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1 Preliminaries

T is a complete theory with infinite models. Its language is L and C is its monster model.
A few results, maybe not well-known, on bounded type-definable relations and canonical
bases are needed in the sequel. They are included in the following two lemmas.

Lemma 1.1 Let E be an equivalence relation type-definable over the set A. If E has only
boundedly many equivalence classes (shortly, if E is bounded) then for each model M ⊇ A,
every E-class is fixed by every f ∈ Aut(C/M). In particular, for every p(x) ∈ S(M) there
is a unique a (maybe not in M) such that p(x) ` E(x, a). It follows that the number of
E-classes is at most 2|T |+|A|+|α| where α is the length of the sequence of variables x.

Proof: Let a/E be an equivalence class. Note that the type E(x, a) is finitely satisfiable
in M . Otherwise (assuming the type is closed under conjunction) we may fix a formula
ϕ(x, a) in the type which is not satisfiable in M . Let λ be a cardinal number greater than
the number of E-classes and let (ai : i < λ) a sequence of realizations of tp(a/M) such that
a = a0 and tp(ai/M(aj : j < i)) is coheir to tp(ai/M). The sequence is M -indiscernible
and therefore |= ¬ϕ(ai, aj) for i < j < λ. This contradicts the choice of λ as a bound for the
number of equivalence classes. Now let f ∈ Aut(C/M) and let us check that |= E(a, f(a)).
Let ψ(x, y) be a formula in the type E(x, y) and choose another formula ϕ(x, y) in the type
such that |= ϕ(x, y)∧ϕ(z, y) → ψ(x, z). Since ϕ(a, y) is satisfiable by some b ∈M , it follows
that |= ϕ(a, b) ∧ ϕ(f(a), b) and hence |= ψ(a, f(a)). 2

Lemma 1.2 Let M be a κ-saturated and strongly κ-homogeneous model. If a ∈ M and
A is a subset of M of cardinality < κ and for all f ∈ Aut(M/A) we have f(a) = a, then
a ∈ dcl(A). Hence, for stable T and κ > |T |, canonical bases of types over M can be
computed in M in the following sense: if C ⊆ M has cardinality < κ and p(x) ∈ S(M),
then the following are equivalent

1. For all f ∈ Aut(M), f � C = id if and only if pf = p.

2. Cb(p) = dcleq(C).

∗Lecture notes from the Seminar in Model Theory, started in October 27, 2005. Many contributions are
from the participants: Silvia Barbina, Rafel Farré, Javier Moreno, Rodrigo Peláez, Juan Francisco Pons,
and Joris Potier. Thanks are also due to Anand Pillay for some key suggestions for developing the stuff.

1



Proof: For the first assertion observe that for p(x) = tp(a/A) we get p(x) ≡ x = a. To
justify this, assume b |= p and find (by κ-saturation) b′ ∈ M such that b ≡Aa b′ and (by
strong κ-homogeneity) find f ∈ Aut(M/A) which is the identity in A and sends a to b′. By
assumption, b′ = f(a) = a and this implies b = a.

From this it follows that point 2 is equivalent to Aut(M/C) = Aut(M/Cb(p)). Let
p ∈ S(C) be the nonforking extension of p and let f ∈ Aut(M) and f ⊆ f ′ ∈ Aut(C). Then
pf = p if and only if pf

′
= p if and only if f ∈ Aut(M/Cb(p)). The equivalence of 1 and 2

is an easy consequence of this. 2

We will assume that there is a type-definable (without parameters) group G in C. The
group operation (x, y) 7→ x · y is also type-definable over ∅. It follows that also the inverse
operation x 7→ x−1 is type-definable over ∅ and that and the identity 1 ∈ G is 0-definable.
We use G(x) for the partial type defining G over ∅

We say that a relation R ⊆ Gn is relatively definable (over A) if its the intersection of G
with a definable (over A) relation. We say that R ⊆ Cn is ϕ-definable (where ϕ = ϕ(x, y) ∈
L) if it is definable by an instance ϕ(x, a) of ϕ(x, y). R ⊆ Gn is relatively ϕ-definable if it
is the intersection of G with a ϕ-definable relation.

Lemma 1.3 The group operation is relatively 0-definable. The identity is 0-definable and
the inverse operation of G is also relatively 0-definable. Moreover we can choose the for-
mula ϕ(x, y, z) for the group operation in such a way that it defines a partial mapping and
whenever two of the variables are interpreted in the group the third is in the group too.

Proof: Let Φ(x, y, z) be the partial type defining the group operation in G. We may
assume that Φ(x, y, z) ` G(x) ∧G(y) ∧G(z). Note that

Φ(x, y, u) ∧ Φ(x, y, v) ` u = v

Let ϕ(x, y, u) be a finite conjunction of formulas in Φ(x, y, u) such that ϕ(x, y, u)∧ϕ(x, y, v) `
u = v. It is clear that φ defines the group operation in G. The identity 1 is relatively de-
finable by ϕ(x, x, x). Since then 1 is type-definable over ∅ it is also definable over ∅. The
inverse operation is relatively definable by ϕ(x, y, 1). To obtain the additional properties of
the formula defining the group operation one observes that

Φ(x, y, u) ∧ Φ(x, z, u) ` y = z

and by compactness we can replace Φ(x, z, u) by a finite conjunction and add it to φ(x, y, z).
This has to be repeated then for the third and last choice of variables. 2

2 Chain conditions

Proposition 2.1 Assume T does not have the independence property. For each ϕ =
ϕ(x, y) ∈ L there is a natural number n = nϕ such that for every m ≥ n, for each sequence
H1, . . . ,Hm of relatively ϕ-definable subgroups Hi ≤ G, the intersection H1 ∩ . . . ∩ Hm is
in fact the intersection of ≤ n subgroups Hi.

Proof: Suppose not. For arbitrarily large m there are H1, . . . ,Hm, relatively ϕ-definable
subgroups whose intersection does not agree with the intersection of any strict subsequence.
For each i = 1, . . . ,m there is some bi ∈

⋂
i 6=j Hj such that bi 6∈ Hi. If I ⊆ m, say

I = {i0, . . . , ik} with i0 < · · · < ik, let bI = bi0 · · · bik , and let b∅ = e. Since bj ∈ Hi

whenever i 6= j, it follows that i 6∈ I ⇒ bI ∈ Hi. On the other hand, if i ∈ I, say i = ij ,
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where I = {i0, . . . , ik} and i0 < · · · < ik, then using the notation I− = {i0, . . . , ij−1} and
I+ = {ij+1, . . . , ik} we see that bI = bI− ·bi ·bI+ , bI− ∈ Hi, bi 6∈ Hi and bI+ ∈ Hi. Therefore
bI 6∈ Hi in this case. We have shown that

i ∈ I ⇔ bI 6∈ Hi.

By hypothesis each Hi is relatively definable by a ϕ-instance, and hence there is an ai such
that Hi = {g ∈ G :|= ϕ(g, ai)}. We have then i ∈ I ⇔|= ¬ϕ(bI , ai) for all I ⊆ m for
arbitrarily large m. This implies that ¬ϕ(x, y) has the independence property. 2

Proposition 2.2 If T does not have the strict order property, then for each ϕ = ϕ(x, y) ∈ L
there is a natural number n = nϕ such that every chain of ϕ-definable subgroups Hi ≤ G
has at most n elements.

Proof: Clear. 2

Proposition 2.3 Let T be stable and let ϕ = ϕ(x, y) ∈ L.

1. There is a natural number n = nϕ such that the intersection of any arbitrary family
of relatively ϕ-definable subgroups of G coincides with the intersection of a subfamily
of ≤ n members.

2. There is a natural number n = nϕ such that every chain (Hi : i ∈ I) of subgroups Hi

which are intersection of relatively ϕ-definable subgroups has ≤ n members.

Proof: 1. Assume there is no such n, let

R = {(a, b, c) : a ∈ G, b ∈ G, c ∈ C and |= ϕ(b−1 · a, c)}

and let C′ be the structure (C,G, R). We will see that the formula ψ(x; y, z) = R(x, y, z)
is unstable in C′ by finding 2ω complete ψ-types over a countable set. But this will be a
contradiction since the order property of ψ in Th(C′) transfers easily to the order property
of χ(x; y, z) = ϕ(y−1 · x, z) in C. In fact, if ψ has the order property in Th(C′), then for
each n < ω we can find (ai : i < n) in G, (bi : i < n) in G and (ci : i < n) in C such that
|= ψ(ai, bj , cj) if and only if i < j and from this it follows that χ has the order property in
C.

By compactness there is a family (ci : i < ω) such that for each i < ω, Hi = {a ∈ G :|=
ϕ(a, ci)} is a subgroup of G and for each n < ω,

⋂
i<nHi 6⊆ Hn. We now construct a binary

tree (Xs : s ∈ 2<ω) of cosets of intersections of the groups Hi in such a way that Xs ⊇ Xt

if s ⊆ t and Xs, Xt are different cosets of X(0,...,0) = H0 ∩ . . . ∩Hn if s 6= t have length n.
We start with X∅ = H0. Assume Xs has been defined for s ∈ 2n. Let s = (0, . . . , 0) (of
length n) and set Xsa0 = H0 ∩ . . .∩Hn+1 = Xs ∩Hn+1. Since H0 ∩ . . .∩Hn+1 is a proper
subgroup of H0 ∩ . . .∩Hn we can choose a coset Xsa1 = g · (H0 ∩ . . .∩Hn+1) different from
the group Xsa0. For any other t ∈ 2n we first choose gt such that Xt = gt ·Xs and then we
put Xta0 = gt ·Xsa0 and Xta1 = gt ·Xsa1. Now notice that each Xs is definable in C′ by
a conjunction of ψ-formulas. This gives 2ω pairwise incompatible ψ-types over a countable
set of parameters.

2 follows from two consecutive applications of 1. In the first one we fix the number
m < ω of relatively ϕ-definable subgroups in each intersection. Now every Hi is relatively
ψ-definable for ψ =

∧
i<m ϕ(x, yi) and we apply again 1 to bound the length of the chain

by some n < ω. 2
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Corollary 2.4 For stable T , every intersection of relatively definable subgroups of G is the
intersection of ≤ |T | of these subgroups.

Proof: Clear. 2

Proposition 2.5 For superstable T , there is no infinite descending chain of definable sub-
groups H0 ) H1 ) . . . ) Hi ) Hi+1 . . . each one of infinite index in the previous one.

Proof: Assume there is such a chain Hi = ϕi(G, ai). Let αi = R∞(Hi). It is clear that
αi+1 ≤ αi. We will see that αi+1 < αi, which is a contradiction. Write Hi =

⋃̇
j∈JhjHi+1,

where hj ∈ Hi. The mapping x 7→ hjx is a definable bijection from Hi+1 onto hjHi+1.
Hence αi+1 = R∞(hjHi+1). Let ψi(x, y, z) = ∃u(x = y ·u∧ϕi+1(u, z)). Then ψi(x, hj , ai+1)
defines hjHi+1. There an infinite subset J ′ of J such that for each j, k ∈ J ′, hjai+1 ≡ai

hkai+1. Therefore for j ∈ J ′, ψi(x, hj , ai+1) forks over ai and hence αi+1 < αi. 2

Proposition 2.6 For totally trascendental T , there is no infinite descending chain of de-
finable subgroup H0 ) H1 ) . . . ) Hi ) Hi+1 . . ..

Proof: Similar to the superstable case but using Morley rank. The existence of the chain
Hi implies that (i) RM(Hi+1) < RM(Hi) or (ii) RM(Hi+1) = RM(Hi) and DM(Hi+1) <
DM(Hi). 2

Corollary 2.7 Let T be totally trascendental.

1. Every intersection of definable subgroups of G is a definable subgroup of G.

2. Every definable injective endomorphism from G to G is onto.

3. If G is is abelian and torsion-free then it is divisible.

We will see in a subsequent section that there is also a chain condition in a simple
theory: there is no descending chain of length |T |+ made of definable subgroups each of
unbounded index in the previous one.

3 Generics

In this section T is a simple theory.

Definition 3.1 Let p(x) ∈ S(A) such that p(x) ` G(x). We say that p(x) is left generic
if for all a, b ∈ G, if a |= p and a |̂

A
b, then b · a |̂ Ab. We say that it is right generic if

under the same assumption, a · b |̂ Ab. In both cases the defining property is independent
of the choice of the realization a |= p. A type is generic if it is both left and right generic.
Sometimes we consider type-definable subgroups H ≤ G and we want to talk about genericity
with respect to H. In this case we say that a type p(x) ` H(x) or an element a ∈ H is
generic in H as opposed to be generic in G.

Proposition 3.2 Si p(x) ∈ S(A) is generic, then p does not fork over ∅.

Proof: Let a |= p. Since a |̂
A
e, we have a = a · 1 = 1 · a |̂ A1. 2

Lemma 3.3 Let a, b ∈ G. If tp(a/A) is left generic and b ∈ acl(A), then tp(b ·a/A) is also
left generic.
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Proof: Let c ∈ G be such that b·a |̂
A
c. Then b·a |̂

acl(A)
c and, since a ∈ dcl(b·a, acl(A)),

a |̂
acl(A)

c. Now c · b ∈ dcl(acl(A), c) and therefore a |̂
acl(A)

c · b and hence a |̂
A
c · b. By

genericity c · b · a |̂ A, c · b. Since c ∈ acl(A, c · b), we conclude that c · b · a |̂ Ac. 2

Lemma 3.4 Let p(x) ∈ S(A) be such that p(x) ` x ∈ G and let p(x) ⊆ q(x) ∈ S(B) be a
nonforking extension. Then p is left generic if and only if q is left generic.

Proof: Assume p is left generic. Let a |= q and b ∈ G be such that a |̂
B
b and let us see

that b · a |̂ Bb. Since a |̂
A
B, we have a |̂

A
b and by genericity b · a |̂ Ab. On the other

hand, a |̂
A
Bb and thus a |̂

Ab
B. Since b · a ∈ dcl(a,Ab), it follows that b · a |̂

Ab
B. By

transitivity of independence, b · a |̂ Bb. Assume now that q is left generic. Let a, b ∈ G be
such that a |= p and a |̂

A
b. We want to check that b ·a |̂ Ab. We can replace a by a′ |= q

and then b by b′ |̂
Aa′

B such that a′b′ ≡A ab. In other words, we can assume that a |= q
and a |̂

B
b. Since q is left generic, b · a |̂ Bb and in particular b · a |̂ Ab. 2

Proposition 3.5 If p(x) ∈ S(A) is left generic and B ⊆ A, then p � B is left generic too.

Proof: By Proposition 3.2 and Lemma 3.4. 2

Definition 3.6 Let p(x) ∈ S(A) be such that p(x) ` x ∈ G. We define p−1(x) as tp(a−1/A)
where a is an arbitrary realization of p.

Lemma 3.7 If p(x) ∈ S(A) is left generic, then p−1(x) is left generic too.

Proof: Let a |= p and choose b |= p such that a |̂
A
b. Since p is left generic, b · a |̂ Ab.

From this it follows that b |̂
A
a−1 · b−1, and hence, by Lemma 3.3 , tp(b/Aa−1 · b−1) is left

generic. By Lemma 3.4 tp(a−1/Aa−1 · b−1) = tp(a−1 · b−1 · b/Aa−1 · b−1) is left generic too.
By Lemma 3.5, p−1 = tp(a−1/A) is left generic. 2

Proposition 3.8 A type is left generic if and only if it is right generic

Proof: By Lemma 3.5, since it is clear that p is left generic if and only if p−1 is right
generic. 2

Proposition 3.9 Let a, b ∈ G be such that a |̂
A
b. If tp(a/A) is generic, then also tp(b ·

a/A) is generic.

Proof: By Lemma 3.4 tp(a/Ab) is generic and by Lemma 3.3 tp(b · a/Ab) is generic too.
The result follows then from Proposition 3.5. 2

4 Stratified local rank

T is simple in this section. Given ϕ(x) and g ∈ G, by ϕ(g · x) we understand the formula
∃u(ϕ(u)∧u = g ·x) where the equation u = g ·x should be replaced by the formula defining
the group operation. Similarly for ϕ(x · g).

Definition 4.1 Let π(x) be a partial type and let ϕ = ϕ(x, y) ∈ L. We inductively define
the rank D∗(π(x), ϕ, k) as follows:

1. D∗(π(x), ϕ, k) ≥ 0 if π(x) ∪G(x) is consistent.
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2. D∗(π(x), ϕ, k) ≥ n + 1 if and only if there are ai, (i < ω) and gi ∈ G, (i < ω) such
that {ϕ(gi · x, ai) : i < ω} is k-inconsistent and D∗(π(x)∪{ϕ(gi · x, ai)}, ϕ, k) ≥ n for
each i < ω.

We set D∗(π(x), ϕ, k) = ∞ if D∗(π(x), ϕ, k) ≥ n for each n < ω and D∗(π(x), ϕ, k) =
max{n < ω : D∗(π(x), ϕ, k) ≥ n} otherwise.

Remark 4.2 D(π, ϕ, k) ≤ D∗(π, ϕ, k) ≤ D(π, ϕ∗(x; yz), k) where ϕ∗(x; yz) = ∃u(ϕ(u, y)∧
u = z · x). Hence D∗(π, ϕ, k) < ω since T is simple. Note also that D∗(π(x), ϕ, k) =
D∗(G(x) ∪ π(x), ϕ, k).

Proposition 4.3 1. Given π(x, z) without parameters, ϕ = ϕ(x, y) ∈ L, and k, n < ω,
there is some partial type Φ(z) over ∅ such that for all a, |= Φ(a) if and only if
D∗(π(x, a), ϕ, k) ≥ n.

2. Given ϕ, k, and π(x), a partial type, there is some conjunction ψ(x) of formulas in
π such that D∗(π, ϕ, k) = D∗(ψ,ϕ, k).

3. D∗(π ∪ {ψ ∨ χ}, ϕ, k) = max{D∗(π ∪ {ψ}, ϕ, k), D∗(π ∪ {χ}, ϕ, k)}.

4. If π(x) is over A, there is an extension p(x) ∈ S(A) of π such that D∗(π, ϕ, k) =
D∗(p, ϕ, k).

Proof: In all cases the proofs are the same as for the local D-rank in a simple theory. For 1
we use induction on n. For 2 we use compactness and 1 to justify that if D∗(π, ϕ, k) 6≥ n+1
then for some conjunction ϕ of formulas in π, D∗(ψ,ϕ, k) 6≥ n + 1. In 3 is clear that the
maximum is ≤ D∗(π ∪ {ψ ∨ χ}, ϕ, k) and it only remains to prove that if D∗(π ∪ {ψ ∨
χ}, ϕ, k) ≥ n then also the maximum is ≥ n. This can be easily done by induction on n.
Finally, 4 follows from 3, since 3 can be used to ensure the consistency of

π(x) ∪ {¬ψ(x) ∈ L(A) : D∗(π(x) ∪ {ψ(x)}, ϕ, k) < D∗(π(x), ϕ, k)

and any complete extension p(x) ∈ S(A) of this type over fulfills the requirements. 2

Proposition 4.4 Let p(x) ∈ S(A) be such p(x) ` G(x) and let q(x) ∈ S(B) be an extension
of p. Then q is a nonforking extension of p if and only if D∗(p, ϕ, k) = D∗(q, ϕ, k) for all
k and ϕ.

Proof: Assume q forks over A. Then for some ϕ(x, y) ∈ L there is b ∈ B such that
ϕ(x, b) ∈ q and ϕ(x, b) k-divides over A for some k. This means that there are bi, (i < ω)
such that bi ≡A b for all i < ω and {ϕ(x, bi) : i < ω} is k-inconsistent. If we put gi = 1 we
see that the gi, bi witness that

D∗(p, ϕ, k) > D∗(p ∪ {ϕ(x, b)}, ϕ, k) ≥ D∗(q, ϕ, k).

For the other direction, assume a |= q and a |̂
A
B. We show by induction on m that

D∗(p, ϕ, k) ≥ m implies D∗(q, ϕ, k) ≥ m. This is clear for m = 0. Let D∗(p, ϕ, k) ≥ m+ 1.
There are bi (i < ω) and gi ∈ G (i < ω) such that D∗(p ∪ {ϕ(gi · x, bi)}, ϕ, k) ≥ m for
all i < ω and {ϕ(gi · x, bi) : i < ω} is k-inconsistent. By Ramsey’s Theorem we may
assume that (bi, gi : i < ω) is A-indiscernible. Choose an extension q′ ∈ S(Ag0b0) of
p∪{ϕ(g0 ·x, b0)} with D∗(q′, ϕ, k) ≥ m and let a′ |= q′. We may then choose (g′i, b

′
i : i < ω)

such that (g′i, b
′
i : i < ω)a ≡A (gi, bi : i < ω)a′ and also choose B′ |̂

Aa
(g′i, b

′
i : i < ω) such

that B ≡Aa B′. In other words, we may assume that a |= q′ and B |̂
Aa

(gi, bi : i < ω).
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Then B |̂
A
(gi, bi : i < ω) and (changing again (gi, bi : i < ω) by an A-isomorphic copy if

necessary) we may assume that (gi, bi : i < ω) is also B-indiscernible. Since a |̂
Ag0b0

B,
we may apply the inductive hypothesis to obtain that D∗(tp(a/Bg0b0), ϕ, k) ≥ m and
thus D∗(q ∪ {ϕ(gi · x, bi)}, ϕ, k) ≥ m for all i < ω. From this we may conclude that
D∗(q, ϕ, k) ≥ m+ 1. 2

Definition 4.5 For a formula ϕ(x) and an element of the group g ∈ G, we define

g · ϕ(x) = ϕ(g−1 · x)

considered as a formula over g (and the rest of parameters of ϕ(x)), namely, as ∃u(ϕ(u) ∧
g · u = x). For a partial type π(x) over A, g · π(x) is {g · ϕ(x) : ϕ ∈ π}, a partial type over
Ag. Note that

h |= π ⇔ g · h |= g · π

Proposition 4.6 D∗(π, ϕ, k) = D∗(g · π, ϕ, k).

Proof: Since π ≡ g−1 ·g ·π, it is enough to prove that D∗(π, ϕ, k) ≥ D∗(g ·π, ϕ, k). For this
we check by induction on n that D∗(π, ϕ, k) ≥ n implies D∗(g ·π, ϕ, k) ≥ n. The case n = 0
is clear. Assume D∗(π, ϕ, k) ≥ n+ 1. There are ai, (i < ω) and gi ∈ G, (i < ω) such that
{ϕ(gi ·x, ai) : i < ω} is k-inconsistent and for each i < ω, D∗(π(x)∪{ϕ(gi ·x, ai)}, ϕ, k) ≥ n.
Now {ϕ(gi · g−1 · x, ai) : i < ω} is also k-inconsistent and by the inductive hypothesis for
each i < ω, D∗(g ·π(x)∪{g ·ϕ(gi ·x, ai)}, ϕ, k) ≥ n. But g ·ϕ(gi ·x, ai) = ϕ(gi ·g−1 ·x, ai) and
therefore the sequences (ai : i < ω) and (gi ·g−1 : i < ω) witness that D∗(g ·π, ϕ, k) ≥ n+1.
2

Corollary 4.7 If g, h ∈ G and h ∈ acl(A), then D∗(tp(g/A), ϕ, k) = D∗(tp(h · g/A), ϕ, k)

Proof: Let p(x) = tp(g/A). By Proposition 4.6 we know that D∗(p, ϕ, k) = D∗(h ·p, ϕ, k).
Now, h ·p is a partial type over Ah and (h ·p) � A = tp(h ·g/A). Since h ∈ acl(A), h ·g |̂

A
h

and by Proposition 4.4, D∗(tp(h ·g/A), ϕ, k) = D∗(tp(h ·g/Ah), ϕ, k) ≤ D∗(h ·p, ϕ, k). Thus
D∗(tp(h · g/A), ϕ, k) ≤ D∗(tp(g/A), ϕ, k). Using now h−1 instead of h we get the equality.
2

Theorem 4.8 For any A, there is a generic type p(x) ∈ S(A).

Proof: Since a nonforking extension of a generic type is generic, it is enough to check it for
the case A = ∅. Fix an enumeration (ϕi, ki : i < κ) of all pairs (ϕ, k) where ϕ = ϕ(x, y) ∈ L
and 2 ≤ k < ω. We define inductively a partial type πi(x) over ∅ and a natural number ni
as follows:

1. π0(x) = G(x)

2. ni = D∗(πi(x), ϕi, ki)

3. πi+1 = πi(x) ∪ {¬ψ(x) : ψ(x) ∈ L and D∗(πi(x) ∪ {ψ(x)}, ϕi, ki) < ni}

4. πα =
⋃
i<α πi for any limit ordinal α ≤ κ.

Let p(x) ∈ S(∅) be an extension of πκ(x). We will show that p is generic. Let g |= p and let
h ∈ G be such that g |̂ h. We have to prove that h ·g |̂ h. For this we use Proposition 4.4.
We have to check that for each i < κ, D∗(tp(h · g), ϕi, ki) = D∗(tp(h · g/h), ϕi, ki). Note
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that any complete type q over ∅ extending πi+1 verifies D∗(q, ϕi, ki) = ni. Hence ni =
D∗(p, ϕi, ki). Observe that by Propositions 4.4 and Corollary 4.7

D∗(p, ϕi, ki) = D∗(tp(g/h), ϕi, ki) = D∗(tp(h · g/h), ϕi, ki) ≤ D∗(tp(h · g), ϕi, ki)

Hence D∗(tp(h · g), ϕi, ki) for all i and this can be used to see that h · g |= πi for all i.
Therefore D∗(tp(h · g), ϕi, ki) ≤ D∗(πi, ϕi, ki) = ni. Thus ni is a lower and upper bound of
the ranks and all them are equal. In particular D∗(tp(h ·g/h), ϕi, ki) = D∗(tp(h ·g), ϕi, ki).
2

Definition 4.9 A partial type π(x) over A is generic if it can be extended to a complete
generic type over A. In particular, a formula is generic if it belongs to a complete generic
type. An element g of the group G is generic over A if tp(g/A) is generic. A global type
p ∈ S(C) is generic if for every set A, p � A is generic.

Remark 4.10 Notice that if π(x) is a partial type over A and it is also a partial type
over B, then it is generic with respect to A if and only if it is generic with respect to B
(because a nonforking extension of a generic type is generic). Hence there is no harm in
the terminology.

Proposition 4.11 The following conditions are equivalent for any partial type π(x) over
A.

1. π is generic.

2. D∗(π, ϕ, k) = D∗(G(x), ϕ, k) for all ϕ, k.

3. For all g ∈ G, g · π does not fork over ∅.

4. For all g ∈ G, g · π does not fork over A.

Proof: 1 ⇒ 2. Since π is generic, there is some g |= π which is generic over A. Let ϕ, k be
given and choose h ∈ G with D∗(tp(h/A), ϕ, k) = D∗(G(x), ϕ, k). We may choose it such
that additionally h |̂

A
g. Then g |̂

A
h−1 and, since g is generic over A, g · h−1 |̂ Ah−1.

Hence h |̂
A
g · h−1. By Proposition 4.4 and Corollary 4.7

D∗(tp(h/A), ϕ, k) = D∗(tp(h/A, g · h−1), ϕ, k) = D∗(tp(g · h−1 · h/A, g · h−1) =

= D∗(tp(g/A, g · h−1, ϕ, k) ≤ D∗(tp(g/A), ϕ, k) ≤ D∗(π, ϕ, k).

2 ⇒ 3 Assume g ·π forks over ∅. Then, for some ϕ(x, y) ∈ L, some a ∈ A, and some k < ω,
π(x) ` ϕ(x, a) and ϕ(g−1 · x, a) k-divides over ∅. This means that there are ai, (i < ω)
and gi ∈ G, (i < ω) such that g−1, a ≡ gi, ai for all i < ω and {ϕ(gi · x, ai) : i < ω} is
k-inconsistent. Note that by isomorphism and by Proposition 4.6,

D∗(G(x) ∪ {ϕ(gi · x, ai)}, ϕ, k) = D∗(ϕ(g−1 · x, a), ϕ, k) = D∗(ϕ(x, a), ϕ, k)

and therefore

D∗(G(x), ϕ, k) ≥ D∗(ϕ(x, a), ϕ, k) + 1 > D∗(π(x), ϕ, k).

It is clear that 3 implies 4, so we finish by proving 4 ⇒ 1. Let g ∈ G be generic over A.
Since g · π does not fork over A, there is some h |= π such that g · h |̂

A
g. By Lemma 3.4

g is generic over A, g · h and by Lemma 3.3, (g · h)−1 · g = h−1 is generic over A, g · h. By
Proposition 3.5 h−1 is generic over A and by Lemma 3.7 h is also generic over A. Then π
has a realization which is generic over A and consequently it is generic. 2
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Corollary 4.12 1. A type (closed under conjunction) is generic if and only if all its
formulas are generic.

2. A partial type π(x) is generic if and only if g · π(x) is generic.

Proof: Clear by point 2 of Proposition 4.11, point 2 of Proposition 4.3 and Proposition 4.6.
2

5 The connected component

T is simple in this section too.

Definition 5.1 The A-connected component of G is the intersection G00
A of all subgroups

H ≤ G which are type-definable over A and have bounded index |G : H|. We say that G is
connected over A if G = G00

A , that is, if G does not have proper subgroups of bounded index
which are type-definable over A.

Lemma 5.2 G00
A is a normal subgroup of G and |G : G00

A | ≤ 2|T |+|A|.

Proof: The equivalence relation on G having the cosets h·G00
A as equivalence clases is type-

definable overA and it is intersection of bounded type-definable overA equivalence relations.
Hence it is also bounded and has ≤ 2|T |+|A| classes. This means that |G : G00

A | ≤ 2|T |+|A|.
We prove now that G00

A is a normal subgroup of G. Let λ be the group homomorphism
g 7→ λg from G into Sym(G/G00

A ) defined by λg(h · G00
A ) = g · h · G00

A . We show that G00
A

is the kernel of λ. It is obvious that ker(λ) ≤ G00
A . It is clear that the kernel ker(λ) is

bounded since Sym(G/G00
A ) has bounded size and G/ker(λ) ∼= imag(λ) ≤ Sym(G/G00

A ).
It is also type-definable, since if (hi : i ∈ I) are representatives of all the cosets h ·G00

A then
ker(λ) can be defined by the type π(x) over A∪ {hi : i ∈ I} expressing that for each i ∈ I,
h−1
i · x · hi ∈ G00

A . But ker(λ) is A-invariant and therefore it is also type-definable over A.
Then G00

A ≤ ker(λ). 2

Definition 5.3 We say that a subgroup H of G is generic over A if H is type-definable
over A by a generic type.

Proposition 5.4 The following are equivalent for a subgroup H ≤ G type-definable over
A:

1. H is generic over A.

2. G00
A ≤ H.

3. H has bounded index in G.

4. D∗(H,ϕ, k) = D∗(G, ϕ, k) for all ϕ, k.

Proof: 1 ⇔ 4 follows directly from Proposition 4.11. On the other hand it is obvious
that 2 ⇔ 3. We prove now the equivalence of 3 with point 4 of Proposition 4.11 and
therefore also with point 1 of the present proposition. Assume first |G : H| is unbounded.
In this case there is an A-indiscernible sequence (gi : i < ω) of elements gi ∈ G such that
gi · H 6= gj · H for all i 6= j. The A-indiscernibility of the sequence can be assured using
the indiscernibility lemma based on Erdös-Rado’s Lemma. Then gi · H ∩ gj · H = ∅ for
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all i 6= j and hence g0 ·H forks over A. For the other direction, assume g ∈ G and g ·H
forks over A. Then, there is an A-indiscernible sequence (gi : i < ω) such that g = g0 and⋂
i<ω gi ·H = ∅. It follows that all gi ·H are disjoint. But we can extend the indiscernible

sequence as long as we want, which contradicts boundedness of the index. 2

Proposition 5.5 If (Hi : i < α) is a descending chain of type-definable subgroups Hi ≤ G
such that |Hi : Hi+1| is unbounded for all i < α, then α < |T |+.

Proof: We prove first that the unboundedness of |Hi : Hi+1| implies that for some ϕi
and some ki < ω, D∗(Hi, ϕi, ki) > D∗(Hi+1, ϕi, ki). Assume Hi,Hi+1 are type-definable
over A. By the Proposition 5.4 Hi+1 is not generic over A (as a subgroup of Hi) and by
Proposition 4.11 for some h ∈ Hi, h · Hi+1 forks over A. Therefore there is a formula
ϕi(x, y) ∈ L, there is some a ∈ A such that ϕi(x, a) belongs to the partial type πi+1(x)
defining Hi+1, and there is an A-indiscernible sequence (gj : j < ω) where gj ∈ Hi and some
ki < ω such that h−1 = g0, and {ϕi(gj · x, a) : j < ω} is ki-inconsistent. Then if the partial
type πi defines Hi over A, D∗(πi(x) ∪ {ϕi(gj · x, a)}, ϕi, ki) ≥ D∗(g−1

j · πi+1(x) ∪ {ϕi(gj ·
x, a)}, ϕi, ki) = D∗(g−1

j · (πi+1(x) ∪ {ϕi(x, a)}), ϕi, ki) = D∗(πi+1(x) ∪ {ϕi(x, a)}, ϕi, ki) =
D∗(πi+1(x), ϕ, k) and hence D∗(Hi, ϕi, ki) ≥ D∗(Hi+1, ϕi, ki) + 1.

Now assume α ≥ |T |+. For some infinite I ⊆ α there is a fixed ϕ(x, y) ∈ L and k < ω
such that ϕ = ϕi and k = ki for all i ∈ I. Then D∗(Hi, ϕ, k) > D∗(Hj , ϕ, k) whenever
i, j ∈ I and i < j. This contradicts the finiteness of the rank. 2

6 Stabilizers

Definition 6.1 For p(x) ∈ S(A) such that p(x) ` G(x), we define

S(p) = {g ∈ G : g · p ∪ p does not fork over A}

and we define the stabilizer of p as Stab(p) = S(p) · S(p).

Lemma 6.2 Let p(x) ∈ S(A). If g ∈ S(p), then there is some h |= p such that g · h |= p,
g · h |̂

A
g. It follows from this that h |̂

A
g.

Proof: Let g ∈ S(p). Then there is some a |= g · p ∪ p such that a |̂
A
g. Clearly, a |= p

and there is some h |= p such that a = g · h. Then for all ϕ, k

D∗(tp(h/A), ϕ, k) = D∗(p, ϕ, k) = D∗(tp(g · h/A), ϕ, k) = D∗(tp(g · h/Ag), ϕ, k) =

= D∗(tp(g−1 · g · h/Ag), ϕ, k) = D∗(tp(h/Ag), ϕ, k)

Consequently, h |̂
A
g. 2

Proposition 6.3 Let p(x) ∈ S(A) such that p(x) ` G(x). The class S(p) is type-definable
over A and it is closed under inverses.

Proof: Let g ∈ S(p) and find h for g as in Lemma 6.2. Then g · h |= g−1 · p ∪ p and
g · h |̂

A
g−1. Hence g−1 ∈ S(p).

With respect to the type-definability, we need to use the fact that in a simple theory,
for any p(x) ∈ S(A) there is a partial type π(x, y) over A such that for any a |= p for any b,
a |̂

A
b if and only if |= π(a, b). This type π only expresses that for all ϕ, k, the local rank

D(tp(a/Ab), ϕ, k) is at least D(p, ϕ, k). Using the partial type π we characterize g ∈ S(p)
as ∃x(π(x, g) ∧ g · p(x) ∧ p(x)). 2
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Proposition 6.4 Let p(x) ∈ S(M) such that p(x) ` G(x). If g, g′ ∈ S(p) and g |̂
M
g′,

then g · g′ ∈ S(p).

Proof: By Lemma 6.2 we may choose h, h′ such that h |= p, h′ |= p, g · h |= p, g′ · h′ |= p,
g ·h |̂

M
g, h |̂

M
g, g′ ·h′ |̂

M
g′, and h′ |̂

M
g′. We can apply the Independence Theorem

over M to the types p(x), p1(x) = tp(h/Mg) and p2(x) = tp(g′ · h′/Mg′) obtaining this
way a realization a of p1(x) ∪ p2(x) such that a |̂

M
g, g′. We can then interchange a and

h, that is, we can assume that h ≡Mg′ g
′ · h′ and h |̂

M
g, g′. Then h = g′ · f for some

f such that f ≡Mg′ h
′. Again, we can interchange f and h′, that is, we can assume that

h = g′ ·h′. To ensure that g · g′ ∈ S(p), we need to find some e such that e |̂
M
g · g′, e |= p

and e |= g · g′ · p. The solution is e = g · g′ · h′ = g · h. Only the independence needs some
checking. We know that g ·h |̂

M
g and g ·h |̂

Mg
g′. By transitivity, g ·h |̂

M
g, g′. Hence

g · h |̂
M
g · g′. 2

Lemma 6.5 Let X ⊆ G be nonempty and type-definable over A and assume X is closed
under inverses and g ·h ∈ X whenever g, h ∈ X and g |̂

A
h. Then Y = X ·X is a subgroup

of G, is type-definable over A and every g ∈ Y generic over A belongs to X.

Proof: It is clear that Y is closed under inverses and it is type-definable over A. We will
show first that g · g′ · g′′ ∈ Y if g, g′, g′′ ∈ X. From this it follows easily that Y is closed
under product. But first we choose a particular type p(x) ∈ S(A). We fix an enumeration
(ϕi, ki) (i < µ) of all pairs consisting in a formula ϕi(x, yi) ∈ L and a natural number ki.
As in the proof of Theorem 4.8, we define partial types πi(x) over A and corresponding
natural numbers ni = D∗(πi, ϕi, ki):

1. π0(x) = X(x) (the type over A defining X)

2. πi+1(x) = πi(x) ∪ {¬ϕ(x) : ϕ(x) ∈ L(A) and D∗(πi(x) ∪ {ϕ(x)}, ϕi, ki) < ni}

3. πβ(x) =
⋃
i<β πi(x) for limit β.

Let now p(x) ∈ S(A) be any type extending
⋃
i<µ πi(x). Observe that D∗(p(x), ϕi, ki) = ni.

Moreover, if q(x) ∈ S(A) and D∗(q(x), ϕi, ki) ≥ ni for all i < µ, then D∗(q(x), ϕi, ki) = ni
for all i < µ.

Let g, g′, g′′ ∈ X and choose h |= p such that h |̂
A
g, g′, g′′. Then h ∈ X and, by

independence, g′ · h ∈ X. Clearly, g′ · h |̂
Ag′

g, g′′. For all i < µ we have

ni = D∗(tp(h/A), ϕi, ki) = D∗(tp(h/Ag′), ϕi, ki) = D∗(tp(g′ · h/Ag′), ϕi, ki)

≤ D∗(tp(g′ · h/A), ϕi, ki)

and hence for all i < µ,

D∗(tp(g′ · h/A), ϕi, ki) = ni = D∗(tp(g′ · h/Ag′), ϕi, ki).

As a consequence, g′ ·h |̂
A
g′. By transitivity of independence, g′ ·h |̂

A
g, g′, g′′. Therefore

g ·g′ ·h ∈ X. On the other hand h−1 ∈ X and h |̂
A
g′′ and thus h−1 ·g′′ ∈ X. We conclude

that
g · g′ · g′′ = (g · g′ · h) · (h−1 · g′′) ∈ X ·X = Y.

Now let g ∈ Y be generic over A. We show that g ∈ X. Choose g′, g′′ ∈ X such that
g = g′ · g′′ and choose h |= p such that h |̂

A
g′, g′′. Then g′′ · h ∈ X. As above, for all

i < µ,

ni = D∗(tp(h/A), ϕi, ki) = D∗(tp(h/Ag′′), ϕi, ki) = D∗(tp(g′′ · h/Ag′′), ϕi, ki)
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≤ D∗(tp(g′′ · h/A), ϕi, ki)

and hence for all i < µ,

D∗(tp(g′′ · h/A), ϕi, ki) = ni = D∗(tp(g′′ · h/Ag′), ϕi, ki)

and consequently g′′ ·h |̂
A
g′′. But g′′ ·h |̂

Ag′′
g′ and then, by transitivity, g′′ ·h |̂

A
g′, g′′.

By the assumption on X, g · h = g′ · g′′ · h ∈ X. Since g is generic over A and g |̂
A
h−1,

we have g · h |̂
A
h−1 and therefore g = (g · h) · h−1 ∈ X. 2

Proposition 6.6 Let p(x) ∈ S(M) such that p(x) ` G(x). Then Stab(p) ≤ G00
M . Moreover,

p is generic if and only if Stab(p) = G00
M .

Proof: By Proposition 6.4 and Lemma 6.5 we know that Stab(p) is a subgroup of G. To
check that is is a subgroup of G00

M it is enough to prove that S(p) ⊆ G00
M . Let g ∈ S(p).

Then p ∪ (g · p) is consistent. Let E be the equivalence relation determined by G00
M , as

E(x, y) ⇔ x · y−1 ∈ G00
M . It is type-definable over M and has only boundedly many

classes. Since M is a model, each equivalence class is fixed by each f ∈ Aut(C/M) (see
Lemma 1.1). Then there is some h ∈ G (perhaps not in M) such that p(x) ` E(x, h). Then
g · p ` E(x, g · h). It follows that |= E(h, g · h) and therefore that g = g · h · h−1 ∈ G00

M .

Assume now that p is generic. Choose g |= p and g′ |= p such that g |̂
M
g′. Then g′ ·g−1

is generic over M and g′ ·g−1 |̂
M
g and g′ ·g−1 |̂

M
g′. Note that (g′ ·g−1) ·g = g′ and thus

g′ |= g′ · g−1 · p. Hence g′ · g−1 ∈ S(p) ⊆ Stab(p). The group Stab(p) contains an element
generic over M and then it is itself generic over M . By Proposition 5.4 G00

M ≤ Stab(p).

Assume, to finish the proof, that Stab(p) = G00
M . By Proposition 5.4, Stab(p) is generic

over M and therefore some g ∈ Stab(p) is generic over M . By Lemma 6.5, g ∈ S(p). This
means that for some g′ |= p, g′ |̂

M
g, we have g · g′ |= p and g · g′ |̂

M
g. Then g is

also generic over Mg′. It follows that g · g′ is generic over Mg′ and also over M . Thus,
p = tp(g · g′/M) is generic. 2

Proposition 6.7 Let p(x) ∈ S(A) be a stationary type such that p(x) ` G(x) and let q(x) ∈
S(B) be a nonforking extension of p over B ⊇ A. Then Stab(p) = Stab(q) = S(p) = S(q).

Proof: First notice that even when p is not stationary, S(q) ⊆ S(p). To see this, assume
g ∈ S(q). Then for some h |= q, g · h |= q and g · h |̂

B
g. Since g · h |̂

A
B it follows that

g · h |̂
A
g. Hence g ∈ S(p).

Now we show that S(p) ⊆ S(q) using stationarity of p. Let g ∈ S(p). For some h |= p,
g · h |= p and g · h |̂

A
g. It follows that g |̂

A
h and we may assume that h |̂

Ag
B. Then

g ·h |̂
Ag
B and by transitivity g ·h |̂

A
Bg. In particular g ·h |̂

B
g and g ·h |̂

A
B. Since

p is stationary, g · h |= q. Similarly, since h |̂
A
B, by stationarity h |= q. Now h |= q,

g · h |= q and g · h |̂
B
g and this implies g ∈ S(q).

The next step is to show that S(p) is closed under product. This will imply straight-
forwardly that S(p) = Stab(p) (and S(q) = Stab(q)). Since S(p) is closed under inverses,
it is enough to check that g′ · g−1 ∈ S(p) whenever g, g′ ∈ S(p). Choose h, h′ ∈ G such
that h |= p, h′ |= p, g · h |= p, g′ · h′ |= p, g · h |̂

A
g and g′ · h′ |̂

A
g′. As usual, it follows

that h |̂
A
g and h′ |̂

A
g′. In fact we can choose h, h′ such that additionally h |̂

Ag
g′ and

h′ |̂
Ag′

g. Hence h |̂
A
g, g′ and h′ |̂

A
g, g′. Since p is stationary, h ≡Agg′ h′. This means

that we can substitute h for h′. In other words, we can assume that h = h′. Notice now
that g ·h |= p, (g′ ·g−1) ·(g ·h) = g′ ·h |= p and g′ ·h |̂

A
g′ ·g−1 and therefore g′ ·g−1 ∈ S(p).

2
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7 Stable groups

Proposition 7.1 If T is stable, then G00
A = G00

∅

Proof: Let M � N and choose p(x) ∈ S(M) generic and q(x) ∈ S(N) a nonforking
extension of p. Then also q is generic and by Proposition 6.6, G00

M = Stab(p) and G00
N =

Stab(q). Since types over models are stationary, by Proposition 6.7, G00
M = Stab(p) =

Stab(q) = G00
N . From this it follows that for arbitrary models M,N , G00

M = G00
N . And this

implies that G00
M is invariant. Since it is type-definable over M and invariant, it must be

type-definable over ∅. Hence G00
M = G00

∅ . Finally, if A is an arbitrary set and we choose a
model M ⊇ A, we see that

G00
∅ = G00

M ≤ G00
A ≤ G00

∅ .

2

Definition 7.2 When G00
A = G00

∅ for all A, we use also the notation G00 for it. In this
case it is sometimes called the absolute connected component.

Proposition 7.3 Let T be stable. A formula ϕ(x) ∈ L(A) is generic if and only if for
some n < ω there are g1, . . . , gn ∈ G such that G ⊆

⋃n
i=1 gi · ϕ(C). The same is true for

right translates.

Proof: From right to left it is true also in simple theories. Assume that there are
g1, . . . , gn ∈ G such that G ⊆

⋃n
i=1 gi ·ϕ(C). Choose B ⊇ A with g1, . . . , gn ∈ B and choose

p(x) ∈ S(B) generic. Then p(x) `
∨n
i=1 gi · ϕ(x) and hence p(x) ` gi · ϕ(x) for some i.

Hence gi · ϕ(x) is generic. It follows that also ϕ(x) is generic.

From left to right. Choose an ω-saturated modelM ⊇ A and a generic type p(x) ∈ S(M)
such that ϕ(x) ∈ p(x). Let g ∈ G. Since g · p does not fork over M , it is finitely satisfiable
in M . Observe that G(x) ∪ {g · ϕ(x)} ⊆ g · p(x). By definability of types, there is some
ψ(x) ∈ L(M) such that ψ(M) = M ∩ g · ϕ(C). Hence G(x) ∪ {ψ(x)} is finitely satisfiable
in M . By ω-saturation, there is some h ∈M ∩G such that h |= g · ϕ(x). This means that
|= ϕ(g−1 · h), that is g−1 |= ϕ(x) · h−1. We have then shown that for every g ∈ G there is
some h ∈M ∩G such that g |= ϕ(x) · h, and hence

G(x) `
∨

h∈M∩G

ϕ(x) · h

By compactness, for some n < ω there are h1 . . . , hn ∈M ∩G such that G(x) ` ϕ(x) · h1 ∨
. . .∨ϕ(x) · hn, that is G ⊆

⋃n
i=1 ϕ(C) · hi. Since left generics are right generics, the same is

true for some left translates of ϕ(x). 2

Definition 7.4 Let p(x) ∈ S(A) be a stationary type such that p(x) ` G(x). If g ∈ G,
by g ∗ p we denote the complete type over A of g · a where a |= p is such that a |̂

A
g.

By stationarity of p, this is independent of the choice of a and it is therefore well defined.
Observe that g ∗ p ` g · p. Moreover g ∗ p = g · p if g ∈ A ∩G.

Proposition 7.5 Let T be stable and A = acleqA. Then the mapping (g, p) 7→ g ∗ p defines
an action of G on the generic types p(x) ∈ S(A). Moreover Stab(p) = {g ∈ G : g ∗ p = p}
for any p(x) ∈ S(A) such that p(x) ` G(x) (generic or not), and therefore in particular it
is the stabilizer of p in this action when p is generic.
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Proof: It is clear that if p(x) ∈ S(A) is generic, then also g ∗ p is generic. We check that
(g ·h)∗p = g ∗ (h∗p). It is enough to show that these two types have a common realization.
Choose a |= p such that a |̂

A
g, h. Then a |̂

A
g · h and therefore g · h · a |= (g · h) ∗ p.

Now note that a |̂
Ah
g and hence h · a |̂

Ah
g. By genericity of a over A and the fact that

a |̂
A
h we also have h · a |̂ h,A. By transitivity h · a |̂ hAg and in particular h · a |̂

A
g.

Hence g · h · a |= g ∗ (h ∗ p).
Genericity of p is not used in the rest. By Proposition 6.2 we know that Stab(p) = S(p).

We show that g ∈ S(p) if and only if g ∗ p = p. Assume first g ∈ S(p). This means that
there is some h |= p such that g ·h |= p and g ·h |̂

A
g. It follows that g |̂

A
h and therefore

g · h |= g ∗ p. Hence p = g ∗ p because they have a common realization. For the other
direction, assume now g ∗ p = p and take a |= p such that a |̂

A
g. Then a |= g ∗ p and

therefore a = g · h for some h |= p such that h |̂
A
g. We have then h |= p, g · h |̂

A
g and

g · h |= p. This clearly means that g ∈ S(p). 2

Proposition 7.6 Let T be stable and A = acleq(A). There is only one generic type p(x) ∈
S(A) such that p(x) ` G00(x).

Proof: Existence of at least one such generic type follows from the fact that G00(x)
is a partial generic type. For the uniqueness, let p, q be generic types over A such that
p(x) ` G00(x) and q(x) ` G00(x). Let a |= p and b |= q such that a |̂

A
b and let c = b ·a−1.

Then c ∈ G00 and c |̂
A
a. By Proposition 6.6 (and propositions 6.7 and 7.1 to be able to

apply it to A) Stab(p) = G00. Hence c ∗ p = p and therefore b = c · a |= c ∗ p = p. Since p, q
have b as a common realization, p = q. 2

Corollary 7.7 Let T be stable and A = acleq(A).

1. The action (g, p) 7→ g ∗ p of G on the generic types p(x) ∈ S(A) is transitive.

2. For any g ∈ G there is only one generic type p(x) ∈ S(A) such that p(x) ` g ·G00(x).
Hence the generics over A are in a one-to-one correspondence with the quotient group
G/G00.

Proof: 1. Observe that if p′, q′ are nonforking extensions respectively of p, q over a bigger
set B and p′ = g ∗ q′, then also p = g ∗ q. Hence we may assume that A is in fact a (2|T |)+-
saturated model and hence every coset of G00 meets A. Let p, q be generic types over A.
By Lemma 1.1 there are a, b ∈ G such that p(x) ` a ·G00(x) and q(x) ` b ·G00(x). By the
saturation of A, we may assume that a, b ∈ A. Let g |= p and h |= q. Then a−1 · g ∈ G00

and it realizes the generic type a−1 ∗ p. Similarly, b−1 · h ∈ G00 and realizes the generic
type b−1 ∗ q. By Proposition 7.6, a−1 ∗ p = b−1 ∗ q and hence p = a · b−1 ∗ q. For point 2
observe that in case a = b we get p = q. 2

Definition 7.8 For any set A, G0
A is the intersection of all subgroups of G of finite index

which are relatively A-definable. In case G0
A = G0

∅ for any A, we use the notation G0.
Clearly, G00

A ≤ G0
A.

Proposition 7.9 If T is stable then G0
A = G0.

Proof: For any ϕ = ϕ(x, y) ∈ L, let Gϕ be the intersection of all subgroups of finite index
which are relatively ϕ-definable (over C). By Proposition 2.3Gϕ is the intersection of finitely
many of these groups. Therefore Gϕ is relatively definable and hence has finite index. Since
it is invariant, it is in fact relatively definable over ∅. Hence G0

∅ ≤
⋂
ϕ∈LGϕ ≤ G0

A ≤ G0
∅. 2
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Remark 7.10 The group G acts on S(C)G = {p ∈ S(C)) : p ` G(x)} by (g, p) 7→ g · p.
Let T be stable and A = acleq(A). The action of G on the generics over A defined in
Proposition 7.5 can now be explained in terms of this new action. Let p(x) ∈ S(A) and let
p ∈ S(C)G be its corresponding nonforking extension over C. Then

1. g ∗ p = (g · p) � A

2. Stab(p) = {g ∈ G : g · p = p} (= Stab(p))

3. If q(x) ∈ S(A) is generic and q ∈ S(C)G is its nonforking extension, then g ∗ p = q if
and only if g · p = q

Proof: 1. We need to find a common realization of these two complete types over A. Let
a |= p be such that a |̂

A
g. Then g ·a |= g ∗p. On the other hand a |= p � Ag and therefore

g · a |= g · (p � Ag). But g · (p � Ag) ⊆ g · p and therefore g · (p � Ag) = (g · p) � Ag. Thus
g · a |= (g · p) � A.

2. If g · p = p then (g · p) � A = p and by 1, g ∗ p = p. For the other direction, assume
g ∗ p = p, that is (g · p) � A = p � A = p. By stationarity of p is it enough now to prove that
g ·p is a nonforking extension of p. But this follows from Proposition 4.4 and Proposition 4.6
since for each ϕ and k, for each B ⊇ gA,

D∗(g · p � B,ϕ, k) = D∗(p � B,ϕ, k) = D∗(p, ϕ, k).

3. From right to left is like 2. For the other direction, assume g ∗ p = q. Then (g · p) � A =
q � A = q. By genericity g · p does not fork over A and then g · p = q because the types are
stationary. 2

Remark 7.11 Let T be stable and H ≤ G a connected subgroup type-definable over A =
acleq(A). If p(x) ∈ S(A) is the generic of H then H = Stab(p).

Proof: Let StabH(p) be the stabilizer of p in H. Clearly, StabH(p) = H ∩ Stab(p). By
connectedness and genericity H = H0 = StabH(p). It remains to show that Stab(p) ⊆ H.
Let g ∈ Stab(p). For some a |= p, a |̂

A
g and g ·a ≡A a. Then g ·a |= p. Since p(x) ` H(x),

g · a ∈ H. Since a ∈ H too, we conclude g ∈ H. 2

Remark 7.12 Let ϕ(x, y) ∈ L and let us define ϕ′(x; y, z) = ϕ(x · z, y). Note that

g · ϕ′(x; a, b) = ϕ′(x · g−1; a, b) = ϕ(x · g−1 · b, a) = ϕ′(x; a, g−1 · b)

and therefore the product by elements of G is also an action on Sϕ′(C). To be precise we
must point out that by ¬ϕ′(x; a, b) we understand the negation of ϕ′(x; a, b) and not the
corresponding substitution in ¬ϕ(x, a). Thus, for p ∈ Sϕ′(C),

g · p = {g · ϕ′(x; a) : a ∈ C and ϕ′(x; a) ∈ p} ∪ {¬g · ϕ′(x; a) : a ∈ C and ϕ′(x; a) 6∈ p}

and the mapping (g, p) 7→ g · p is an action of G on Sϕ′(C). For p ∈ Sϕ′(C), let Stabϕ′(p) =
{g ∈ G : g · p = p} be the stabilizer of the action. Clearly it is a subgroup of G. Moreover
the action is transitive when restricted to generics and for any p ∈ S(C)G,

Stab(p) =
⋂
ϕ∈L

Stabϕ′(p � ϕ′).
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Proof: Let p ∈ S(C)G. It is easy to check that Stabϕ(p � ϕ′) is a subgroup that contains
Stab(p). Assume now g ∈

⋂
ϕ∈L Stabϕ(p � ϕ′) and let us prove that for any ϕ(x, y) ∈ L, for

any a ∈ C: ϕ(x, a) ∈ p if and only if g ·ϕ(x, a) ∈ p (which proves g ∈ Stab(p)). It is enough
to notice that ϕ(x, a) ∈ p iff ϕ′(x; a, 1) ∈ p � ϕ′ iff g ·ϕ′(x; a, 1) ∈ p � ϕ′ iff g ·ϕ(x, a) ∈ p. It
only remains to prove that the action is transitive on the generic types. Let p, q ∈ S(C)G

be generic types, fix some set A = acleq(A) and let p = p � A and q = q � A. By genericity,
p and q do not fork over A. By Proposition 7.7 there is some g ∈ G such that g ∗ p = q and
by Remark 7.10 g · p = q. In particular g · p � ϕ′ = q � ϕ′ 2

Proposition 7.13 If T is stable then G00 = G0 and for any ϕ(x, y) ∈ L the set {p � ϕ :
p is generic } is finite.

Proof: Let p(x) ∈ S(acleq(∅)) be generic and let p be its nonforking extension over C . By
Proposition 6.6, Stab(p) = G00. With the notation of Remark 7.12, letHϕ = Stabϕ′(p � ϕ′).
We know that Stab(p) = Stab(p) =

⋂
ϕ∈LHϕ and each Hϕ is a subgroup of G. By stability,

p � ϕ′ is definable by a formula dpxϕ
′(x; y, z). Then for g ∈ G

g ∈ Hϕ if and only if |= ∀yz(dpxϕ
′(x; y, z) ↔ dpxϕ

′(x; y, g−1 · z))

and hence Hϕ is relatively definable (over the canonical base of p, which is contained in any
model M). Since G00 ≤ Hϕ and G00 is of bounded index, Hϕ is of finite index. Now if M
is a model

G0 = G0
M ≤

⋂
ϕ∈L

Hϕ = G00

and hence G0 = G00.

By Remark 7.12 the action of G on {p � ϕ′ : p ∈ S(C) is generic } is transitive and
therefore the size of the orbit of any generic p � ϕ′ is the finite index [G : Stabϕ′(p � ϕ′)].
Hence {p � ϕ′ : p is generic } is finite. Since p � ϕ′ ` p � ϕ (because ϕ(x, a) ≡ ϕ′(x; a, 1))
also {p � ϕ : p is generic } is finite. 2

Theorem 7.14 If T is stable, G is a subgroup of a 0-definable group H and there is a
family (Hi : i ∈ I) of 0-definable subgroups of H such that G =

⋂
i∈I Hi.

Proof: We will assume that the type G(x) defining the group G is closed under conjunc-
tion. By compactness we can find a formula ϕ0(x) ∈ G(x) such that if |= ϕ0(a)∧ϕ0(b)∧ϕ0(c)
then a · (b · c) and (a · b) · c are defined, a · (b · c) = (a · b) · c, and a · 1 = 1 · a = a. For any
ϕ(x) ∈ L, let

ϕ̂(x, y) = ϕ0(x) ∧ ϕ0(y) ∧ ϕ(y · x).

By Proposition 7.13 there are only finitely many ϕ̂-restrictions of generic types. For each
generic p, the restriction p � ϕ̂ is definable by some formula dpxϕ̂(x, y). Let

δϕ(y) =
∧

p generic

dpxϕ̂(x, y).

Note that δϕ(y) is invariant and therefore we may assume it is over ∅. Notice that if
ϕ(x) ` ψ(x), then ϕ̂(x, y) ` ψ̂(x, y) and therefore δϕ(y) ` δψ(y). Note also that for all b

|= δϕ(b) if and only if ϕ̂(x, b) ∈ p for all p generic
if and only if |= ϕ̂(a, b) for all a ∈ G generic over b
if and only if |= ϕ0(b) and |= ϕ(b · a) for all a ∈ G generic over b.
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The group G can be also defined by the set of formulas {ϕ0(x)}∪{δϕ(x) : ϕ(x) ∈ G(x)}.
On the one hand is obvious that all elements in G satisfy these formulas. On the other hand,
if b realizes them and we choose a ∈ G generic over b, then |= ϕ(b · a) for all ϕ(x) ∈ G(x)
and hence b · a ∈ G. It follows that b ∈ G.

By compactness there is some ϕ(x) ∈ G(x) such that if H0 is defined by ϕ0(x) ∧ δϕ(x),
then |= ϕ0(a · b) for all a, b ∈ H0. Clearly G ⊆ H0. We now claim that

a ∈ G, b ∈ H0 ⇒ b · a ∈ H0 (1)

In order to prove it, assume a ∈ G and b ∈ H0. By definition ofH0 and choice of ϕ is obvious
that |= ϕ0(b · a) and hence only remains to check that |= δϕ(b · a), that is, |= ϕ((b · a) · c)
for all c ∈ G generic over b · a. Let c ∈ G be generic over b · a. To prove that |= ϕ((b · a) · c)
we can clearly assume that c |̂

b·a b, a. Hence c is also generic over a, b and a · c is generic
over a, b and in particular over b. Since |= δϕ(b) it follows that |= ϕ(b · (a · c)). By choice of
ϕ0, (b · a) · c = b · (a · c) and therefore |= ϕ((b · a) · c).

Now let H1 = {a ∈ H0 : b · a ∈ H0 for all b ∈ H0}. It is definable over ∅ and by claim 1
G ⊆ H1 ⊆ H0. It is easy to check that H1 is closed under the group operation. Finally let
us define the set of invertible elements of H1:

H = {a ∈ H1 : a · b = b · a = 1 for some b ∈ H1}

H is also closed under product and it is therefore a group definable over ∅ and such that
G ≤ H.

To find the family (Hi : i ∈ I) of subgroups Hi ≤ H it is enough to notice that for
each ψ(x) ∈ G(x), if we repeat the construction of H starting with ψ(x)∧ϕ0(x) in place of
ϕ0(x) we obtain a group Hψ ≤ H such that G ≤ Hψ ⊆ ψ(C). 2

Corollary 7.15 Let T stable and assume H ≤ G is type-definable over A and a ∈ G. There
is a sequence (ci : i ∈ I) of imaginaries such that for every automorphism f ∈ Aut(C),
f(H · a) = H · a if and only if f(ci) = ci for all i ∈ I.

Proof: By Theorem 7.14 we may assume (changing if necessary G by a larger group) that
G is definable over ∅. We apply Theorem 7.14 now to H (in T (A)) Theorem 7.14 obtaining
a family (Hi : i ∈ I) of A-definable subgroups Hi ≤ G such that H =

⋂
i∈I Hi. Fix i ∈ I

and consider all the groups f(Hi) where f ∈ Aut(C) is such that f(H ·a) = H ·a. Note that
f(H) = H for any such f because f(H) ·f(a) = H ·a and hence f(H) is a group and a coset
of H. By the chain condition in Proposition 2.3 the intersection Gi of all the groups f(Hi)
for all f as above is in fact the intersection of a finite number of them and it is therefore
definable. Note that H ≤ Gi ≤ Hi. Clearly, f(Gi) = Gi if f(H · a) = H · a. Moreover
f(Gi ·a) = Gi ·f(a) and hence H ·a is a common subset of Gi ·f(a) and Gi ·a, which implies
f(Gi ·a) = Gi ·a. Let ci be the canonical parameter of Gi ·a . An automorphism f ∈ Aut(C)
fixes ci if and only if f fixes setwise Gi · a. Notice that H · a = (

⋂
i∈I Gi) · a =

⋂
i∈I Gi · a.

Hence f(ci) = ci for all i ∈ I if and only if f(H · a) = H · a. 2

8 Transitive group actions

We assume T is a simple theory in this section.

Let S be type-definable over the empty set and assume there is a type-definable (over ∅)
transitive action of G on S. We use S(x) for the type defining S. With the same arguments
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of Lemma 1.3 one sees easily that the action G×S → S is in fact relatively definable over ∅
and that the formula ψ(x, y, z) which defines the action can be assumed to be generally a
partial mapping on the variables x, y an also in the variables x, z. We will use the notation
g · a for the group action.

Definition 8.1 Let p(x) ∈ S(A) be a type such that p(x) ` S(x). We say that p is generic
if for any a |= p, for any g ∈ G such that g |̂

A
a, we have g · a |̂ A, g. An element a ∈ S

is called generic over A if tp(a/A) is generic. A partial type over A is generic if it can be
extended to a complete type p(x) ` S(x) generic over A. To distinguish between genericity
with respect to G and genericity with respect to S we sometimes say that an element or a
type is generic in G or that it is generic in S. As in the group case, genericity of a partial
type π(x) is independent of the choice of the set A as long as it contains the parameters of
π(x).

Proposition 8.2 Let a ∈ S

1. If a is generic over A then a |̂ A.

2. If a is generic over A and g ∈ G ∩ acl(A) then g · a is generic over A.

3. If A ⊆ B and a |̂
A
B, then a is generic over A if and only if it is generic over B.

4. If a is generic over A and g |̂
A
a then g · a is generic over A,g.

5. If A ⊆ B and a is generic over B, then a is generic over A.

Proof: It is a copy of the proof for the group case. 2

Proposition 8.3 If g ∈ G is generic over Aa and a ∈ S is such that a |̂ A, then g · a is
generic over A. In particular (case A = ∅) if g ∈ G is generic over a ∈ S, then g · a is
generic.

Proof: Let h ∈ G, h |̂
A
g · a. We want to show that h · g · a |̂ h,A. Without loss of

generality h |̂
A,g·a g, a. Then h |̂

A
g, a. Since g |̂ A, a we conclude then that g |̂ A, a, h.

Therefore g is also generic over Aah and h · g is generic over Aah. This implies that
h ·g |̂ A, a, h and hence h ·g |̂

a
h,A. By definability, h ·g ·a |̂

a
h,A. Now we have a |̂ A

and a |̂
A
h and hence A, h |̂ a. By transitivity A, h |̂ h · g · a. 2

Proposition 8.4 For any A there is some a ∈ S generic over A.

Proof: Let a ∈ S a |̂ A and let g ∈ G generic over Aa. By Proposition 8.3, g ·a is generic
over A. 2

Proposition 8.5 Let b ∈ S be generic over A and let a ∈ S, a |̂
A
b. Then g · a = b for

some g ∈ G generic over Aa.

Proof: Let g ∈ G be generic over Aba. Since the action is transitive, there is some h ∈ G
such that h · a = g · b. We can additionally require that h |̂

a,g·bAg. Since b is generic
over Aa and g |̂

Aa
b we see that g · b |̂ Aag. Now g |̂

Aa
g · b and g |̂

Aa,g·b h and hence
g |̂

Aa
h. Therefore g−1 · h is generic over Aa. But g−1 · h · a = b. 2
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Remark 8.6 A version of D∗(π, ϕ, k) rank for this context is easily available, changing only
G(x) by S(x). The product g · ϕ(x) for ϕ(x) consistent with S(x) is defined similarly as in
the group case. It is routine to check that the analogues of Proposition 4.3, Proposition 4.6
and Corollary 4.7 hold. This will be used in the sequel.

Proposition 8.7 The following conditions are equivalent for any partial type π(x) over A
consistent with S(x).

1. π is generic in S.

2. D∗(π, ϕ, k) = D∗(S(x), ϕ, k) for all ϕ, k.

3. For all g ∈ G, g · π does not fork over ∅.

Proof: 1 ⇒ 2 Let b |= π be generic over A and choose a ∈ S, a |̂
A
b and such that

D∗(tp(a/A), ϕ, k) = D∗(S(x), ϕ, k). By Proposition 8.5 there is some g ∈ G generic over
Aa and such that g · a = b. Then a |̂

A
g and

D∗(tp(a/A), ϕ, k) = D∗(tp(a/Ag), ϕ, k) = D∗(tp(g · a/Ag), ϕ, k) ≤ D∗(π, ϕ, k)

2 ⇒ 3. Like the corresponding implication in the proof of Proposition 4.11.

3 ⇒ 1. Let g ∈ G be generic over A. Since g · π does not fork over ∅, for some a |= π,
g ·a |̂ Ag. Then g−1 is generic over A, g ·a and g ·a |̂ A. By Proposition 8.3, a = g−1 ·g ·a
is generic over A. Then π is generic. 2

Corollary 8.8 A type (closed under conjunction) is generic in S if and only if all its
formulas are generic in S.

Proof: Clear by point 2 of Proposition 8.7. 2

Proposition 8.9 Let T be stable. A formula ϕ(x) ∈ L(A) is generic in S if and only if for
some n < ω there are g1, . . . , gn ∈ G such that S ⊆

⋃n
i=1 gi · ϕ(C).

Proof: It is a modification of the proof of Proposition 7.3. From right to left is the same
argument. For the other direction, we fix an ω-saturated model M ⊇ A and a generic type
p(x) ∈ S(M) in S containing the formula ϕ(x). Like in the proof of Proposition 7.3, it will
be enough to prove that

S(x) `
∨

h∈M∩G

h · ϕ(x)

Choose some a0 ∈ M ∩ S. Since the action is transitive, it suffices to show that for each
g ∈ G there is some h ∈ M ∩ G such that g · a0 ∈ h · ϕ(C), that is g · a0 = h · b for
some b ∈ S such that |= ϕ(b). In other words, we have to show that ϕ(y−1 · g · a0) is
satisfiable in M . Since g ·p does not fork over M , there is some a |= p such that g ·a |̂

M
g.

Choose h such that g · a = h · a0 and h |̂
g·a,a0

Mag. Then g |̂
M
h, that is tp(h/Mg)

does not fork over M and it is therefore finitely satisfiable in M . Using the same trick
as in the proof of Proposition 7.3 one sees that the type G(x) ∪ {ϕ(y−1 · g · a0)} (which
is contained in tp(h/Mg)) is satisfiable in M and we get this way some h′ ∈ M ∩ G that
satisfies ϕ(y−1 · g · a0). 2

Corollary 8.10 Let T be stable.
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1. A partial type π(x) over A is generic in S if and only if for all g ∈ G, g · π does not
fork over A.

2. a ∈ S is generic over A if and only if for all g ∈ G, if a |̂
A
g, then g · a |̂

A
g.

3. Let a ∈ S. If g ∈ G is generic over Aa, then g · a is generic over A.

Proof: 1. By Proposition 8.7, the right hand expresses genericity of π in the theory T (A).
Now π is generic in T (A) if and only if all finite conjunctions of formulas in π are generic
in T (A). By Proposition 8.9, a formula ϕ(x) ∈ L(A) is generic over A in the theory T if
and only if it is generic over A in the theory T (A).

2 follows from 1.

3 follows from 2 along the lines of the proof of Proposition 8.3. 2

Definition 8.11 For stationary p(x) ∈ S(A) such that p(x) ` S(x) and g ∈ G we define
the product g ∗ p as the type tp(g · a/A) where a |= p and a |̂

A
g. Moreover we define the

stabilizer of p:
Stab(p) = {g ∈ G : g ∗ p = p}

Remark 8.12 If p(x) ∈ S(A), then Stab(p) is type-definable over A.

Proof: As in the proof of Proposition 6.3. 2

Proposition 8.13 Let T be stable and A = acleq(A). The mapping (g, p) 7→ g ∗ p is a
transitive action of G on the generic types p(x) ∈ S(A) such that p(x) ` S(x). A type
p(x) ∈ S(A) is generic in S if and only if its stabilizer Stab(p) contains the connected
component G0.

Proof: We prove that g ∗p is generic. Let a |= p and let g ∈ G be such that a |̂
A
g. Then

g · a |= g ∗ p. Let h ∈ G be such that h |̂
A
g · a. We have to show that h · g · a |̂ Ah. We

can assume h |̂
A,g·a ag. Then h |̂

A
ag. From this we see that a |̂

Ag
h and hence that

a |̂
Ag
h · g. Since a is generic over Ag, it follows that h · g · a |̂ Ag, h · g and therefore

h · g · a |̂ Ah.
Checking that (g ·h)∗p = g ∗ (h∗p) is like in the proof of Proposition 7.5, so we omit it.

To see that the action is transitive, assume p(x), q(x) ∈ S(A) are generic types extending
S(x). Let a |= p, b |= q be such that a |̂

A
b. By Proposition 8.4 g · a = b for some g ∈ G

generic over Aa. Then g |̂
A
a and therefore g · a |= g ∗ p. Hence g ∗ p = q.

Assume p(x) ∈ S(A) extends S(x) and is generic. Let a |= p, b |= p be such that
a |̂

A
b. By Proposition 8.4 there is some g ∈ G generic over Aa and such that g · a = b.

Then g · a |= g ∗ p and hence g ∈ Stab(p). Since g is generic over A, Stab(p) contains an
element generic over A. Then the partial type over A defining Stab(p) is generic and by
Proposition 5.4 G0 ≤ Stab(p). For the other direction, assume G0 ≤ Stab(p). Again by
Proposition 5.4 there is some g ∈ Stab(p) generic over A. Since g ∗ p = p, there is some
a |= p such that a |̂

A
g and g · a |= p. Then g is also generic over Aa and by point 3 of

Corollary 8.10 g · a is generic over A. Therefore p is generic. 2

Proposition 8.14 If T is stable and G is connected, for each A there is only one generic
type p(x) ∈ S(A) such that p(x) ` S(x).

Proof: Let p(x), q(x) be generic types over A extending S(x). By transitivity of the action
of G on the generic types, there is some g ∈ G such that g∗p = q. By connectedness, G = G0.
By genericity (Proposition 8.13) G0 ⊆ Stab(p). Hence g ∈ Stab(p) and q = g ∗ p = p. 2
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Remark 8.15 Consider the transitive action of left translation (g, h) 7→ g · h of G on G.
An element g ∈ G is generic over A in the sense of the group G if and only if it is generic
over A in the sense of the action. Similarly for right translation.

Proposition 8.16 In a supersimple theory there exist types of maximal SU-rank among
the complete types over A extending S(x) and they are precisely the generic types over A
in S. The same is true in a superstable theory with respect to the U-rank. Moreover if T is
superstable and p(x) ∈ S(A) is a type extending the partial type S(x), then p is generic if
and only if R∞(p) = R∞(S(x)). If T is totally trascendental a type p(x) ∈ S(A) is generic
if and only if RM(p) = RM(S(x)). By the previous remark, a similar characterization can
be given for the generics of the group G.

Proof: Let T be supersimple. Let a ∈ S and let g ∈ G be such that a |̂
A
g. Then

SU(a/A) = SU(a/Ag) = SU(g · a/Ag) ≤ SU(g · a/A)

and if SU(a/A) is maximal we get the equality SU(g · a/Ag) = SU(g · a/A) and hence
g · a |̂

A
g.

Now, let a ∈ S be arbitrary and let us check that SU(a/A) ≤ SU(c/A) for some c ∈ S
generic over A. First take b ≡ a such that b |̂ A. Then SU(a/A) ≤ SU(a) = SU(b) =
SU(b/A). Now let g ∈ G be generic over Ab. By Proposition 8.3 c = g · b is generic over A
and as showed above SU(b/A) ≤ SU(c/A).

If a, b ∈ S are independent generics over A then, by Proposition 8.5, g · a = b for some
g ∈ G generic over Aa and we see that SU(a/A) ≤ SU(b/A). It follows that all generics
over A have the same SU-rank.

Finally, if a ∈ S has maximal SU-rank over A and g ∈ G is such that g |̂
A
a, then,

as indicated above, g · a |̂
A
g. Moreover since SU(a/A) ≤ SU(g · a/A), SU(g · a/A) is

also maximal and therefore SU(g · a/A) = SU(g · a), that is, g · a |̂ A. We conclude that
g · a |̂ A, g and hence that a is generic over A.

The case superstable with rank U or R∞ and the case totally trascendental with Morley
rank are similar or even simpler since we can use point 2 of Corollary 8.10. 2

9 One-based groups

Notation 9.1 Assume T is stable and let H be a type-definable subgroup of G. Using
Corollary 7.15, we fix for each coset H · b of H a corresponding sequence of imaginaries
[H · b] such that any automorphism of C fixes setwise H · b if and only if it fixes pointwise
[H · b]. Similarly for left cosets.

Definition 9.2 Let T be stable. G is one-based if and only if for each A, for each a ∈
dcleq(G), Cb(a/A) ⊆ acleq(a). If for each A, for each n < ω, for each a ∈ Gn, Cb(a/A) ⊆
acleq(a), then G is one based. Clearly, if G is one-based then for each n < ω, Gn is
one-based. Moreover every subgroup of G is one-based.

Remark 9.3 Let T be stable, a ∈ G, A = acleq(A), p(x) = tp(a/A) and H = Stab(p).
Assume H · a is type-definable over A. Consider the transitive action (over A) of H on
H ·a given by (g, c) 7→ g ·c. Then p(x) is a type of the space H ·a and H is also the stabilizer
of p in the action, that is, H = {g ∈ H : g ∗ p = p}.
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Proof: Since T is stable, H = Stab(p) = S(p) = {g ∈ G : g · p ∪ p does not fork over A}.
Let g ∈ H. We will show that g ∗ p = p. By Lemma 6.2 there is some h |= p such that
g · h |= p, g · h |̂

A
g and h |̂

A
g. Then g · h is a common realization of p and g ∗ p and

therefore p = g ∗ p. 2

Lemma 9.4 Let T be stable, a ∈ G, A = acleq(A), p(x) = tp(a/A) and H = Stab(p).
Assume H · a is type-definable over A. Then H is connected and p(x) is the generic type
of the coset H · a in the transitive action (over A) of H on H · a given by (g, c) 7→ g · c.

Proof: We first check that H0 · a is also type-definable over A. If not, then [H0 · a] 6⊆ A
ant therefore H0 · a has unboundedly many A-conjugates. These conjugates are cosets of
H0 and are contained in H ·a (because H ·a is A-invariant). By translation we see that the
index of H0 in H is unbounded, a contradiction.

Since H0 is a generic subgroup of H, we can choose b ∈ H0 generic over Aa in H. Then
b |̂

A
a and hence tp(b ·a/A) = b∗p = p (because b ∈ Stab(p)). By point 3 of Corollary 8.10

b · a is generic over A as element of H · a in the action of H.

Since H0 ·a is over A and b ·a ∈ H0 ·a and b ·a |= p, it follows that p(x) ` H0 ·a(x). Since
H, H0 are type-definable over A, if H0 6= H we can find c ∈ H r H0 such that c |̂

A
a.

Then c ∈ Stab(p) and hence c · a |= c ∗ p = p. As p(x) ` H0 · a(x), c · a ∈ H0 · a and hence
c ∈ H0, a contradiction. 2

Notation 9.5 Stab(a/A) will be a shorthand for Stab(stp(a/A)), like Cb(a/A) is a short-
hand for Cb(stp(a/A)).

Proposition 9.6 Let T be stable and let G be one-based, let a ∈ G, A = acleq(A), p(x) =
tp(a/A) and H = Stab(p). Then H is connected and type-definable over acleq(∅), H · a is
type-definable over A and p(x) is the generic type of H · a in the transitive action of H on
H · a given by (g, c) 7→ g · c.

Proof: To prove H is connected and p(x) is the generic of H ·a we will prove first that H ·a
is type-definable over A and then Lemma 9.4 will be applied. Let us choose b ∈ G generic
over Aa. Let κ > |A|+ |T | and let M ⊇ Ab be a κ-saturated and strongly κ-homogeneous
model such that a |̂

Ab
M . Since a |̂

A
b, we have a |̂

A
M .

In M (as in any other model) G determines a group GM = M ∩G and this group acts
on the types q(x) ∈ S(M) extending the partial type G(x) by (g, q) 7→ g · q. The stabilizer
of q in this action is M ∩Stab(q). Observe that c · p = tp(c ·a/M) for all c ∈M . Therefore,
for any f ∈ Aut(M/A) the following conditions are all equivalent

1. tp(b · a/M)f = tp(b · a/M)

2. f(b) · tp(a/M) = b · tp(a/M) (notice that p ∈ S(A) and hence pf = p and tp(a/M)f =
tp(a/M))

3. b−1 · f(b) · tp(a/M) = tp(a/M)

4. b−1 · f(b) ∈ Stab(tp(a/M)) = Stab(p) (= H)

5. b ·H = f(b) ·H.

6. f ∈ Aut(M/[b ·H]) (notice that [b ·H] is contained in M since b ·H is type-definable
over Ab)
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By Lemma 1.2 we conclude that

Cb(b · a/M) ⊆ dcleq(A, [b ·H]) (1)

and that in T (A):
Cb(b · a/M) = [b ·H]

Since G is also one-based in T (A) we get [b ·H] ⊆ acleq(A, b · a). By genericity b · a |̂
A
a

and hence a |̂
A
b · a, [b ·H] and in particular

b · a |̂
A[b·H]

a

Since also (by 1) b·a |̂
A[b·H]

M , the types tp(b·a/M) and stp(b·a/Aa[b·H]) are parallel and
therefore they have a common nonforking extension q ∈ S(C). We use now this common
nonforking extension to show that H · a is type-definable over M . Assume f ∈ Aut(C/M).
Since f fixes tp(b · a/M), qf = q. Since q contains stp(b · a/Aa[b ·H]) and the partial type
b ·H · a(x) is over a[b ·H] and b · a ∈ b ·H · a, we get that

q(x) ` b ·H · a(x)

Now observe that b ·H is type-definable over Ab ⊆ M and therefore it is setwise fixed by
f . If we apply f (remembering qf = q) we get

q(x) ` b ·H · f(a)(x)

which implies that b ·H ·a(x)∪b ·H ·f(a)(x) is consistent and hence b ·H ·a∩b ·H ·f(a) 6= ∅
and finally H · a = H · f(a) = f(H · a). Thus

H · a is type-definable over M.

But H · a is also type-definable over Aa. Hence [H · a] ⊆M and [H · a] ⊆ dcleq(Aa). Since
a |̂

A
M we get [H · a] |̂

A
[H · a] and therefore [H · a] ⊆ acleq(A) = A.

This way we have proven that H · a is type-definable over A and by Lemma 9.4 we
conclude that H is connected. It only remains to check that H is in fact type-definable over
acleq(∅).

Since a |̂
A
b, H = Stab(a/Ab). We claim now that

H = Stab(a · b/Ab).

To check this, let us assume that g ∈ Stab(a/Ab). Then for some c ≡acleq(Ab) a, g |̂
Ab
c

and g · c ≡acleq(Ab) c. Clearly c · b ≡acleq(Ab) a · b, g |̂
Ab
c · b and g · c · b ≡acleq(Ab) c · b.

Therefore g ∈ Stab(a · b/Ab). The argument for the other inclusion is similar.

It follows then that H is type-definable over Cb(a · b/Ab). By one-basedness, Cb(a ·
b/Ab) ⊆ acleq(a · b). Hence [H] ⊆ acleq(a · b). On the other hand, H is type-definable over
A and then [H] ⊆ A. Since a · b is generic over A, a · b |̂ A and therefore [H] |̂ [H] and
[H] ⊆ acleq(∅). Hence H is type-definable over acleq(∅). 2

Lemma 9.7 Let T be stable and let G be one-based. Any connected type-definable subgroup
H ≤ G is type-definable over acleq(∅).

Proof: Fix A = acleq(A) such that H is type-definable over A. By Remark 7.11, if
p(x) ∈ S(A) is the generic of H, then H = Stab(p). By Proposition 9.6 H is type-definable
over acleq(∅). 2
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Theorem 9.8 Let T be stable and let G be one-based. The connected component G0 is
abelian and can be extended to a relatively definable abelian normal subgroup of G of finite
index. Hence G is abelian by finite.

Proof: Once it has been established that G0 is abelian, we obtain the promised relatively
definable abelian normal subgroup of finite index as H = Z(CG(G0)), the center of the
centralizer in G of the connected component G0. Observe that

CG(G0) =
⋂
g∈G0

{a ∈ G : a · g = g · a}

is the intersection of a family of relatively ϕ-definable (where ϕ(x, y) is x·y = y·x) subgroups
and hence by Proposition 2.3 it is the intersection of finitely many of them. Thus CG(G0)
is relatively definable. Since it extends G0 it has bounded index. Being relatively definable
of bounded index, it has finite index. Its center is again relatively definable of finite index,
contains G0, and it is abelian.

We show now that G0 is abelian by proving that it is contained in its center. For g ∈ G0

let Inng be the inner automorphism of G0 of conjugation by g, Inng(a) = ag = g−1 · a · g.
Its graph {(a, ag) : a ∈ G0} is a relatively definable subgroup of G0 × G0 (a one-based
group) and it is definably isomorphic to G0. Hence it is connected. By Lemma 9.7, H is
type-definable over acleq(∅). From this it follows that if g, h ∈ G0 and stp(g) = stp(h) then
Inng = Innh. Choose g, h ∈ G0 generics over ∅ and such that g |̂ h and stp(g) = stp(h).
Since Inng = Innh, ag = ah for all a ∈ G0. Therefore h · g−1 ∈ Z(G0). Since h · g−1 is
generic over acleq(∅), stp(h · g−1) is the generic of G0 in G. Thus for any generic a ∈ G0,
a ∈ Z(G0) too. Now, every element of a ∈ G0 is the product of two generics: if g ∈ G0

is generic over a then also a · g−1 is generic and a = (a · g−1) · g. We conclude that any
element of G0 is in the center Z(G0).

Normality of Z(CG(G0)) follows from the fact that the centralizer is always normal in
the normalizer (in G in our case, since G0 is normal) and from the fact that if a subgroup
is normal then also it center is normal. 2

Theorem 9.9 Let T be stable. G is one-based if and only if for each n, any relatively
definable subset of Gn is a boolean combination of cosets of relatively acleq(∅)-definable
subgroups of Gn.

Proof: Assume G is one-based. Let A = acleq(A). We show that for any p(x), q(x) ∈
Sn(A) which imply Gn(x), if for every relatively acleq(∅)-definable H ≤ Gn, for every
a ∈ Gn, p ` H · a(x) if and only if q ` H · a(x), then p = q. By a standard argument from
this follows that each formula ϕ(x) ∈ L(A) consistent with Gn(x) is a boolean combination
of formulas defining cosets of relatively acleq(∅)-definable subgroups of Gn

Let a |= p and b |= q, and let H1 = Stab(p) and H2 = Stab(q). By Proposition 9.6,
each Hi is connected and type-definable over acleq(∅), H1 · a and H2 · b are type-definable
over A and p(x), q(x) are the generic types of H1 · a and H2 · b respectively in the transitive
actions of H1 on H1 · a and of H2 on H2 · b given by (g, c) 7→ g · c. In particular this implies
p(x) ` H1 · a(x) and q(x) ` H2 · b(x). By Theorem 7.14 each Hi is the intersection of a
family Hi of relatively definable over acleq(∅) subgroups of Gn. Then p(x) ` H ·a(x) for all
H ∈ H1 and q(x) ` H · b(x) for all H ∈ H2. By our hypothesis on p and q, p(x) ` H2 · b(x)
and q(x) ` H1 · a(x).

We claim that H1 = H2. To verify the claim assume c ∈ H1. We can assume c |̂
A
ab.

Since c ∈ Stab(p) and Stab(p) is also the stabilizer of p in the action of H1 on H1 · a, we
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have c ∗ p = p. Then c · a |= p and therefore c · a ∈ H2 · b. On the other hand a |= p and
hence a ∈ H2 · b. It follows that c ∈ H2. The other inclusion is proved in the same way.

Now we have H1 = H2 = Stab(p) = Stab(q) and p(x) ` H1 · a and p(x) ` H1 · b. It
follows that H1 · a = H1 · b = H2 · b. Then q is also the generic of H1 · a in the action of H1

on H1 · a and then (see Proposition 8.14) p = q.

For the other direction, assume that for every n < ω every relatively definable X ⊆ Gn

is a boolean combination of cosets of relatively acleq(∅)-definable subgroups of Gn. Let
a ∈ Gn and let A = acleq(A). Clearly, if a, b are in the same cosets of relatively acleq(∅)-
definable subgroups of Gn then tp(a/A) = tp(b/A). Since all these cosets are relatively
definable over acleq(a), Cb(a/A) ⊆ acleq(a). Hence G is one-based. 2
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