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These lecture notes continue [6].

1 M-dividing and thorn-forking

Definition 1.1 The relation of M-dividing independence is defined as follows: A |̂ M

C
B if

and only if A |̂ a

D
B for all D such that C ⊆ D ⊆ acl(BC). Thorn-forking independence

(þ-independence) is the relation |̂ þ
defined as |̂ þ

= ( |̂ M
)∗.

Lemma 1.2 |̂ M
has strong finite character.

Proof: 1 Assume A 6 |̂ M

C
B. Then A 6 |̂ a

D
B for some D such that C ⊆ D ⊆ acl(BC).

Let a enumerate A and choose some element e ∈ acl(AD) ∩ acl(BD) r acl(D). Fix some
finite tuple d ∈ D and some formula α(u, x, v) ∈ L such that |= α(e, a, d) and α(u, a, d)
is algebraic. Me may assume that for some k < ω, α(u, x, v) ` ∃≤kuα(u, x, v). Since
e ∈ acl(BD) ⊆ acl(BC), we may choose an algebraic formula β(u) ∈ L(BC) such that
|= β(e). Let e1, . . . , en be the realizations of β(u) in acl(D). We may assume they are
algebraic over the finite tuple d and we can choose some χ(u, v) ∈ L such that χ(u, d) is
algebraic and every ei realizes χ(u, d). Let δ(v) ∈ L(BC) be an algebraic formula isolating
tp(d/BC). Finally we define

ϕ(x) = ∃u∃v(β(u) ∧ δ(v) ∧ α(u, x, v) ∧ ¬χ(u, v)).

Clearly, |= ϕ(a). We claim that if |= ϕ(a′), then a′ 6 |̂ M

C
B. Assume |= ϕ(a′) and choose e′, d′

such that |= β(e′)∧δ(d′)∧α(e′, a′, d′)∧χ(e′, d′). LetD′ = Cd′. Then C ⊆ D′ ⊆ acl(BC). We
check that a′ 6 |̂ a

D′
B. Since |= α(e′, a′, d′), e′ ∈ acl(AD′). Since |= β(e′), e′ ∈ acl(BC) and

then e′ ∈ acl(BD′). By choice of χ, if e′′ realizes β(u) and ¬χ(u, d), then e′′ 6∈ acl(D) and
hence e′′ 6∈ acl(Cd). Since d ≡BC d′, if e′′ realizes β(u) and ¬χ(u, d′), then e′′ 6∈ acl(Cd′).
But |= β(e′) ∧ ¬χ(e′, d′) and therefore e′ 6∈ acl(D′). 2

Proposition 1.3 |̂ M
is a preindependence relation. It is stronger than |̂ a

and weaker

than |̂ d
. It satisfies all algebraicity properties and anti-reflexivity. Moreover, |̂ M

= |̂ a

if and only if |̂ a
satisfies right base monotonicity.

∗Notes of talks given at the Model Theory Seminar in the academic year 2010-2011. Thanks to all
members of the Seminar for their comments: Santiago Cárdenas, Rafel Farré, Martin Koerwien, Daniel
Palaćın, Juan Francisco Pons, Joris Potier, and Tim Zander. Last revised in October 19, 2012.

1A simplified version of this proof shows that |̂ a has strong finite character
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Proof: By anti-reflexivity of |̂ d
it is clear that |̂ d

is stronger than |̂ a
. Since |̂ d

has
right base monotonicity and right algebraicity, it follows easily that it is also stronger than
|̂ M

. Clearly, |̂ M
is stronger than |̂ a

. It is easy to check that the basic axioms transfer

from |̂ a
to |̂ M

. Strong finite character has been proven in Lemma 1.2. Anti-reflexivity
and left algebraicity are clear and also the last statement is straightforward. 2

Remark 1.4 Summing-up what we know, in any theory:

u

|̂ ⇒
i

|̂ ⇒
f

|̂ ⇒
d

|̂ ⇒
M

|̂ ⇒
a

|̂

Definition 1.5 An independence relation is strict if it satisfies anti-reflexivity.

Proposition 1.6 |̂ þ
is a preindependence relation, and it satisfies all algebraicity prop-

erties and anti-reflexivity. It is weaker than any strict independence relation.

Proof: The first assertion follows from Prop 1.3 and Proposition 17.4 of [6]. Now let
|̂ be a strict independence relation. Since |̂ is stronger than |̂ a

and has right base

monotonicity, it is also stronger than |̂ M
. Then |̂ = |̂ ∗ ⇒ ( |̂ M

)∗ = |̂ þ
. 2

Proposition 1.7 The following are equivalent.

1. |̂ þ
is a strict independence relation.

2. |̂ þ
has local character.

3. In T there is some strict independence relation.

Proof: 1 ⇔ 2 follows from Proposition 1.3 and point 4 in Proposition 17.4 of [6]. For 3

⇒ 2 note that if |̂ is an independence relation then (by Proposition 1.6) |̂ ⇒ |̂ þ
and

therefore local character transfers from |̂ to |̂ þ
. 2

Proposition 1.8 If acl has the exchange property and therefore defines a pregeometry (in

particular in an o-minimal and in a strongly minimal theory), |̂ þ
= |̂ M

= |̂ dim
.

Proof: By Corollary 19.5 of [6], |̂ dim
is a strict independence relation in T and hence by

Proposition 1.6 |̂ dim ⇒ |̂ þ ⇒ |̂ M
. We show now that A |̂ M

C
B implies A |̂ dim

C
B. We

use symmetry of |̂ dim
and Fact 19.4 of [6]. Assume A 6 |̂ dim

C
B. Then for some D ⊆ B,

for some element b ∈ B, Db is algebraically independent over C, but b ∈ acl(ACD). Hence
b witnesses that acl(ACD) ∩ acl(BC) 6⊆ acl(CD), which implies A 6 |̂ a

CD
B. Therefore

A 6 |̂ M

C
B. 2

Definition 1.9 Let ϕ(x, y) ∈ L, let k < ω, and let a be a finite tuple. The formula
ϕ(x, a) strongly divides over A with respect to k if a 6∈ acl(A) and {ϕ(x, b) : b ≡A a} is
k-inconsistent. The formula ϕ(x, a) þ-divides over A if for some tuple c, ϕ(x, a) strongly
divides over Ac (with respect to some k). The formula ϕ(x, a) þ-forks over A if ϕ(x, a)
implies a disjunction ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) where every ϕi(x, ai) þ-divides over A. A
partial type π(x) þ-divides over A (þ-forks over A) if it implies a formula ϕ(x, a) that
þ-divides over A (respectively, þ-forks over A).
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Remark 1.10 If ϕ(x, a) þ-divides over A, then for some finite tuple c, ϕ(x, a) strongly
divides over Ac

Proof: Let c be a tuple such that ϕ(x, a) strongly divides over Ac with respect to some
k. Then a 6∈ acl(Ac) and {ϕ(x, b) : b ≡A a} is k-inconsistent. If p(y) = tp(a/Ac), then

p(y1) ∪ . . . ∪ p(yk) ` ¬∃x
∧k
i=1 ϕ(x, yi). By compactness, there is some ψ(y) ∈ p such that

ψ(y1)∧. . .∧ψ(yk) ` ¬∃x
∧k
i=1 ϕ(x, yi). If c′ is a finite subtuple of c such that ψ(y) ∈ L(Ac′),

then ϕ(x, a) strongly divides over Ac′ with respect to k. 2

Lemma 1.11 Assume M ⊇ C is ω-saturated over C. For any A the following are equiva-
lent:

1. A |̂ M

C
M

2. For every C ′ such that C ⊆ C ′ ⊆M , acl(AC ′) ∩M = acl(C ′).

3. For every (finite) tuple a ∈ A, if ϕ(x) ∈ L(M) and |= ϕ(a), then ϕ(x) does not
strongly divide over any C ′ such that C ⊆ C ′ ⊆M .

4. For every (finite) tuple a ∈ A, tp(a/M) does not þ-divide over C.

5. For every (finite) tuple a ∈ A, tp(a/M) does not þ-fork over C.

Proof: 1 ⇒ 2 is obvious and 3 ⇒ 4 ⇒ 5 follows easily from the ω-saturation of M over
C.

2 ⇒ 3. Assume a ∈ A, b ∈M , ϕ(x, y) ∈ L, |= ϕ(a, b), and ϕ(x, b) strongly divides over
some C ′ ⊆M extending C. Then b 6∈ acl(C ′) but b ∈ acl(aC ′), which shows that A 6 |̂ a

C′
M

and hence A 6 |̂ M

C
M .

5 ⇒ 1. Assume A 6 |̂ M

C
M . This means A 6 |̂ a

C′
M for some C ′ ⊆ M containing C.

Fix some element b ∈ acl(AC ′) ∩ M r acl(C ′). Then for some formula ϕ(x, y, z) ∈ L,
for some finite tuple a ∈ A, some finite tuple c ∈ C ′, and some k < ω, |= ϕ(a, b, c) and
|= ∃≤kyϕ(a, y, c). Put

ϕ′(x, y, z) = ϕ(x, y, z) ∧ ∃≤kyϕ(x, y, z)).

Clearly, |= ϕ′(a, b, c) and ϕ′(x, b, c) strongly divides over Cc. Therefore tp(a/M) þ-forks
over C. 2

Lemma 1.12 Assume A ⊆ B ⊆ C. If p(x) ∈ S(B) does not þ-fork over A, then some
extension q(x) ∈ S(C) of p does not þ-fork over A.

Proof: p(x) ∪ {¬ϕ(x) : ϕ(x) ∈ L(C) þ-forks over A} is consistent. 2

Corollary 1.13 A |̂ þ
C
B if and only if for all (finite) tuples a ∈ A, tp(a/BC) does not

þ-fork over C.

Proof: It follows from lemmas 1.11 and 1.12. 2
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2 Externally definable sets

Definition 2.1 A relation R ⊆ Mn is externally definable if for some ϕ(x) ∈ L(C), R =
ϕ(M). A formula ϕ(x) ∈ L(C) is called an honest definition of R if ϕ(M) = R and for each
ψ(x) ∈ L(M), if ϕ(M) ⊆ ψ(M), then ϕ(C) ⊆ ψ(C), that is, ϕ(x) ` ψ(x).

Remark 2.2 If a |̂ u

M
c, then for any b there is some b′ ≡Ma b such that ab′ |̂ u

M
c. In

other words, the inverse of |̂ u
has the extension property over models.

Proof: a |̂ u

M
c means that tp(c/Ma) is a heir of tp(c/M). Since heirs can be extended,

there is some c′ ≡Ma c such that tp(c′/Mab) is a heir of tp(c′/M), that is, ab |̂ u

M
c′. Now

choose b′ such that cb′ ≡Ma c
′b. It follows that ab′ |̂ u

M
c. 2

Lemma 2.3 If ϕ(x, y) has nip, then for each model M , for each finite tuple c, there is some
tuple a |̂ u

M
c and some formula θ(x) ∈ L(a) such that θ(M) = ϕ(M, c) and |= θ(b)→ ϕ(b, c)

for every b such that ba |̂ u

M
c.

Proof: Let Q = {q(x) ∈ S(C) : q coheirs from M and ϕ(x, c) ∈ q}. It is closed in S(C) and
it is bounded. Let Q = {qα(x) : α < λ}. We construct inductively a sequence (aα : α < λ)
of finite tuples aα and corresponding formulas θα(x) ∈ qα � a≤α such that

1. a<α |̂ u

M
c

2. |= θα(b)→ ϕ(b, c) for every b such that ba≤α |̂ u

M
c.

To obtain aα we first observe that there is no sequence (bi : i < ω) such that bi |= qα �
Ma<αb<ic for even i and bi |= qα � Ma<αb<i ∪ {¬ϕ(x, c)} for odd i since such a sequence
would be indiscernible and would verify ϕ(bi, c)⇔ i is even, contradicting the nipof ϕ(x, y).
The construction must fail at some odd i. Choose a minimal odd i for which there is no bi |=
qα � Ma<αb<i ∪ {¬ϕ(x, c)} such that b≤ia<α |̂ u

M
c. By induction hypothesis a<α |̂ u

M
c.

Then b<ia<α |̂ u

M
c. Notice that {b : bb<ia<α |̂ u

M
c} is type-definable over Mb<ia<αc by

{¬ψ(x, b<ia<α) : ψ(x, y<iz<α) ∈ L(Mc) is not satisfiable in M}. By compactness there
is some formula θα(x) ∈ qα � Ma<αb<i such that for every b such that ba<αb<i |̂ u

M
c,

|= θα(b)→ ϕ(b, c). Put aα = b<i and observe that a≤α |̂ u

M
c.

Since Q is closed, by compactness, there are α1, . . . , αn such that θα1
, . . . , θαn cover Q.

Let θ(x) = θα1
(x) ∨ . . . ∨ θαn(x). Then θ(x) ∈ q for every q ∈ Q. We check that θ and

a = a<λ satisfy our requirements. Assume ba |̂ u

M
c and |= θ(b). By point 2, |= ϕ(b, c).

It remains to show that θ(M) = ϕ(M, c). Let m ∈ M be such that |= ϕ(m, c). Then
tp(m/C) ∈ Q and therefore θ(x) ∈ tp(a/C) and |= θ(m). On the other hand, if m ∈ M
then ma |̂ u

M
c and hence |= θ(m)→ ϕ(m, c). 2

Proposition 2.4 If ϕ(x, y) ∈ L has nip, then for every model M , for every tuple c, ϕ(M, c)
has an honest definition.

Proof: Find a |̂ u

M
c and θ(x) ∈ L(a) as in Lemma 2.3. We claim that θ(x) is an honest

definition of ϕ(M, c). Let ψ(x) ∈ L(M) be such that θ(M) ⊆ ψ(M). If there is some b |̂ u

M
c

such that |= ϕ(b, c)∧¬ψ(b), then |= θ(m)∧¬ψ(m) for some m ∈M . Hence |= ϕ(b, c)→ ψ(b)
for all b |̂ u

M
c. We show that θ(x) ` ψ(x). Assume |= θ(b). By Remark 2.2 there is some

b′ ≡Ma b such that b′a |̂ u

M
c. Then |= θ(b′). By Lemma 2.3, |= ϕ(b′, c). Since b′ |̂ u

M
c, we

obtain |= ψ(b′). Since b ≡M b′, |= ψ(b). 2
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Theorem 2.5 If T has nip, then the projection π(R) ⊆Mn in M of any externally defin-
able relation R ⊆Mn+1 is externally definable. Therefore the theory of M expanded with
all externally definable relations has elimination of quantifiers.

Proof: Let π(R) = {m ∈ Mn : R(m, a) for some a ∈ M}. Choose with Proposition 2.4
an honest definition θ(x, y) for R. Let ψ(x, y) be the formula y 6= y. Then for any m ∈Mn:

m ∈ π(R) ⇔ R(m, a) for some a ∈M
⇔ θ(m,M) 6= ∅
⇔ θ(m,M) 6⊆ ψ(M)
⇔ θ(m,C) 6⊆ ψ(C)
⇔ |= ∃yθ(m, y)

and therefore ∃yθ(x, y) defines externally π(R). 2

3 Broom lemma

Proposition 3.1 Let |̂ be a ternary relation that satisfies the basic axioms and extension

and is stronger than |̂ i
. If T is NTP2, A is an extension base for |̂ , and ϕ(x, a) divides

over A, then there are some model M ⊇ A and a |̂ -free extension p(x) ∈ S(C) of tp(a/M)
such that {ϕ(x, ai) : i < ω} is inconsistent for every sequence (ai : i < ω) generated by p
over M with the rule ai |= p �Ma<i.

Proof: Let I = (ai : i < ω) be an A-indiscernible sequence witnessing that ϕ(x, a) k-
divides over A, that is, {ϕ(x, ai) : i < ω} is k-inconsistent and ai ≡A a for all i < ω. Choose
a model M ⊇ A and choose a |M |+-saturated model N ⊇M . Let λ = (2|N |)+ and extend
the sequence I to an A-indiscernible sequence I ′ = (ai : i < λ). Since I ′ |̂

A
A, by the

extension property of |̂ we can assume that I ′ |̂
A
N . By choice of λ, infinitely many ai

have the same type over N . Without loss of generality, ai ≡N aj for all i, j < ω. Since
a0 |̂ AN , p(x) = tp(a0/N) has a global extension p(x) which is |̂ -free over A. Similarly
q(xi : i < ω) = tp((ai : i < ω)/N) has a global extension q(xi : i < ω) which is |̂ -free

over A. Since |̂ ⇒ |̂ i
, these global extensions do not Lascar-split over A and therefore

they do not split over M . Since N is |M |+-saturated a type over N has at most one global
extension that does not split over M ( if p1, p2 are two such global extensions of some type
r(x) ∈ S(N) and ψ(x, b) ∈ p1, some b′ ∈ M realizes tp(b/M) and then ψ(x, b′) ∈ r and
ψ(x, b) ∈ p2.). In particular p and q are the only |̂ -free over A global extensions of p and
q respectively. It follows that q � xi = p(xi). Now construct the sequence (dn : n < ω)
choosing dn |= q �Md<n. Then dn = (dni : i < ω) ≡A (ai : i < ω) and therefore {ϕ(x, dni ) :
i < ω} is k-inconsistent. Since T is NTP2, for some f : ω → ω, {ϕ(x, dnf(n)) : n < ω} is

inconsistent. Notice that dnf(n) |= p � M(dif(i) : i < n). Since p does not split over M , if

(cn : n < ω) satisfies cn |= p � Mc<n for all n < ω then (cn : n < ω) ≡M (dnf(n) : n < ω).
Hence, the type p and the model M satisfy our requirements excepts, perhaps, the condition
tp(a/M) ⊆ p. To repair this, choose a′ |= p �M and choose an automorphism f ∈ Aut(C/A)
such that f(a′) = a. Then f(M) and pf have the right properties for a. 2

Definition 3.2 The formula ϕ(x, a) quasi divides over A if for some n < ω there is a
sequence (ai : i < n) such that ai ≡A a for all i < n and {ϕ(x, a) : i < n} is inconsistent.
Clearly, dividing implies quasi dividing.
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Lemma 3.3 (Broom Lemma) Let |̂ be a ternary relation that satisfies the basic ax-

ioms, extension and is stronger than |̂ i
. Assume |̂ satisfies left extension over A,

α(x, e) ` ψ(x, c) ∨
∨
i<n ϕi(x, ai), and for each i < n, ϕi(x, ai) divides over A. Assume

additionally that some A-indiscernible sequences ai = (aij : j < ω) witnessing dividing over
A of each ϕi(x, ai) satisfy:

1. ai0 = ai

2. aij |̂ A a
i
<ja

<i if j > 0.

3. c |̂
A
a<n.

Then there is a sequence (ei : i < m) of A-conjugates of e such that∧
i<m

α(x, ei) ` ψ(x, c).

Notice that if ψ(x, c) is x 6= x, the conclusion is that α(x, e) quasi divides over A.

Proof: By induction on n. The case n = 0 is clear, with m = 1 and e0 = e. Assume
inductively that the result holds for n and suppose α(x, e) ` ψ(x, c) ∨

∨
i≤n ϕi(x, ai) with

exemplifying sequences of dividing ai = (aij : j < ω) as indicated above for i ≤ n. We can
assume dividing is with respect to the same k < ω.

Claim: There are sequences a<n,0, . . . , a<n,k−1, where each a<n,l is of the form a<n,l =
a0,l, . . . , an−1,l and each ai,l is an ω-sequence ai,l = (ai,lj : j < ω), such that:

1. a<n,0 = a<n

2. a<n,lanl ≡Ac a<nan0 for all l < k.

3. ca<n,k−1a<n,k−2 . . . a<n,l+1 |̂
A
a<n,l for all l < k − 1.

Note that 2 implies c |̂
A
a<n,k−1

We first show how the claim helps to prove the lemma. Choose (el : l < k) such that
e0 = e and for l ≥ 1, ela

<n,lanl ≡Ac ea<nan0 . Then

α(x, el) ` ψ(x, c) ∨
∨
i<n

ϕi(x, a
i,l
0 ) ∨ ϕn(x, anl ).

Let α0 =
∧
l<k α(x, el). Since a<n witnesses k-dividing of ϕn(x, an),

α0(x) ` ψ(x, c) ∨
∨
i<n

∨
l<k

ϕi(x, a
i,l
0 )

We now define for r ≤ k

ψr(x, cr) = ψ(x, c) ∨
∨
i<n

∨
r≤l<k

ϕi(x, a
i,l
0 )

and we prove by induction on r that there is some formula αr(x) which is a conjunction of
A-conjugates of α(x, e) and such that αr(x) ` ψr(x, cr). If we apply this to r = k we obtain
αk(x) ` ψ(x, c) and the proof finishes.
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For the starting case r = 0 we have found α0(x). Assume inductively we have obtained
αr(x). Then

αr(x) ` ψr+1(x, cr+1) ∨
∨
i<n

ϕi(x, a
i,r
0 )

The assumptions of the Lemma hold for this implication (with c = cr+1 and ai = ai,r) and
therefore we can apply the induction hypothesis in order to obtain αr+1, a conjunction of
A-conjugates of αr(x) (hence of α(x, e)) such that αr+1(x) ` ψr+1(x, cr+1).

Proof of the Claim:

Since |̂ is stronger than |̂ i
and c |̂

A
a0, . . . , an, each ai is in fact Ac-indiscernible. If

b0 = an0 . . . a
n
k−2 and b1 = an1 . . . a

n
k−1 we have then b0 ≡Ac b1. By induction on j < k we

now construct finite sequences of ω-sequences

a<n,l,j = a0,l,j , . . . , an−1,l,j

for 1 ≤ l ≤ j such that

1. a<n,0,j = a<n

2. a<n,l,janl ≡Ac a<nan0 for all l ≤ j.

3. ca<n,j,ja<n,j−1,j . . . a<n,l+1,j |̂
A
a<n,l,j for l < j and c |̂

A
a<n,j,j .

The starting point is simply a<n,0,0 = a<n. Now assuming we have obtained a<n,l,j for all
l such that 1 ≤ l ≤ j, we set a<n,0,j+1 = a<n and we construct a<n,l,j+1 for 0 < l ≤ j + 1
as follows: since b1 ≡Ac b0, there are dj+1, . . . , d1 such that

dj+1, dj , . . . , d1, b1 ≡Ac a<n,j,j , a<n,j−1,j , . . . , a<n,0,j , b0 (1)

and since (by left transitivity) cb1 |̂ A a
n
0a

<n we can find by left extension a<n,l,j+1 for
1 ≤ l ≤ j + 1 such that

a<n,j+1,j+1, a<n,j,j+1, . . . , a<n,1,j+1b1 ≡Ac dj+1, dj , . . . , d1, b1 (2)

and
a<n,j+1,j+1a<n,j,j+1 . . . a<n,1,j+1cb1 |̂

A

an0a
<n. (3)

We check point 2. By (1) and (2), a<nan0 ≡Ac d1an1 ≡Ac a<n,1,j+1an1 . Let 1 ≤ l ≤ j. By
the induction hypothesis on j, a<nan0 ≡Ac a<n,l,janl . Again by (1) and (2), a<n,l,janl ≡Ac
dl+1a

n
l+1 ≡Ac a<n,l+1,j+1anl+1. Hence a<n,l+1,j+1anl+1 ≡Ac a<nan0 . Point 3 follows from (3)

for the case l = 0 and by induction hypothesis on j and invariance of |̂ (and again (1) and
(2)) for the case l ≥ 1 (the last part of 3 is a consequence of 2 since c |̂

A
a<n).

Once the construction has been completed, we use the last step

a<n,0, . . . , a<n,k−1 = a<n,0,k−1, . . . , a<n,k−1,k−1.

2

Proposition 3.4 Assume T is NTP2. Let |̂ be a ternary relation that satisfies the basic

axioms, extension and is stronger than |̂ i
. If A is an extension base for |̂ and |̂ satisfies

left extension over A, then if a formula forks over A, it quasi divides over A. Since |̂ u

satisfies all these conditions in the case A = M is a model, any formula that forks over a
model M quasi divides over M .
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Proof: Assume ϕ(x, a) `
∨
i<n ϕi(x, ai) where every ϕi(x, ai) divides over A. By Propo-

sition 3.1, for every i < n there is some global type pi which is |̂ -free over A and some
model Mi ⊇ A such that tp(ai/Mi) ⊆ pi and {ϕi(x, cj) : j < ω} is inconsistent for every
sequence (cj : j < ω) such that cj |= pi � Mic<j . Let ai = (aij : j < ω) be chosen in such a

way that ai0 = ai and aij |= pi � Mia
<iai<j for j > 0. We can apply the Broom Lemma 3.3

obtaining that ϕ(x, a) quasi divides over A. 2

Corollary 3.5 Assume T is NTP2 and p(x) ∈ S(M). If p(x) ` ψi(x, c) ∨ ϕ(x, a) and
ϕ(x, a) forks over M , then for some m < ω there are (cj : j < m) such that cj ≡M c for
every j < m and p(x) `

∨
j<m ψ(x, cj)

Proof: Choose α(x, e) ∈ p such that α(x, e) ` ψi(x, c)∨ϕ(x, a). Then α(x, e)∧¬ψ(x, c) `
ϕ(x, a) and therefore α(x, e)∧¬ψ(x, c) forks over M . By Proposition 3.4, α(x, e)∧¬ψ(x, c)
quasi divides over M , and this gives the result. 2

Proposition 3.6 Assume T is NTP2. Every type p(x) ∈ S(M) has a global nonforking
heir p(x) ∈ S(C).

Proof: We must check the consistency of p(x) ∪ {¬ϕ(x) : ϕ(x) ∈ L(C) forks over A} ∪
{¬ψ(x, c) : ψ(x, y) ∈ L(M), c ∈ C and for no m ∈ M, ψ(x,m) ∈ p}. If it is inconsistent,
then p(x) ` ψ(x, c) ∨ ϕ(x, a) for some formula ϕ(x, a) that forks over M , some c ∈ C, and
some formula ψ(x, y) ∈ L(M) such that ψ(x,m) 6∈ p for all m ∈ M . By Corollary 3.5,
for some m < ω there are (cj : j < ω) such that and cj ≡M c for all j < m and p(x) `∨
j<m ψ(x, cj). This contradicts the fact that p(x) has a heir over M(cj : j < m). 2

4 Forking and dividing over a model

Definition 4.1 We introduce a new ternary relation, the relation of strict invariance |̂ ist
:

A |̂ ist

C
B if and only if for every a ∈ A there is some global type p(x) ∈ S(C) extending

tp(a/CB) such that p does not Lascar split over C and for every set D ⊇ C, for every

d |= p � D, D |̂ f

C
d.

Remark 4.2 |̂ ist
is invariant, monotone, and has the extension property.

Remark 4.3 Assume p(x) ∈ S(C). The following are equivalent for any set C:

1. p is |̂ ist
-free over C, that is, a |̂ ist

C
B for every B ⊇ C, for every a |= p � B.

2. p does not Lascar-split over C and B |̂ f

C
a for every B ⊇ C, for every a |= p � B.

Proposition 4.4 Assume T is NTP2. If ϕ(x, a) divides over A, p(x) ∈ S(C) is a |̂ ist
-free

extension of tp(a/A) and M ⊇ A is a model, then {ϕ(x, ai) : i < ω} is inconsistent for
every sequence (ai : i < ω) generated by p over M with the rule ai |= p �Ma<i.

Proof: Let M ⊇ A be a model and choose a |M |+-saturated model N ⊇ M and some
realization b |= p � N . Since a ≡A b, ϕ(x, b) divides over A and there is an A-indiscernible
sequence (ai : i < ω) starting with a0 = b such that {ϕ(x, ai) : i < ω} is k-inconsistent.

Since b |̂ ist

A
N , it follows that N |̂ f

A
b and N |̂ d

A
b. Therefore there is an N -indiscernible

sequence (bi : i < ω) such that (bi : i < ω) ≡Ab (ai : i < ω). Note that b0 = b and hence

8



bi |= p � N . Let q = tp((bi : i < ω)/N) and let (dn : n < ω) a sequence constructed
in N with the rule dn |= q � Md<n. Write dn = (dni : i < ω). If f : ω → ω, then
dnf(n) |= p �M(dif(i) : i < n), because q � xn = p(xn) � N . As in the proof of Proposition 3.1,

{ϕ(x, dni ) : i < ω} is k-inconsistent and by NTP2 for some f : ω → ω, {ϕ(x, dnf(n)) : n < ω}
is inconsistent. Since p does not split over M , for every sequence (ci : i < ω) such that
ci |= p � Mc<i we have (ci : i < ω) ≡M (dnf(n) : n < ω) and then {ϕ(x, ci) : i < ω} is
inconsistent. 2

Proposition 4.5 Assume T is NTP2. If A is an extension base for |̂ ist
, then |̂ f

A
= |̂ d

A
.

Proof: Assume ϕ(x, b) ` ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) where every ϕi(x, ai) divides over A

and let ā = ba1 . . . an. Let M ⊇ A be a model. Since A is an extension base, ā |̂ ist

A
A

and by extension we can assume ā |̂ ist

A
M . Let p be a global |̂ ist

-free over A extension

of tp(ā/M). Construct now a sequence (āi : i < ω) such that āi |= p � Mā<i. Then

āi = bia
i
1 . . . a

i
n and pj = p � xj is a global type extending tp(aj/M) which is |̂ ist

-free over

A. By Proposition 4.4 {ϕj(x, aij) : i < ω} is inconsistent. We claim that {ϕ(x, bi) : i < ω}
is inconsistent, which will show that ϕ(x, b) divides over A. Assume not, and let c be a
realization of {ϕ(x, bi) : i < ω}. For each i < ω there is some j such that |= ϕj(c, a

i
j).

Then for some j there is an infinite subset I ⊆ ω such that |= ϕj(c, a
i
j) for every i ∈ I. By

indiscernibility {ϕj(x, aij) : i < ω} is consistent, a contradiction. 2

Proposition 4.6 Assume T is NTP2. Let |̂ be a ternary relation that satisfies the basic

axioms, extension and is stronger than |̂ i
. If A is an extension base for |̂ and |̂ satisfies

left extension over A, then:

1. A is an extension base for |̂ ist
.

2. |̂ f

A
= |̂ d

A
.

Proof: 1. In order to prove that a |̂ ist

A
A let us check the consistency of p(x) ∪ Σ1(x) ∪

Σ2(x), where

1. p(x) = tp(a/A)

2. Σ1(x) = {ϕ(x, b)↔ ϕ(x, b′) : b
Ls≡A b′, ϕ(x, y) ∈ L(A), b, b′ ∈ C}

3. Σ2(x) = {¬ψ(x, d) : ψ(a, y) forks over A, ψ(x, y) ∈ L(A), d ∈ C}

Note that a global type p extending p(x) ∪ Σ1(x) ∪ Σ2(x) does not Lascar-split over A;
moreover, for every set D ⊇ A, for every a′ |= p � D, if ψ(x, y) ∈ L(A) and ψ(x, d) ∈ p � D,
then ψ(a′, y) does not fork over A since otherwise ψ(a, y) forks over A and then ¬ψ(x, d) ∈
Σ2(x) ⊆ p.

If the set is not consistent, then p(x) `
∨
i<m ¬(ϕi(x, bi) ↔ ϕi(x, b

′
i)) ∨ ψ(x, d) where

(ϕi(x, bi) ↔ ϕi(x, b
′
i)) ∈ Σ1 and ¬ψ(x, d) ∈ Σ2. By Proposition 3.4, ψ(a, y) quasi divides

over A, that is, {ψ(x, ai) : i = 1, . . . , n} is inconsistent for some a1, . . . , an with ai ≡A a. Let
q(x1, . . . , xn) = tp(a1, . . . , an/A). Then q � xj = p(xj) and p(xj) `

∨
i<m ¬(ϕi(xj , bi) ↔

ϕi(xj , b
′
i)) ∨ ψ(xj , d) for each j = 1, . . . , n. It follows that

q(x1, . . . , xn) `
n∧
j=1

∨
i<m

¬(ϕi(xj , bi)↔ ϕi(xj , b
′
i)) ∨ ψ(xj , d).

9



Since ¬∃y(ψ(x1, y) ∧ . . . ∧ ψ(xn, y)) ∈ q(x1, . . . , xn), we see that

q(x1, . . . , xn) `
n∨
j=1

∨
i<m

¬(ϕi(xj , bi)↔ ϕi(xj , b
′
i))

which contradicts the fact that a1, . . . , an |̂ i

A
A and q has therefore a global extension

Lascar-invariant over A.

2 follows from 1 and Proposition 4.5. 2

Theorem 4.7 If T is NTP2, then |̂ f

M
= |̂ d

M
for every model M .

Proof: By Proposition 4.6 since |̂ u
satisfies all the requirements on |̂ . 2

Lemma 4.8 If ϕ(x, a) forks over A and B |̂ f

A
a, then ϕ(x, a) forks over AB.

Proof: Let ϕ(x, a) ` ϕ1(x, a1)∨. . .∨ϕn(x, an) where every ϕi(x, ai) divides over A. Choose

B′ ≡Aa B such that B′ |̂ f

A
aa1, . . . , an and therefore B′ |̂ d

A
aa1, . . . , an. By Proposition

4.9 in [6], every ϕi(x, ai) divides over AB′. Then ϕ(x, a) forks over AB′ and also over AB.
2

Proposition 4.9 1. Assume T is NTP2. If A is an extension base for |̂ f
or |̂ f

has

left extension over A, then |̂ f

A
= |̂ d

A
.

2. If |̂ f

A
= |̂ d

A
, then A is an extension base for |̂ f

and |̂ f
has left extension over A.

Proof: 1. Suppose ϕ(x, a) forks over A and choose a model M ⊇ A. If A is an extension

base for |̂ f
then M |̂ f

A
A and by extension we may assume M |̂ f

A
a. If |̂ f

has left

extension over A we reach the same conclusion since A |̂ f

A
a. By Lemma 4.8, ϕ(x, a) forks

over M . By Theorem 4.7, ϕ(x, a) divides over M . Then, clearly, ϕ(x, a) divides over A.

2. Assume |̂ f

A
= |̂ d

A
. It is clear that A is an extension base for |̂ f

since every set

is an extension base for |̂ d
. We prove now that |̂ f

has left extension over A. Suppose

a |̂ f

A
b and let c be given. We seek some c′ ≡Aa c such that c′a |̂ f

A
b. Let p(x) = tp(c/Aa).

It suffices to show the consistency of

p(x) ∪ {¬ϕ(x, a, b) : ϕ(x, y, z) ∈ L(A) and ϕ(x, y, b) forks over A}.

Assume it is inconsistent. Then p(x) `
∨
i<m ϕi(x, a, b) for some formulas ϕi(x, y, z) ∈ L(A)

such that ϕi(x, y, b) forks over A. Let ϕ(x, y, z) =
∨
i<m ϕi(x, y, z). Then ϕ(x, y, b) forks

over A and by assumption it divides over A. Since a |̂ d

A
b, it also divides Aa (see Proposition

4.9 in [6]). Then p(x) divides over Aa, which is impossible since p(x) ∈ S(Aa). 2

Corollary 4.10 If T is NTP2, then the following are equivalent for any A:

1. A is an extension base for |̂ f
.

2. |̂ f
has left extension over A.

3. |̂ f

A
= |̂ d

A
.

Proof: By Proposition 4.9. 2
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Proposition 4.11 Assume T is NTP2. A is an extension base for |̂ i
if and only if A is

an extension base for |̂ ist
.

Proof: Since |̂ ist ⇒ |̂ i
, it is clear that every extension base for |̂ ist

is an extension

base for |̂ i
in any context. Now assume NTP2 and let A be an extension base for |̂ i

.

Since |̂ i ⇒ |̂ f
, A is an extension base for |̂ f

and by 4.10 |̂ f

A
= |̂ i

A
. In particular

forking over A implies quasi dividing over A. Then the proof of point 2 of Proposition 4.6
can be reproduced here to ensure that A is an extension base for |̂ ist

. 2

Corollary 4.12 If T has nip, then the following are equivalent for any A:

1. A is an extension base for |̂ f
.

2. |̂ f
has left extension over A.

3. |̂ f

A
= |̂ d

A
.

4. A is an extension base for |̂ ist
.

5. A is an extension base for |̂ i
.

Proof: It follows immediately from propositions 4.11 and 4.10 since in a nip theory
|̂ f

= |̂ i
(see Proposition 18.12 of [6]) 2

Question 4.13 Is in a simple theory every set A an extension base for |̂ i
?

5 Bounded forking

Lemma 5.1 Assume B is A-complete (i.e., every finitary type over A is realized in B)
and p(x) ∈ S(B) is finitely satisfiable in A. Then p(x) does not split over A, and for every
C ⊇ B, p|AC is also finitely satisfiable in A. Hence if q(y) ∈ S(B) is another type finitely
satisfiable in A, then the product p(x)⊗A q(y) is finitely satisfiable in A.

Proof: See sections 9 and 10 of [6] for notation and terminology. Assume ϕ(x, y) ∈ L,
c ∈ C is a tuple and ϕ(x, c) ∈ p|AC. Choose c′ ∈ B such that c ≡A c′. Since p|AC does
not split over A, ϕ(x, c′) ∈ p and therefore |= ϕ(a, c′) for some a ∈ A. Since c ≡A c′,
|= ϕ(a, c). Now let us consider the product p ⊗A q. Assume ϕ(x, y) ∈ p ⊗A q and choose
ab |= p⊗A q. Then a |= p and b |= q|ABa. Since ϕ(a, y) ∈ q|ABa, there is some b′ ∈ A such
that |= ϕ(a, b′). Then ϕ(x, b′) ∈ p(x) and therefore |= ϕ(a′, b′) for some a′ ∈ A. 2

Proposition 5.2 T is nip if and only if T is NTP2 and |̂ f
is bounded.

Proof: By Proposition 18.12 of [6], we know that in a nip theory |̂ f
is bounded. Assume

now T is NTP2 and ϕ(x, y) ∈ L has the independence property in T . We may assume that
y is a single variable. We will show that there is a global type p(x) which does not fork

over a model M and it is not M -invariant. Then |̂ f 6= |̂ i
and again by Proposition 18.12

of [6], |̂ f
is unbounded.

In order to obtain p(x), we start with an infinite set A such that for each subset X ⊆ A,
{ϕ(x, a) : a ∈ X} ∪ {¬ϕ(x, a) : a ∈ A r X} is consistent. The partial type r(y) =
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{y 6= a : a ∈ A} is finitely satisfiable in A and hence it can be extended to a global
type r(y) which is finitely satisfiable in A. Choose an A-complete set B ⊇ A and let
p(y) = r � B. The power p(ω)A is well-defined and by Lemma 5.1 it is finitely satisfiable in
A. Let ψ(x; y, z) = ϕ(x, y) ∧ ¬ϕ(x, z), and for every sequence a = (ai : i < ω) of tuples ai
of the right length, let Γa = {ψ(x; ai) : i < ω}.

We claim that there is a set C such that for every indiscernible sequence a = (ai : i < ω)
such that ai |= (p ⊗A p)|BC, the corresponding set Γa is consistent. Otherwise we can
build a sequence (aj : j < ω1) of indiscernible sequences aj = (aij : i < ω) such that

aji |= (p ⊗A p)|ABa<j and Γj = Γaj is inconsistent. For some k < ω there is an infinite
subset I ⊆ ω1 such that for every j ∈ I, Γj is k-inconsistent. Without loss of generality,

I = ω. We will show now that the array (ψ(x; aji ) : i, j < ω) witnesses that ψ(x; y, z)

has TP2. Each row {ψ(x, aji ) : i < ω} = Γj is k-inconsistent. For each f : ω → ω,

ajf(j) |= (p ⊗A p)|AB(aif(i) : i < j) and therefore all sequences (ajf(j) : j < ω) have the

same type over B, the type (p ⊗A p)(ω)A . By Lemma 5.1, this type is finitely satisfiable
in A. To check the consistency of {ψ(x; ajf(j)) : j < ω} we may assume f(j) = 0 for

all j. If it is not consistent, then for some n < ω, |= ¬∃x
∧
j<n ψ(x; aj0). Each aj0 is

of the form aj0 = bjcj where bj |= p and cj |= p|ABbj . Since p extends r and is finite
satisfiable in A, p(y) ⊗A p(z) ` y 6= z. Consequently, bj 6= cj . By similar reasons, bj 6= bl
and cj 6= cl for j 6= l. If bj = cl for some j 6= l, then, by indiscernibility, bj = cj .
Hence bj 6= cl for all j, l. By finite satisfiability there are (bjcj : j < n) in A such that
|= ¬∃x

∧
j<n ψ(x; bj , cj) and bj 6= cl for all j, l and bj 6= bl and cj 6= cl for all j 6= l. But by

choice of ϕ, |= ∃x(
∧
j<n ϕ(x, bj) ∧

∧
j<n ¬ϕ(x, cj)).

Now we finish the proof using our set C. Let M be a model such that BC ⊆ M and
choose ab |= (p⊗Ap)|AM . By the claim, ψ(x; a, b) does not divide over M . By Theorem 4.7,
ψ(x; a, b) does not fork over M . Hence ψ(x; a, b) ∈ p(x) for some global type p(x) which
does not fork over M . Since a ≡M b and ϕ(x, a) ∈ p, if p were M -invariant, then ϕ(x, b) ∈ p
but this is not possible since ¬ϕ(x, b) ∈ p. 2

6 Thorn-forking in simple theories

The proofs in this section have been explained to us by Hans Adler. We assume knowledge
of hyperimaginaries as exposed in [7].

Definition 6.1 T has weak elimination of hyperimaginaries if for every hyperimaginary e
there is some sequence e′ = (ei : i ∈ I) of imaginaries ei such that bdd(e) = bdd(e′).

Definition 6.2 Let |̂ be a ternary relation. Given p(x) ∈ S(B), we say that a set
C ⊆ acl(B) is a weak canonical base of p (with respect to |̂ ) if for every a |= p, a |̂

C
B

and for every set C ′ ⊆ acl(B): if a |̂
C′
B, then C ⊆ acl(C ′). Clearly, if we require

additionally C = acl(C), then C is unique and then we call it the weak canonical base of
p. We say that |̂ has weak canonical bases if every type has a weak canonical base with
respect to |̂ .

Proposition 6.3 In a simple theory T , T has weak elimination of hyperimaginaries if and
only if |̂ f

has weak canonical bases in T eq.

Proof: Weak elimination of hyperimaginaries clearly provides weak canonical bases for |̂ f

in T eq. Assume now |̂ f
has weak canonical bases in T eq. Let e = aE be a hyperimaginary
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and choose b such that a |̂ f

e
b and b ≡e a. Let p(x) be a global nonforking extension of

tp(a/b) and let e′ be the canonical base of p. Since p does not fork over e, e′ ∈ bdd(e).
Since a |̂

e′
e and e ∈ dcleq(a), e ∈ bdd(e′) (in fact, e is definable over e′; see Proposition

18.7 in [7]). Hence bdd(e) = bdd(e′). Now let e′′ be a sequence of imaginaries enumerating
the weak canonical base of p � ab. Since p does not fork over ab, it does not fork over e′′

and therefore e′ ∈ bdd(e′′). Since p � ab does not fork over a and it does not fork over b,
e′′ ∈ bdd(a) ∩ bdd(b) = bdd(e). We conclude bdd(e) = bdd(e′′). 2

Lemma 6.4 If |̂ is an independence relation, then a |̂
C
b if and only if there is a |̂ -free

sequence (bi : i < ω) starting with b0 = b which is Ca-indiscernible.

Proof: Let a |̂
C
b. It is easy to obtain a sequence (bi : i < ω) such that b0 = b, bn ≡Ca b,

and bn |̂ C ab<n. We can extend the sequence and apply Erdős-Rado to produce another
sequence with the same properties and which is moreover Ca-indiscernible.

For the other direction, assume the sequence (bi : i < ω) starts with b0 = b, is |̂ -free
and is Ca-indiscernible. Let κ be an upper bound for local character in |̂ and extend
the sequence to a Ca-indiscernible sequence (bi : i < κ+). Choose D ⊆ C{bi : i < κ+}
of cardinality ≤ κ such that a |̂

D
Cb<κ+ . There is some j < κ+ such that D ⊆ b<jC.

Then a |̂
Cb<j

b<κ+ and therefore a |̂
Cb<j

bj . Since bj |̂ C b<j , we conclude a |̂
C
bj and

therefore a |̂
C
b. 2

Remark 6.5 For any independence relation |̂ with weak canonical bases: if C1, C2 ⊆ B,
A |̂

C1
B, and A |̂

C2
B, then A |̂

acl(C1)∩acl(C2)
B.

Proof: Clear, since for any tuple a ∈ A the weak canonical base of tp(a/B) belongs to
acl(C1) ∩ acl(C2). 2

Proposition 6.6 If |̂ is a strict independence relation with weak canonical bases, then:
a |̂

C
B if and only if for some infinite linearly ordered set I there is a BC-indiscernible

sequence (ai : i ∈ I) of realizations of tp(a/BC) such that acl(a<i) ∩ acl(a≥i) ⊆ acl(C) for
every i ∈ I.

Proof: ⇒. Choose with Lemma 6.4 a BC-indiscernible and |̂ -free sequence (ai : i < ω)
such that a0 = a. Since a<i |̂ C a≥i and |̂ satisfies anti-reflexivity, acl(a<i) ∩ acl(a≥i) ⊆
acl(C).

⇐. Let κ be a regular cardinal greater than the upper bound for local character, and let
I be an ordered set with order type κ+1+κ∗, say I = I−∪{c}∪I+ where I− has order type κ
and I+ has the inverse order type κ∗. We may assume this is the order type of the sequence
aI = (ai : i ∈ I). Find D ⊆ {ai : i ∈ I−} such that BC |̂

D
(ai : i ∈ I−) and |D| < κ.

We can assume D is a proper initial segment of (ai : i ∈ I−) and then by indiscernibility
BC |̂

D
aI . It follows that BC |̂

aI−
aI . By a similar argument, BC |̂

aI+
aI and therefore

BC |̂
acaI+

aI . By Remark 6.5 BC |̂
A
aI for A = acl(aI−) ∩ acl(acaI+) and then, by

assumption, BC |̂
C
aI . Therefore a |̂

C
B. 2

Theorem 6.7 If T is simple and has weak elimination of hyperimaginaries, then |̂ þ
= |̂ f

in T eq.

Proof: We can assume T = T eq. By Proposition 1.6 it is enough to prove that |̂ f
is

weaker than any strict independence relation |̂ . Assume a |̂
C
b. By Proposition 6.4,

there is a |̂ -free sequence (bi : i < ω) starting with b0 = b which is Ca-indiscernible. Since
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|̂ is strict and a<i |̂ C a≥i, it follows that acl(a<i)∩acl(a≥i) ⊆ acl(C). By Proposition 6.3,

|̂ f
has weak canonical bases and by Proposition 6.6, a |̂ f

C
b. 2

Definition 6.8 We say that T has stable forking if whenever B ⊇ C and a 6 |̂ f

C
B, then

there is some stable formula ϕ(x, y) ∈ L and some tuple b ∈ BC such that |= ϕ(a, b) and
ϕ(x, b) forks over C.

Question 6.9 Does stable forking of T imply stable forking of T eq ?

Proposition 6.10 Every simple theory with stable forking has weak elimination of hyper-
imaginaries.

Proof: By Proposition 6.3 it suffices to show that |̂ f
has weak canonical bases in T eq. In

fact the proof of this proposition shows that it is enough to find weak canonical bases for
types of real elements over real parameters. Let p(x) ∈ S(B) be such a type, let p(x) ∈ S(C)
be a global nonforking extension of p and for each stable ϕ(x, y) ∈ L let eϕ ∈ Ceq be the
canonical parameter of a definition of p � ϕ. Then p � ϕ does not fork over A if and only
if eϕ ∈ acleq(A). If C = {eϕ : ϕ(x, y) ∈ L is stable }, then C ⊆ acleq(B) and by stable
forking, p(x) does not fork over D ⊆ acleq(B) if and only if C ⊆ acleq(D). 2

Corollary 6.11 If T is a simple theory with elimination of hyperimaginaries or with stable
forking, then |̂ þ

= |̂ f
in T eq. In particular, this happens in stable and in supersimple

theories.

Proof: By Proposition 6.10 and Theorem 6.7. For elimination of hyperimaginaries in
supersimple theories see [7]. 2

7 Simple types

Definition 7.1 A partial type π(x) is simple if D(π,∆, k) < ω for all ∆, k. 2

Remark 7.2 Any extension of a simple type is simple. Moreover, T is simple if and only
if in T all types are simple.

Hart, Kim and Pillay take point 3 in the next proposition as a definition of simple type
(see [11]). They seem to consider only complete types. The equivalence with point 4 is
from Adler (see [5])

Proposition 7.3 The following are equivalent for any partial finitary type π(x) over A:

1. π(x) is simple.

2. There is no formula ϕ(x, y) ∈ L, natural number k and sequences (af : f ∈ ωω),
(bs : s ∈ ω<ω) such that af |= π∪{ϕ(x, bf�n : n < ω} for all f and {ϕ(x, bsan) : n < ω}
is k-inconsistent for all s.

3. For any completion p(x) ∈ S(B) of π(x) there is some C ⊆ B such that |C| ≤ |T |
and p(x) does not fork over C.

2See chapter 3 of [7] for more information on this rank.
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4. If A ⊆ C, a |= π and b |̂ f

C
a, then a |̂ f

C
b.

Proof: 1 ⇔ 2 is standard. 1 ⇒ 3. Let p(x) ∈ S(B) be a completion of π(x). We
can choose C ⊆ B of cardinality ≤ |T | such that for each ϕ(x, y) ∈ L, for each k < ω,
D(p, ϕ, k) = D(p � C,ϕ, k). Clearly, p does not fork over C. For instance, see Lemma 4.14
in [7].

3⇒ 4. We can easily adapt propositions 12.4 and 12.5 of [7]. Without loss of generality,

b is finite. Assume b |̂ f

C
a and find (bi : i < ω), an aC-indiscernible sequence such that

b0 = b, bi ≡aC b and b<i |̂ f

C
bi. Extend the sequence to an aC-indiscernible sequence

(bi : i < κ) with κ > |T |. By simplicity, there is some D ⊆ Cb<j for some j < κ such that

a |̂ f

D
Cb<κ. It follows that a |̂ f

C
bj and therefore that a |̂ f

C
b.

4 ⇒ 1. Assume D(π, ϕ, k) = ω for some ϕ and some k. By Proposition 2.23 in [7],
for some sequence (ai : i ≤ ω) such that each ϕ(x, ai) k-divides over Aa<i there is some
c |= π(x)∪{ϕ(x, ai) : i ≤ ω} such that (ai : i ≤ ω) is Ac-indiscernible. Then tp(aω/Aa<ωc)

is finitely satisfiable in a<ω and therefore aω |̂ f

Aa<ω
c but tp(c/Aa≤ω) divides over a<ω and

therefore c 6 |̂ f

Aa<ω
aω. 2

Remark 7.4 Proposition 7.3 holds also for non finitary types if 3 is reformulated as: for
any completion p(x) ∈ S(B) of π(x) there is some C ⊆ B such that |C| ≤ |T | + |x| and
p(x) does not fork over C.

Remark 7.5 1. If π(x, y) is simple, then the type ∃yπ(x, y) is simple. Therefore, if
π(x, y) is a simple partial type over A, then π � x = {ϕ(x) ∈ L(A) : π(x, y) ` ϕ(x)}
is simple.

2. tp(a/A) and tp(b/Aa) are simple if and only if tp(ab/A) is simple. More generally,
tp(ai/Aa<i) is simple for all i < α if and only if tp((ai : i < α)/A) is simple.

3. If the types πi(xi) are simple for all i ∈ I, then
⋃
i∈I πi(xi) is simple.

4. If the types π1(x), π2(x) are simple, then the type π1(x) ∨ π2(x) is simple.

Proof: 1. Note that if a |= ∃yπ(x, y) then ab |= π for some b.

2. This follows easily using, for instance, point 3 in Proposition 7.3.

3 follows from 2. 2

Question 7.6 1. Assume p(x) ∈ S(B) is simple and does not fork over A ⊆ B. Is p � A
simple ? 3

2. Assume π is simple. Does forking equal dividing for realizations of π ?

3. Let P be the collection of all simple complete 1-types over A and let D be the union
of all p(C) for p ∈ P . Is D with its induced structure over A simple ?

8 nip-types

Definition 8.1 A partial type π(x) is nip or dependent if there are no sequences (ai : i < ω)
and (bX : X ⊆ ω) and formula ϕ(x, y) ∈ L such that ai |= π and |= ϕ(ai, bX)⇔ i ∈ X.

3Posed by H. Adler.
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The definition of nip type and many results in this section are based on [5].

Remark 8.2 1. Any extension of a nip type is nip.

2. T is nip if and only if all types are nip.

Lemma 8.3 The following are equivalent for any partial type π(x):

1. π(x) is nip.

2. There are no sequences (ai : i < ω) and (bX : X ⊆ ω) and formula ϕ(x, y) ∈ L such
that bX |= π and |= ϕ(bX , ai)⇔ i ∈ X.

3. For each ϕ(x, y) ∈ L there is some conjunction ψ(x) of formulas in π(x) such that
ϕ(x, y) ∧ ψ(x) does not have the independence property.

4. For each ϕ(y, x) ∈ L there is some conjunction ψ(x) of formulas in π(x) such that
ϕ(y, x) ∧ ψ(x) does not have the independence property.

Proof: 1 ⇔ 2 is as the proof of Lemma 1.3 of [6]. 1 ⇔ 3 and 2 ⇔ 4 are proved by
compactness. 2

Proposition 8.4 The following are equivalent for any partial type π(x) over A:

1. π(x) is nip.

2. If a |= π, ϕ(x, y) ∈ L(A), α ≥ ω is a limit ordinal and (bi : i < α) is A-indiscernible,
then for some β < α, for all i, j ≥ β, |= ϕ(a, bi)↔ ϕ(a, bj).

3. If ϕ(y, x) ∈ L, α ≥ ω is a limit ordinal and (bi : i < α) is an A-indiscernible sequence
of realizations bi of π, then for any tuple a there is some β < α, for all i, j ≥ β,
|= ϕ(a, bi)↔ ϕ(a, bj).

4. If a |= π, α is a limit ordinal of cofinality ≥ (|T |+ |a|+ κ)+ and (bi : i < α) is an A-
indiscernible sequence of tuples bi of length ≤ κ, then for some β < α, (bi : β ≤ i < α)
is Aa-indiscernible.

5. For any tuple a, if α is a limit ordinal of cofinality ≥ (|T |+ |a|+ |x|)+ and (bi : i < α)
is an A-indiscernible sequence of realizations bi of π, then for some β < α, (bi : β ≤
i < α) is Aa-indiscernible.

Proof: 1 ⇔ 2 ⇔ 3 : use Lemma 8.3, compactness and the fact that a formula ϕ(x, y)
is nip iff alt(ϕ) < ω. 2 ⇒ 4 : as in the proof of Proposition 1.8 of [6]. 3 ⇒ 5 : similar
except that now we also need to use point 2 of the next remark (no vicious circle arises)
that makes sure that π(x1)∧ . . .∧ π(xn) is nip. 4 ⇒ 2 and 5 ⇒ 3 : note that if 2 or 3 fail
for some ϕ and some α, then by compactness they also fail for every limit α ≥ ω. 2

Remark 8.5 1. If π(x, y) is nip, then the type ∃yπ(x, y) is nip. Therefore, if π(x, y) is
a nip partial type over A, then π � x = {ϕ(x) ∈ L(A) : π(x, y) ` ϕ(x)} is nip.

2. If the types πi(xi) are nip for all i ∈ I, then
⋃
i∈I πi(xi) is nip.

3. If the types π1(x), π2(x) are nip, then the type π1(x) ∨ π2(x) is nip.

4. tp(ab/A) is nip if and only if tp(b/A) and tp(a/Ab) are nip.
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Proof: 1 is clear by definition of nip type.

2. Similar to the proof of Proposition 1.9 in [6]. We use point 4 of Proposition 8.4. It is
enough to prove it for finite |I| and since it can be done by induction, it suffices to consider
the case of two nip types π1(x1), π2(x2) over A. a1 |= π1, a2 |= π2 and (bi : i < α) is an
A-indiscernible sequence (for the right ordinal α). Then for some β < α, (bi : β ≤ i < α)
is Aa1-indiscernible. This means that (a1bi : β ≤ i < α) is A-indiscernible. Again, there
is some γ < α such that (a1bi : γ ≤ i < α) is Aa2-indiscernible. Then (bi : γ ≤ i < α) is
Aa1a2-indiscernible.

3. Use point 4 of Proposition 8.4.

4 We only need to check that tp(ab/A) is nip if tp(b/A) and tp(a/Ab) are nip. The
proof is like in case 2. 2

Proposition 8.6 If p(x) ∈ S(B) is nip and it does not fork over A ⊆ B, then p(x) does
not Lascar-split over A.

Proof: Like Proposition 9.6 of [6]. Let p(x) be a global nonforking extension of p assume
it does Lascar-split over A. Then for some tuples a, b, |= ncA(a, b) and ϕ(x, a) ∈ p(x) but
¬ϕ(x, b) ∈ p(x). Choose θ(x) ∈ p such that ψ(x, y) = ϕ(x, y) ∧ θ(x) does not have the
independence property. We have an A-indiscernible sequence (ai : i < ω) such that a0 = a,
a1 = b and (since p does not fork over A) there is a realization c of {ψ(x, a2i)∧¬ψ(x, a2i+1) :
i < ω}. But then c witnesses that ϕ(x, y) ∧ ψ(x) has infinite alternation number. 2

Corollary 8.7 If π(x) is a nip partial type over A, then there is a bounded number of types

p ∈ S(C) extending π that do not fork over A. In fact the number is ≤ 22
|T |+|A|+|x|

.

Proposition 8.8 Let π(x) be nip. For any indiscernible sequence a without last element
and for any infinite indiscernible set I, if they consist of realizations of π, then for any set
B, Av(a/B) ∈ S(B) and Av(I/B) ∈ S(B).

Proof: Clear since for any ϕ(x, y) ∈ L there is some conjunction ψ(x) of formulas of π
such that alt(ϕ(x, y) ∧ ψ(x)) < ω. Check section 6 of [6] for details. 2

Definition 8.9 A nip-sequence over A is a Morley sequence over A (A-indiscernible and
A-independent in the sense of nonforking) of realizations of a nip-type p(x) ∈ S(A).

Remark 8.10 If B is Lascar-complete over A ⊆ B, p(x) ∈ S(C) does not Lascar-split over
A, and the sequence (ai : i < α) is constructed with the rule ai |= p � Ba<i, then a is
B-indiscernible.

Proof: If i0 < . . . in < α and p(x) = p � B, then tp(ai0 , . . . , ain/B) = p(n)A . 2

Lemma 8.11 Let α ≥ ω, let a = (ai : i < α) be an A-indiscernible sequence, and let p(x)
be a global type which does not Lascar-split over A and such that ai |= p � Aa<i for all
i < ω. If b |= p � Aa then aa(b) is A-indiscernible.

Proof: Assume i0 < . . . < in < α, ϕ(x0, . . . , xn, y) ∈ L(A) and |= ϕ(ai0 , . . . , ain , b). Since

b |= p � Aa, ϕ(ai0 , . . . , ain , x) ∈ p(x). Notice that ai0 , . . . , ain
Ls≡A a0, . . . , an. Since p does

not Lascar-split over A, then ϕ(a0, . . . , an, x) ∈ p. Hence, |= ϕ(a0, . . . , an, an+1). 2

Lemma 8.12 For each nip sequence a = (ai : i < α) over A with α ≥ ω there is a unique
global type p that generates a in the sense that p does not fork over A and ai |= p � Aa<i
for all i < α.
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Proof: Existence of p does not need nip nor indiscernibility and it follows from the fact
that if pi(x) = tp(ai/Aa<i) then

⋃
i<α pi does not fork over A and can be extended to some

p ∈ S(C) nonforking over A.

Uniqueness is as in the proof of Proposition 11.10 of [6]: assuming p1, p2 generate a,
we first claim that any A-indiscernible extension a′ = (ai : i < β) of a can be extended
again adding a realization of p1 � Aa′ or a realization of p2 � Aa′. This follows from
Proposition 8.6 and Lemma 8.11. Now assume ϕ(x, b) ∈ p1 and ¬ϕ(x, b) ∈ p2 and construct
a sequence c = (ci : i < ω) such that c2·i |= p1 � Aabc<2·i and c2·i+1 |= p2 � Aabc<2·i+1.
Using the claim we see that aac is A-indiscernible, which contradicts nip of p. 2

Lemma 8.13 Let α ≥ ω and let a = (ai : i < α) a nip-sequence over A with global type
p(x). If b = (bi : i < β) and bi |= p � Aab<i for all i < β, then aab is nip over A.

Proof: It is enough to check that aab is indiscernible over A. We may assume β = n < ω
and the proof can be done by induction and for this Lemma 8.11 is enough. 2

Proposition 8.14 If α ≥ ω and a = (ai : i < α) and b = (bi : i < α) are nip-sequences
over A and have the same Lascar strong-type over A, then they have the same global type.

Proof: Let f ∈ Autf(C/A) be such that f(a) = b. Let p be the global type of a. Then pf

is the global type of b. Since p does not Lascar-split over A, pf = p. 2

Remark 8.15 If p(x) ∈ S(A) is nip and it does not fork over A, then for all a, b |= p:

a
Ls≡A b if and only if |= nc2A(a, b)

and therefore
Ls≡A=

KP≡A for realizations of p.

Proof: By Proposition 11.7 of [6]. 2

Proposition 8.16 If p � A is nip, then p Lascar-splits over A if and only if p KP-splits
over A.

Proof: Like Proposition 11.13 of [6]. Assume p does not Lascar-split over A, let f ∈
Autf(C/bdd(A)), choose B ⊇ A Lascar-complete over A, let p(x) = p � B, and let a realize

the product p(ω)A . Since a
KP≡A f(a) and p(ω)A is a nip type that does not fork over A,

a
Ls≡A f(a). Then, these two Morley sequences have the same global type and p = pf . 2

Corollary 8.17 Let p be definable and assume p � A is nip. Then p does not fork over A
if and only if p is definable over acleq(A).

Proof: If p is definable over acleq(A), it does not fork over acleq(A) and therefore it does not
fork over A. For the other direction, Assume p does not fork over A. By Proposition 8.16,
it does not KP-split over A. Hence p is bdd(A)-invariant. Let ϕ(x, y) ∈ L and let cϕ be
a canonical parameter for {a : ϕ(x, a) ∈ p}. If f ∈ Aut(C/bdd(A)), pf = p and therefore
f(cϕ) = cϕ. Hence cϕ ∈ bdd(A). Since cϕ is an imaginary, cϕ ∈ acleq(A). This means that
p � ϕ is definable over acleq(A). 2

Proposition 8.18 If a = (ai : i < α) with α ≥ ω is a nip-sequence over A and it is totally
indiscernible over A, then its global type is Av(a/C).
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Proof: Since it is clear that ai |= Av(a/Aa<i), we only need to check that Av(a/C)
does not Lascar-split over A. Assume f is a strong automorphism over A. Then a and
f(a) have the same Lascar strong-type over A and by Proposition 8.14 they have the
same global type p and therefore we can construct a sequence c = (ci : i < ω) such that
aac and f(a)ac are A-indiscernible (it suffices to choose ci |= p � Aaf(a)c<i). It follows
that Av(a/C) = Av(aac/C) = Av(c/C) = Av(f(a)ac/C) = Av(f(a)/C) and therefore
Av(a/C)f = Av(a/C). 2

9 Generically stable types revisited

Definition 9.1 Generically stable types have been defined in section 15 of [6] and they
have been discussed under the assumption that the theory is nip. We now redefine the
notion to make it compatible with [20]: a global type p(x) is generically stable over A if
and only if it is A-invariant and for every α ≥ ω, for every ϕ(x) ∈ L(C), for every Morley
sequence a = (ai : i < α) generated by p over A, the set {i < α :|= ϕ(ai)} is finite or
cofinite. Since all Morley α-sequences over A generated by an A-invariant type p have the
same type over A, it is enough to check the condition for some Morley α-sequence over A
generated by p. A global type p is generically stable if it is generically stable over some A.
A type p(x) ∈ S(A) is generically stable if some global extension of p is generically stable
over A.

Remark 9.2 For every infinite sequence a = (ai : i ∈ I), the average type Av(a/C) =
{ϕ(x) ∈ L(C) : {i ∈ I :6|= ϕ(ai)} is finite } is a partial type over A. Notice that a global
type p(x) is generically stable over A iff it is A-invariant and for every α ≥ ω, for every
Morley sequence a = (ai : i < α) generated by p over A, Av(a/C) is a complete type.

Remark 9.3 1. If p is generically stable and it is B-invariant, then it is generically
stable over B.

2. Assuming the type p is A-invariant, the following are equivalent:

(a) p is generically stable over A.

(b) For every Morley sequence a = (ai : i < ω + ω) generated by p over A, Av(a/C)
is a complete type.

(c) For every ϕ(x, y) ∈ L there is some nϕ < ω such that for every α ≥ ω, for
every Morley sequence a = (ai : i < α) generated by p over A, for every b, if
{i < α :|= ϕ(ai, b)} has cardinality ≥ nϕ, then it is cofinite.

3. If p is generically stable over A and a = (ai : i < α) is a Morley sequence generated
by p over A, then Av(a/C) = p.

Proof: 1. Assume p is generically stable over A. Let a = (ai : i < α) be a Morley sequence
generated by p over B and let ϕ(x) ∈ L(C). Choose a Morley sequence b = (bi : i < α)
generated by p over AB. Then b is generated by p over B (and hence a ≡B b) and over A.
Since {i < α :|= ϕ(bi)} is finite or cofinite, the same happens with {i < α :|= ϕ(ai)}.

2. Only (b) ⇒ (c) needs to be checked. It is enough to prove (c) for all limit α ≥ ω.
Assume for some ϕ(x, y) ∈ L for all n < ω there is some limit ordinal α ≥ ω for which there
is some b and some sequence (ai : i < α) generated by p over A such that {i < α :|= ϕ(ai, b)}
is of cardinality ≥ n and {i < α :|= ¬ϕ(ai, b)} is infinite. There are two possible cases:
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either {i < α :|= ϕ(ai, b)} is cofinal in α or it is not. We may assume that for every n
the first case holds or for every n the second case holds. In the first case, {¬ϕ(xi, y) : i <
ω} ∪ {ϕ(xω+i, y) : i < ω} is consistent with the power p(ω+ω)A � A(xi : i < ω + ω), in
contradiction with (b). In the second case {ϕ(xi, y) : i < ω} ∪ {¬ϕ(xω+i, y) : i < ω} is
consistent with the power p(ω+ω)A � A(xi : i < ω + ω), again in contradiction with (b).

3. It is enough to show that p ⊆ Av(a/C). Let ϕ(x, y) ∈ L and c ∈ C be such that
ϕ(x, c) ∈ p(x). Choose b = (bi : i < α) a Morley sequence generated by p over Ac. Then
|= ϕ(bi, c) for all i < α and therefore ϕ(x, c) ∈ Av(b/C). Since b is generated by p over A,
a ≡A b and hence Av(a/C) = Av(b/C). 2

Proposition 9.4 If a = (ai : i < α) with α ≥ ω is a sequence generated over M by the type
p(x) ∈ S(C) and p is M -definable and coinherits from M , then a is totally indiscernible
over M .

Proof: This is Proposition 15.2 of [6]. We give anyway a shorter proof based on Théorème
12.15 of [21]. We may assume α = ω and it is enough to prove that

a0 . . . ai−1aiai+1ai+2 . . . an ≡M a0 . . . ai−1ai+1aiai+2 . . . an.

Take a model N ⊇ Ma which is complete over M . Then p is N -definable and coinherits
from N . The unique N -definable extension of p(x) = p � N over any set B ⊇ N is p � B,
which moreover is the unique heir of p over B (see Proposition 7.6 of [7]) and the unique
nonsplitting extension p|MB of p over B. Let b0, . . . , bm be such that bi |= p � Nb<i for
all i ≤ m. Note that tp(b1/Mb0) is a coheir of tp(b1/N) and therefore tp(b0/Nb1) is the
unique heir of tp(b0/N) = p over Nb1. Hence b1 |= p � N and b0 |= p � Nb1. Since p does
not split over M , tp(b0b1/N) = p⊗M p = tp(b1b0/N). And moreover tp(b0b1b2 . . . bm/N) =
p(m+1)M = tp(b1b0b2 . . . bm/N). Since aa(b0, . . . , bm) is M -indiscernible, we obtain

a0 . . . ai−1aiai+1ai+2 . . . an ≡M a0 . . . ai−1 b0b1 b2 . . . bn−i
≡M a0 . . . ai−1 b1b0 b2 . . . bn−i
≡M a0 . . . ai−1 ai+1ai ai+2 . . . an

2

Remark 9.5 Assume p(x) ∈ S(C). If for some M ⊇ A, p is M -definable and coinherits
from M , then (according to Proposition 15.1 of [6]), for every M ⊇ A, p is M -definable
and coinherits from M .

Proposition 9.6 Let p(x) ∈ S(C) be A-invariant. Then 1 ⇒ 2 ⇒ 3 ⇒ 4, where:

1. p is generically stable.

2. For each ϕ(x, y) ∈ L there is some nϕ < ω such that for any Morley sequence a =
(ai : i < ω) generated by p over A, p is definable over a by:

ϕ(x, c) ∈ p(x) ⇔ |=
∨

w⊆2·nϕ, |w|=nϕ

∧
i∈w

ϕ(ai, c)

3. p is definable over A and coinherits from some (every) M ⊇ A.

4. Any Morley sequence generated by p over A is totally indiscernible over A.
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Proof: 1 ⇒ 2. By point 3 of Remark 9.3 p = Av(a/C). Point 2 of Remark 9.3 gives the
numbers nϕ < ω.

2 ⇒ 3. Let a be a any Morley sequence generated by p over A. Since p is definable over
a and it is A-invariant, it is definable over A. Let M ⊇ Ma. Since p is finitely satisfiable
in a, it coinherits from M . By Remark 9.5 this is also true for any M ⊇ A.

3 ⇒ 4. By Proposition 9.3. 2

Proposition 9.7 If p is generically stable over A, then p � A is stationary and p is its only
global nonforking extension.

Proof: Assume q(x) is a global nonforking extension of p(x) = p � A. We claim that for
every n < ω, if ai |= q � Aa<i for all i ≤ n, then ai |= p � Aa<i for all i ≤ n. We prove it
by induction on n. It is clear for n = 0. Assume it holds for n and assume ai |= q � Aa<i
for all i ≤ n+ 1. By induction hypothesis, ai |= p � Aa<i for all i ≤ n. Let a′ = (a′i : i < ω)
be a Morley sequence generated by p over A with a′i = ai for i ≤ n and let b |= q � Aa′.
Note that b ≡Aa≤n an+1. We will prove now that b ≡Aa≤n a′n+1. This will imply that
an+1 |= p � Aa≤n and this will finish the proof of the claim. Let ϕ(y, z, x) ∈ L(A) be
such that |= ϕ(a<n, an, b). Then ϕ(a<n, an, x) ∈ q. If there is some i > n such that
¬ϕ(a<n, a

′
i, x) ∈ q, then, since q does not divide over A, and (a<na

′
2·ja
′
2·j+1 : 2 · j > i) is an

A-indiscernible sequence of realizations of tp(a<nan, a
′
i/A), we see that

{ϕ(a<n, a
′
2·j , x) ∧ ¬ϕ(a<n, a

′
2·j+1, x) : 2 · j > i}

is consistent, which contradicts the fact that (a′j : j < ω) is a Morley sequence over A
generated by a type p which is generically stable over A. Hence ϕ(a<n, ai, x) ∈ q for all
i > n and therefore |= ϕ(a<n, ai, b) for all i > n. Since p = Av(a′/C), ϕ(a<n, x, b) ∈ p.
Since p is A-invariant and a<nan ≡A a<nb, ϕ(a<n, x, an) ∈ p and then |= ϕ(a<n, a

′
n+1, an).

Since a′ is totally indiscernible over A, |= ϕ(a<n, an, a
′
n+1).

With the claim we now finish the proof. We check that q ⊆ p. Assume ϕ(x, c) ∈ q. Let
a = (ai : i < ω) be such that ai |= q � Aca<i. Then |= ϕ(ai, c) for all i < ω. By the claim
ai |= p � Aa<i and therefore Av(a/C) = p. It follows that ϕ(x, c) ∈ p. 2

Proposition 9.8 4 Assume p is generically stable over A. For any a |= p � A, for any b

such that b |̂ f

A
A:

a
f

|̂
A

b ⇔ b
f

|̂
A

a

Proof: Let p(x) = p � A = tp(a/A) and let q(y) = tp(b/A). Recall that p is definable
over A. We claim that for any ϕ(x, y) ∈ L(A), for any global nonforking extension q of q:
ϕ(x, b) ∈ p if and only if ϕ(a, y) ∈ q. We prove first the claim. Assume ϕ(x, b) ∈ p. Let
ψ(y) ∈ L(A) be a definition of p � ϕ(x, y). Let q be any global nonforking extension of q, and
suppose ¬ϕ(a, y) ∈ q. Since |= ψ(b), ¬ϕ(a, y) ∧ ψ(y) ∈ q. Let a = (ai : i < ω) be a Morley
sequence generated by p over A. Since q does not fork over A, {¬ϕ(ai, y) ∧ ψ(y) : i < ω}
is consistent. Let b′ realize this partial type formula. Since |= ψ(b′), ϕ(x, b′) ∈ p. Since
p = Av(a/C), ¬ϕ(x, b′) ∈ p, a contradiction. For the other direction, if ϕ(x, b) 6∈ p, then
¬ϕ(x, b) ∈ p and therefore ¬ϕ(a, y) and then ϕ(a, y) 6∈ q.

Note that the claim implies that q has a unique nonforking extension over Aa. Now we
use the claim for the proof. Assume a |̂ f

A
b and |= ϕ(a, b). We check that ϕ(a, y) does

4Communicated personally by A. Pillay in June 2010
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not fork over A. This is clear by the claim since ϕ(x, b) ∈ p and q has a global nonforking

extension. For the other direction, assume b |̂ f

A
a and |= ϕ(a, b). We check now that ϕ(x, b)

does not fork over A. Since ϕ(a, y) is in the unique nonforking extension of q over Aa, by
the claim ϕ(x, b) ∈ p. Hence the result. 2

Proposition 9.9 If a = (ai : i < ω) is a nip-sequence over A with global type p(x), the
following are equivalent:

1. For some (all) M ⊇ A, p is definable over M and coinherits from M .

2. a is totally indiscernible over A.

3. For each ϕ(x, y) ∈ L there is some nϕ < ω such that p is definable over a by:

ϕ(x, c) ∈ p ⇔ |=
∨

w⊆2·nϕ,|w|=nϕ

∧
i∈w

ϕ(ai, c)

Proof: 1 ⇒ 2. By Proposition 9.4.

2 ⇒ 3. By Proposition 8.18 p = Av(a/C) and this is a definition of Av(a/C) if the
sequence is totally indiscernible and nϕ is the alternation number of ϕ relative to p � A.

3 ⇒ 1. If M is a model containing Aa, then p is M -definable and a coheir of p �M . 2

Corollary 9.10 Let p(x) ∈ S(A) be nip and let p be a global nonforking extension of p.
The following are equivalent.

1. p is generically stable.

2. p is generically stable over acleq(A).

3. For some (all) M ⊇ A, p is definable over M and coinherits from M .

4. Every Morley sequence a = (ai : i < ω) generated by p over A is totally indiscernible
over A.

Proof: 1 ⇒ 2. By Proposition 9.6, p is definable. By Corollary 8.17, it is definable over
acleq(A). Hence it is acleq(A)-invariant. By Point 1 of Remark 9.3, it is generically stable
over acleq(A).

2 ⇒ 3. By Proposition 9.6.

3 ⇒ 4. By Proposition 9.9.

4 ⇒ 1. Notice that p is definable over acleq(A) and therefore it is acleq(A)-invariant. Let
a = (ai : i < ω) be a Morley sequence generated by p over acleq(A). Note that a is totally
indiscernible over acleq(A). Since p is nip, a satisfies the requirements of the definition of
generically stable. 2

Corollary 9.11 Let p(x) ∈ S(A). If some extension of p(x) over acleq(A) is generically
stable, then all extensions of p(x) over acleq(A) are stationary and generically stable and all
global nonforking extensions of p(x) are generically stable over acleq(A) and are A-conjugate.
Moreover, if p is nip, then the following are equivalent.

1. Some global nonforking extension of p is generically stable.
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2. Some extension of p over acleq(A) is generically stable.

3. p(x) does not fork over A and every Morley sequence over A of realizations of p is
totally indiscernible over A.

4. Some Morley sequence over A of realizations of p is totally indiscernible over A.

Proof: All extensions of p(x) over acleq(A) are A-conjugate. If some extension is generi-
cally stable then, by Proposition 9.7, it is stationary and, similarly, all other extensions are
stationary and their nonforking extension are A-conjugate.

Assume now p is nip.

1 ⇔ 2. By Corollary 9.10.

2 ⇒ 3. Let p ⊇ p be generically stable over acleq(A). Since p does not fork over A, p does
not fork over A. A Morley sequence over A in p is in fact a Morley sequence over acleq(A) in
some extension of p; since the extension is generically stable, the Morley sequence is totally
indiscernible.

3 ⇒ 4. Since p does not fork over A, there are Morley sequences over A in p.

4 ⇒ 2. We have assumed p is nip. Let a = (ai : i < ω) be a Morley sequence over A in
p, totally indiscernible over A. Let p be a nonforking extension of p that generates a over
A. By Proposition 8.18, p = Av(a/C) and it is definable over a. By Proposition 8.17 it is
acleq(A)-invariant. Hence p is generically stable over acleq(A). 2

Proposition 9.12 If p is generically stable over B and does not fork over A ⊆ B, then p
is definable over acleq(A).

Proof: Let a = (ai : i < ω) be a Morley sequence generated by p over B. By Proposi-
tion 9.6, p is definable over a. Since it is B-invariant, it is also definable over B. Since p
does not fork over A, ai |̂ f

A
Ba<i for all i < ω. By induction one sees that a<i |̂ f

A
B and

therefore a |̂ f

A
B. Let ϕ(x, y) ∈ L and let cϕ be the canonical parameter of a definition of

p � ϕ. Then cϕ ∈ dcleq(a) ∩ dcleq(B) and hence cϕ ∈ acleq(A). 2

10 Stable types

Definition 10.1 A partial type π(x) is stable if all its completions are definable. 5

Remark 10.2 1. Any extension of a stable type is stable.

2. T is stable if and only if all types are stable.

The notion of stable type is discussed in the literature in different places. Here we
look at [5], [8], [12], [19], [18], [13] and also at Poizat and Lascar’s works mentioned in the
footnote.

Proposition 10.3 The following are equivalent for any partial finitary type π(x) over A:

1. π(x) is stable.

5Definition of Lascar and Poizat in [16], and also in the books [15] and [21].
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2. For any ϕ(x, y) ∈ L,
⋃
f∈2ω π(xf ) ∪

⋃
f∈2ω{ϕ(xf , yf�i)

f(i) : i < ω} is inconsistent,

where ϕ0 = ϕ, ϕ1 = ¬ϕ.

3. For every ϕ(x, y) ∈ L, for every B ⊇ A, every p(x) ∈ Sϕ(B) consistent with π(x) is
definable (by a formula of the form

ψ(y) = ∃x1 . . . xn∃y1 . . . ymχ(y, x1, . . . , xn, y1, . . . ym)

where χ is a conjunction of formulas of the form ϕ(xi, yj), ¬ϕ(xi, yj), ϕ(xi, y), some
ϕ(xi, y)-formulas over B and some formulas of π(x).)

4. For every ϕ(x, y) ∈ L, for every infinite cardinal λ, for every B ⊇ A with |B| ≤ λ,
there are at most λ types p(x) ∈ Sϕ(B) consistent with π(x).

5. For every B ⊇ A there are at most |B||T | types p(x) ∈ S(B) extending π(x).

6. For some cardinal λ, for every B ⊇ A with |B| ≤ λ, there are at most λ types
p(x) ∈ S(B) extending π(x).

7. For some cardinal λ, for every ϕ(x, y) ∈ L, for every B ⊇ A with |B| ≤ λ, there are
at most λ types p(x) ∈ Sϕ(B) consistent with π(x).

8. For every ϕ(x, y) ∈ L there is some infinite cardinal λ such that for every B ⊇ A with
|B| ≤ λ, there are at most λ types p(x) ∈ Sϕ(B) consistent with π(x).

Proof: One can easily adapt the proofs of the unrelativized version. It is clear that the
stronger version of 3 implies 4, that 3 ⇒ 1, that 1 ⇒ 5 and that 4 ⇒ 5 ⇒ 6 ⇒ 7 ⇒ 8. For
8 ⇒ 2 ⇒ 3 (strong version) see, for example, Proposition 2.6 of [7]. 2

Lemma 10.4 Let ϕ(x, y) ∈ L and let π(x) be a partial type over A. Assume there are no
sequences (ai : i < ω) and (bi : i < ω) such ai |= π for all i < ω and |= ϕ(ai, bj) ⇔ i < j
for all i, j < ω. Then any type p(x) ∈ Sϕ(A) such that for any ψ(x) ∈ p, π(x) ∪ {ψ(x)}
is satisfiable in A is definable by a positive boolean combination of formulas of the form
ϕ(a, y) with a ∈ A.

Proof: Same proof as Lemma 2.10 in [7] but taking care of choosing ci |= π. 2

Proposition 10.5 Let π(x) be a partial type. The following are equivalent:

1. π(x) is stable.

2. There are no sequences (ai : i < ω) and (bi : i < ω) such ai |= π for all i < ω and for
some ϕ(x, y) ∈ L, |= ϕ(ai, bj)⇔ i < j for all i, j < ω.

3. For each ϕ(x, y) ∈ L, there is some conjunction ψ(x) of formulas in π(x) such that
ϕ(x, y) ∧ ψ(x) does not have the order property.

Proof: 2 ⇔ 3 is just compactness. 1 ⇒ 2 is a standard argument (see Proposition 2.11
in [7]), but it needs to be adapted to κ = |A|+ |T | using ded(κ). 2 ⇒ 1: if π(x) is over A,
it is enough to check that any extension of π over a (|A| + |T |)+-saturated model M ⊇ A
is definable, and this follows from Lemma 10.4. 2

Remark 10.6 1. If π(x, y) is stable, then the type ∃yπ(x, y) is stable. Therefore, if
π(x, y) is a stable partial type over A, then π � x = {ϕ(x) ∈ L(A) : π(x, y) ` ϕ(x)} is
stable.
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2. tp(a/A) and tp(b/Aa) are stable if and only if tp(ab/A) is stable. More generally,
tp(ai/Aa<i) is stable for each i < α iff tp((ai : i < α)/A) is stable.

3. If the types πi(xi) are stable for all i ∈ I, then
⋃
i∈I πi(xi) is stable.

4. If the types π1(x), π2(x) are stable, then the type π1(x) ∨ π2(x) is stable.

Proof: For 2 just count types. 2

Proposition 10.7 Assume π(x) is nip and unstable.

1. Let D = π(C). Then for some n < ω there is a formula ψ = ψ(x1, . . . , xn; y1, . . . , yn) ∈
L which defines a partial order in Cn with infinite chains in Dn.

2. There is a formula ψ = ψ(x, y) ∈ L(C) which defines a partial order in C with infinite
chains in D = π(C).

Proof: It is an adaptation of Proposition 2.18 of [7]. 2

Proposition 10.8 A partial type is stable if and only if it is simple and nip.

Proof: From left to right it is a counting types argument: for simplicity it is like Proposi-
tion 2.21 of [7] and for nip like Remark 2.17 of [7]. From right to left use Proposition 10.7
and the fact that a type witnessing the strict order property is not simple. 2

Proposition 10.9 Let p(x) ∈ S(M) be stable. The following are equivalent for any global
extension p of p:

1. p does not fork over M .

2. p is a heir of p.

3. p is a coheir of p.

4. p is the global M -definable extension of p.

5. p does not split over M .

Proof: The equivalence between 2, 3 and 4 is stated in Corollary 7.14 of [7] and the
equivalence between 4 and 5 in Proposition 7.12 of [7]. It is clear that 5 implies 1 (see, for
instance, Proposition 7.6 of [7]. For 1 ⇒ 5 use Proposition 8.6. 2

Corollary 10.10 1. Stable types over models are stationary.

2. If p(x) ∈ S(A) is stable, then any global extension of p is generically stable.

3. Stable types over acleq(A) are stationary.

4. Any two global nonforking extensions of a stable type p(x) ∈ S(A) are A-conjugate.

Proof: 1 follows from Proposition 10.9 since the only nonforking extension of p(x) ∈ S(M)
is the only M -definable extension of p. For 2 note that a global extension p of p(x) ∈ S(A)
does not fork over some model M ⊇ A and then use Proposition 10.9 and Corollary 9.10.
For 3 use 2, Proposition 9.9 and Proposition 9.7. Of course, 3 gives a new proof of 1.

4. Let p, q be nonforking extensions of the stable type p(x) ∈ S(A). Let a |= p � acleq(A)
and b |= q � acleq(A). Since a ≡A b, there is some automorphism f ∈ Aut(C/A) such that
f(a) = b. Then pf is a nonforking extension of q � acleq(A). By 3, pf = q. 2

25



Proposition 10.11 If p(x) ∈ S(B) is stable and does not fork over A ⊆ B, then p(x) is
definable over acleq(A).

Proof: Let p be a global extension of p that does not fork over A. By Corollary 10.10 p
is generically stable over some C ⊇ B. By Proposition 9.12 p is definable over acleq(A). In
particular, p is definable over acleq(A). 2

Proposition 10.12 For any partial type π(x), the following are equivalent:

1. π(x) is stable.

2. CBϕ(π(x)) <∞ for all ϕ(x, y) ∈ L.6

3. CBϕ(π(x)) < ω for all ϕ(x, y) ∈ L.

Proof: 2 ⇒ 1. Assume π(x) is unstable and use Proposition 10.3 to obtain some formula
ϕ = ϕ(x, y) ∈ L and some parameters (as : s ∈ 2<ω) such that for every f ∈ 2ω, π(x) ∪
{ϕ(x, af�n)f(n) : n < ω} is consistent. For every s ∈ 2n let ψs =

∧
i<n ϕ(x, as�i)

s(i) and
choose s ∈ 2<ω for which CBϕ(π(x) ∪ {ψs(x)}) is minimal and the corresponding degree is
also minimal. Since ψs ≡ ψsa0(x)∨̇ψsa1(x), one of π(x) ∪ {ψsai(x)} (i = 0, 1) has smaller
rank or both have same rank and one has smaller degree. In any case this contradicts the
choice of s.

1 ⇒ 3. We use again Proposition 10.3. Assume CBϕ(π(x)) ≥ n for every n < ω. We will
see that

⋃
f∈2ω π(xf ) ∪

⋃
f∈2ω{ϕ(xf , yf�i)

f(i) : i < ω} is consistent. We first claim that for
any boolean combination ψ(x) of ϕ-formulas such that CBϕ(π(x)∪{ψ(x)}) ≥ n+1 there is
some a such that CBϕ(π(x)∪{ψ(x)∧ϕ(x, a)}) ≥ n or CBϕ(π(x)∪{ψ(x)∧¬ϕ(x, a)}) ≥ n.
To check this, let Xπ,ψ = {p(x) ∈ Sϕ(C) : π(x) ∪ {ψ(x)} is consistent with p(x)}. Since
Xπ,ψ has Cantor-Bendixson rank ≥ n+ 1, it contains two different points p1, p2 of Cantor-
Bendixson rank ≥ n. Find a such that ϕ(x, a) ∈ p1 and ¬ϕ(x, a) ∈ p2. Then p1 ∈
Xπ,ψ(x)∧ϕ(x,a) and p2 ∈ Xπ,ψ(x)∧¬ϕ(x,a) and these two sets have Cantor-Bendixson rank

≥ n. With the claim we now can find (as : s ∈ 2n) such that π(x) ∪ {ϕ(x, as�i)
s(i) : i < n}

is consistent for every s ∈ 2n. The rest follows by compactness. 2

Proposition 10.13 Let p(x) ∈ S(B), let A ⊆ B and assume p � A is stable. Then p(x)
does not fork over A if and only if CBϕ(p) = CBϕ(p � A) for all ϕ.

Proof: Given ϕ(x, y) ∈ L, let Xp,ϕ be the set of all p ∈ S(C) consistent with p. Similarly,
Xp�A,ϕ is the set of all p ∈ S(C) consistent with p � A. Then Xp,ϕ ⊆ Xp�A,ϕ and these sets
have ordinal (in fact finite) Cantor-Bendixson rank in Sϕ(C). Note that every p ∈ Xp�A,ϕ

of Cantor-Bendixson rank CBϕ(p � A) is definable and has finitely many A-conjugates, and
therefore it is definable over acleq(A) and it does not fork over A.

Assume CBϕ(p) = CBϕ(p � A) for all ϕ. Fix some ϕ(x, y) ∈ L and choose p ∈ Xp,ϕ of
maximal Cantor-Bendixson rank. Since p does not fork over A, p � ϕ does not fork over A.
Hence p does not fork over A.

Assume now p does not fork over A. By the proof of Proposition 10.11, there is some
global extension p of p definable over acleq(A). Let ϕ(x, y) ∈ L and choose q ∈ Xp�A,ϕ of
maximal Cantor-Bendixson rank in Sϕ(C). As said above, q does not fork over A and then it
can be extended to a complete global type q′ that does not fork over A. By Corollary 10.10, p
and q′ are A-conjugate. Hence p � ϕ is a point of Xp of Cantor-Bendixson rank CBϕ(p � A),
which shows that CBϕ(p) = CBϕ(p � A). 2

6For more information on CBϕ see chapter 6 of [7]

26



11 Preservation of stability

Here we consider the following open problem, discussed by Hasson and Onshuus in [13]:

Question 11.1 Assume p(x) ∈ S(B) is stable and does not fork over A ⊆ B. Is p � A
stable?

Proposition 11.2 Assume p(x) ∈ S(B) is stable and does not fork over M ⊆ B then
p �M is stable.

Proof: Let ϕ(x, y) ∈ L. We must check that for some ψ(x) ∈ p � M , ϕ(x, y) ∧ ψ(x) does
not have the order property. Since p is stable, for some θ(x, z) ∈ L, for some tuple a ∈ B,
θ(x, a) ∈ p and ϕ(x, y) ∧ θ(x, a) does not have the order property. By Proposition 10.11,
p is definable over M . Let χ(z) ∈ L(M) be a definition of p � θ(x, z). By compactness
there is a maximal n < ω for which there are (ai : i < n) and (bi : i < n) such that
|= ϕ(ai, bj)∧θ(ai, a) if and only if i < j. Fix some ψ(z) ∈ tp(a/M) such that for all a′ |= ψ,
n is an upper bound for such sequences with respect to ϕ(x, y)∧θ(x, a′). Since ψ(z)∧χ(z) is
consistent and it is over M , it is realized by some a′ ∈M . Since |= χ(a′), θ(x, a′) ∈ p �M .
Since |= ψ(a′), ϕ(x, y) ∧ θ(x, a′) does not have the order property. 2

Proposition 11.3 Assume p(x) ∈ S(B) is stable and does not fork over A ⊆ B. If p � A
is nip, then it is stable.

Proof: 7 Assume p � A is unstable. By Proposition 10.7 and compactness, some ϕ(x, y) ∈
L(C) defines a (strict) partial ordering with an infinite chain (ai : i < ω) of realizations
ai of p � A. Let d be the tuple of parameters of ϕ(x, y). We may assume the sequence is
Ad-indiscernible. Let us write x < y for ϕ(x, y). Take some a |= p. Since a ≡A a1, we
can assume a = a1 and therefore |= a0 < a < a2. By deleting a1 and renumbering the
sequence, we can assume that a0 < x < a1 is consistent with p(x). Since p(x) is stable,
there are only finitely many n < ω such that an < x < an+1 is consistent with p(x). Hence
p(x) ` an < x < an+m for some n,m ∈ ω. But then the sequence (bk : k < ω) with bk =
an+2·k·man+(2·k+1)·md is A-indiscernible and witnesses that the formula an < x < an+m
divides (with respect to 2) over A, contrarily to the assumption that p does not fork over
A. 2

Definition 11.4 We say that T is rosy if there is some strict independence relation in T eq.
By Proposition 1.7 this is equivalent to |̂ þ

being an strict independence relation in T eq.

All simple theories are rosy because in them |̂ f
is (in T eq) a strict independence relation.

Lemma 11.5 If p(x) ∈ S(B) is stable and does not þ-fork over A ⊆ B, then it is definable
over acleq(A).

Proof: Same as in Proposition 10.11, using |̂ þ
instead of |̂ f

. 2

Proposition 11.6 Assume T is rosy. If p(x) ∈ S(B) is stable and does not fork over
A ⊆ B, then p � A is stable.

7The proof is wrong, since the order may not be total. The statement is correct, by other proof supplied
by Adler, Casanovas and Pillay which in fact solves affirmatively Question 11.1.
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Proof: By a counting types argument (see Proposition 10.3) it is enough to prove that
any extension q of p � A over a set C = acleq(C) ⊇ A is definable. Let a |= p and b |= q.

Since a ≡A b there is some B′ such that aB ≡A bB′. Since a |̂ f

A
B, we get b |̂ f

A
B′ and,

by rosyness, B′ |̂ þ
A
b. Choose B′′ ≡Ab B′ such that B′′ |̂ þ

A
Cb. Then b |̂ þ

C
B′′. Since

tp(b/B′′C) extends the stable type tp(b/B′′), it is stable. By Lemma 11.5, tp(b/CB′′) is
definable over C. In particular, q = tp(b/C) is definable over C. 2

12 Stably embedded types

Definition 12.1 Let D ⊆ C. We say that D is stably embedded over A if for every n < ω,
every relatively definable relation R ⊆ Dn is relatively definable over AD.

Proposition 12.2 Let π(x) be a partial 1-type over A and let D = π(C). The following
are equivalent:

1. D is stably embedded over A.

2. For every a, tp(a/D) is definable over AD.

3. For every a, tp(a/dcleq(Aa) ∩ dcleq(AD)) ` tp(a/D).

4. For every a there is some D ⊆ AD such that |D| ≤ |T | + |A| + |a| and tp(a/D) `
tp(a/D).

5. For every a there is some D ⊆ AD such that |D| ≤ |T |+ |A|+ |a| and tp(a/acl(D)) `
tp(a/D).

6. Every A-elementary permutation f : D → D can be extended to an A-automorphism
of C.

Proof: 1 ⇔ 2 is clear.

2 ⇒ 3. Let ϕ(x, y) ∈ L. Choose ψ(y, z) ∈ L(A) and c ∈ D such that ψ(y, c) defines
tp(a/D) � ϕ. By compactness, there is some θ(x) ∈ π(x) such that for all b |= θ(x),
|= ψ(b, c) if and only if ϕ(x, b) ∈ tp(a/D). Let E be the equivalence relation defined by

E(c1, c2)⇔ |= ∀y(θ(y)→ (ψ(y, c1)↔ ψ(y, c2))).

Notice that cE is an A-imaginary definable over Aa and over D. There is some imag-
inary e such that any A-automorphism fixes cE if and and only if it fixes e. Hence,
e ∈ dcleq(Aa) ∩ dcleq(AD). Let a′ |= tp(a/dcleq(Aa) ∩ dcleq(AD)). Choose some auto-
morphism f ∈ Aut(C/dcleq(Aa) ∩ (dcleq(AD)) such that f(a) = a′. Since f(cE) = cE , for
all b |= π, |= ψ(b, c)↔ ψ(b, f(c)) and hence ϕ(x, b) ∈ tp(a/D) iff ϕ(x, b) ∈ tp(a′/D).

3 ⇒ 4. For each element b of dcleq(Aa) ∩ dcleq(AD) choose some finite Db ⊆ AD such
that b ∈ dcleq(Db) and let D be the union of all the sets Db.

4 ⇒ 5 is obvious.

5 ⇒ 2. Let ϕ(y, x) ∈ L. We want to check first that tp(a/D) � ϕ is definable over
acl(D). Assume not. Then, by compactness, there are some tuples b, b′ ∈ D such that
b ≡acl(A) b

′ and |= ϕ(a, b)↔ ¬ϕ(a, b′). If we choose now a′ such that ab ≡acl(D) a
′b′ we see

that a′ |= tp(a/acl(D)) but a′ 6|= tp(a/D), a contradiction with our assumption.
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Let ψ(x) ∈ L(acl(D) define tp(a/D) � ϕ and let ψ1(x), . . . , ψn(x) be the list of all
D-conjugates of ψ(x). Let E be the equivalence relation defined by

E(x, z)↔
∧

1≤i≤n

(ψi(x)↔ ψi(z))

and let b0, . . . , bm ∈ D be representatives of all E-classes meeting D. Note that E is over D
and therefore ψ(C)∩D is setwise fixed by Aut(C/ADb0, . . . , bm). It follows that D∩ϕ(a,C)
is relatively definable over ADb0, . . . , bm and hence over AD.

4 ⇒ 6. Assume f : AD → AD is elementary, permutes D and it is the identity on
A and let g be an elementary mapping extending f . We check that for every element a
there is some b such that g ∪ {(a, b)} is elementary. A standard back-and-forth argument
shows that this is enough. Let c be a tuple enumerating dom(g) r D. By 4 there is
some D ⊆ AD of cardinality ≤ |T | + |A| + |c| such that tp(ac/D) ` tp(ac/D). Then
tp(a/dom(g)) ` tp(a/dom(g)) and therefore tp(a/dom(g))g ` tp(a/dom(g))g. If b realizes
tp(a/dom(g))g, then g ∪ {(a, b)} is elementary.

6 ⇒ 1. Assume R ⊆ Dn is relatively definable but not over D. Then, for every set B ⊆ D
there is some automorphism f ∈ Aut(C/AB) such that f(R) 6⊆ R. Let (Rα : α ∈ On) an
enumeration of the orbit of R under Aut(C/A) and let (dα : α ∈ On) an enumeration of
D. We inductively construct a continuous ascending chain (fα : α ∈ On) of A-elementary
mappings fα such that the domain and range of fα are subsets of D, aα belongs to the
domain and range of fα+1 and fα+1(R∩dom(fα+1)) 6⊆ Rα. We only need to specify how to
get fα+1 from fα. Assume there is an automorphism g ∈ Aut(C/A) extending fα and such
that g(R) = Rα (if there is not such g we omit this first step). By assumption there is an
automorphism f ∈ Aut(C/Adom(fα)) such that f(R) 6⊆ R. Then for some n-tuple a ∈ R,
tp(a/Adom(fα)) ∪ {¬R(x)} is consistent. Let us apply g to this type and let a′ realize it.
Then a′ is an n-tuple of elements of D, a′ ≡Adom(fα) a and a′ 6∈ g(R) = Rα. We obtain
fα+1 by adding (a, a′) to fα and extending the result in a standard way to add aα first to
the domain and then to the range. The union of the chain is an A-elementary permutation
of D can not be extended to an automorphism of C. 2

Proposition 12.3 Let D de defined over A by a partial 1-type π(x) and assume it is stably
embedded over A.

1. If M ⊇ A is a saturated model of cardinality > |T | + |A| then every A-elementary
permutation of D = π(M) can be extended to an A-automorphism of M .

2. If A is finite and M ⊇ A is countable and saturated, then every A-elementary permu-
tation of D = π(M) can be extended to an A-automorphism of M .

Proof: 1 is like 4 ⇒ 6 in the proof of Proposition 12.2.

2. It is again a back-and-forth argument, but we use now point 3 of Proposition 12.2.
Assume f : AD → AD is elementary, permutes D and it is the identity on A, and let g be an
elementary mapping in M such that dom(g)rdom(f) is finite. We will check that for every
element a ∈M there is some element b ∈M such that g∪{(a, b)} is elementary. Let c be a
tuple enumerating dom(g)rD. Then tp(ac/dcleq(Aac)∩dcleq(ADc)) ` tp(ac/D) and there-
fore tp(a/dcleq(Aac) ∩ dcleq(ADc)) ` tp(a/dom(g)) and tp(a/dcleq(Aac) ∩ dcleq(ADc))g `
tp(a/dom(g))g. Since dcleq(Aac) ∩ dcleq(ADc) is contained in the (imaginary) definable
closure of a finite tuple, it can be realized by some b ∈M . Then g ∪ {(a, b)} is elementary.
2
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Lemma 12.4 Let π1(x), π2(x) be partial types over A. Let M ⊇ A be (|A|+|T |)+-saturated
and let p1(x), p2(x) ∈ S(M) be stable types extending π1(x) and π2(x) respectively. If
D = π1(M) ∪ π2(M) and p1 � D = p2 � D, then p1 = p2. 8

Proof: Choose a model N such that A ⊆ N ⊆M , |N | ≤ |A|+ |T | and p1, p2 are definable
over N . Construct Morley sequences over N , a = (ai : i < ω) and b = (bi : i < ω) using p1
and p2 respectively. Then ai, bi ∈ D for all i. Add to a the Morley sequence a′ = (a′i : i < ω)
where a′i |= p1 � Naba′<i. Again, a′i ∈ D for all i < ω. Then aa′ is a Morley sequence
generated by p1 over N . By Proposition 11.2, p1 � N and p2 � N are stable. Hence aa′ and
b are totally indiscernible over N , Av(a/M) = p1 and Av(b/M) = p2. We claim that ba′

is totally indiscernible. Assume inductively that ba′<i is totally indiscernible. Notice that
tp(a′i/ba

′
<i) = p1 � ba′<i = p2 � ba′<i = Av(b/ba′<i) and since ba′<i is totally indiscernible,

this implies ba′<ia
′
i is totally indiscernible. The claim implies aa′ ≡ ba′. Now we observe

that p1 = Av(a/M) = Av(aa′/M) = Av(a′/M) ⊇ Av(ba′/M) ⊆ Av(b/M) = p2. Since
aa′ ≡ ba′, Av(ba′/C) is a complete type over C and therefore Av(a′/M) = Av(ba′/M) =
Av(b/M) and hence p1 = p2. 2

Proposition 12.5 If D is defined over A by a partial stable 1-type π(x) then it is stably
embedded over A.

Proof: Let R be a relative definable n-ary relation on D. Let ϕ(x, y) ∈ L be such that
ϕ(x, a) relatively defines R and choose an (|A|+ |T |)+-saturated model M ⊇ A containing
a. Let D = π(M). We claim that R is relatively definable over AD. Let f ∈ Aut(C/AD)
and let us check that f fixes R. Let c be a tuple in R, let p1(x) = tp(c/M) and let
p2(x) = tp(f(c)/M). Then π ⊆ p1 � A = p2 � A and p1 � D = p2 � D. Since p1, p2 are
stable, by Lemma 12.4, p1 = p2, that is, c ≡M f(c). Hence f(c) ∈ R. 2

Definition 12.6 We say that D is uniformly stably embedded over A if for any n, for any
ψ(x1, . . . , xn; y) ∈ L there is some χ(x1, . . . , xn; z) ∈ L(A) such that for any tuple b there
is some tuple c ∈ D such that for all d1, . . . , dn ∈ D:

|= ψ(d1, . . . , dn; b)↔ χ(d1, . . . , dn; c)

Lemma 12.7 If D is definable over A and it is stably embedded over A, then it is uniformly
stably embedded over A.

Proof: Let ϕ(x) ∈ L(A) define D, and assume ψ(x1, . . . , xn; y) ∈ L. We first claim
that there is a finite number of formulas χi(x1, . . . , xn; zi) ∈ L(A) (i = 1, . . . ,m) such that
for every tuple b there is some i and some tuple c ∈ D such that for all d1, . . . , dn ∈ D,
|= ψ(d1, . . . , dn; b) ↔ χi(d1, . . . , dn; c). If not, then the following set Σ(y) of formulas is
consistent

{∀z(ϕ(z)→ ∃x1 . . . xn(ϕ(x1)∧. . .∧ϕ(xn)∧¬(ψ(x1, . . . , xn; y)↔ χ(x1, . . . , xn; z))) : χ ∈ L(A)}

(where ϕ(z) = ϕ(z1) ∧ . . . ∧ ϕ(zk) if z = z1 . . . zk and this length depends on the formula
χ) and this contradicts stable embeddability of D over A. Using the claim we now define
χ(x1, . . . , xn; z, z1, . . . , zm) as the formula

m∨
i=1

z = zi ∧
m∧
i=1

(z = zi → χi(x1, . . . , xn; zi))

8Remerciements to Bruno Poizat for the statement and the proof.

30



(we may assume all zi have the same length). It follows that for any tuple b there
is some tuple cc1 . . . cm ∈ D such that for all d1, . . . , dn ∈ D, |= ψ(d1, . . . , dn; b) ↔
χ(d1, . . . , dn; c, c1, . . . , cm). 2

Definition 12.8 The A-induced structure on D ⊆ C is the structure Dind(A) with uni-
verse D and a relation symbol Rψ for any ψ(x1, . . . , xn) ∈ L(A), which is interpreted
as {(d1, . . . , dn) ∈ Dn :|= ϕ(d1, . . . , dn)}. We allow the case A = C and for it we write
Dind = Dind(C).

Proposition 12.9 Assume D is type-definable over A by a 1-type π(x) and it is uniformly
stably embedded over A.

1. If Dind is stable, then π(x) is stable.

2. If Dind is nip, then π(x) is nip.

3. If Dind is simple, then π(x) is simple.

Proof: 1. Assume ϕ(x, y) ∈ L and there are (ai : i < ω) and (bi : i < ω) with ai ∈ D such
that |= ϕ(ai, bj) iff i < j. By uniform stable embeddability, there is some ψ(x, z) ∈ L(A)
such that for every b there is some c ∈ D such that for every d ∈ D, |= ψ(d, c) ↔ ϕ(d, b).
Choose a corresponding ci ∈ D for every bi. Then |= ψ(ai, cj) iff i < j, which shows that
Dind is unstable.

2. Similar to 1.

3. Assume ϕ(x, y) ∈ L and there are k < ω, (af : f ∈ ωω) and (bs : s ∈ ω<ω) with
af ∈ D such that |= ϕ(af , bs) for every s ⊆ f and {ϕ(x, bsan) : n < ω} is k-inconsistent.
Take some ψ(x, z) ∈ L(A) such that for every b there is some c ∈ D such that for every
d ∈ D, |= ψ(d, c) ↔ ϕ(d, b). Choose for every bs some corresponding cs ∈ D. Then
|= ψ(af , cs) for all s ⊆ f . It follows that no subset of k elements {ψ(x, csan) : n < ω} is
realized in D. Hence Dind is not simple. 2

Remark 12.10 If D is definable, then the induced structure Dind has elimination of quan-
tifiers.

Proof: Note first that each quantifier-free formula is equivalent to an atomic formula. Now,
it is enough to check that for any atomic Rϕ(x, y), the formula ∃xRϕ(x, y) is equivalent
to a quantifier-free formula. Let θ(x) ∈ L(C) define D. Then ∃xRϕ(x, y) is equivalent to
Rψ(y) where ψ(y) = ∃x(θ(x) ∧ ϕ(x, y)). 2

Proposition 12.11 Let D be type-definable over A by a 1-type π(x), and assume the in-
duced structure Dind has elimination of quantifiers.

1. If π(x) is stable, then the structure Dind is stable.

2. If π(x) is nip, then the structure Dind is nip.

3. If π(x) is finite (that is, if D is definable over A) and simple, then Dind is simple.

Proof: 1. Note that every formula in Dind is equivalent to an atomic formula Rϕ(x). If
there are ai, bi ∈ D such that Dind |= Rϕ(ai, bj) iff i < j, then |= ϕ(ai, bj) iff i < j and π(x)
is unstable.

2. Similar to 1.
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3. Let ϕ(x) be a formula equivalent to π(x). Suppose that for some ψ and k < ω,
there are af , bs ∈ D such that |= ψ(af , bs) whenever s ⊆ f and {ψ(x, bsan) : n < ω} is
k-inconsistent in Dind. Then {ϕ(x)∧ψ(x, bsan) : n < ω} is k-inconsistent and ϕ(x)∧ψ(x, y)
has the tree property with respect to k. 2

Question 12.12 Does point 3 of Proposition 12.11 hold without assuming π(x) is finite ?

Proposition 12.13 Let D be definable by ϕ(x) ∈ L(A) and assume it is stably embedded
over A.

1. ϕ(x) is stable iff the structure Dind is stable.

2. ϕ(x) is nip iff the structure Dind is nip.

3. ϕ(x) is simple iff the structure Dind is simple.

Proof: By propositions 12.11, 12.9, Lemma 12.7 and Remark 12.10. 2

Corollary 12.14 Let D be definable by ϕ(x) ∈ L(A). Then ϕ(x) is stable if and only if D
is stably embedded over A and Dind is stable.

Proof: From left to right: Remark 12.10 and propositions 12.11 and 12.5. From right to
left: Proposition 12.13. 2

Example 12.15 Let C be the monster model of the (stable) theory of algebraically closed
fields of characteristic zero. The type π(x) = {x 6= q : q ∈ Q} defines a class I such that
Iind has the strict order property.
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[22] A. Usvyatsov. Morley sequences in dependent theories. Preprint, October 2008.

[23] M. Ziegler. Chernikov and Simon’s proof of Shelah’s theorem. Unpublished note,
October 2010.

33


