas ϕs(x) ∈
L(A) such that ϕ = ϕ∅ and for each s, ϕs(x) ≡ ϕsa0(x) ∨ ϕsa1(x) and ϕsa0(x) ∧ ϕsa1(x)
is inconsistent.

Proof: If there is no isolated p(x) ∈ Sn(A) containing ϕ, then for each ψ(x) ∈ L(A)
consistent with ϕ there is some χ(x) ∈ L(A) such that ϕ(x) ∧ ψ(x) ∧ χ(x) and ϕ(x) ∧
ψ(x) ∧ ¬χ(x) are both consistent. This is what one needs to construct the binary tree. In
topological terms: the space [ϕ] = {p(x) ∈ Sn(A) : ϕ ∈ p} is a nonempty perfect set and
contains a binary tree of clopen sets as described above. 2

Proposition 1.7 If T is small, then for every finite A there is a prime model over A.

Proof: By smallness, we may assume L is countable. Then it suffices to find an atomic
model M ⊇ A. This can be done by the Omitting Types Theorem since by Lemma 1.6
for every n < ω the set of negations ¬ϕ(x1, . . . , xn) of all atoms ϕ(x1, . . . , xn) ∈ L(A) is
omissible (otherwise we obtain a binary tree which produces 2ω complete n-types over A).
2

Definition 1.8 For every cardinal κ ≥ ω, let I(T, κ) be the number of nonisomorphic
models of T of cardinality κ.

Remark 1.9 If κ ≥ |T |, then I(T, κ) ≤ 2κ.

Proposition 1.10 If the countable theory T is not small, then I(T, ω) ≥ 2ω.

Proof: Fix some n < ω for which Sn(∅) is not scattered. The space contains a binary tree
of clopen sets, which shows that |Sn(∅)| ≥ 2ω. Since every countable model realizes only
countably many n-types and every n-type is realized in some countable model, I(T, ω) ≥ 2ω.
2

Example 1.11 Let T be the theory of the set ω in a language with an n-ary relation symbol
for every relation R ⊆ ωn. T is ω-categorical but not small.
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2 Scattered theories

This section is based on Morley’s article [13].

Definition 2.1 A regular fragment of Lω1ω is a countable set of Lω1ω-formulas extending
the set of first-order formulas that is closed under first-order connectives and quantifiers and
under subformulas and substitution of variables by terms. If Φ is such a regular fragment,
Sn(Φ, T ) is the set of all complete Φ-types of n-tuples of countable models of T . T is
scattered if Sn(Φ, T ) is countable for any regular fragment Φ, for every n < ω.

Remark 2.2 Scattered theories are small.

Proposition 2.3 For any regular fragment Φ, either |Sn(Φ, T )| ≤ ω or |Sn(Φ, T )| = 2ω.

Proof: We identify a set of formulas with its characteristic function. Let Φn be the subset
of Φ consisting in all formulas with free variables among x1, . . . , xn. It is enough to prove
that Sn(Φ, T ) is an analytic subset of 2Φn , since all analytic subsets of the Cantor space
are countable or have cardinality 2ω. We assume that the variables of Φ are x1, x2, . . ..
Note that Sn(Φ, T ) is the projection of a subset of 2Φ, the set Sω(Φ, t) of all Φ-types of
ω-sequences enumerating some countable model of T . A subset p of Φ is an element of
Sω(Φ, T ) iff it satisfies the following conditions:

1. For all ϕ ∈ Φ, ¬ϕ ∈ p iff ϕ 6∈ p.

2. For all ϕ ∈ Φ of the form ϕ =
∧

Σ, ϕ ∈ p iff ψ ∈ p for all ψ ∈ Σ.

3. For all ϕ ∈ Φ of the form ϕ = ∃xnψ, ϕ ∈ p iff ψ(xn
xm

) ∈ p for some m ≥ 1.

4. For all ϕ ∈ Φ, for all n ≥ 1, for all terms t, if ϕ ∈ p, and xn = t ∈ p, then ϕ(xn
t ) ∈ p.

5. t = t ∈ p for all terms t.

6. ϕ ∈ p for all ϕ ∈ T .

This shows that Sω(Φ, T ) is Borel and hence Sn(Φ, T ) is analytic. 2

Corollary 2.4 If I(T, ω) < 2ω, then T is scattered.

Proof: If T is not scattered then for some regular fragment Φ, for some n < ω, Sn(Φ, T )
is uncountable and by Proposition 2.3 |Sn(Φ, T )| = 2ω. If there are κ < 2ω nonisomorphic
countable models of T , since each one of them realizes at most ω different complete Φ-types
of n-tuples, it follows that |Sn(Φ, T )| ≤ κ+ ω < 2ω. 2

Definition 2.5 Let T be a scattered theory. We define (Φi : i < ω1), a chain of regular
fragments. Φ0 is the set of all first-order formulas of L (we may assume L is countable). Φi+1

is the smallest regular fragment containing Φi and containing
∧
p for every p ∈ Sn(Φi, T )

for every n < ω. For limit δ, Φδ is the union of all Φi for i < δ.

Proposition 2.6 If T is scattered, then for every countable model M of T there is some
i < ω1 and some sentence ϕ ∈ Φi such that for every countable model of T , if N |= ϕ then
M ∼= N .
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Proof: For every two n-tuples a, b in M , either a and b have the same Φi-type for all
i < ω1 or there is a smallest ordinal αa,b < ω1 for which they have different Φαa,b

-type.
Let α be the supremum of all αa,b for all n-tuples a, b in M , for all n < ω. Then α < ω1

and if two finite tuples a, b have the same Φα-type, then they have the same Φi-type for
all i < ω1. Let ϕ be the conjunction of the Φα+2-type without variables. Assume N is a
countable model of ϕ. We claim that the set I of all finite partial isomorphisms between
M and N preserving all Φα-types is a back-and-forth system, and hence M ∼= N . Note
that ∅ ∈ I. Assume f = {(ai, bi) : i = 1, . . . , n} ∈ I and a is a new element of M . Let
p(x1, . . . , xn) be the Φα-type of a1, . . . , an in M and let q(x1, . . . , xn, xn+1) be the Φα-type
of a1, . . . , an, a in M . Since ϕ ` ∀x1 . . . xn(

∧
p(x1, . . . , xn) → ∃xn+1

∧
q(x1, . . . , xn, xn+1))

and by assumption N |= p(b1, . . . , bn), there is some b ∈ N such that N |= q(b1, . . . , bn, b).
Therefore f ∪ {(a, b)} ∈ I. Now assume b ∈ N is given and let q(x1, . . . , xn, xn+1)
be the Φα-type of b1, . . . , bn, b in N . Then N |= ∃x

∧
q(b1, . . . , bn, x). If p(x1, . . . , xn)

is again the Φα-type of a1, . . . , an in M and p′(x1, . . . , xn) is its Φα+1-type, then ϕ `
∀x1 . . . xn(

∧
p(x1, . . . , xn) →

∧
p′(x1, . . . , xn)) and therefore N |= p′(b1, . . . , bn). Since

p′(x1, . . . , xn) is a complete Φα+1-type, and ∃x
∧
q(x1, . . . , xn, x) is Φα+1-formula con-

sistent with it, p′ ` ∃x
∧
q(x1, . . . , xn, x). Hence M |= ∃x

∧
q(a1, . . . , an, x) and then

M |= q(a1, . . . , an, a) for some a ∈M . Clearly, f ∪ {(a, b)} ∈ I. 2

Corollary 2.7 If T is scattered, then I(T, ω) ≤ ω1.

Proof: By Proposition 2.6 since there are only countably many sentences in each Φi. 2

Corollary 2.8 For any countable T , I(T, ω) ∈ ω ∪ {ω, ω1, 2
ω}.

Proof: By corollaries 2.4 and 2.7. 2

3 Semi-isolation

Definition 3.1 Let a, b be finite tuples. We say that a semi-isolates b if there is some
ϕ(x) ∈ tp(b/a) such that ϕ(x) ` tp(b). We also say that tp(b/a) is semi-isolated.

Remark 3.2 1. If tp(b) is isolated, any tuple semi-isolates b.

2. If tp(b/a) is isolated, then a semi-isolates b.

3. Semi-isolation is reflexive and transitive:

(a) a semi-isolates a.

(b) If a semi-isolates b and b semi-isolates c, then a semi-isolates c.

Lemma 3.3 If tp(b/a) is isolated and tp(a/b) is semi-isolated, then tp(a/b) is isolated.

Proof: Assume ϕ(x, a) isolates tp(b/a) and ψ(b, y) ∈ tp(a/b) witnesses that this second
type is semi-isolated. Then ϕ(b, y) ∧ ψ(b, y) isolates tp(a/b). 2

Lemma 3.4 Assume a0 ≡ a1 and tp(b0/a0a1) does not divide over ∅. If a0 is semi-isolates
b0 and b0 semi-isolates a1, then a1 semi-isolates b0.

4



Proof: Choose ϕ(y, x), ψ(y, x) ∈ L such that |= ϕ(b0, a1) ∧ ψ(b0, a0), ϕ(b0, x) ` tp(a1)
and ψ(y, a1) ` tp(b0). Since a0 ≡ a1, we can extend the sequence a0, b0, a1 to the ω-
sequence a0, b0, a1, b1, a2, b2, . . . , in such a way that anbnan+1 ≡ a0b0a1 for all n < ω. Let
θ(y;x0, x1) = ψ(y, x0) ∧ ϕ(y, x1). Since |= θ(b0; a0, a1) and tp(b0/a0a1) does not divide
over ∅, for some n < m < ω, θ(y; a2n, a2n+1) ∧ θ(y; a2m, a2m+1) is consistent. Let b realize
this formula. Since a2m semi-isolates b and b semi-isolates a2n+1, by transitivity a2m semi-
isolates a2n+1. Since a2n+1 semi-isolates b2m−1, by transitivity again a2m semi-isolates
b2m−1. Since b0a1 ≡ b2m−1a2m, we conclude that a1 semi-isolates b0. 2

Definition 3.5 Let p(x), q(y) ∈ S(∅). We say that p is freely semi-isolated over q and we
write p <si q if there are independent (in the sense of nonforking) a |= p and b |= q such
that b semi-isolates a.

Remark 3.6 Let T be simple.

1. If p <si q and q <si r, then p <si r.

2. If p is isolated, then p <si q for any q.

Proposition 3.7 (Pillay) In a stable theory, if p(x) ∈ S(∅) is nonisolated, there is no
q(y) ∈ S(∅) such that p <si q.

Proof: Assume a |= p, b |= q, ϕ(x, b) ∈ tp(a/b) semi-isolates the nonisolated type p
and a |̂ b. Let NFx(b, ∅) ⊆ Sx(b) be the (closed) set of all types that do not fork over ∅.
The Open Mapping Theorem says that the restriction map f : NFx(b, ∅)→ Sx(∅) is open.
Hence the image of the clopen set [ϕ(x, b)]∩NFx(b, ∅) is open and contains p(x) as its sole
element. This image is in fact a clopen set [ψ(x)] and the formula ψ(x) ∈ L isolates p(x),
a contradiction. 2

Recall that a formula θ(x, y) ∈ L is thick if it is symmetric and finite: there is a bound
k < ω for the length of a sequence (ai : i < k) such that |= ¬θ(ai, aj) for all i < j < k.

Lemma 3.8 If θ(x, y) is a thick formula and k < ω is the maximal number for which there
is an anticlick (ai : i < k) (which means |= ¬θ(ai, aj) for all i < j < k) then the transitive
closure E of θ is definable by

E(x, x′)⇔ ∃y0 . . . y2k(x = y0 ∧ x′ = y2k ∧
∧
i<2k

θ(yi, yi+1))

Proof: We must check transitivity. Assume E(x, x′)∧E(x′, x′′), witnessed by the θ-chains
x = y0, . . . , y2k = x′ and x′ = z0, . . . , z2k = x′′. Let u0, . . . , um a minimal subsequence which
is still a θ-chain and connects x = u0 with x′′ = um. Note that m < 2k, since otherwise
u0, u2, . . . , u2k is an anticlick of length k + 1. Hence u0, . . . , um witnesses that E(x, x′′). 2

Proposition 3.9 (Newelski, Tsuboi) In a simple theory the relation <si on nonisolated
types is asymmetric (hence irreflexive).

Proof: It is enough to check irreflexivity. Assume p <si p and let us prove that p is
isolated.. We may find an independent sequence a, b, a′ of realizations of p such that b
semi-isolates a and a′ semi-isolates b. By Lemma 3.4, a semi-isolates b. There is a single
formula ϕ(x, y) ∈ L such that |= ϕ(a, b), ϕ(x, b) ` p(x) and ϕ(a, y) ` p(y). The first part of
the proof consists in showing that we can replace ϕ(x, y) by a thick formula.
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Assume b′
Ls≡ b and b′ |̂ b. By the Independence Theorem for Lascar strong types,

ϕ(x, b)∧ϕ(x, b′) is consistent (take a′ such that ab
Ls≡ a′b′ and apply the theorem to tp(a/b)

and tp(a′/b′)). Equality of Lascar strong type over ∅ is a bounded type-definable equiv-
alence relation and we can define it by a set of thick formulas. By compactness (and
type-definability over b of nonforking over ∅ for complete types over b) there is some thick
formula θ such that ϕ(x, b) ∧ ϕ(x, b′) is consistent for every b′ such that |= θ(b, b′) and
b |̂ b′. Note that consistency of ϕ(x, b) ∧ ϕ(x, b′) implies that b′ |= p (because we can
choose a′′ |= ϕ(x, b)∧ϕ(x, b′) and then a′′ |= p(x) and therefore ϕ(a′′, y) ` p(y)). Hence we
have: if |= θ(b, b′) and b |̂ b′ then b′ |= p. We can choose a thick formula θ′ (in the type
defining equality of Lascar strong type) such that θ′(x, y) ∧ θ′(y, z) ` θ(x, z).

We claim now that θ′(x, b) ` p(x). In fact, if b′ |= θ′(x, b) we can choose b′′ |= θ′(x, b′)
such that b′′ |̂ bb′ (because being θ′(x, y) thick, θ′(x, b′) does not fork over ∅) and this
implies |= θ(b′′, b) and hence b′′ |= p. Since |= θ(b′, b′′) we also get b′ |= p.

By the claim, θ′(x, y) ∧ p(y) ` p(x). Let E be the transitive closure of θ′(x, y). By the
Lemma 3.8, E is a 0-definable finite equivalence relation and we have proved that p(C) is a
union of E-classes. Hence p(C) is definable over acleq(∅). Since it is invariant, it is definable
over ∅ by some formula ψ(x) ∈ L. It follows that ψ(x) isolates p(x). 2

Definition 3.10 In a small theory T we choose for every p(x) ∈ Sn(∅) some prime model
Mp over some realization of p. Note that the isomorphism type of Mp is independent of the
choice of the realization of p.

Lemma 3.11 Let T be small and simple. If p(x) ∈ Sn(∅) is nonisolated and has finite
weight w(p) = k < ω, then Mp does not contain an independent sequence a0, . . . , ak of
realizations ai of p.

Proof: Let a |= p and let Mp be prime over a and assume all ai are in Mp. By definition
of weight, there must be some i < k such that a |̂ ai. Since ai is isolated over a, a
semi-isolates ai. Hence p <si p, in contradiction with Proposition 3.9. 2

Theorem 3.12 (Kim) If T is a countable supersimple theory, then either I(T, ω) = 1 or
I(T, ω) ≥ ω.

Proof: If T is countable but not ω-categorical, then some p(x) ∈ S(∅) is nonisolated.
We can assume T is small, since otherwise I(T, ω) ≥ 2ω. Choose (ai : i < ω), a Morley
sequence of realizations of p and let Mn be a prime model over a<n. Since T is supersimple
all types have finite weight. Let k = w(tp(a<n)). We claim that Mm 6∼= Mn for all
m > n(k + 1) (and this will guarantee I(T, ω) ≥ ω). Assume Mn

∼= Mm. Then Mn

contains an independent k + 1-sequence of realizations of the nonisolated type tp(a<n), in
contradiction with Lemma 3.11. 2

Remark 3.13 In fact the proof of Proposition 3.12 shows that the result holds more gen-
erally for every countable simple theory where all types p ∈ Sn(∅) have finite weight.

Simple small one-based theories are contained in the wider class of simple small theories
with finite coding (or finitely based). By definition, a simple theory T is one-based if for
every Lascar strong type Lstp(a/A), the canonical base Cb(a/A) is contained in the bounded
closure bdd(a). It is finitely based if for every finite tuple a, Cb(a/A) is contained in bdd(B)
for some finite set B. Clearly one-based simple theories are finitely based. Supersimple
theories are also finitely based. T is said to have no dense forking chains if there is no chain
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of types (pq(x) : q ∈ Q) such that pq′ is a forking extension of pq whenever q′ > q. It is
known that finitely based small simple theories have no dense forking chains and that in
simple theories with no dense forking chains all finitary types have finite weight. Therefore
Theorem 3.12 can be generalized to countable simple theories without dense forking chains
and, in particular, to countable one-based simple theories. Details of all this can be found
in section 6.1.3 of [24]. The case of one-based stable theories was proved by Pillay. It was
generalized to stable finitely based theories by Hrushovski (see [9]) and to stable theories
without dense forking chains by Herwig, Loveys, Pillay, Tanović, and Wagner (see [6]).

The notion of weight is not as plain as one might think. There are some issues concerning
how finite or infinite weight should be defined. Finite weight of p(x) ∈ S(A) means that
there is a fixed k < ω such that for every nonforking extension tp(a/B) of p(x) over a
larger set B ⊇ A, there is no B-independent k + 1-sequence of tuples (ai : i < k) such that
a 6 |̂

B
ai for all i < k. Finite preweight of p(x) ∈ S(A) means that there is a fixed k < ω

such that there is no a |= p and a A-independent k + 1-sequence of tuples (ai : i < k) such
that a 6 |̂

A
ai for all i < k. In fact we only need that all finitary types over ∅ have finite

preweight. See [17], [24] and [1] for more information.

4 Ehrenfeucht theories and powerful types

Definition 4.1 A complete theory T is an Ehrenfeucht theory if it is countable and 1 <
I(T, ω) < ω. Lachlan’s problem is to find some stable Ehrenfeucht theory or to show that
such theories do not exist. Note that Ehrenfeucht theories are small.

Example 4.2 (A theory with I(T, ω) = n where 2 < n < ω) Consider first the case n =
3. The language is L = {<} ∪ {cn : n < ω}. A prime model of T is (Q, <, n)n<ω. If we
add a copy of Q at the end we get the countable saturated model. A third model is obtained
from the countable saturated model adding a point between Q and its copy; this point is the
supremum of the natural numbers (named by the constants). The third model is universal
but not saturated. For the case n > 3 we add unary predicates {Pi : i = 1, . . . n− 2} which
define a partition of the model into dense subsets. One should specify in which sets are the
constants. The third model gives now rise to n− 2 models according to in which Pi lies the
added point.

Remark 4.3 (Vaught) I(T, ω) 6= 2.

Definition 4.4 A type p(x) ∈ Sn(∅) is powerful if every model that realizes p realizes
any other q(y) ∈ S(∅) (in other words, it is weakly saturated). If Mp is well-defined (for
instance, in a small theory) this only means that Mp is weakly saturated.

Remark 4.5 If T is countable and has an isolated powerful type, then T is ω-categorical.

Proposition 4.6 (Benda) Ehrenfeucht theories have powerful types.

Proof: Let T be an Ehrenfeucht theory without powerful types. We construct a sequence
(an : n < ω) of finite tuples an such that if pn = tp(a0, . . . , an) then pn+1 is omitted in
Mpn , which implies Mpn 6∼= Mpm for m > n. We start with a0 arbitrary. To obtain an+1

we observe that pn is not powerful and therefore there is a type q ∈ S(∅) omitted in Mpn .
Then we take as an+1 some realization of q. 2
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Definition 4.7 For a finitary type p(x) ∈ S(∅) we define

SIp = {(a, b) : a, b |= p and a semi-isolates b}.

Lemma 4.8 If p(x) ∈ Sn(∅) is nonisolated, then for every (some) a |= p there is some
b |= p such that (a, b) 6∈ SIp.

Proof: Let Φ(x, y) be the set of all ϕ(x, y) ∈ L such that p(x) ∧ ϕ(x, y) ` p(y). Note
that Φ is closed under disjunctions and that for a, b |= p, (a, b) 6∈ SIp iff |= ¬ϕ(a, b) for all
ϕ ∈ Φ. We need to check the consistency of p(x) ∪ p(y) ∪ {¬ϕ(x, y) : ϕ(x, y) ∈ Φ}. If it is
inconsistent, then for some θ(x) ∈ p(x), for some ϕ(x, y) ∈ Φ, θ(x) ∧ θ(y) ` ϕ(x, y). Let
a |= p. Since p is nonprincipal, there is some b such that |= θ(b) but b 6|= p. Since |= ϕ(a, b)
and a |= p we get that b |= p, a contradiction. 2

Proposition 4.9 (Pillay) In a small theory, if p(x) ∈ S(∅) is a nonisolated powerful type,
then SIp is not symmetric.

Proof: Let p(x) be a nonprincipal powerful type. If SIp is symmetric, it is an equivalence
relation and all realizations of p in Mp are SIp-equivalent. By Lemma 4.8 there are a, b |= p
in Mp such that (a, b) 6∈ SIp, a contradiction. 2

Definition 4.10 Let p(x) ∈ S(∅) be nonisolated. Following Tsuboi, we say that a complete
type r(x, y) ∈ S(∅) extending p(x)∪p(y) is an order expression if (a, b) ∈ SIp and (b, a) 6∈ SIp
for all |= r(a, b). Lemma 4.9 implies that there is an order expression extending p(x)∪ p(y)
if T is small and p(x) is powerful and nonisolated.

Proposition 4.11 (Tsuboi) If (Ti : i < ω) is a chain of countable ω-categorical theories,
and T =

⋃
i<ω Ti is an Ehrenfeucht theory, then T is unstable.

Proof: T is small and has a nonisolated powerful type p(x) ∈ S(∅). Choose an order
expression r(x, y) extending p(x) ∪ p(y). It is easy to construct a sequence (ai : i < ω) of
realizations ai of p such that |= r(ai, ai+1) for all i < ω. By transitivity of SIp, if i < j then
tp(ai, aj) is an order expression. It follows that i < j iff tp(ai, aj) is an order expression.
Since p is powerful, r(x, y) realized in Mp and there is some ϕ(x, y) ∈ r(x, y) such that
p(x) ∧ ϕ(x, y) ` r(x, y). Let m < ω be such ϕ(x, y) ∈ Lm (the language of Tm) and let

ϕi(x, y) = ∃x0 . . . xi(ϕ(x, x0) ∧ ϕ(x0, x1) ∧ . . . ∧ ϕ(xi, y))

By ω-categoricity of Tm, the infinite disjunction
∨
i<ω ϕi(x, y) is in fact equivalent to a

finite disjunction ψ(x, y) =
∨
i<n ϕi(x, y). It is easy to see that |= ψ(ai, aj) iff i < j. Hence

T is unstable. 2

5 Rudin-Keisler order and limit models

This section is based on the results of Section 1.1 of Sudoplatov’s book [19].

Lemma 5.1 Let T be small. If A0 ⊆ A1 ⊆ . . . ⊆ An is a chain of finite sets contained in
a model M and ϕ(x) ∈ L(A0) is consistent, then some realization of ϕ(x) in M is isolated
over every Ai.
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Proof: Choose a prime model Mn �M over An as starting point of an elementary chain
M0 � M1 � . . . � Mn such that each Mi is prime over Ai. A realization of ϕ(x) in M0

satisfies the requirements. 2

Proposition 5.2 If M is a countable model of a small theory, then M is the union of an
elementary chain (Mi : i < ω) such that every Mi is prime over a finite set Ai ⊆Mi.

Proof: It is an inductive construction. Let M = {ai : i < ω} and let (ϕi(x) : i < ω) be an
enumeration of all L(M)-formulas in the single variable x. In order to get an easier notation
we may assume that each formula appears infinitely many times in the enumeration. We
construct a family (Aji : i, j < ω) of finite subsets of M such that ai ∈ Aii, A

j
i ⊆ Aji+1,

Aji ⊆ Aj+1
i , each Aji is atomic over A0

k for all k ≥ i, and whenever ϕi(x) ∈ L(Aij) (with

j ≤ i) is consistent then it is realized in Aj+1
i . We start with A0

0 = {a0} and we want

to extend (Aji : i, j ≤ n) to (Aji : i, j ≤ n + 1). Put Aji+1 = Aii ∪ {ai+1} for j ≤ i.
If ϕi(x) ∈ L(Aik) is consistent and k ≤ i + 1 is minimal with this property, choose with
Lemma 5.1 some realization a of ϕi(x) which is isolated over every set Ail for all k ≤ l ≤ i+1

and put Aji+1 = Aji for j < k and Aji+1 = Aji ∪{a} for k ≤ j ≤ i+ 1. If ϕi(x) is inconsistent

or it is not over Aii+1, we put Aji+1 = Aji and Ai+1
i+1 = Aii+1. Then Mi =

⋃
j<ω A

j
i is a model

prime over A0
i , (Mi : i < ω) is an elementary chain and M =

⋃
i<ωMi. 2

Corollary 5.3 If T is an Ehrenfeucht theory, then for every countable model M of T
there is some finitary type p(x) ∈ S(∅) such that M is the union of an elementary chain
(Mi : i < ω) with Mi

∼= Mp for all i < ω.

Proof: Use Proposition 5.2 and the fact that there are only finitely many nonisomorphic
countable models. 2

Definition 5.4 A countable model M is a limit model if it is not prime over a finite set
and it is the union M =

⋃
i<ωMi of an elementary chain (Mi : i < ω) where every Mi

is prime over a finite set. It is p-limit or limit over p (where p(x) ∈ Sn(∅)) if Mi
∼= Mp

for all i < ω (that is, every Mi is prime over a realization of p). Notice that, according
to Proposition 5.2, in a small theory a countable model is either prime over a finite set or
limit.

Remark 5.5 If M is not limit and M =
⋃
i<ωMi for an elementary chain (Mi : i < ω)

with Mi
∼= Mp, then M ∼= Mp.

Proof: Assume M is prime over the finite set A ⊆Mi and Mi is prime over ai |= p. Since
ai is a finite tuple, M is atomic over Aai. Since A is atomic over ai, it follows that M is
atomic (and prime) over ai. 2

Remark 5.6 If T is small and it is not ω-categorical, then the countable saturated model
of T is not prime over a finite set, and therefore it is a limit model.

Proposition 5.7 There is a p-limit model iff there are a, b ∈ Mp such that a |= p and
tp(b/a) is nonisolated.

Proof: ⇒. Assume M is a p-limit, say M =
⋃
i<ωMi with Mi prime over ai |= p. If the

right hand side fails, then every finite tuple b ∈ Mi is isolated over any a |= p in Mi, in
particular over a0. It follows that every finite tuple b ∈ M is isolated over a0 and hence
M ∼= Mp.
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⇐. Assume M1 is prime over a1 |= p and contains a, b such that a |= p and tp(b/a) is
nonisolated. Let a0 = a and extend the sequence a0a1 to (an : n < ω) with a0a1 ≡ anan+1.
We choose M0 �M1 prime over a0 and Mn,Mn+1 such that a0a1M0M1 ≡ anan+1MnMn+1.
Then (Mn : n < ω) is an elementary chain and each Mn is prime over an |= p. Let
M =

⋃
n<ωMn. We claim that M 6∼= Mp and therefore it is a p-limit. Assume M ∼= Mp,

say M prime over some d |= p. Then d ∈ Mn for some n < ω. Let q(x, y) = tp(ba). Then
q(x, a) = q(x, a0) is omitted in M0 and realized in M1 and hence q(x, an) is omitted in Mn

and realized by some c ∈Mn+1. Since c is isolated over d, it is also isolated over dan. But
d is isolated over an and hence c is isolated over an, which implies that q(x, an) must be
realized in Mn, a contradiction. 2

Corollary 5.8 If SIp is not symmetric in Mp, then there is a p-limit model.

Proof: By Proposition 5.7. 2

Remark 5.9 If p(x) is a powerful nonisolated type in a small theory, then there is a p-limit
model.

Proof: By and Proposition 4.9 and Corollary 5.8. 2

Definition 5.10 Let p(x), q(y) ∈ S(∅). We say that p is weaker than q in the Rudin-
Keisler order and we write p ≤RK q if any model that contains a realization of q contains
also a realization of p. If p ≤RK q and q ≤RK p, we say that p and q are Rudin-Keisler
equivalent and we write p ∼RK q. Note that if p is isolated then p ≤RK q for any q. Note
also that if q is powerful, then p ≤RK q for any p. We say that p(x) and q(y) are strongly
Rudin-Keisler equivalent and we write p ≡RK q if there are a |= p and b |= q such that
tp(a/b) and tp(b/a) are isolated. Clearly p ≡RK q implies p ∼RK q.

Remark 5.11 If Mq exists (in particular, if T is small), then the following are equivalent
for any p:

1. p ≤RK q

2. p is realized in Mq.

3. There are a |= p and b |= q such that tp(a/b) is isolated.

4. There is some ϕ(x, y) ∈ L such that q(y) ` ∃xϕ(x, y) and q(y) ∪ {ϕ(x, y)} ` p(x).

Definition 5.12 Assume p(x), q(y) ∈ S(∅). We say that ϕ(x, y) ∈ L is (q, p)-principal if
q(y) ` ∃xϕ(x, y), q(y) ∪ {ϕ(x, y)} ` p(x) and q(y) ∪ {ϕ(x, y)} is complete (it has a unique
extension to a type r(x, y) ∈ S(∅)).

Remark 5.13 If T is small and p ≤RK q, then there is some (q, p)-principal ϕ(x, y) ∈ L.

Proof: Let b |= q and let a |= p be such that tp(a/b) is isolated. Let r(x, y) = tp(ab).
Then tp(a/b) = r(x, b) and for some ϕ(x, y) ∈ L, ϕ(x, b) isolates tp(a/b). Hence |= ϕ(a, b)
and q(y) ∪ {ϕ(x, y)} ` r(x, y). Clearly, ϕ(x, y) satisfies the requirements. 2

Proposition 5.14 If T is small, the following are equivalent for any p(x), q(y) ∈ S(∅):

1. Mp
∼= Mq

10



2. p ≡RK q

3. There is some (q, p)-principal ϕ(x, y) ∈ L and some (p, q)-principal ψ(y, x) ∈ L such
that p(x) ∪ q(y) ∪ {ϕ(x, y), ψ(y, x)} is consistent.

4. For some (q, p)-principal ϕ(x, y) ∈ L, ϕ−1(y, x) = ϕ(x, y) is (p, q)-principal and p(x)∪
q(y) ∪ {ϕ(x, y)} is consistent.

Proof: 1 ⇒ 2. Let Mp be prime over a |= p. Since Mq
∼= Mp, Mp is also prime over some

b |= q. Clearly, tp(a/b) and tp(b/a) are isolated.

2 ⇒ 3. Assume a |= p, b |= q and the types tp(a/b), tp(b/a) are isolated. Let r(x, y) =
tp(a, b). Since tp(a/b) = r(x, b) and tp(b/a) = r(a, y), we can find ϕ(x, y), ψ(y, x) ∈ L such
that |= ϕ(a, b)∧ψ(b, a), ϕ(x, b) ` r(x, b) and ψ(y, a) ` r(a, y). Then q(y)∪{ϕ(x, y)} ` r(x, y)
and p(x) ∪ {ϕ(y, x)} ` r(x, y), and p(x) ∪ q(y) ∪ {ϕ(x, y), ψ(y, x)} is consistent.

It is clear that 3 implies 4 (take the conjunction of ϕ(x, y) and ψ(y, x)) and that 4
implies 3. We prove now 4 ⇒ 1. We can find a |= p and b |= q such that Mp is prime over
a, Mq is prime over b and |= ϕ(a, b). There are a′ ∈ Mq and b′ ∈ Mp such that |= ϕ(a′, b)
and |= ϕ(b′, a). Then ab′ ≡ ab ≡ a′b and hence tp(a/b′) is isolated. It follows that Mp is
prime over b′ |= q and hence Mp

∼= Mq. 2

Corollary 5.15 Let T be small. If p ∼RK q and Mp 6∼= Mq, then some model is a p-limit
and a q-limit.

Proof: It is easy to construct an elementary chain (Mn : n < ω) with M2n
∼= Mp and

M2n+1
∼= Mq. Let M =

⋃
n<ωMn. If M is not limit, then by Proposition 5.5 Mp

∼= M ∼=
Mq. 2

Remark 5.16 It is clear that the previous result obviously hold also for finitely many
Rudin-Keisler equivalent types.

Corollary 5.17 Let T be small. If p ∼RK q and there is a p-limit model, then some model
is a p-limit and a q-limit.

Proof: If Mp
∼= Mq, any p-limit is a q-limit. If Mp 6∼= Mq, then apply Corollary 5.15. 2

Remark 5.18 If some model M is a p-limit and a q-limit, then p ∼RK q.

Proof: Let M be the union of the elementary chain (Mi : i < ω) with Mi
∼= Mp and of

the elementary chain (Ni : i < ω) with Ni ∼= Mq. Since q is realized in Mq, it is realized in
M . The realization appears in some Mi and hence q is realized in Mp. This shows q ≤RK p.
Similarly, p ≤RK q. 2

Definition 5.19 Let RK(T ) be the set of isomorphism types of countable models of T
that are prime over a finite set. By Proposition 5.14, in a small theory we can identify
RK(T ) with S(∅)/ ≡RK. The Rudin-Keisler order induces a preordering ≤RK of RK(T )
with equivalence relation ∼RK. For each class X ∈ RK(T )/ ∼RK let IL(X) the cardinality of
the set of isomorphism types of countable models that are p-limit for some p with Mp ∈ X.

Remark 5.20 Let T be small. There is a smallest element in RK(T ) (the prime model)
and every two elements have a supremum: if a |= p and b |= q, and r = tp(ab), then Mr is
the supremum of Mp and Mq. If T has only finitely many models, then the order is finite
and has a greatest element: Mp for p a powerful type.
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Remark 5.21 Let T be small.

1. T is ω-categorical iff |RK(T )| = 1.

2. If |RK(T )| = 2, then every nonisolated type is powerful.

Proof: 1. If T is not ω-categorical, then it has a nonisolated type p. Then Mp is not
isomorphic to the prime model, which shows |RK(T )| ≥ 2.

2. If p, q are nonisolated then Mp, Mq are not prime and therefore |RK(T )| = 2 implies
Mp
∼= Mq. 2

Proposition 5.22 For any countable T , the following are equivalent:

1. I(T, ω) < ω.

2. T is small, |RK(T )| < ω, and IL(X) < ω for every class X ∈ RK(T )/ ∼RK.

In fact, if these conditions hold, then

I(T, ω) = |RK(T )|+
m∑
i=0

IL(Xi)

(where X0, . . . , Xm are the different elements of RK(T )/ ∼RK) and

a. If X is the class of the prime model, IL(X) = 0.

b. If X is the class of Mp with p powerful, then |RK(T )| > 1 implies IL(X) ≥ 1.

c. If |X| > 1, then IL(X) ≥ 1.

Proof: a. The union of an elementary chain (Mi : i < ω) is prime if every Mi is prime.

b. The assumption |RK(T )| > 1 means that T is not ω-categorical and hence a powerful
type p is nonisolated. Then apply Remark 5.9.

c. By Corollary 5.15. 2

Corollary 5.23 For any countable T , the following are equivalent:

1. I(T, ω) = 3.

2. T is small, |RK(T )| = 2, and any two p-limit models are isomorphic for any p.

Proof: It is clear that 2 implies 1 : the models are the prime model, the model Mp with p
powerful and the unique p-limit, which is saturated. 1 ⇒ 2 follows from Proposition 5.22.
2

6 Smooth classes

This section is based on a previous script partially done jointly with Hans Adler and Silvia
Barbina. Some topics have been discussed some time ago with Daniel Palaćın.

We assume L is a relational language.
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Definition 6.1 Let K be a class of finite structures and assume ≤ is a binary relation on
K. We say that (K,≤) is smooth if K is closed under isomorphism and ≤ is a partial order
on K refining ⊆ and satisfying the following conditions:

1. If A ≤ B and f : B ∼= B′ is an isomorphism such that f(A) = A′, then A′ ≤ B′.

2. If A ⊆ B ⊆ C, B ∈ K and A ≤ C, then A ≤ B.

If M is an L-structure, we extend the relation ≤ for A ∈ K by

A ≤M iff A ≤ B for all B ∈ K such that A ⊆ B ⊆M

Clearly, if f is an automorphism of M and A ≤M , then f(A) ≤M .

Definition 6.2 Let (K,≤) be a smooth class. The L-structure M is a (K,≤)-union if
M =

⋃
n<ω Cn for a ≤-chain (Cn : n < ω) of structures Cn ∈ K.

An embedding f : A→ B is strong if f(A) ≤ B. In this case we say that A is strongly
embeddable in B. Similarly for an embedding f : A→M .

We say that M is (K,≤)-rich if for all A ≤ B such that A ≤ M , there is some strong
embedding f : B →M over A, that is, such that f � A is the identity.

We say that M is (K,≤)-generic if

1. M is a (K,≤)-union

2. All A ∈ K are strongly embeddable in M .

3. M is (K,≤)-rich.

Remark 6.3 Let (K,≤) be a smooth class, let M be a (K,≤)-union, say M =
⋃
n<ω Cn

where Cn ≤ Cn+1. Then, A ≤ M iff A ≤ Cn for some n < ω iff there is some n < ω such
that A ≤ Cm for all m ≥ n. Hence, if A ≤ B ≤M , then A ≤M .

Definition 6.4 Let (K,≤) be smooth.

1. (K,≤) has the joint embedding property (JEP) if any A,B ∈ K are strongly embed-
dable in some C ∈ K.

2. (K,≤) has the amalgamation property (AP) if for any A,B1, B2 ∈ K if f1 : A → B1

and f2 : A → B2 are strong embeddings, then there is some C ∈ K and strong
embeddings g1 : B1 → C, g2 : B2 → C such that g1 ◦ f1 = g2 ◦ f2.

Note that if we admit ∅ ∈ K and ∅ ≤ A for every A ∈ K, then AP implies JEP.

Theorem 6.5 Let (K,≤) be smooth.

1. There is a (K,≤)-generic model M if and only if K/∼= is countable, and (K,≤)
satisfies AP and JEP.

2. If M,N are (K,≤)-generic, then M ∼= N .

Proof: 2. The set of isomorphisms between strong substructures A ≤M and B ≤ N is a
nonempty system of partial isomorphisms with the back-and-forth properties. 2

13



Definition 6.6 A class K of finite structures is oligomorphic if for every n < ω there are
only finitely many nonisomorphic structures of cardinality n in K.

Remark 6.7 If (K,≤) is smooth and M is generic, then M is homogeneous in the following
sense: if A ≤ M , B ≤ M and f : A ∼= B is an isomorphism, then f can be extended to
an automorphism of M . Moreover, this homogeneity property can replace richness in the
definition of a generic structure.

Corollary 6.8 Let (K,≤) be an oligomorphic smooth class. If M is an L-structure, A ≤
M , and M � N , then A ≤ N .

Proof: Let |A| = n and fix some m > 0. We want to express in N that if A ⊆ B ⊆ N
with B ∈ K and |B| = n + m, then A ≤ B. Since K is oligomorphic the number of
isomorphism types over A of structures in K0 = {B ∈ K : A ⊆ B and |B| = n + m} is
finite. Let B1, . . . , Bk be a list of representatives and let σ1(x1, . . . , xm), . . . , σk(x1, . . . , xm)
be formulas σi(x1, . . . , xm) ∈ L(A) such that for any model N , for all b1, . . . , bm ∈ N with
A ∪ {b1, . . . , bm} ∈ K0:

N |= σi(b1, . . . , bm)⇔ A ∪ {b1, . . . , bm} ∼=A Bi.

(where A ∪ {b1, . . . , bm} is the substructure of N with this universe). If K1 = {B ∈
K0 : A ≤ B} we may assume that B1, . . . , Bj (with j ≤ k) is a list of representatives of
isomorphism types over A of structures in K1. Then the condition can be expressed by
∀x1 . . . xm

∧
j<i≤k ¬σi(x1, . . . , xm). 2

Corollary 6.9 Let (K,≤) be an oligomorphic smooth class, M an L-structure, and C the
monster model of Th(M). Assume a enumerates some A ≤ M and b enumerates some
finite substructure B ⊆ C. If a ≡ b, then B ≤ C.

Proof: Let f be an automorphism of C such that f(a) = b. Then B ≤ f(M) and by
Corollary 6.8 B ≤ C. 2

7 Closures

L is a relational language.

Definition 7.1 The class K is cofinal in an L-structure M if for each finite A ⊆M there
is some B ∈ K such that A ⊆ B ⊆M . The ordered class (K,≤) is cofinal in M if for each
finite A ⊆ M there is some B ∈ K such that A ⊆ B ≤ M . In [2] this last definition is
rephrased as: M has finite closures.

Remark 7.2 Let (K,≤) be smooth.

1. If M is countable, then (i) K is cofinal in M iff M is a union of an ascending chain
of structures of K, and (ii) (K,≤) is cofinal in M iff M is a (K,≤)-union.

2. In general, (i) K is cofinal in M iff M is a union of a ⊆-directed system of structures
in K, and (ii) (K,≤) is cofinal in M iff M is a union of a ≤-directed system of
structures in K.

3. If (K,≤) is cofinal in M and A ≤ B ≤M , then A ≤M .
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Proof: Clear. 2

Remark 7.3 If L is finite and (K,≤) is smooth and it is closed under substructures, with
generic M . Then K is cofinal in every N ≡M .

Proof: Let n < ω. There are only finitely many L-structures of cardinality n up to
isomorphism and the isomorphism type of one can be given by a formula ϕ(x1, . . . , xn). Let
ϕ1(x1, . . . , xn), . . . , ϕk(x1, . . . , xn) be formulas characterizing the isomorphism types of all
structures in K of size n. Then M |= ∀x1 . . . xn(

∧
1≤i<j≤n xi 6= xj →

∨
1≤i≤k ϕi(x1, . . . , xn)

and this sentence hold also in N , which implies that every substructure of N of cardinality
n belongs to K. 2

Definition 7.4 Let (K,≤) be a smooth class and let M be an L-structure. Assume A ⊆
B ⊆M and B ∈ K. We say that B is a ≤-closure of A in M if B is a minimal extension of
A such that B ≤M . If (K,≤) is cofinal in M , then any A ⊆M has at least one ≤-closure.

Remark 7.5 Let (K,≤) be a smooth class cofinal in M . If B ∈ K is a ≤-closure of A ⊆M
in M and A ⊆ C ⊆ B is such that C ≤ B, then C = B.

Proof: Since C ≤ B ≤M , we get C ≤M . Minimality of B gives B = C. 2

Definition 7.6 We say that a smooth class (K,≤) satisfies the diamond principle ♦ if for
all A1, A2, B ∈ K, if A1 ⊆ B and A2 ≤ B then A1∩A2 ≤ A1. Similarly, we say that (K,≤)
satisfies the weak diamond principle ♦w if the same happens with the additional hypothesis
that A1 ≤ B. In both cases this implies A1 ∩A2 ∈ K.

Proposition 7.7 Let (K,≤) be a smooth class cofinal in M . If (K,≤) satisfies the ♦w
principle, then any A ⊆M has at most one ≤-closure.

Proof: Assume A1, A2 ∈ K are ≤-closures in M of A ⊆M . Since A1 ≤M and A2 ≤M ,
there is some B ∈ K such that A1 ≤ B and A2 ≤ B. By ♦w, A1∩A2 ≤ A1. By Remark 7.5,
A1 ∩A2 = A1. Similarly, A1 ∩A2 = A2. 2

Definition 7.8 Let (K,≤) be a smooth class cofinal in M , and assume (K,≤) satisfies the
♦w principle. In M there is a unique ≤-closure of A ⊆ M and we denote it by clM (A).
If M is understood we just write cl(A). A finite substructure A ⊆ M is called closed if
cl(A) = A. Note that A is closed iff A ≤M .

Remark 7.9 Let (K,≤) be a smooth class cofinal in M , and assume (K,≤) satisfies the
♦w principle, and A,B are finite substructures of M .

1. A ⊆ cl(A)

2. cl(cl(A)) = cl(A).

3. If A ⊆ B, then cl(A) ⊆ cl(B).

4. cl(A ∩B) ⊆ cl(A) ∩ cl(B) = cl(cl(A) ∩ cl(B)).

Proof: 2. By Remark 7.5 since cl(A) ≤ cl(cl(A)).

3. Since A ⊆ cl(B) and cl(B) is closed, cl(A) ⊆ cl(B).

4. This follows directly from 1, 2, and 3. 2
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Definition 7.10 Let (K,≤) be a smooth class cofinal in M , and assume (K,≤) satisfies
the ♦w principle. For an arbitrary substructure A ⊆ M we define clM (A) =

⋃
{clM (A0) :

A0 ⊆ A finite}. This clearly agrees with the previous use. Again, we omit the subscript M
when possible and we call an arbitrary substructure A ⊆M closed if cl(A) = A. It follows
from Remark 7.9 that cl is a finitary closure operator.

Remark 7.11 Assume (K,≤) is smooth and oligomorphic, with ♦w and cofinal in M . If
A ⊆M is finite and f is an automorphism of the monster model such that f(A) ⊆M , then
f(cl(A)) = cl(f(A)).

Proof: By Corollary 6.9, f(cl(A)) and cl(f(A)) are closures of f(A) in M . 2

Definition 7.12 Let (K,≤) be smooth. A minimal pair is a pair of elements (A,B) of
K such that A ⊆ B, A 6≤ B and A ≤ C for all C ∈ K such that A ⊆ C ( B. A chain
of minimal pairs is an ascending chain (Ai : i < ω) of structures Ai ∈ K such that each
(Ai, Ai+1) is a minimal pair. The statement that there are no chains of minimal pairs is
condition C2 in [23].

Proposition 7.13 Let (K,≤) be a smooth class and let M be generic.

1. If N ≡ M is an ω-saturated model and (K,≤) is cofinal in N and satisfies the ♦
principle, then there are no chains of minimal pairs.

2. If there are no chains of minimal pairs and K is cofinal in the L-structure N , then
(K,≤) is cofinal in N .

Proof: 1. If there is a chain of minimal pairs, since N is ω-saturated, there is such a chain
contained in N . Take C ≤ N such that A0 ⊆ C and choose i < ω such that Ai ⊆ C but
Ai+1 * C. Then Ai ⊆ Ai+1 ∩ C ( Ai+1. By ♦, Ai+1 ∩ C ≤ Ai+1. Since (Ai, Ai+1) is a
minimal pair, Ai ≤ Ai+1 ∩ C. Hence Ai ≤ Ai+1, a contradiction.

2. We show that any finite A ⊆ N , A ∈ K, has a ≤-closure in N . If not, there is some
A0 ∈ K, such that A ⊆ A0 ⊆ N and A 6≤ A0. We take it minimal with this property. By
iteration we construct an ascending ⊆-chain (Ai : i < ω) of minimal pairs (Ai, Ai+1). 2

Proposition 7.14 Let (K,≤) be a smooth oligomorphic class that satisfies the ♦w principle
and let M be generic.

1. M is homogeneous.

2. For any finite substructure A ⊆M , cl(A) ⊆ acl(A).

Proof: 1. Let A,B finite subsets of M such that f(A) = B for some automorphism f of
the monster model. By Remark 7.11, f(cl(A)) = cl(B) and hence f � cl(A) can be extended
to an automorphism of M .

2. Let C be the monster model of Th(M). By Remark 7.11 every automorphism f of C
fixing pointwise A fixes setwise cl(A). Since cl(A) is finite, cl(A) ⊆ acl(A). 2

Definition 7.15 Let (K,≤) be a smooth class. We say that (K,≤) has disjoint amalga-
mations if for any A,B1, B2 ∈ K if f1 : A → B1 and f2 : A → B2 are strong embeddings,
then there is some C ∈ K and strong embeddings g1 : B1 → C, g2 : B2 → C such that
g1 ◦ f1 = g2 ◦ f2 and g1(B1) ∩ g2(B2) = g1(f1(A)). It is enough to check this for the case
when f1 = f2 is the identity on A.
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Proposition 7.16 Let (K,≤) be an oligomorphic smooth class, let M be generic of (K,≤),
and assume (K,≤) satisfies the ♦w principle. The following are equivalent:

1. (K,≤) has disjoint amalgamations.

2. For any finite A ⊆M , cl(A) = acl(A).

Proof: 1 ⇒ 2. By Proposition 7.14, cl(A) ⊆ acl(A). Assume b ∈ acl(A) and choose
B ≤ M such that for all b′ ≡A b, b′ ∈ B. By disjoint amalgamation, there is some C ∈ K
and strong embeddings g1 : B → C, g2 : B → C such that g1 � cl(A) = g2 � cl(A) and
g1(B) ∩ g2(B) = g1(cl(A)). We may assume C ≤M and g1 is the identity. Since g2 can be
extended to an automorphism of M (which fixes setwise the orbit of b under Aut(M/A)) it
follows that b ∈ g1(B) ∩ g2(B) = cl(A).

2 ⇒ 1. Without loss of generality f1 = f2 is the identity on A and A ≤ M . Then
A = cl(A) = acl(A). By Neumann’s Lemma, whenever acl(A) ⊆ B ∩ C ⊆ M and B is
finite, there is some elementary mapping f : B →M fixing pointwise acl(A) and such that
(f(B) r acl(A)) ∩ C = ∅. 2

Proposition 7.17 Let (K,≤) be a smooth oligomorphic class. If a generic model M of
(K,≤) is weakly saturated, then it is saturated.

Proof: Since Th(M) has a countable weakly saturated model, it is small and has a
countable saturated model N �M . We will show that N is generic, which implies M ∼= N
and hence that M is saturated. By Corollary 6.8, every A ∈ K is strongly embeddable in
N . If A ⊆ N is finite, by weakly saturation there is an elementary mapping f : A→M and
hence there is some B ≤ M such that f(A) ⊆ B. By ω-saturation there exists also some
finite B′ such that A ⊆ B′ ⊆ N and f extends to some elementary bijection g : B′ → B.
By Corollary 6.9, B′ ≤ N . It follows that N is a (K,≤)-union. Finally, consider some
A ⊆ N and some B ∈ K such that A ≤ B. By weakly saturation of M there is some
elementary mapping f : A → M . By ω-saturation of N , there is some M1 � N and some
automorphism f1 of the monster model such that f ⊆ f1 and f1(M1) = M . By genericity
of M1 there is some strong embedding g : B →M1 fixing pointwise A. By Corollary 6.8 it
is also an strong embedding in N . 2

8 Predimension and dimension

In this and in the next sections L is a countable relational language and ∅ is accepted as
L-structure.

Definition 8.1 Let K be a class of finite L-structures closed under isomorphism and sub-
structures. A mapping δ : K → R≥0 is a predimension if

1. δ(∅) = 0

2. If A ∼= B, then δ(A) = δ(B).

3. δ(AB) + δ(A ∩B) ≤ δ(A) + δ(B).

In 3, AB is some structure in K whose universe is A ∪ B and extends the structures
A,B ∈ K. In this context A ∩B is well-defined.

In [23] the definition of predimension has an additional condition that we will only use
occasionally:
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4. There is no sequence (Ai : i < ω) such that Ai ⊆ Ai+1 and δ(Ai) > δ(Ai+1) for all
i < ω.

Remark 8.2 If K is closed under isomorphisms and substructures and Age(M) is the set
of all finite structures embeddable in M , then: K is cofinal in M iff Age(M) ⊆ K. Note
that in the case of a finite language L, M ≡ N implies Age(M) = Age(N).

Definition 8.3 Let δ be a predimension in K. We define two relations ≤δ and ≤′δ on K
by

A ≤δ B ⇔ A ⊆ B and δ(X) ≥ δ(A) for all X such that A ⊆ X ⊆ B

and
A ≤′δ B ⇔ A ⊆ B and δ(X) > δ(A) for all X such that A ( X ⊆ B

If the context allows it, we write ≤ and ≤′ instead of ≤δ and ≤′δ.

Remark 8.4 A ≤′ B implies A ≤ B.

Proposition 8.5 Let δ be a predimension in K. Then (K,≤δ) is a smooth class with ♦.
Condition 4 implies additionally that there are no chains of minimal pairs. Hence, if (K,≤)
is cofinal in M , every finite A ⊆M has a unique closure clM (A) ∈ K, a minimal extension
of A which is strong in M . Assuming condition 4, then Age(M) ⊆ K implies that (K,≤)
is cofinal in M and hence clM (A) is well-defined for every A ⊆M .

Proof: Only transitivity and ♦ need some checking. We begin with transitivity. Assume
A ≤ B, B ≤ C and A ⊆ X ⊆ C. We show that δ(X) ≥ δ(A). Note that δ(XB) ≥ δ(B) and
δ(X ∩ A) ≥ δ(A). Hence δ(X) + δ(B) ≥ δ(XB) + δ(X ∩ B) ≥ δ(B) + δ(A) and therefore
δ(X) ≥ δ(A).

For ♦, assume A ≤ AB and let us check that A∩B ≤ B. Suppose A∩B ⊆ X ⊆ B. Then
A ⊆ AX ⊆ AB and therefore δ(AX) ≥ δ(A). Then δ(X) + δ(A) ≥ δ(XA) + δ(X ∩ A) ≥
δ(A) + δ(X ∩A). Since X ∩A = B ∩A, we conclude δ(X) ≥ δ(B ∩A).

If (A,B) is a minimal pair, then δ(A) > δ(B). Therefore, inexistence of chains of
minimal pairs follows from condition 4 in the definition of predimension. By Remark 8.2
and propositions 7.13 and 7.7 we obtain existence and uniqueness of closures. 2

There is a corresponding proposition for ≤′:

Proposition 8.6 Let δ be a predimension in K. Then (K,≤′δ) is a smooth class with
♦. Condition 4 implies additionally that there are no chains of minimal pairs. Hence, if
(K,≤′) is cofinal in M , every finite A ⊆ M has a unique closure cl′M (A) ∈ K, a minimal
extension of A which is strong in M . Assuming condition 4, then Age(M) ⊆ K implies
that (K,≤′) is cofinal in M and hence cl′M (A) is well-defined for every A ⊆M .

Proof: Similar to the proof of 8.5. For transitivity, we assume A ( X ⊆ C and we
distinguish two cases, according to whether B = BX or not. In the first case, A ( X ⊆ B
and hence δ(X) > δ(A). In the second case, B ( BX ⊆ C and hence δ(BX) > δ(B).
On the other hand, δ(B ∩X) ≥ δ(A) and therefore δ(X) + δ(B) ≥ δ(XB) + δ(X ∩ B) >
δ(B) + δ(A) and hence δ(X) > δ(A). For ♦, it is essentially the same proof. 2

Lemma 8.7 Let δ be a predimension in K and assume (K,≤) is cofinal in M and A ⊆
B ⊆M .
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1. δ(B) ≥ δ(cl(A)).

2. If δ(B) = δ(cl(A)), then cl(A) ⊆ B.

If moreover (K,≤′) is cofinal in M , then

3. δ(B) ≥ δ(cl′(A)).

4. If δ(B) = δ(cl′(A)), then B ⊆ cl′(A).

5. cl(A) ⊆ cl′(A).

Proof: We first claim that for every X such that A ⊆ X ( cl(A) we have δ(X) > δ(cl(A)).
Assume not and let X be a maximal counterexample. Then for every Y such that X ⊆ Y ⊆
cl(A) we have δ(Y ) ≥ δ(X) (by maximality) and therefore X ≤ cl(A). It follows X ≤ M
and hence X = cl(A), a contradiction.

1. We apply ♦ to B and cl(A): since cl(A) ≤ cl(A)B, we get cl(A) ∩ B ≤ B. Hence
δ(B) ≥ δ(cl(A) ∩B) and by the claim δ(cl(A) ∩B) ≥ δ(cl(A)). Thus, δ(B) ≥ δ(cl(A)).

2. If cl(A) 6⊆ B, then A ⊆ B ∩ cl(A) ( cl(A) and by the claim δ(B ∩ cl(A)) > δ(cl(A)).
By ♦, δ(B) ≥ δ(B ∩ cl(A)) and therefore δ(B) > δ(cl(A)).

Now we assume (K,≤′) is cofinal in M and we claim that for every X such that A ⊆
X ( cl′(A) we have δ(X) ≥ δ(cl′(A)). If not and X is a maximal counterexample, then
X ≤′ cl′(A) and therefore X = cl′(A).

3. Assume δ(B) < δ(cl′(A)). By ♦, δ(B) ≥ δ(B ∩ cl′(A)). If B ∩ cl′(A) = cl′(A) we get
a contradiction. Otherwise B ∩ cl′(A) ( cl′(A) and by the claim δ(B ∩ cl′(A)) ≥ δ(cl′(A).

4. Assume B 6⊆ cl′(A). Then A ⊆ B ∩ cl′(A) ( B and, by ♦, δ(B) > δ(B ∩ cl′(A)). The
case B ∩ cl′(A) = cl′(A) is impossible by assumption. Then B ∩ cl′(A) ( cl′(A) and by the
claim δ(B ∩ cl′(A)) ≥ δ(cl′(A)). Hence δ(B) > δ(cl′(A)), a contradiction.

5. This follows from all the previous points. 2

Definition 8.8 Assuming δ is a predimension in K and assuming (K,≤) is cofinal in M
we define a dimension in M . For every finite A ⊆M the dimension of A in M is

dM (A) = min{δ(B) : A ⊆ B ⊆M}

and we write d(A) if M is understood. The existence of the minimum follows from
Lemma 8.7:

dM (A) = δ(clM (A)).

Assuming (K,≤′) is cofinal in M we get the same dimension as dM (A) = δ(cl′(A)).

Remark 8.9 Let δ be a predimension in K and assume (K,≤) is cofinal in M and A ⊆
B ⊆M . Then

cl(A) =
⋂
{B : A ⊆ B ⊆M and δ(B) = d(A)}.

If (K,≤′) is cofinal in M , then

cl′(A) =
⋃
{B : A ⊆ B ⊆M and δ(B) = d(A)}.

Proof: By Lemma 8.7 and by the fact that d(A) = δ(cl(A)) = δ(cl′(A)). 2
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Proposition 8.10 Let δ be a predimension in K and assume (K,≤) is cofinal in M . Then:

1. d(∅) = 0

2. d(A) = d(f(A)) for every f ∈ Aut(M).

3. If A ⊆ B, then d(A) ≤ d(B).

4. d(AB) + d(A ∩B) ≤ d(A) + d(B)

If moreover d(A) ∈ ω for every A, then

5. the operator
A 7→ cld(A) = {a ∈M : d(A ∪ {a}) = d(A)}

determines a pregeometry on subsets of M (if A ⊆ M is infinite we take cld(A) =⋃
{cld(B) : B ⊆ A is finite }). For finite A: clM (A) ⊆ cld(A) and d(A) is the

dimension of A in the pregeometry.

Proof: We check 4. Choose A′ ⊇ A and B′ ⊇ B with d(A) = δ(A′) and d(B) = δ(B′).
Then d(AB) + d(A∩B) ≤ d(A′B′) + d(A′ ∩B′) ≤ δ(A′B′) + δ(A′ ∩B′) ≤ δ(A′) + δ(B′) =
d(A) + d(B). 2

9 Some predimensions

Definition 9.1 Let L consist only of an n-ary relational symbol R and let K be the class
of all finite L-structures A such that RA is symmetric and irreflexive, that is:

1. RA(a1, . . . , an) implies RA(aπ(1), . . . , aπ(n)) for any permutation π of {1, . . . , n}.

2. RA(a1, . . . , an) implies ai 6= aj for all i 6= j.

The case A = ∅ is allowed. Clearly, RA can always be identified with a subset of [A]n, that
is, with a collection of n-element subsets of A. The number of edges of RA is, by definition,
the number of tuples in RA up to permutation. We will denote it by |RA| in the hope that
this won’t be understood literally as the plain cardinality of RA.

Given a real number α ≥ 0, we define δα(A) = |A| − α · |RA| for A ∈ K. We define

1. A ≤ B iff δα(X) ≥ δα(A) for all X such that A ⊆ X ⊆ A.

2. A ≤′ B iff δα(X) > δα(A) for all X such that A ( X ⊆ A.

3. K0 = {A ∈ K : ∅ ≤ A}

4. K ′0 = {A ∈ K : ∅ ≤′ A}

Proposition 9.2 K0 and K ′0 are closed under isomorphisms and substructures, δα is a
predimension in K0, in K ′0, and more generally in every subclass of K0 closed under iso-
morphisms and substructures. Hence, in all these classes ≤ and ≤′ define smooth classes
with ♦.

20



Proof: We check that δ(AB) + δ(A ∩ B) ≤ δ(A) + δ(B). Let X be the set of edges of
RAB with some vertex in A r B and some vertex in B r A, let Y be the set of edges of
RAB with some vertex in A r B and no vertex in B r A, and let Z be the set of edges
of RAB with some vertex in B r A and no vertex in A r B. Then RA = Y ∪ RA∩B ,
RB = Z ∪ RA∩B and RAB = X ∪ Y ∪ Z ∪ RA∩B . Now observe that δ(AB) + δ(A ∩ B) =
|AB|+ |A ∩B| − α · (|RAB |+ |RA∩B |) = |A|+ |B| − α · (|X ∪ Y ∪ Z ∪RA∩B |+ |RA∩B |) =
|A|+ |B| − α · (|RA|+ |RB |+ |X|) = δ(A) + δ(B)− α · |X| ≤ δ(A) + δ(B). 2

Remark 9.3 If α is an irrational number, then ≤ = ≤′.

Proof: Assume A ≤ B but A 6≤′ B. Then δ(X) = |X| − α · |RX | = δ(A) = |A| − α · |RA|
for some X such that A ( X ⊆ A. Then 0 6= |X| − |A| = α · (|RX | − |RA|) and therefore
α ∈ Q. 2

Definition 9.4 Let A, B be arbitrary L-structures and assume A ∩ B is a common sub-
structure of them. The free amalgam of the structures A,B is the structure of universe AB
with RAB = RA ∪RB for every relation symbol R ∈ L. In other words, there are no tuples
in RAB with some point in A r B and some point in B r A. We denote it by A t B. We
say that a class K has free amalgamation if A tB ∈ K whenever A,B ∈ K

Remark 9.5 If K is closed under isomorphism and has free amalgamation, then it has
disjoint amalgamation.

Proof: In order to amalgamate A and B over C ⊆ A,B one can always assume that
A ∩B = C just by taking some B′ ∼=C B such that B′ ∩A = C. Then A tB works. 2

Remark 9.6 Let A,B ∈ K and assume AB is a common extension with universe A ∪ B.
Then AB = A tB iff δ(AB) + δ(A ∩B) = δ(A) + δ(B).

Remark 9.7 Assume A,B ∈ K and A ∩ B is a common substructure. For any X ⊆ A
and Y ⊆ B, X t Y is the substructure of A tB with universe X ∪ Y .

Proposition 9.8 Assume A,B ∈ K0 and A ∩B is a common substructure. If A ∩B ≤ A
then B ≤ A t B and A t B ∈ K0. Similarly, in case A,B ∈ K ′0 and A ∩ B ≤′ A, we get
A tB ∈ K ′0 and B ≤′ A tB.

Proof: Let X ⊆ AtB. Then X = (A∩X)t (B ∩X) and hence δ(X) + δ(X ∩A∩B) =
δ(A ∩X) + δ(B ∩X). By ♦, A ∩ B ∩X ≤ A ∩X and thus δ(A ∩X) ≥ δ(A ∩ B ∩X). It
follows that δ(X) ≥ δ(B ∩X) + (δ(A ∩X)− δ(A ∩B ∩X)) ≥ 0. Hence A tB ∈ K0.

Let B ⊆ X ⊆ A t B. Then A ∩ B ⊆ A ∩X ⊆ A and therefore δ(A ∩X) ≥ δ(A ∩ B).
Notice that X = B t (A ∩X) and δ(B t (A ∩X)) + δ(A ∩ B) = δ(B) + δ(A ∩X). Hence
δ(X) ≥ δ(B) + (δ(A ∩X)− δ(A ∩B)) ≥ δ(B). This shows that B ≤ A tB.

The case of K ′0 is similar. 2

Proposition 9.9 (K0,≤) and (K ′0,≤′) have free amalgamation and therefore they have the
amalgamation property (AP) and the joint embedding (JEP) properties and in the generic
model cl(A) = acl(A) = cl′(A).

Proof: By Proposition 9.8, Remark 9.5 and Proposition 7.16. 2
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10 Predimension and ω-categoricity

Definition 10.1 Given some strictly increasing f : R≥0 → R≥0 with limx→∞ f(x) = ∞,
let Kf = {A ∈ K0 : δ(B) ≥ f(|B|) for every B ⊆ A} and let K ′f = {A ∈ K ′0 : δ(B) ≥
f(|B|) for every B ⊆ A}

Proposition 10.2 If f : R≥0 → R≥0 is strictly increasing and limx→∞ f(x) = ∞, then
Kf and K ′f are smooth classes with ♦ closed under substructures. If some of these classes
has the amalgamation property, then the generic is ω-categorical.

Proof: We check the ω-categoricity of the generic M . We claim that for every n < ω
there is some m < ω such that for every finite substructure A ⊆ M , with |A| ≤ n we get
|cl(A)| ≤ m. The reason is that f(|cl(A)|) ≤ δ(cl(A)) ≤ δ(A) ≤ |A| and there is some real
r in the range of f with r ≥ |A| and hence if we take m ≥ f−1(r) we obtain |cl(A)| ≤ m.
Now, we count orbits of of n-tuples of M under Aut(M). There are only finitely many
atomic types of m-tuples in M and in particular of m-tuples enumerating closed sets. The
atomic type of a closed set determines its elementary type and its orbit under Aut(M).
We have proved that the elementary type of an n-tuple can be extended to the elementary
type of a closed m-tuple. Therefore, the mapping sending a type of a closed m-tuple to its
restriction to the first n variables is surjective and we conclude that there are only finitely
many orbits of n-tuples. 2

11 Dimension and stability

Definition 11.1 A dimension function in M is a mapping d assigning a real number
d(A) ∈ R≥0 to each finite subset A ⊆M and such that

1. d(∅) = 0

2. d(A) = d(f(A)) for every f ∈ Aut(M).

3. If A ⊆ B, then d(A) ≤ d(B).

4. d(AB) + d(A ∩B) ≤ d(A) + d(B).

Let cl be a closure operator defined also for all finite subsets of M and such that

1. cl(A) is finite for every finite A ⊆M .

2. f(cl(A)) = cl(f(A)) for every finite A ⊆M .

3. If A,B ⊆ M are closed and A ∼= B, then f(A) = B for some automorphism f ∈
Aut(M).

We say that cl and d are compatible if d(A) = d(cl(A)) for every A.

For A ⊆ M of arbitrary cardinality, the closure is defined as cl(A) =
⋃
{X : X ⊆

A is finite }. For finite A,B ⊆M the relative dimension d(A/B) of A over B is defined as

d(A/B) = d(AB)− d(B)

and for finite A ⊆M and arbitrary B ⊆M this notion is extended as

d(A/B) = inf{d(A/X) : X ⊆ B is finite }
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In this context we define the ternary relation A |̂ d

C
B for arbitrary subsets A,B,C of

M by the condition:

cl(AC) ∩ cl(BC) = cl(C) and d(A′/CB′) = d(A′/C) for all finite A′ ⊆ A and B′ ⊆ B.

Remark 11.2 Let d be a dimension function in M compatible with the closure operator cl.
If A ⊆ M is finite and B ⊆ M is arbitrary, there is a countable subset C ⊆ B such that
A |̂ d

C
B.

Proposition 11.3 Assume d is a dimension function in the monster model C of T and cl
is a closure operator compatible with d. Assume additionally that for all closed sets A,B,C
such that A |̂ d

C
B, we have AB = A t B and it is closed. Then T is stable. If moreover

there are only finitely many nonisomorphic substructures of C of the same finite cardinality
n, and for each finite A, for each B there is some finite C ⊆ B such that d(A/B) = d(A/C),
then T is ω-stable.

Proof: It is enough to prove that for any closed X, |Sn(X)| ≤ 2ω + |X|ω. Given some
finite tuple a, choose some countable X0 ⊆ X such that a |̂

X0
X. Let A = cl(aX0) and

let X1 = A ∩ X. Notice that X1 is countable and closed. Let a′ be another tuple of the
same length and choose a corresponding X ′0 obtaining A′ = cl(a′X ′0) and X ′1 = A′ ∩X. We
claim that if X1 = X ′1 and A ∼=X1

A′, then a ≡X a′. To check this, notice that A ∼=X1
A′

implies A tX ∼=X A′ tX. By choice of X1, A |̂ d

X1
X and hence A tX = AX is closed.

Similarly, A′ tX = A′X is closed. Hence, f(AX) = A′X for some automorphism f fixing
X. It follows that a ≡X a′. Now observe that the number of choices for X1 is |X|ω and
that for each given X1 there are at most 2ω types of tuples of countable length over X1.
This gives the upper bound on the number of types.

For ω-stability, with the additional assumption we can get X0 and X1 finite and the
assumption on the number of nonisomorphic structures of a given finite cardinality implies
that there are only finitely many atomic types over X1. Altogether this gives a bound of
|X|+ ω for the number of types over X. 2
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