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Preface

These are lecture notes from a seminar imparted the academic years 2005-06 and 2006-07
at the Department of Logic of the University of Barcelona. They are incomplete, in process
of revision and enlargement. In particular, the preliminaries contain only a few statements.
Advanced knowledge of Model Theory is throughout assumed. The notes are based on the
work of many modeltheorists. The names of John Baldwin, Byunghan Kim, Daniel Lascar,
Anand Pillay, Bruno Poizat, Saharon Shelah, Frank Wagner and Martin Ziegler deserve
special mention. I thank to the participants in the Seminar, Hans Adler, Silvia Barbina,
Javier Moreno, Rodrigo Peláez, Juan Francisco Pons, and Joris Potier for their patience
and their remarks. Of course, I am the only responsible for the mistakes or inaccuracies
that might appear in the text.
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Chapter 1

Preliminaries

T is a complete theory of language L with infinite models and C is its monster model.
A,B,C are subsets of C and a, b, c are sequences of elements of C. a ∈ A means that all
the elements in the sequence a belong to A. We use x,y for single variables but also for
sequences of variables.

The existence of indiscernible sequences is usually established using Ramsey’s Theorem.
It is convenient to introduce here a more powerful method based on Erdös-Rado Theorem.

Proposition 1.1 If κ ≥ |T | is a cardinal number, λ = i(2κ)+ , |A| ≤ κ and (ai : i < λ)
is a sequence of sequences ai of fixed length α < κ+, then there is an A-indiscernible
sequence (bi : i < ω) such that for each n < ω there are i0 < . . . < in < λ such that
b0, . . . , bn ≡A ai0 , . . . , ain . In most of the applications α is a natural number and therefore
the cardinal number λ depends only on |T | and |A|.

Corollary 1.2 1. If (ai : i < λ) is indiscernible over A, there is some model M ⊇ A
such that (ai : i < λ) is indiscernible over M .

2. If (ai : i < λ) is indiscernible over A, then it is also indiscernible over acleq(A).

A canonical parameter of a definable relation R is an imaginary element c such that for
all f ∈ Aut(C), f(R) = R if and only if f(c) = c. It is unique up to interdefinability and it
can be constructed starting with some ϕ(x, y) such that ϕ(C, a) = R by c = a/E where E
is the 0-definable equivalence relation given by

E(b, d) ⇔ ϕ(C, b) = ϕ(C, d)

The following result on definability and imaginaries will be useful:

Proposition 1.3 The following are equivalent for any definable relation R:

1. R is definable over any model M ⊇ A.

2. R has only finitely many A-conjugates.

3. R is a union of equivalence classes of some A-definable finite (i.e. with finitely many
classes) equivalence relation.

4. R is definable over acleq(A).
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Chapter 2

ϕ-types, stability and simplicity

Definition 2.1 Let ϕ(x, y) ∈ L. A ϕ-formula over A is a formula of the form ϕ(x, a) or
¬ϕ(x, a) with a ∈ A. A ϕ-type over A is a consistent set of ϕ-formulas over A. A ϕ-type
p(x) over A is complete if for every a ∈ A either ϕ(x, a) ∈ p or ¬ϕ(x, a) ∈ p. The set of
all complete ϕ-types over A is Sϕ(A).

Definition 2.2 Let ϕ(x, y) ∈ L. A complete ϕ-type p(x) over A is definable over B if there
is a formula ψ(y) ∈ L(B) such that for all a ∈ A,

ϕ(x, a) ∈ p ⇔ |= ψ(a)

If B is not mentioned we understand that A = B. A complete type p(x) ∈ S(A) is definable
if all its restrictions p � ϕ are definable.

Lemma 2.3 Let p(x) ∈ Sϕ(M) be definable. Then for each A ⊇ M there is a unique
q ∈ Sϕ(A) extending p which is definable over M .

Proof: Let ψ(y) ∈ L(M) be a definition of p. It is easy to check that {ϕ(x, a) : a ∈
A, |= ψ(a)} ∪ {¬ϕ(x, a) : a ∈ A, |= ¬ψ(a)} is consistent and it is in fact a complete ϕ-
type over A extending p. On the other hand, if q1, q2 ∈ Sϕ(A) are M -definable extensions
of p with definitions ψ1(y), ψ2(y) ∈ L(M), then M |= ∀y(ψ1(y) ↔ ψ2(y)), which implies
C |= ∀y(ψ1(y) ↔ ψ2(y)) and therefore q1 = q2. 2

Definition 2.4 Let λ be an infinite cardinal number. We say that ϕ is λ-stable or stable
in λ if for any set A,

|A| ≤ λ⇒ |Sϕ(A)| ≤ λ

It is said that ϕ is stable if it is stable in some λ. Otherwise ϕ is called unstable.

Proposition 2.5 The following conditions are equivalent for ϕ = ϕ(x, y) ∈ L.

1. ϕ(x, y) is stable.

2. Γϕ(ω) is inconsistent, where for any ordinal α,

Γϕ(α) = {ϕ(xν , yν�i)ν(i) : ν ∈ 2α, i < α}

and where ϕ0 = ϕ and ϕ1 = ¬ϕ.

9



10 CHAPTER 2. ϕ-TYPES, STABILITY AND SIMPLICITY

3. For any set A, any type p(x) ∈ Sϕ(A) is definable.

4. ϕ(x, y) is λ-stable for all λ.

Moreover in 3. one can add that p is definable by a formula of the form

ψ(y) = ∃x1 . . . xn∃y1 . . . ymχ(y, x1, . . . , xn, y1, . . . ym)

where χ is a conjunction of formulas of the form ϕ(xi, yj), ¬ϕ(xi, yj), ϕ(xi, y) and ϕ(xi, y)-
formulas over A.

Proof: 1. ⇒ 2. Assume Γϕ(ω) is consistent. Let λ be an infinite cardinal number and
let µ be the least cardinal number such that 2µ > λ. Then 2<µ ≤ λ. Since Γϕ(µ) is also
consistent, there is a sequence (bν : ν ∈ 2<µ) such that for every ν ∈ 2µ the set of ϕ-formulas
pν(x) = {ϕ(x, bν�i)ν(i) : i < µ} is consistent. Since pν(x) is inconsistent with pν′(x) for
ν 6= ν′, it follows that there are 2µ > λ complete ϕ-types over the set A = {bν : ν ∈ 2<µ}
but |A| ≤ λ. This shows that ϕ(x, y) is not λ-stable.

2. ⇒ 3. Let p(x) ∈ Sϕ(A) and assume Γϕ(ω) is inconsistent. Then also Γϕ(ω) ∪⋃
ν∈2ω p(xν) is inconsistent and by compactness there is a least natural number n for which

Γϕ(n) ∪
⋃
ν∈2n

p(xν)

is inconsistent. Again by compactness, there is a finite subset p0(x) ⊆ p(x) such that
Γϕ(n) ∪

⋃
ν∈2n p0(xν) is inconsistent. Then n > 0 and one can check that for any a ∈ A,

ϕ(x, a) ∈ p ⇔ Γϕ(n− 1) ∪
⋃

ν∈2n−1

p0(xν) ∪ {ϕ(xν , a)} is consistent

that is

ϕ(x, a) ∈ p ⇔ ∃(xν : ν ∈ 2n−1)∃(yη : η ∈ 2<n−1)(
∧

Γϕ(n− 1) ∧
∧

ν∈2n−1

p0(xν) ∧ ϕ(xν , a))

which is a definition of p of the form indicated above.

3. ⇒ 4. Since there are at most λ many definitions of the described form over a set
A with |A| ≤ λ, there are also λ many complete ϕ-types over A. This shows that ϕ(x, y)
is λ-stable for any λ but uses the hypothesis 3. with the added information on the form
of the definition. Without this information we can only guarantee that it is stable in any
λ ≥ |T |. But this is enough since after all we have established that 1. implies 4. 2

Remark 2.6 If ϕ is stable any global ϕ-type p ∈ Sϕ(C) is definable.

Proof: The proof of 2 ⇒ 3 given for Proposition 2.5 works also for p ∈ Sϕ(C). 2

Definition 2.7 ϕ = ϕ(x, y) ∈ L has the order property if for some ai, bi (i < ω) the
following holds:

|= ϕ(ai, bj) ⇔ i < j

Remark 2.8 1. ϕ(x, y) has the order property if and only if for some ai, bi (i < ω),
|= ϕ(ai, bj) ⇔ i ≤ j.

2. ϕ(x, y) has the order property if and only if ¬ϕ(x, y) has the order property.
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3. In the definition of the order property one can change the index set ω and its order
by any infinite linear ordering.

Lemma 2.9 Assume ϕ = ϕ(x, y) does not have the order property. If p ∈ Sϕ(A) is finitely
satisfiable in A (which is always true if A is a model), then p is definable by a positive
boolean combination of formulas of the form ϕ(a, y) with a ∈ A.

Proof: Let X1, . . . , Xn be a family of subsets of a set A. Consider the relation R(a, b)
among elements a, b of A which holds when ∀i(1 ≤ i ≤ n)(a ∈ Xi → b ∈ Xi). It is easy to
see that a subset X ⊆ A is a positive boolean combination of the sets X1, . . . , Xn if and
only if b ∈ X whenever a ∈ X and R(a, b). The reason is that in this situation

X(x) ⇔
∨
a∈X

∧
{Xi(x) : a ∈ Xi}

We will use this result. Assume p is not definable by a positive boolean combination of
formulas of the described form. We inductively define tuples ai, bi, ci (i ∈ ω) of elements
of A. Suppose aj , bj , cj are defined for j < i. By hypothesis {a ∈ A : ϕ(x, a) ∈ p} is not
a positive boolean combination of the sets Xj = {a ∈ A :|= ϕ(cj , a)} for j < i. Then
there are ai, bi ∈ A such that ϕ(x, ai) ∈ p, ¬ϕ(x, bi) ∈ p and for all j < i, if |= ϕ(cj , ai),
then |= ϕ(cj , bi). Now let ci be a realization of the finite type p � {aj , bj : j ≤ i}. The
sequences of tuples thus obtained have the property that |= ϕ(cj , ai) ∧ ¬ϕ(cj , bi) for i ≤ j
but |= ϕ(cj , ai) → ϕ(cj , bi) for j < i. By Ramsey’s Theorem we may assume that always
|= ¬ϕ(cj , ai) for j < i or always |= ϕ(cj , bi) for j < i. In the first case we have i ≤ j if and
only if |= ϕ(cj , ai). In the second case i ≤ j if and only if |= ¬ϕ(cj , bi). In any case ϕ(x, y)
has the order property. 2

Proposition 2.10 ϕ(x, y) is stable if and only if it does not have the order property.

Proof: If ϕ(x, y) has the order property, then there are ai, bj(i, j ∈ Q) such that for all
i, j

|= ϕ(ai, bj) ⇔ i < j

Now for each real number r let pr(x) be the ϕ-type {ϕ(x, bj) : r < j} ∪ {¬ϕ(x, bj) : r ≥ j}.
Clearly pr(x) is inconsistent with ps if r 6= s and thus there are 2ω many complete ϕ-types
over the countable set {bj : j ∈ Q}. Hence ϕ is not stable. For the other direction, assume
ϕ(x, y) does not have the order property and let λ ≥ |T |. We use Lemma 2.9 to check that
ϕ is λ-stable. Let A be a set such that |A| ≤ λ. We may find a model M ⊇ A such that
|M | ≤ λ. Since there are at most λ many definitions of ϕ-types over M and each p ∈ Sϕ(M)
is definable over M , we conclude that |Sϕ(A)| ≤ |Sϕ(M)| ≤ λ. 2

Corollary 2.11 Any boolean combination ϕ(x, y) of stable formulas ϕi(x, y) is stable.

Remark 2.12 Let ϕ = ϕ(x, y) ∈ L be stable. By Remark 2.6, any p ∈ Sϕ(C) is definable
over some set A. If M ⊇ A, then p has a definition which is a positive boolean combination
of formulas of the form ϕ(b, x) with b ∈ M and which is at the same time equivalent to a
formula over A.

Proof: Since ϕ does not have the order property, we can apply Lemma 2.9, which gives
a positive boolean combination ψ(x) ∈ L(M) of formulas of the form ϕ(b, x) which defines
p � M . Since there is only one global ϕ-type extending p � M and definable over M , and
ψ defines in C a ϕ-type with these properties, it follows that ψ defines p and hence ψ is
equivalent to a formula over A. 2
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Definition 2.13 ϕ(x, y) ∈ L has the strict order property if there are ai, (i < ω) such that
for all i < ω,

ϕ(C, ai) ( ϕ(C, ai+1)

Remark 2.14 1. Clearly, a formula with the strict order property has the order prop-
erty.

2. In the definition of the strict order property one can change the ordered set (ω,<) for
any other infinite linearly ordered set.

3. If the formula ϕ(x, y, a) has the strict order property, then also ϕ(x; y, z) has the strict
order property.

4. There is a formula in T with the strict order property if and only if for some n there
is a definable partial order of Cn which has infinite chains. In fact is ϕ(x, y) has the
strict order property, then

ψ(y1, y2) = ∀x(ϕ(x, y1) → ϕ(x, y2)) ∧ ∃x(ϕ(x, y2) ∧ ¬ϕ(x, y1))

defines such an order.

Definition 2.15 ϕ(x, y) ∈ L has the independence property if there are sequences (ai :
i < ω) and (bX : X ⊆ ω) such that for all i,X,

|= ϕ(ai, bX) ⇔ i ∈ X.

Remark 2.16 1. A formula with the independence property is unstable.

2. ϕ(x, y) has the independence property if and only if for each n < ω there are ai (i < n)
such that for each X ⊆ n the set of formulas

{ϕ(ai, x) : i ∈ X} ∪ {¬ϕ(ai, x) : i ∈ nrX}

is consistent.

3. If ϕ(x, y) has the independence property, then also ϕ−1(y, x) = ϕ(x, y) has the inde-
pendence property.

Proposition 2.17 There is a unstable formula in T if and only if there is a formula with
the strict order property or there is a formula with the independence property.

Proof: As already remarked, formulas with the independence property or the strict
order property are unstable. Now assume that ϕ(x, y) has the order property but not
the independence property. We will see that a certain conjunction θ(x, y) of ϕ(x, y) with
formulas of the form ϕ(a, y) and ¬ϕ(a, y) has the strict order property.

By the order property, there are sequences (ai : i ∈ Q) and (bi : i ∈ Q) such that
|= ϕ(ai, bj) iff i < j. We may assume that (ai : i ∈ Q) is indiscernible. Since ϕ does
not have the independence property, for some n < ω there is a subset S ⊆ n which is not
represented, in the sense that

|= ¬∃y(
∧
i∈S

ϕ(ai, y) ∧
∧

i∈nrS
¬ϕ(ai, y)).
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S is not an initial segment of n because otherwise some bj would represent it. But S
is obtained as the last step S = Sm of a sequence S0, . . . , Sm of subsets Sk ⊆ n where
S0 is an initial segment and for each k there is some m ∈ Sk such that m + 1 6∈ Sk and
Sk+1 = (Skr{m})∪{m+1}. Since S0 is represented but Sm is not, there is some k such that
Sk is represented but Sk+1 is not. Let U = Sk∩Sk+1, V = nr(Sk∪Sk+1) and let m ∈ Sk be
such that Sk = U ∪{m} and Sk+1 = U ∪{m+1}. If ψ(y) =

∧
i∈U ϕ(ai, y)∧

∧
i∈V ¬ϕ(ai, y),

it follows that since Sk is represented,

|= ∃y(ψ(y) ∧ ϕ(am, y) ∧ ¬ϕ(am+1, y))

but since Sk+1 is not represented,

|= ¬∃y(ψ(y) ∧ ϕ(am+1, y) ∧ ¬ϕ(am, y)).

Hence if θ(x, y) = ψ(y) ∧ ϕ(x, y) we have that

θ(am+1,C) ( θ(am,C).

By indiscernibility, for all rational numbers m ≤ q < q′ ≤ m+ 1, θ(aq′ ,C) ( θ(aq,C) which
implies that θ(x, y) has the strict order property.

2

Definition 2.18 Let k ≥ 2 be a natural number. It is said that ϕ(x, y) has the k-tree
property if there are as (s ∈ ω<ω) such that

• For each f ∈ ωω, {ϕ(x, af�n) : n < ω} is consistent.

• For each s ∈ ω<ω the set {ϕ(x, asai) : i < ω} is k-inconsistent, that is, every subset
of k elements is inconsistent.

The formula ϕ has the tree property if it has the k-tree property for some k.

Proposition 2.19 If ϕ(x, y) has the strict order property, then ψ(x; y1y2) = ¬ϕ(x, y1) ∧
ϕ(x, y2) has the 2-tree property.

Proof: By the strict order property, there is a sequence (ap : p < Q) such that ϕ(C, ap) (
ϕ(C, aq) for p < q ∈ Q. We prove the existence of parameters bs = b1sb

2
s, (s ∈ ω<ω)

witnessing the 2-tree property of ψ(x; y1, y2). The construction is done by induction on the
length of s in such a way that for each s ∈ ω<ω there are ps < qs ∈ Q with aps

= b1s and
aqs = b2s and pt < ps < qs < qt if t ( s. We start with p∅ = 0 and q∅ = 1. To extend the
branch finishing in s ∈ ω it is enough to pick two increasing sequences of rational numbers
(psai : i < ω) and (qsai : i < ω) such that ps < psai < qsai < psai+1 < qs. 2

Proposition 2.20 Any formula with the tree property is unstable.

Proof: Assume ϕ = ϕ(x, y) has the k-tree property. Chose λ such that λω > 2ω and λω >
λ. By compactness, there are as, (s ∈ λ<ω) such that for each s ∈ λ<ω, {ϕ(x, asai) : i < λ}
is k-inconsistent and for each f ∈ λω, πf (x) = {ϕ(x, af�n) : n < ω} is consistent. Choose
for each f ∈ λω a subset If ⊆ λω such that f ∈ If and pf (x) =

⋃
g∈If

πg(x) is a maximally
consistent union of types πg. By k-inconsistency If is a k-branching tree of height ω and
hence |If | ≤ 2ω. Since λω > 2ω, {pf (x) : f ∈ λω} has cardinality λω. Since it is a set of
pairwise incompatible ϕ-types over a set of parameters {as : s ∈ λ<ω} of cardinality λ, we
conclude that ϕ is not λ-stable. 2
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Definition 2.21 The theory T is stable if all formulas are stable in T , otherwise it is
unstable. T is simple if it does not have formulas with the tree property. It is said that T
has the independence property if some formula has the independence property in T and it
is said that T has the strict order property if some formula has the strict order property in
T .

Remark 2.22 We have seen that

1. T is unstable if and only if T has the independence property or it has the strict order
property.

2. Simple theories do not have the strict order property.

3. Stable theories are simple.



Chapter 3

∆-types and the local rank
D(π, ∆, k)

Definition 3.1 Let ∆ = {ϕi(x, yi) : 1 ≤ i ≤ n} where ϕi(x, yi) ∈ L for each i. A ∆-
formula over A is a formula of the form ϕi(x, a) or ¬ϕi(x, a) with a ∈ A. A ∆-type over
A is a consistent set of ∆-formulas over A. A ∆-type p(x) over A is complete if for all
i = 1, . . . , n for every a ∈ A, either ϕi(x, a) ∈ p or ¬ϕi(x, a) ∈ p. The set of all complete ∆-
types over A is S∆(A). We endow S∆(A) with a compact hausdorff and totally disconnected
topology. A basis of clopen sets for it is given by all sets of the form

[ψ] = {p ∈ S∆(A) : p ` ψ}

for any boolean combination ψ = ψ(x) of ∆-formulas over A.

Definition 3.2 Let ∆ = {ϕi(x, yi) : 1 ≤ i ≤ n} and let 2 ≤ k < ω. The D-rank with
respect to ∆ and k is defined inductively for any set of formulas π = π(x) by the following
clauses:

1. D(π,∆, k) ≥ 0 if and only if π is consistent.

2. D(π,∆, k) ≥ α + 1 if and only if there is some i (1 ≤ i ≤ n) and there are aj , (j ∈
ω) such that {ϕi(x, aj) : j < ω} is k-inconsistent and for all j < ω, D(π(x) ∪
{ϕi(x, aj)},∆, k) ≥ α.

3. D(π,∆, k) ≥ α if and only if D(π,∆, k) ≥ β for all β < α if α is a limit ordinal.

Observe that {α : D(π,∆, k) ≥ α} is an initial segment of the ordinals. If D(π,∆, k) ≥ α
for all α then we set D(π,∆, k) = ∞; otherwise D(π,∆, k) is the supremum of all α such
that D(π,∆, k) ≥ α. In case ∆ = {ϕ(x, y)} we use the notation D(π, ϕ, k).

Remark 3.3 1. If π(x) ` π′(x), ∆ ⊆ ∆′ and k ≤ k′, then D(π(x),∆, k) ≤ D(π′(x),∆′, k′)

2. If π(x) and π′(x) are equivalent, then D(π(x)),∆, k) = D(π′(x),∆, k).

3. Given π(x, y), a set of formulas over ∅, given ∆, k, and α, there is some set of
formulas Φ(y) over ∅, such that for each a, |= Φ(a) if and only if D(π(x, a),∆, k) ≥ α.

15
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Proof: 2 follows from 1 and to prove 1 one shows by induction on α that

D(π(x),∆, k) ≥ α⇒ D(π′(x),∆′, k′) ≥ α.

3 is easily proved by induction on α. 2

Lemma 3.4 Let ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)} where ϕi(x, yi) ∈ L for every i. There is
a formula

ψ∆ = ψ∆(x; y1, . . . , yn, z, z1, . . . , z2n) ∈ L

such that

1. For each A with |A| ≥ 2 for each ∆-formula ϕ(x) over A there is a tuple a ∈ A such
that ϕ(x) ≡ ψ∆(x; a).

2. For each A for each tuple a ∈ A such that ψ∆(x; a) is consistent, there is a ∆-formula
ϕ(x) over A such that ϕ(x) ≡ ψ∆(x; a).

Proof: Take as ψ∆(x; y1, . . . , yn, z, z1, . . . , z2n) the following formula:

n∧
i=1

(z = zi → ϕi(x, yi))∧(z = zn+i → ¬ϕi(x, yi))∧
2n∨
i=1

(z = zi)∧
∧

1≤i<j≤2n

¬(z = zi∧z = zj).

Choose a0, a1 ∈ A such a0 6= a1. Then for each a ∈ A, ϕi(x, a) is equivalent to

ψ∆(x; b1, . . . , bn, c, c1, . . . , c2n)

where bi = a for all i = 1, . . . , n, c = a0 = ci and cj = a1 for j 6= i; and ¬ϕi(x, a) is
equivalent to

ψ∆(x; b1, . . . , bn, c, c1, . . . , c2n)

where bi = a for all i = 1, . . . , n, c = a0 = cn+i and cj = a1 for j 6= n+ i 2

Corollary 3.5 For each ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)} where ϕi(x, yi) ∈ L for every i,
there is a formula ψ∆(x; z) ∈ L such that for each π(x), for each k,

D(π,∆, k) = D(π, ψ∆, k)

Proof: The formula ψ∆ is chosen accordingly to Lemma 3.4. By induction on α we see
that for each π and k, D(π,∆, k) ≥ α if and only if D(π, ψ∆, k) ≥ α. This is clear for
α = 0 and follows from the inductive hypothesis for limit α. The case α+1 is easy and only
requires to note that ∆ is finite and therefore any infinite sequence of ∆-formulas contains
an infinite subsequence of instances of a single formula. 2

Due to this last result, we will concentrate on the study of D(π, ϕ, k) rank. The gener-
alization of the statements to D(π,∆, k) rank is straightforward.

Definition 3.6 Let ϕ(x, y) ∈ L and 2 ≤ k < ω. The formula ϕ(x, a) k-divides over A if
there are ai, (i < ω) such that {ϕ(x, ai) : i < ω} is k-inconsistent and ai ≡A a for all
i < ω. We say that ϕ(x, a) divides over A if it k-divides over A for some k. If A is omitted
we understand that A = ∅.

Proposition 3.7 Let (ϕi(x, yi) : i < α) be a sequence of L-formulas and let (ki : i < α) a
sequence of natural numbers ki ≥ 2. For any partial type π(x) over A, those following are
equivalent:
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1. There are bi, (i < α) such that π(x) ∪ {ϕi(x, bi) : i < α} is consistent and for each
i < α, ϕi(x, bi) ki-divides over A{bj : j < i}.

2. There are as, (s ∈ ω≤α) such that for each f ∈ ωα, π(x) ∪ {ϕi(x, af�i+1) : i < α} is
consistent and for each i < α, for each s ∈ ωi, {ϕi(x, asaj) : j < ω} is ki-inconsistent.

Proof: We first prove that 1 implies 2. Observe that as plays no role for s of length 0
or a limit ordinal. We construct as for s ∈ ωi by induction in i ≤ α with the additional
property that (as�j+1 : j < i) ≡A (bj : j < i). Assume s ∈ ωi and as has been already
obtained. Choose c such that

(as�j+1 : j < i)c ≡A (bj : j < i)bi.

Then ϕi(x, c) ki-divides over A′ = A{as�j+1 : j < i} and therefore we can find asal ≡A′ c
for all l < ω such that π(x) ∪ {ϕj(x, as�j+1) : j < i} ∪ {ϕi(x, asal)} is consistent and
{ϕi(x, asal) : l < ω} is ki-inconsistent.

For the other direction choose first λ > 2|T |+|A|+|α|. By compactness there are as, (s ∈
λ≤α) such that for each f ∈ λα, π(x) ∪ {ϕi(x, af�i+1) : i < α} is consistent and for each
i < α, for each s ∈ λi, {ϕi(x, asal) : l < λ} is ki-consistent. Observe that by choice of λ, for
any i < α for any s ∈ λi at least λ of the asal have the same type over A{as�j+1 : j < i}.
Hence we can prune the tree obtaining a subtree where this happens for all asal. Finally
choose a branch f ∈ λα and put bi = af�i+1 for all i < α. 2

Lemma 3.8 Let π(x) be a partial type over A. D(π(x),∆, k) ≥ α + 1 if and only if for
some ϕ(x, y) ∈ ∆, for some a, D(π(x) ∪ {ϕ(x, a)},∆, k) ≥ α and ϕ(x, a) k-divides over A.

Proof: The direction from right to left is obvious from the definitions of D-rank and
of dividing. For the other direction, assume D(π(x),∆, k) ≥ α + 1. Let λ > 2|T |+|A|.
From point 3. in Remark 3.3 and compactness, we see that there are ϕ(x, y) ∈ ∆ and
ai, (i < λ) such that for each i < λ, D(π(x) ∪ {ϕ(x, ai)},∆, k) ≥ α and {ϕ(x, ai) : i < λ}
is k-inconsistent. By choice of λ, there is an infinite subset I ⊆ λ such that ai ≡A aj for all
i, j ∈ I. Then it suffices to take a = ai with i ∈ I. 2

Proposition 3.9 For any partial type π(x) over A, any ϕ = ϕ(x, y) ∈ L and any k, those
following are equivalent:

1. D(π(x), ϕ, k) ≥ α

2. There is a sequence (ai : i < α) such that π(x) ∪ {ϕ(x, ai) : i < α} is consistent and
for each i < α, ϕ(x, ai) k-divides over A{aj : j < i}.

Proof: By induction on α. The case α = 0 is obvious. For the case α limit we use
compactness and the tree characterization given in Proposition 3.7. Let us consider the case
case α+1. Assume there are ai, (i < α+1) such that π(x)∪{ϕ(x, ai) : i < α+1} is consistent
and for each i < α + 1, ϕ(x, ai) k-divides over A{aj : j < i}. By inductive hypothesis
D(π(x) ∪ {ϕ(x, a0)}, ϕ, k) ≥ α and by Lemma 3.8 we see that D(π(x), ϕ, k) ≥ α + 1. For
the other direction, assume now D(π(x), ϕ, k) ≥ α+ 1. Again by Lemma 3.8 there is some
a0 such that ϕ(x, a0) k-divides over A and D(π(x) ∪ {ϕ(x, a0)}, ϕ, k) ≥ α. By inductive
hypothesis there are bi, (i < α) such that π(x)∪{ϕ(x, a0)}∪{ϕ(x, bi) : i < α} is consistent
and for each i < α, ϕ(x, bi) k-divides over A ∪ {a0} ∪ {bj : j < i}. In case α < ω we have
obtained what we wanted. In case α ≥ ω we use compactness. 2

Proposition 3.10 Fix ϕ and k.
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1. If D(π, ϕ, k) ≥ ω, then D(π, ϕ, k) = ∞.

2. There is a conjunction ψ(x) of formulas from π such that D(π, ϕ, k) = D(ψ,ϕ, k).

3. D(π(x) ∪ {ψ1(x) ∨ . . . ∨ ψn(x)}, ϕ, k) = maxni=1D(π(x) ∪ {ψi(x)}, ϕ, k).

4. Any partial type π(x) over A can be extended to a complete type p(x) ∈ S(A) such
that D(π, ϕ, k) = D(p, ϕ, k).

Proof: 1. follows from propositions 3.9 and 3.7 since, by compactness, a tree of length ω
can be extended to a similar tree of any height. Similarly for 2 since it is enough to find ψ
such that D(ψ,ϕ, k) 6≥ α+ 1 where α = D(π, ϕ, k).

For 3. we use Proposition 3.9. Assume π(x) is over A and ψi(x) = ψi(x, bi) where
ψi(x, yi) ∈ L. Assume D(π(x)∪{ψ1(x)∨ . . .∨ψn(x)}, ϕ, k) ≥ α. There are al, (l < α) such
that π(x)∪{ψ1(x)∨. . .∨ψn(x)}∪{ϕl(x, al) : l < α} is consistent and for each l < α, ϕ(x, al)
k-divides over A∪{b1, . . . , bn}∪{aj : j < l}. Clearly, for some i, π(x)∪{ψi(x)}∪{ϕl(x, al) :
l < α} is consistent. Since ϕ(x, al) also k-divides over A ∪ {bi} ∪ {aj : j < l} we conclude
that D(π(x) ∪ {ψi(x)}, ϕ, k) ≥ α.

For 4. use 3. to guarantee the consistency of

π(x) ∪ {¬ψ(x) : ψ(x) ∈ L(A) and D(π(x) ∪ {ψ(x)}, ϕ, k) < D(π(x), ϕ, k)}

and take as p(x) any complete type over A extending this consistent set of formulas. 2

Proposition 3.11 1. ϕ(x, y) has the k-tree property if and only if D(x = x, ϕ, k) = ∞.

2. T is simple if and only if D(x = x, ϕ, k) < ω for all ϕ and k.

Proof: The first point follows from propositions 3.9 and 3.7 and the second one follows
directly from the first. 2
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Forking

Definition 4.1 Let π(x) be a set of formulas over B. We say that π(x) divides over A if
π implies a formula ϕ(x, a) which divides over A. We may always assume that a ∈ B and
that ϕ(x, a) is a conjunction of formulas in π(x).

Remark 4.2 1. ϕ(x, a) divides over A iff the set {ϕ(x, a)} divides over A.

2. If π(x) is inconsistent, it divides over A.

3. A partial type π(x) over acl(A) does not divide over A.

4. π(x, a) divides over A iff for some infinite A-indiscernible sequence (ai : i < ω) with
a0 = a, the set of formulas

⋃
i<ω π(x, ai) is inconsistent.

5. acl(A) = {a : tp(a/Aa) does not divide over A}

Proof: For 2 take as ϕ(x, y) the formula x 6= x. For 4 use Ramsey’s for the indiscernibility.
For 5 consider the formula x = a. 2

Definition 4.3 The set of formulas π(x) forks over A if for some n there are formulas
ϕ1(x, a1), . . . , ϕn(x, an) such that π(x) ` ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) and every ϕi(x, ai)
divides over A. The formula ϕ(x, a) forks over A if the set {ϕ(x, a)} forks over A.

Remark 4.4 1. If π(x) divides over A, then it forks over A.

2. If π(x) is finitely satisfiable in A, then it does not fork over A.

3. π(x) forks over A iff a conjunction of formulas in π(x) forks over A.

4. Let π(x) be a partial type over B. If π(x) does not fork over A, then it can be extended
to a complete type over B which does not fork over A.

Proof: The first three points follow directly from the definitions. For 4 check the consis-
tency of π(x) ∪ {¬ϕ(x) : ϕ(x) ∈ L(B) forks over A} and take as p any complete type over
B extending this partial type. 2

Lemma 4.5 Those following are equivalent.

1. tp(a/Ab) does not divide over A.

19
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2. For every infinite A-indiscernible sequence I such that b ∈ I, there is a′ ≡Ab a such
that I is Aa′-indiscernible.

3. For every infinite A-indiscernible sequence I such that b ∈ I, there is J ≡Ab I such
that J is Aa-indiscernible.

Proof: The equivalence of 2 and 3 follows by conjugation. It is clear that 3 implies 1 .
We prove that 1 implies 2 . We may assume that A is empty, that I = (bi : i < ω) and that
b = b0. Let p(x, b) = tp(a/b) and let Γ(x, (xi : i < ω)) be a set of formulas expressing that
(xi : i < ω) is x-indiscernible. It will be enough to prove that p(x, b) ∪ Γ(x, (bi : i < ω))
is consistent. By 1 q(x) =

⋃
i<ω p(x, bi) is consistent. Let c |= q and let Γ0 a finite

subset of Γ. By Ramsey’s Theorem, there is an order preserving f : ω → ω such that
|= Γ0(c, (bf(i) : i < ω)). By indiscernibility (bi : i < ω) ≡ (bf(i) : i < ω) and therefore we
can find c′ such that c′(bi : i < ω) ≡ c(bf(i) : i < ω). Clearly c′ |= q(x) ∪ Γ0(x, (bi : i < ω)).
2

Proposition 4.6 If tp(a/B) does not divide over A ⊆ B and tp(b/Ba) does not divide
over Aa, then tp(ab/B) does not divide over A.

Proof: It is an easy application of point 3 of Lemma 4.5. 2

Proposition 4.7 If ϕ(x, a) divides over A with respect to k and tp(b/Aa) does not divide
over A, then ϕ(x, a) divides over Ab with respect to k.

Proof: Let I = (ai : i < ω) be an infinite A-indiscernible sequence such that a = a0

and {ϕ(x, ai) : i < ω} is k-inconsistent. By Lemma 4.5 there is J ≡Aa I which is Ab-
indiscernible. Then J witnesses that ϕ(x, a) divides over Ab with respect to k. 2

Definition 4.8 A dividing chain for ϕ(x, y) is a sequence (ai : i < α) such that {ϕ(x, ai) :
i < α} is consistent and for every i < α, ϕ(x, ai) divides over {aj : j < i}. If ϕ(x, ai)
ki-divides over {aj : j < i}, we say that it is a dividing chain with respect to (ki : i < α).
We say that ϕ(x, y) divides α times (with respect to (ki : i < α)) if there is a dividing chain
of length α for ϕ(x, y) (with respect to (ki : i < α)).

Remark 4.9 1. ϕ(x, y) divides ω times with respect to k iff it has the tree property with
respect to k.

2. If ϕ(x, y) divides n times with respect to k for every n < ω, then it divides α times
with respect to k for every ordinal α.

3. If ϕ(x, y) divides ω1 times, then for some k < ω, ϕ(x, y) divides ω times with respect
to k.

Remark 4.10 Clearly simplicity is equivalent to the non existence of formulas which divide
ω times with respect to some fixed k and also to the non existence of formulas which divide
ω1 times (with respect to possibly varying k).

Proposition 4.11 The following conditions are equivalent to the simplicity of T . Here all
the types are assumed to be in finitely many variables.

1. For every type p(x) ∈ S(A) there is a B ⊆ A such that |B| ≤ |T | and p does not
divide over B.
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2. There is some cardinal κ such that for every type p(x) ∈ S(A) there is a B ⊆ A such
that |B| ≤ κ and p does not divide over B.

3. There is no increasing chain (pi(x) : i < |T |+) of types pi(x) ∈ S(Ai) such that for
every i < |T |+, pi+1 divides over Ai.

4. For some cardinal κ there is no increasing chain (pi(x) : i < κ) of types pi(x) ∈ S(Ai)
such that for every i < κ, pi+1 divides over Ai.

Proof: Simplicity implies 1, since if p ∈ S(A) divides over every subset of A of cardinality
≤ |T |, then we can inductively construct a sequence of formulas (ϕi(x, yi) : i < |T |+) and a
sequence (ai : i < |T |+) of parameters ai ∈ A such that ϕi(x, ai) ∈ p and ϕi(x, ai) divides
over {aj : j < i}. Clearly one formula ϕ(x, y) appears ω1 times in the sequence and this
contradicts simplicity. It is clear that 1 implies 2 and that 3 implies 4 . To show that
1 implies 3, observe that if the increasing chain (pi(x) : i < |T |+) is given and we set
A =

⋃
Ai and p =

⋃
pi, then p(x) ∈ S(A) divides over every subset of A of cardinality

≤ |T |. The same argument proves 4 from 2 . It remains only to show simplicity from 4. If
T is not simple, then some formula ϕ(x, y) divides κ times. Let (ai : i < κ) be a witness of
this. Let a be a realization of {ϕ(x, ai) : i < κ}, let Ai = {aj : j < i} and let pi = tp(a/Ai).
The chain (pi : i < κ) contradicts point 4. 2

Lemma 4.12 Let ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}, D(π(x) � A,∆, k) < ω and π(x) `
ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) where every ϕ(x, ai) divides over A with respect to k. Then
D(π(x),∆, k) < D(π(x) � A,∆, k).

Proof: By Proposition 3.10, D(π(x),∆, k) ≤ D(π(x) � A ∪ {ϕi(x, ai)},∆, k) for some i.
Let m = D(π(x) � A ∪ {ϕi(x, ai)},∆, k). By Lemma 3.8 D(π(x) � A,∆, k) ≥ m+ 1. 2

Proposition 4.13 Simplicity is also equivalent to the conditions in Proposition 4.11 if we
replace forking for dividing.

Proof: Point 4 from Proposition 4.11 stated for forking (instead of dividing) implies its
original version. The arguments in the proof of Proposition 4.11 showing that 1 implies
2 and 3 and that any of 2 and 3 implies 4 adapt to its version with forking. Moreover
it is pretty clear that 3 implies 1 in any version. Hence it will be enough to prove that
simple theories verify point 3 in this new version for forking. Assume (pi(x) : i < |T |+) is
an increasing chain of types pi(x) ∈ S(Ai) such that pi+1 forks over Ai for all i < |T |+.
This means that for all i < |T |+ we can find some ϕi1(x), . . . , ϕ

i
ni

(x) and some numbers
k1i, . . . , knii such that pi+1(x) ` ϕi1(x) ∨ . . . ∨ ϕini

(x) and each ϕij(x) kji-divides over Ai.
Taking the maximum of the numbers, me may assume that they are all equal to some ki.
By counting types, numbers and formulas, we may assume that there are n, k < ω and
some ϕ1(x, y1), . . . , ϕn(x, yn) ∈ L such that for all i < |T |+, n = ni, k = ki and there are
tuples ai1, . . . , a

i
n ∈ Ai+1 for which ϕi(x, aij) = ϕij(x). Let ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}.

By Lemma 4.12 D(pi(x),∆, k) > D(pi+1(x),∆, k) for all i < |T |+, which is a contradiction
since the rank is finite. 2

Corollary 4.14 Let x be a finite tuple of variables. If T is simple and p(x) ∈ S(A), then
p does not fork over A. Hence, for any B ⊇ A there is a nonforking extension q(x) ∈ S(B)
of p.

Proof: By Proposition 4.13 and point 4 in Remark 4.4. 2
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Chapter 5

Independence

Definition 5.1 We say that A is independent of B over C (written A |̂
C
B) if for every

finite sequence a ∈ A, tp(a/BC) does not fork over C. In the case C = ∅ we write A |̂ B.

Remark 5.2 If instead of sets A,B,C we put partially, or everywhere, sequences a, b, c in
the independence relation we mean the independence of the enumerated sets. But it is a fact
easy to prove that A |̂

C
B if and only if tp(a/BC) does not fork over C for some (any)

enumeration a of A.

Remark 5.3 The independence relation is invariant under automorphisms and has always
the following properties:

Normality: A |̂
C
B iff A |̂

C
CB. A |̂

C
B iff AC |̂

C
B.

Finite character: If a |̂
C
b for all finite a ∈ A, b ∈ B, then A |̂

C
B.

Base monotonicity: If A |̂
C
B and B′ ⊆ B, then A |̂

CB′ B.

Monotonicity: If A |̂
C
B, A′ ⊆ A and B′ ⊆ B, then A′ |̂

C
B′.

Anti-reflexivity: If A |̂
B
A, then A ⊆ acl(B).

Proposition 5.4 (Local character) Let T be simple. For any B,C there is some A ⊆ B
such that |A| ≤ |T |+ |C| and C |̂

A
B.

Proof: This is clear for finite C by Proposition 4.13. For the general case, choose first
some AX ⊂ B such that |AX | ≤ |T | and X |̂

AX
B for each finite X ⊆ C and let A be the

union of all these sets AX . Then |A| ≤ |T |+ |C| and C |̂
A
B. 2

Proposition 5.5 (Closedness) Let A ⊆ B. The set of all complete types p(x) ∈ S(B)
which do not fork over A is a closed set in S(B).

Proof: Let π(x) be the set of all negations ¬ϕ(x) of all formulas ϕ(x) ∈ L(B) which fork
over A. Then p(x) ∈ S(B) does not fork over A if and only if p extends π. 2

Proposition 5.6 (Extension) Let T be simple and let a be a possibly infinite sequence.
If A ⊆ B, there is some a′ ≡A a such that a′ |̂

A
B.

23
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Proof: If a is a finite tuple this follows easily from Corollary 4.14. The general case
follows from the finite case since if p(x) = tp(a/A) it is enough to prove the consistency of
p(x) ∪ π(x) where π(x) is, as in the proof of Proposition 5.5, the set of all ¬ϕ(x) such that
ϕ(x) ∈ L(B) forks over A. 2

Remark 5.7 A type p(x) ∈ S(B) which does not fork over A ⊆ B has also a global
nonforking extension p(x) ∈ S(C) which does not fork over A. Thus in a simple theory any
type has a global nonforking extension.

Definition 5.8 Let X be a linearly ordered set. The sequence (ai : i ∈ X) is A-independent
if for every i ∈ X, ai |̂ A{aj : j < i}. A Morley sequence over A is a sequence (ai : i ∈ X)
which is A-independent and A-indiscernible. It is said to be a Morley sequence in the type
p ∈ S(A) if it is a Morley sequence over A and every ai realizes p.

Remark 5.9 Let X be an infinite linearly ordered set and let (ai : i ∈ X) be a Morley
sequence in p(x) ∈ S(A). The sequence is infinite (i.e., ai 6= aj for all i 6= j) if and only if
p is nonalgebraic.

Lemma 5.10 If p(x) ∈ S(B) does not fork over A ⊆ B, there is a Morley sequence (ai :
i < ω) in p which is moreover a Morley sequence over A. Clearly, if p is not algebraic, the
sequence is infinite, in the sense that ai 6= aj for i < j < ω.

Proof: Let α be the length of x and let κ = |B| + |T | + |α| and λ = i(2κ)+ . Since
p(x) does not fork over A, one can construct a sequence (ai : i < λ) of realizations ai of
p such that ai |̂ AB{aj : j < i}. For this we choose a global extension p of p which does
not fork over A (see the remark after Proposition 5.6) and we take as ai a realization of
p � B{aj : j < i}. By Erdös-Rado Theorem (see Proposition 1.1) there is a B-indiscernible
sequence (bi : i < ω) of realizations of p such that for each n < ω there are i0 < . . . < in < λ
such that

b0, . . . , bn ≡B ai0 , . . . , ain .

Since (ai : i < λ) is A-independent, it follows that (bi : i < ω) is also A-independent and
hence it is a Morley sequence over A. But (ai : i < λ) is B-independent too and this also
transfers to (bi : i < ω). Hence it is a Morley sequence in p. 2

Remark 5.11 Let p(x) ∈ S(A). If there is a Morley sequence (ai : i < ω) in p, then for
any linearly ordered set X there is a Morley sequence (bi : i ∈ X) in p. It is enough to
obtain (bi : i ∈ X) as an A-indiscernible sequence with the same Ehrenfeucht-Mostowski set
as (ai : i < ω).

Lemma 5.12 Let (ai : i ∈ X) be A-independent. If Y , Z are subsets of X such that
Y < Z, then tp((ai : i ∈ Z)/A(ai : i ∈ Y )) does not divide over A.

Proof: It can be assumed that Z is finite. An induction on |Z| using Lemma 4.6 gives
easily the result. 2

Proposition 5.13 Let T be simple. The formula ϕ(x, a) divides over A iff for every infinite
Morley sequence (ai : i < ω) over A in tp(a/A), {ϕ(x, ai) : i < ω} is inconsistent.

Proof: Without loss of generality A = ∅. Assume that ϕ(x, a) divides over ∅ but for
some infinite Morley sequence the inconsistency fails. Let X be a linearly ordered set
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isomorphic to the reverse order of the cardinal |T |+. By compactness there is an infinite
Morley sequence aX = (ai : i ∈ X) in tp(a) such that {ϕ(x, ai) : i ∈ X} is consistent.
Let c realize this type. By simplicity there is Y ⊆ X of cardinality at most |T | such that
tp(c/aX) does not fork over aY = (ai : i ∈ Y ). By choice of the order of X we can find
i ∈ X such that i < Y . By Lemma 5.12 tp(aY /ai) does not divide over ∅. Since ϕ(x, ai)
divides over ∅, by Proposition 4.7 it divides over aY . But tp(c/aX) contains ϕ(x, ai) and
hence it divides (and forks) over aY , a contradiction. 2

Proposition 5.14 Let T be simple. A partial type π(x) divides over A iff it forks over A.

Proof: We may assume π(x) is a formula ϕ(x, a) and that a is not algebraic over A.
Assume ϕ(x, a) does not divide over A but it implies a disjunction ϕ1(x, a1)∨ . . .∨ϕn(x, an)
where every ϕ(x, ai) divides over A. Let (ajaj1 . . . a

j
n : j < ω) be an infinite Morley sequence

in tp(aa1 . . . an/A) (a nonalgebraic type). Then (aj : j < ω) is an A-indiscernible sequence
of realizations of tp(a/A). By definition of dividing, there exists a realization c of {ϕ(x, aj) :
j < ω}. For every j < ω there is some i such that c realizes some ϕi(x, a

j
i ). By the

pigeonhole principle, there is some i such that for an infinite subset J ⊆ ω, c realizes every
ϕi(x, a

j
i ) with j ∈ J . By indiscernibility, {ϕi(x, aji ) : j < ω} is consistent and then by

Proposition 5.13 ϕi(x, ai) does not divide over A since (aji : j < ω) is an infinite Morley
sequence in tp(ai/A). 2

Proposition 5.15 (Symmetry) In a simple theory independence is a symmetric relation,
i.e, A |̂

C
B implies B |̂

C
A.

Proof: It is enough to prove that if tp(a/Cb) does not fork over C, then tp(b/Ca) does
not divide over C. We may assume that tp(a/C) is not algebraic. By Lemma 5.10 there
is an infinite Morley sequence I = (ai : i < ω) in tp(a/C) which is Cb-indiscernible and
starts with a0 = a. Let ϕ(x, y, z) be a formula and c ∈ C such that |= ϕ(a, b, c). We will
show that ϕ(a, y, c) does not divide over C. By indiscernibility of I over Cb we know that
|= ϕ(ai, b, c) for all i < ω. Hence {ϕ(ai, y, c) : i < ω} is consistent. Since (aic : i < ω) is
a Morley sequence in tp(ac/C), by Proposition 5.13 we conclude that ϕ(a, y, c) does not
divide over C. 2

Proposition 5.16 (Transitivity) In a simple theory independence is a transitive relation,
i.e, whenever B ⊆ C ⊆ D, A |̂

B
C and A |̂

C
D, then A |̂

B
D.

Proof: It is a direct consequence of Proposition 5.15, Lemma 4.6 and Proposition 5.14. 2

Corollary 5.17 Let T be simple. If I is an ordered set and (ai : i ∈ I) is an A-independent
sequence, then ai |̂ A{aj : j 6= i} for all i ∈ I.

Proof: By induction on n it is easy to show that for all different i1, . . . , in+1 ∈ I,
ain+1 |̂

A
ai1 , . . . , ain . For the inductive case one uses symmetry and Lemma 4.6. 2

Proposition 5.18 Let T be simple, p(x) ∈ S(A), A ⊆ B and let π(x) be a partial type
over B. Then p(x) ∪ π(x) does not fork over A if and only if D(p,∆, k) = D(p ∪ π,∆, k)
for all ∆, k.

Proof: The direction from right to left follows from Lemma 4.12. Now assume p ∪ π is a
nonforking extension of p and choose q(x) ∈ S(B) a type which does not fork over A and
extends p ∪ π. We will check that D(q, ϕ, k) ≥ D(p, ϕ, k) for all ϕ, k. From this it will
follow that D(p, ϕ, k) ≥ D(p∪π, ϕ, k) for all ϕ, k. We freely use transitivity and symmetry
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of independence and also the fact that dividing and forking coincide. Let n = D(p, ϕ, k).
There is a sequence (bi : i < n) such that p(x) ∪ {ϕ(x, bi) : i < n} is consistent and ϕ(x, bi)
k-divides over A{bj : j < i} for all i < n. Let a |= p(x) ∪ {ϕ(x, bi) : i < n}, let c |= q and
let B′ be such that cB ≡A aB′ and B′ |̂

Aa
{bi : i < n}. Then, since B |̂

A
c, it follows

that B′ |̂
A
a and therefore B′ |̂

A
{bi : i < n}. By Proposition 4.7 ϕ(x, bi) k-divides over

B′{bj : j < i} for all i < n. For q′ = tp(a/B′) we have then D(q′, ϕ, k) ≥ n. Since q is a
conjugate of q′, also D(q, ϕ, k) ≥ n. 2

Corollary 5.19 Let T be simple. Assume p(x) ∈ S(A) and let π(x, y) be a partial type
over ∅. There is a partial type ∆(y) over A such that for all a, p(x)∪ π(x, a) does not fork
over A if and only if |= ∆(a).

Proof: For any ϕ = ϕ(x, y) ∈ L and k < ω, let nϕ,k = D(p(x), ϕ, k). By Proposition 5.18
we know that p(x) ∪ π(x, a) does not fork over A if and only if for all ϕ, k, D(p(x) ∪
π(x, a), ϕ, k) ≥ nϕ,k, which can expressed by a partial type over A. 2

Corollary 5.20 Let T be simple and fix p(x) ∈ S(A).

1. For any n < ω there is a partial type Φ(x1, . . . , xn) over A such that for any tu-
ple a1, . . . , an of realizations of p, |= Φ(a1, . . . , an) if and only if (a1, . . . , an) is A-
independent.

2. For any totally ordered set I there is a partial type Φ(xi : i ∈ I) such that for any
sequence (ai : i ∈ I), |= Φ(ai : i ∈ I) if and only if (ai : i ∈ I) is a Morley sequence in
p.

Proof: 2 follows from 1 and 1 is proved similarly to Corollary 5.19. 2
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The local rank CB∆(π)

Definition 6.1 Let π(x) be a set of formulas over the set A and let

∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}

be a finite set of formulas ϕi(x, yi) ∈ L. Let m be the length of the tuple of variables x.
Since the restriction map Sm(C) → S∆(C) is closed and the class

Xπ,∆ = {p ∈ S∆(C) : p(x) ∪ π(x) is consistent }

is the image of the closed class {p ∈ Sm(C) : π(x) ⊆ p}, Xπ,∆ is closed in S∆(C). We define
the ∆-rank CB∆(π) as the Cantor-Bendixson rank of Xπ,∆ in S∆(C) and the ∆-multiplicity
Mlt∆(π) as its Cantor-Bendixson degree.

Lemma 6.2 If π1(x) ` π2(x), then CB∆(π1) ≤ CB∆(π2) and in case CB∆(π1) = CB∆(π2),
then Mlt∆(π1) ≤Mlt∆(π2).

Proof: Clear, because if Xπi,∆ = {p ∈ Sϕ(C) : p is consistent with πi}, then Xπ1,∆ ⊆
Xπ2,∆. 2

Remark 6.3 For each ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)} where ϕi(x, yi) ∈ L for every i, there
is a formula ψ∆(x; z) ∈ L such that for each partial type π(x), CB∆(π) = CBψ∆(π) and
Mlt∆(π) = Mltψ∆(π).

Proof: By Lemma 3.4. 2

Proposition 6.4 Let ψ(x) be a boolean combination of ∆-formulas.

1. CB∆(ψ) ≥ 0 if and only if ψ is consistent.

2. CB∆(ψ) ≥ α+ 1 if and only if there is a sequence (ψi(x) : i < ω) of pairwise contra-
dictory boolean combinations ψi(x) of ∆-formulas such that CB∆(ψ(x) ∧ ψi(x)) ≥ α
for all i < ω.

3. CB∆(ψ) ≥ α for limit α if and only if CB∆(ψ) ≥ β for all β < α.

4. If CB∆(ψ) = α <∞, then Mlt∆(ψ) is the largest n < ω for which there is a sequence
(ψi(x) : i < n) of pairwise contradictory boolean combinations ψi(x) of ∆-formulas
such that CB∆(ψ(x) ∧ ψi(x)) ≥ α for all i < n.

27
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The formulas ψi in 2 and 4 can be chosen as explicitly contradictory conjunctions of ∆-
formulas. Moreover in 2 we can fix some ϕ ∈ ∆ such that each ψi is a conjunction of
ϕ-formulas.

Proof: Let X∆,ψ be the clopen subset of S∆(C) of all types p ∈ S∆(C) such that p ` ψ.
CB∆(ψ) is the maximal Cantor-Bendixson rank (in S∆(C)) of the points of X∆,ψ. Points
1 and 3 are clear. The proof of 4 is similar to the proof of 2, so we restrict ourselves to
2. Assume first there are ψi(x) (i < ω) pairwise contradictory boolean combinations of ∆-
formulas such that CB∆(ψ ∧ ψi) ≥ α for each i < ω. For each i choose some pi ∈ S∆(C) of
Cantor-Bendixson rank and such that pi ` ψ ∧ ψi. Since the ψi are pairwise contradictory,
all the pi are different. Since X∆,ψ contains infinitely many points of rank ≥ α, it contains
some point of rank ≥ α+ 1. Hence CB∆(ψ) ≥ α+ 1.

For the other direction, assume CB∆(ψ) ≥ α+ 1. Then X∆,ψ is an open set containing
a point of rank ≥ α+ 1. Thus the set Y0 of points of X∆,ψ of rank ≥ α is infinite. Clearly,
for some ∆-formula θ there are points in Y0 containing θ and points in Y0 containing ¬θ
and one of them, say the second one, is infinite. Let then θ0 = θ and let Y1 be the infinite
subset of Y0 consisting of all point containing ¬θ0. Now assume that Yi, ψi are defined for
all i ≤ n, that the Yi build a strictly descending chain of infinite sets, and that Yi+1 is the
subset of Yi consisting in all its points containing the ∆-formula ¬θi. Again, there is some
∆-formula θn+1 such that some points of Yn+1 contain θn+1 and infinitely many points of
Yn+1 contain ¬θn+1. For some infinite subset I ⊆ ω there is a ϕ ∈ ∆ such that for each
i ∈ I, ψi is a ϕ-formula. Without loss of generality, I = ω. We then put ψn = θn∧

∧
i<n ¬θi.

2

Proposition 6.5 Fix ∆ and π(x).

1. There is a boolean combination ψ of ∆-formulas such that π(x) ` ψ(x), CB∆(π) =
CB∆(ψ), and Mlt∆(π) = Mlt∆(ψ).

2. If π(x) is over A, it can be extended to a complete type p(x) ∈ S(A) such that
CB∆(π) = CB∆(p).

Proof: 1. Let X = {p ∈ S∆(C) : π(x) ∪ p(x) is consistent } be the closed set in S∆(C)
whose Cantor-Bendixson rank determines CB∆(π). By general topological reasons, there
is a clopen set U ⊇ X of the same Cantor-Bendixson rank and degree. The boolean
combination of ∆-formulas ψ(x) such that U = {p ∈ S∆(C) : p ` ψ} is the required
formula.

2. Take p(x) ∈ S∆(C) consistent with π(x) and of Cantor-Bendixson rank CB∆(π) and
take any extension p(x) ∈ S(A) consistent with p(x). Clearly CB∆(p) is still the rank of p.
2

Proposition 6.6 Those following are equivalent:

1. Every ϕ(x, y) ∈ ∆ is stable.

2. CB∆(x = x) < ω

3. CB∆(x = x) <∞.

Proof: Stability of every ϕ ∈ ∆ means that for each infinite set A, |S∆(A)| ≤ |A|. It is
therefore equivalent to the stability of the formula ψ∆ given by Lemma 3.4. Hence we may
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assume that ∆ = {ϕ}. By Proposition 2.5, stability of ϕ is equivalent to the inconsistency
of the set of formulas Γϕ(ω), where for each ordinal α,

Γϕ(α) = {ϕη(i)(xη, yη�i) : η ∈ 2α, i < α}

and where ϕ0 = ϕ and ϕ1 = ¬ϕ. Clearly 2 implies 3.

1 ⇒ 2. Assume CBϕ(x = x) ≥ ω. If ψ(x) is a boolean combination of ϕ-formulas and
CBϕ(ψ) ≥ n+1 then for some a, CBϕ(ψ(x)∧ϕ(x, a)) ≥ n and CBϕ(ψ∧¬ϕ(x, a)) ≥ n. Since
CBϕ(x = x) ≥ ω this can be used to construct a binary tree of parameters (as : s ∈ 2<n)
such that for each s ∈ 2n the branch {ϕs(i)(x, as�i) : i < n} is consistent. This implies that
Γϕ(n) is consistent. By compactness Γϕ(ω) is consistent and hence ϕ is unstable.

3 ⇒ 1. Assume ϕ is unstable but CBϕ(x = x) <∞. Hence Γϕ(ω) is consistent and we
way find parameters (as : s ∈ 2<ω) such that for each η ∈ 2ω the branch {ϕη(i)(x, aη�i) :
i < ω} is consistent. For any s ∈ 2<ω, let

ψs(x) =
∧
i<n

ϕs(i)(x, as�i)

and choose s for which ψs has minimal CBϕ-rank and least Mltϕ among the formulas with
same rank. But ψs(x) is equivalent to (ψsa0(x)∨ψsa1(x)) and the formulas ψsa0, ψsa1 are
incompatible. So one of them has smaller CBϕ-rank or they have the same rank and one
has smaller multiplicity Mltϕ, a contradiction. 2

Remark 6.7 Let ϕ = ϕ(x, y) ∈ L be stable, let π(x) be a partial type over A, and let
p ∈ Sϕ(C) be consistent with π(x) and of Cantor-Bendixson rank CBϕ(π). Then p is
definable over acleq(A). If Mltϕ(π) = 1 it is also A-definable.

Proof: By stability of ϕ, p is definable (see Remark 2.6). All the A-conjugates of p have
Cantor-Bendixson rank CBϕ(π) and are consistent with π(x); again by stability, its number
is bounded by Mltϕ(π) < ω. Since p has finitely many A-conjugates, by Proposition 1.3 p
is acleq(A)-definable. In case Mltϕ(π) = 1, p is A-invariant and therefore A-definable. 2

Lemma 6.8 Let ϕ(x, y) be stable. Then ϕ−1(y, x) = ϕ(x, y) (changing the role of the
variables) is also a stable formula. Let p(x) ∈ Sϕ(C) and q(y) ∈ Sϕ−1(C) and let dpxϕ(x, y)
and dqyϕ(x, y) be corresponding definitions of p and q which are boolean combinations
of ϕ−1-formulas and of ϕ-formulas respectively. Then q ` dpxϕ(x, y) if and only if p `
dqyϕ(x, y).

Proof: Let A be a set containing all the parameters of the formulas dpxϕ(x, y) and
dqyϕ(x, y) defining respectively p and q. Let (an : n ∈ ω) and (bn : n ∈ ω) be sequences
such that an |= p � A{bi : i < n} and bn |= q � A{ai : i ≤ n}. In case dpxϕ(x, y) ∈ q
and dqyϕ(x, y) 6∈ p, we would have |= ϕ(am, bn) if and only if m > n, and therefore ϕ(x, y)
would have the order property. 2

Proposition 6.9 Let ϕ be stable.

1. If p(x) ∈ Sϕ(M), then there is only one p ∈ Sϕ(C) extending p which is definable over
M and hence Mltϕ(p) = 1.

2. If A = acleq(A) and p(x) ∈ S(A), there is only one p ∈ Sϕ(C) consistent with p and
definable over A and hence Mltϕ(p) = 1.
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Proof: 1. It is Lemma 2.3 but also a particular case of 2.

2 Existence follows from Remark 6.7. For the uniqueness, let p1, p2 ∈ Sϕ(C) be two
global ϕ-types consistent with p and A-definable and let ψi(y) ∈ L(A) (i = 1, 2) be corre-
sponding definitions. Fix some model M ⊇ A. By Remark 2.12, pi is definable by some
ψ′i(y) ∈ L(M) which is a positive boolean combination of formulas of the form ϕ(m, y) with
m ∈M , that is, of ϕ−1(y, x)-formulas over M (using the notation of Lemma 6.8). Clearly,
ψi and ψ′i are equivalent. Let b be a tuple of the same length as y and let us choose (by
Remark 6.7) a global type q(y) ∈ Sϕ−1(C) consistent with tp(b/A) and definable over A by
a formula θ(x) ∈ L(A). By Remark 2.12 again, q is in fact definable by a positive boolean
combination θ′(x) of ϕ-formulas over M . Thus θ(x) is equivalent to θ′(x). We apply now
Lemma 6.8 with ψ′i(y) = dpixϕ(x, y) and θ′(x) = dqyϕ(x, y) obtaining:

ϕ(x, b) ∈ pi ⇔ |= ψi(b) because ψi defines pi
⇔ ψi(y) ∈ tp(b/A) because ψi(y) ∈ L(A)
⇔ q ` ψ′i(y) because ψi ≡ ψ′i, q(y) ∪ tp(b/A) is consistent and

ψ′i is a boolean combination of ϕ−1-formulas
⇔ pi ` θ′(x) by Lemma 6.8
⇔ θ ∈ p because θ ≡ θ′, θ(x) ∈ L(A), p(x) ∪ pi is consistent

and θ′ is a boolean combination of ϕ-formulas.

This shows that p1 = p2. 2

Corollary 6.10 Let ϕ = ϕ(x, y) ∈ L be stable and let p(x) ∈ S(A). Every two p(x), q(x) ∈
Sϕ(C) consistent with p(x) and definable over acleq(A) are A-conjugate.

Proof: Let p, q be two such types. Let p1, q1 ∈ S(acleq(A)) extensions of p such that both
p1(x)∪ p(x) and q1(x)∪ q(x) are consistent. Clearly there is some f ∈ Aut(C/A) such that
pf1 = q1. Then q and pf are acleq(A)-definable and consistent with q1. By Proposition 6.9
pf = q. 2

Corollary 6.11 Let ϕ = ϕ(x, y) ∈ L be stable, let p(x) ∈ S(A). For any p(x) ∈ Sϕ(C)
consistent with p, the following are equivalent:

1. p is definable over acleq(A).

2. p is a point of Cantor-Bendixson rank CBϕ(p).

In case Mltϕ(p) = 1 there is only one such p ∈ Xp,ϕ and it is in fact A-definable.

Proof: By Remark 6.7 we know that all types in Xp,ϕ of rank CBϕ(p) are definable over
acleq(A). Now let p, q ∈ Sϕ(C) consistent with p(x) be such that p is acleq(A)-definable and
q has Cantor-Bendixson rank CBϕ(p) in Xp,ϕ. By Corollary 6.10 they are A-conjugate and
therefore p has also rank CBϕ(p) in Xp,ϕ. 2
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Heirs and coheirs

Definition 7.1 Let M ⊆ A and p(x) ∈ S(A). We say that p is a heir of p � M or that p
heirs from M if for every ϕ(x, y) ∈ L(M) if ϕ(x, a) ∈ p for some a ∈ A, then ϕ(x,m) ∈ p
for some m ∈ M . We say that p is a coheir of p � M or that p coheirs from M if p is
finitely satisfiable in M . The same definitions apply to global types, i.e, to the case A = C.
This definitions make also sense for types in infinitely many variables.

Remark 7.2 tp(a/Mb) heirs from M if and only if tp(b/Ma) coheirs from M .

Proof: It is just a matter of writing the definitions. 2

Lemma 7.3 1. If p(x) ∈ S(M), then p heirs and coheirs from M .

2. If M ⊆ A and p(x) ∈ S(A) coheirs from M , then for every B ⊇ A there is some
q(x) ∈ S(B) such that p ⊆ q and q coheirs from M .

3. If M ⊆ A and p(x) ∈ S(A) heirs from M , then for every B ⊇ A there is some
q(x) ∈ S(B) such that p ⊆ q and q heirs from M .

Proof: 1 is clear. For 2 it is enough to check the consistency of the following set of
formulas

p(x) ∪ {¬ϕ(x) : ϕ(x) ∈ L(B) is not satisfiable inM}.

3. In this case it suffices to prove that the following set of formulas is consistent

p(x)∪{¬ϕ(x, a) : ϕ(x, y) ∈ L(M), a ∈ A and there is no b ∈M such that ϕ(x, b) ∈ p � M}

2

Definition 7.4 Let p(x) ∈ S(B) and let A ⊆ B. We say that p splits over A if for
some ϕ(x, y) ∈ L(A) there are a, b ∈ B such that a ≡A b, ϕ(x, a) ∈ p and ¬ϕ(x, b) ∈ p.
This applies also to the case B = C. Note that the same notion is defined if one requires
ϕ(x, y) ∈ L. If p ∈ S(C), then clearly p does not split over A if and only if pf = p for
each f ∈ Aut(C/A). If moreover A = M , a global nonsplitting extension is also called a
M -special extension.

Proposition 7.5 1. The number of global nonsplitting extensions of p ∈ S(A) is ≤
22|A|+|T |

.
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2. Let p be a global nonsplitting extension of p ∈ S(A). If the sequence (ai : i < α) is
constructed in such a way that for all i < α,

ai |= p � A{aj : j < i},

then it is A-indiscernible.

Proof: 1. For each ϕ(x, y) ∈ L, the number of restrictions p � ϕ for types p ∈ S(C) which
do not split over A is bounded by the number of sets of types tp(a/A) of tuples a ∈ C of
the length of y. The number of these types is ≤ 2|A|+|T | and therefore the number of set of
types is ≤ 22|A|+|T |

.

2. By induction on n we show that for all i0 < . . . < in < α, a0, . . . , an ≡A ai0 , . . . , ain .
This is clear for n = 0 since tp(ai0/A) = p = tp(a0/A). Consider the case n + 1.
Let ϕ(x0, . . . , xn+1) ∈ L(A), and let i0 < . . . < in+1 < α. By inductive hypothesis
a0, . . . , an ≡A ai0 , . . . , ain . Since p does not split over A, ϕ(a0, . . . , an, x) ∈ p if and only
if ϕ(ai0 , . . . , ain , x) ∈ p. Since an+1 |= p � Aa0, . . . , an and ain+1 |= p � Aai0 , . . . , ain , we
conclude that |= ϕ(a0, . . . , an, an+1) if and only if |= ϕ(ai0 , . . . , ain , ain+1). 2

Proposition 7.6 1. Coheirs are nonsplitting extensions.

2. If p ∈ S(C) does not split over A, then it does not fork over A.

3. Coheirs are nonforking extensions.

4. If p(x) ∈ S(M) is definable, then its M -definable extension over A ⊇ M is the only
heir of p over A.

5. In a simple theory, heirs are nonforking extensions.

Proof: 1. Suppose p(x) ∈ S(A) coheirs fromM ⊆ A, a, b ∈ A, a ≡M b, ϕ(x, y) ∈ L(M)
and ϕ(x, a) ∈ p while ¬ϕ(x, b) ∈ p. Then some c ∈ M satisfies ϕ(x, a) ∧ ¬ϕ(x, b), which is
impossible if a ≡M b.

2. For a global type forking and dividing is the same. Let ϕ(x, y) ∈ L. If ϕ(x, a) ∈ p
and ai ≡A a for each i < ω, then ϕ(x, ai) ∈ p for each i < ω and hence {ϕ(x, ai) : i < ω} is
consistent.

3. This can be proved using points 1 and 2 and the extension property of coheirs, but
it is also an immediate consequence of the definition of forking as indicated in Remark 4.4.

4. Let p ∈ S(M) be definable. By the uniqueness of the M -definable extension, we only
need to show that heirs are M -definable. Let q ∈ S(A) be a heir of p, let ϕ(x, y) ∈ L and
dpxϕ(x, y) ∈ L(M) a definition of p � ϕ. We show that it is also a definition of q � ϕ. If it is
not a definition, then for some a ∈ A, ¬(dpxϕ(x, a) ↔ ϕ(x, a)) ∈ q and therefore for some
a′ ∈M , ¬(dpxϕ(x, a′) ↔ ϕ(x, a′)) ∈ p contradicting the fact that dpxϕ(x, y) defines p � ϕ.

5. Let T be simple and assume p(x) ∈ S(A) heirs from M ⊆ A. Let a ∈ A be a tuple
and let b |= p. We want to show that b |̂

A
a. By Remark 7.2 tp(a/Mb) coheirs from M

and by point 3 a |̂
M
b. The result follows then by symmetry of independence. 2

Definition 7.7 Given p(x) ∈ S(M), by (M,dp) we refer to the expansion of M to language
L ∪ {Rϕ : ϕ ∈ L} where for every ϕ = ϕ(x, y) ∈ L, if y = y1, . . . , yn then Rϕ is n-ary and
it is interpreted as {a ∈ M : ϕ(x, a) ∈ p}. Let M � N and p(x) ⊆ q(x) ∈ S(N). We say
that q is a strong heir of p is (M,dp) � (N, dq). This makes also sense when N = C.
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Remark 7.8 1. Strong heirs are heirs.

2. If (M,dp) � N ′ and N = N ′ � L, then for some q(x) ∈ S(N), p ⊆ q and N ′ = (N, dq).

3. Any strong heir of a nondefinable type is again nondefinable.

Proof: 1 and 2 are easy. For 3, let q(x) ∈ S(N) be a strong heir of p, and assume
ϕ(x, y) ∈ L, ψ(y, z) ∈ L, n ∈ N and ψ(y, n) defines q � ϕ. Then (N, dq) |= ∃z∀y(ψ(y, z) ↔
Rϕ(y)). Since (M,d) � (N, dq), for some m ∈ M , (M,dp) |= ∀y(ψ(y,m) ↔ Rϕ(y)). Then
ψ(y,m) defines p � ϕ. 2

Proposition 7.9 If p(x) ∈ S(M) is not definable, then p(x) has unboundedly many (non-
definable) strong heirs over C.

Proof: We show first that p(x) has two strong heirs over some N � M . Since p is
not definable, (M,dp) is not a definable expansion of M . By Svenonious’s Theorem, there
is some N ′ � (M,dp) having some f ∈ Aut(N ′ � L/M) such that f 6∈ Aut(N ′). Let
N = N ′ � L. Then for some q(x) ∈ S(N), N ′ = (N, dq) and qf 6= q. Clearly q and qf are
two strong heirs of p. Since a strong heir of a nondefinable type is again nondefinable, we
can iterate this procedure (taking unions at limits) obtaining for each cardinal κ a family
(pi(x) : i < κ) of strong heirs pi ∈ S(Mi) of p such that pi ∪ pj is inconsistent if i 6= j.
Clearly, each pi can be extended to a type pi over C which is a strong heir of pi and therefore
also of p. 2

Definition 7.10 A coheir sequence over A is a sequence (ai : i < α) such that for some
M ⊆ A, for all i < j < α, tp(ai/A(al : l < i)) = tp(aj/A(al : l < i)) and tp(aj/A(al : l <
j)) coheirs from M .

Remark 7.11 1. A coheir sequence over A is a Morley sequence over A.

2. For any p(x) ∈ S(A) which coheirs from M ⊆ A there is a coheir sequence (ai : i < α)
over A.

Proof: 1. Let pi = tp(ai/A(al : l < i)) and pα =
⋃
i<α pi. Clearly ai |= pα � A(al : l < i)

and pα coheirs from M . By point 3 of Proposition 7.6 the sequence is A-independent. By
point 1 of Proposition 7.6 and point 2 of Proposition 7.5, it is A-indiscernible.

2. Choose an extension p ∈ S(C) of p which coheirs from M and choose ai |= p � A(al :
l < i). 2

Proposition 7.12 Let p ∈ S(C) be definable. Then p does not split over A if and only if
it is A-definable.

Proof: Let p be definable and assume it does not split over A. For each ϕ(x, y) ∈ L,
{a : ϕ(x, a) ∈ p} is definable and A-invariant, and therefore it is definable over A. The
other direction is immediate. 2

Corollary 7.13 If p ∈ S(C) is definable over A, then p does not fork over A.

Proof: Is a consequence of Proposition 7.12 and point 2 of Proposition 7.6. 2

Corollary 7.14 Let p(x) ∈ S(M) and assume every complete extension of p is definable.
Then an extension q(x) of p is a heir of p if and only if it is a coheir of p if and only if it
is M -definable.
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Proof: The equivalence of M -definability and heir is given by point 4 in Proposition 7.6.
For the rest, by points 2 and 3 of Lemma 7.3 it is enough to check the result in the case
of a global extension p ∈ S(C) of p. Then we can apply Proposition 7.12 and point 1
of Proposition 7.6 to prove that coheirs are heirs. The uniqueness of heirs (point 4 in
Proposition 7.6) shows then that also heirs are coheirs. 2

Corollary 7.15 T is stable if and only if heirs are coheirs.

Proof: If T is stable, Corollary 7.14 establishes that heirs are coheirs. If T is not stable,
there is some p(x) ∈ S(M) not definable. By Proposition 7.9 p has unboundedly many
heirs. Since coheirs do no split, by Proposition 7.5 the number of coheirs of p is bounded
by 22|M|+|T |

. Hence some heir is not a coheir. 2

Corollary 7.16 The following are equivalent.

1. T is stable

2. Each type p(x) ∈ S(M) has a unique heir over any A ⊇M .

3. Each type p(x) ∈ S(M) has a bounded number of heirs over any A ⊇M .

Proof: If T is stable, point 4 of Proposition 7.6 shows that p has a unique heir. If T is
not stable, there is some p(x) ∈ S(M) not definable. By Proposition 7.9 p has unboundedly
many strong heirs over C. Clearly, for each A ⊇M for any strong heir p ∈ S(C) of p, p � A
is a heir of p. 2



Chapter 8

Stable forking

Proposition 8.1 Let ∆ = {ϕi(x, yi) : i < n} be a set of stable formulas. A type p ∈ S∆(C)
is definable over M if and only if it is finitely satisfiable in M . It fact, if p is M -definable
and it is consistent with a partial type π(x) over M , then π(x) ∪ p(x) is finitely satisfiable
in M .

Proof: We may assume ∆ = {ϕ(x, y)}. Let p be M -definable and let us choose by
Remark 2.12 a definition dpxϕ(x, y) ∈ L(M), which is a positive boolean combination of
formulas of the form ϕ(b, y). Let

ϕ(x, a1), . . . , ϕ(x, an),¬ϕ(x, b1), . . . ,¬ϕ(x, bm)

be formulas in p. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let qi = tpϕ−1(ai/M) and rj =
tpϕ−1(bj/M). Again by Remark 2.12 there are qi ∈ Sϕ−1(C) and rj ∈ Sϕ−1(C) extending
qi and rj respectively and having definitions dqi

yϕ(x, y) and drj
yϕ(x, y) which are positive

boolean combinations of formulas of the form ϕ(x, b) with b ∈ M . Then |= dpxϕ(x, ai)
and |= ¬dpxϕ(x, bj) and hence qi ` dpxϕ(x, y) and rj ` ¬dpxϕ(x, y). By Lemma 6.8,
p ` dqi

yϕ(x, y) and p ` ¬drj
yϕ(x, y). Since they are formulas over M , for some c ∈ M ,

|= dqi
yϕ(c, y) and |= ¬drj

yϕ(c, y) for all i, j. Then |= ϕ(c, ai) and |= ¬ϕ(c, bj) for all i, j.
Clearly such c can also be found realizing additionally a given finite subset of π(x). For
the other direction, let us assume dxϕ(x, y) is a definition of p which is not equivalent to a
formula over M . Then we can find b, c such that b ≡M c and |= dxϕ(x, b) but |= ¬dxϕ(x, c).
In this case ϕ(x, b) ∈ p and ¬ϕ(x, c) ∈ p but there is no a ∈M such that |= ϕ(a, b)∧¬ϕ(a, c).
Hence p is not finitely satisfiable in M . 2

Proposition 8.2 Let ϕ(x, y) ∈ L be stable, let p(x) ∈ Sϕ(C) and assume p is definable
over M and consistent with π(x), a partial type over M . For some q(x) ∈ S(M) extending
π(x) ∪ p � M there is a Morley sequence (ci : i < ω) in q such that p is definable by a
positive boolean combination of the formulas ϕ(ci, y).

Proof: By Proposition 8.1 π(x) ∪ p(x) is finitely satisfiable in M . It is easy to check the
consistency of

π(x) ∪ p(x) ∪ {¬ψ(x) : ψ(x) ∈ L(C) is not satisfiable in M}.

Let q ∈ S(C) be an extension of this set of formulas. Clearly q coheirs fromM and q � ϕ = p.
We claim that for some n < ω there is a sequence (ci : i < n) such that ci |= q � M(cj : j < i)
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and p is definable by a positive boolean combination of the formulas ϕ(ci, y). Note that if
this is the case we can complete the sequence to (ci : i < ω), a coheir sequence over M of
realizations of p � M . By Remark 7.11 it is a Morley sequence over M (in q = q � M).
Let us assume that there is no such sequence (ci : i < n). We proceed as in the proof of
Lemma 2.9 obtaining ai, bi, ci such that ϕ(x, ai) ∈ p, ¬ϕ(x, bi) ∈ p, |= ϕ(cj , ai) → ϕ(cj , bi)
for all j < i and

ci |= q � M(aj : j ≤ i)(bj : j ≤ i)(cj : j < i).

As in the proof of Lemma 2.9, this implies that ϕ(x, y) has the order property and is,
therefore, unstable. 2

Proposition 8.3 Let ϕ(x, y) ∈ L be stable. Given A and a, let fix q(y) ∈ Sϕ−1(C), the only
ϕ−1-type over C consistent with tp(a/acleq(A) and definable over acleq(A). Fix a definition
dqyϕ(x, y) of q which is equivalent to a formula over acleq(A) and it is a positive boolean
combination of formulas ϕ(x, ci) where (ci : i < ω) is an indiscernible sequence over acleq(A)
of realizations ci of tp(a/acleq(A)). Let σ(x) be the (finite) disjunction of all A-conjugates
of dqyϕ(x, y). For any partial type π(x) over A, the following are equivalent.

1. ϕ(x, a) ∈ p for some p ∈ Sϕ(C) definable over acleq(A) and consistent with π(x).

2. π(x) ∪ {ϕ(x, a)} is finitely satisfiable in every model M ⊇ A.

3. π(x) ∪ {ϕ(x, a)} does not divide over A.

4. Every set of acleq(A)-conjugates of ϕ(x, a) is consistent with π(x).

5. dqyϕ(x, y) is consistent with π(x).

6. σ(x) is consistent with π(x).

7. Some positive boolean combination of A-conjugates of ϕ(x, a) is equivalent to a formula
over A consistent with π(x).

Proof:

1 ⇒ 2 follows directly from Proposition 8.1.

2 ⇒ 3. Let ψ(x) be a finite conjunction of formulas in π and let (ai : i < ω) be an A-
indiscernible sequence starting with a = a0. By Remark 1.1 (ai : i < ω) is indiscernible over
some model M ⊇ A. There is some c ∈ M such that |= ϕ(c, a) ∧ ψ(c). By indiscernibility
|= ϕ(c, ai) for every i < ω. Therefore {ϕ(x, ai)∧ψ(x) : i < ω} is consistent and ϕ(x, a)∧ψ(x)
does not divide over A.

1 ⇒ 4. Any acleq(A)-conjugate of ϕ(x, a) is in p.

3 ⇒ 5. Since the sequence parameters (ci : i < ω) build an indiscernible sequence over
A and a ≡A ci, π(x)∪ {ϕ(x, ci) : i < ω} is consistent. Any positive boolean combination of
the formulas ϕ(x, ci) is therefore consistent with π.

4 ⇒ 5. Same reason since in fact the formulas ϕ(x, ci) are acleq(A)-conjugates of ϕ(x, a).

5 ⇒ 6. Clear by construction of σ.

6 ⇒ 7. σ(x) satisfies the requirements in 7.

7 ⇒ 1. Let σ′(x) be a positive boolean combination of A-conjugates of ϕ(x, a) which is
equivalent to a formula over A and is consistent with π. By Remark 6.7 there is p ∈ Sϕ(C)
definable over acleq(A) and consistent with π(x) ∪ {σ′(x)}. Since σ′(x) is a disjunction
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of conjunctions of A-conjugates of ϕ(x, a), some A-conjugate of ϕ(x, a) appears in p. By
conjugation over A, there is also some p′ ∈ Sϕ(C) definable over acleq(A) and consistent
with π(x) such that ϕ(x, a) ∈ p′. 2

Corollary 8.4 Let ϕ(x, y) ∈ L be stable and let π(x) be a partial ϕ-type. Those following
are equivalent:

1. π(x) does not fork over A.

2. Some p ∈ Sϕ(C) extending π is definable over acleq(A).

3. π(x) is finitely satisfiable in every M ⊇ A.

Proof: 1 ⇔ 3 follows from Proposition 8.3. 2 ⇒ 3 is a consequence of Lemma 8.1.

1 ⇒ 2. If π does not fork over A it can be extended to some p ∈ Sϕ(C) which does not
fork over A. By the equivalence 1 ⇔ 3, p is finitely satisfiable in every M ⊇ A and then,
by Lemma 8.1, p is definable over every M ⊇ A. By Proposition 1.3 p is definable over
acleq(A). 2

Corollary 8.5 Let T be stable, p(x) ∈ S(A) and M ⊆ A (perhaps A = C). The following
are equivalent:

1. p(x) does not fork over M .

2. p(x) heirs from M .

3. p(x) coheirs from M .

4. p(x) is M -definable.

5. Some p ∈ S(C) extending p does not split over M .

Proof: Equivalence between points 2, 3, and 4 follows from Corollary 7.14. Equivalence of
4 and 5 follows from Proposition 7.12. Equivalence of 1 and 3 follows from Corollary 8.4.
2

Corollary 8.6 Let T be stable and let p(x) ∈ S(C). The following are equivalent:

1. p(x) does not fork over A.

2. p(x) coheirs from every M ⊇ A.

3. p(x) heirs from every M ⊇ A.

4. p(x) does not split over any M ⊇ A.

5. p(x) does not fork over any M ⊇ A.

6. p(x) is definable over acleq(A).

7. The Cantor-Bendixson rank of p � ϕ is CBϕ(p � A) for all ϕ.

8. p(x) has a bounded orbit in Aut(C/A) (in fact of size ≤ 2|T |).
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Proof: Equivalence between points 2, 3, 4, 5, and 6 follows from Corollary 8.5 (for 6
observe that p is definable over acleq(A) if and only if it is definable over every model
M ⊇ A).

1 ⇔ 6 follows from Corollary 8.4

6 ⇔ 7 follows from Corollary 6.11

7 ⇒ 8. The orbit of p � ϕ is bounded by Mltϕ(p � A) < ω and hence the orbit of p is
bounded by 2|T |.

8 ⇒ 6. Let cϕ be the canonical parameter of the definition of p � ϕ. Since cϕ has
bounded orbit in Aut(C/A), in fact it has finite orbit. Hence cϕ ∈ acleq(A) and p � ϕ is
definable over acleq(A). 2

Corollary 8.7 Let T be stable, p(x) ∈ S(A) and ϕ(x, y) ∈ L. The following are equivalent:

1. p(x) ∪ {ϕ(x, a)} does not fork over A.

2. CBψ(p ∪ {ϕ(x, a)}) = CBψ(p) for all ψ.

3. CBϕ(p ∪ {ϕ(x, a)}) = CBϕ(p).

Proof: 1 ⇒ 2. Let p ∈ S(C) be an extension of p∪{ϕ(x, a)} which does not fork over A. By
Corollary 8.6, CBψ(p) is the Cantor-Bendixson rank of p � ϕ. Hence CBψ(p∪{ϕ(x, a)}) ≥
CBψ(p).

2 ⇒ 3 is obvious. We prove 3 ⇒ 1. Let p ∈ S(C) be a nonforking extension of p.
By Corollary 8.6, CBϕ(p) is the Cantor-Bendixson rank of p � ϕ. Let q ∈ S(C) be such
q � ϕ is consistent with p ∪ {ϕ(x, a)} and has Cantor-Bendixson rank CBϕ(p ∪ {ϕ(x, a)}).
By corollaries 6.10 and 6.11 p � ϕ and q � ϕ are A-conjugate. Since ϕ(x, a) ∈ q � ϕ,
p∪{ϕ(x, a)} is contained in an A-conjugate of p, a global type which does not fork over A.
Hence p ∪ {ϕ(x, a)} does not fork over A. 2

Corollary 8.8 Let T be stable, A ⊆ B and p(x) ∈ S(B). The following are equivalent:

1. p(x) does not fork over A.

2. CBϕ(p) = CBϕ(p � A) for all ϕ.

Proof: It is an immediate consequence of Corollary 8.7. 2

Proposition 8.9 Let T be simple. If ϕ(x, y) ∈ L is stable, for every A, a there is some
σ(x) ∈ L(A) equivalent to a positive boolean combination of A-conjugates of ϕ(x, a) and
such that for every p(x) ∈ S(A), σ(x) ∈ p(x) if and only if p(x) ∪ {ϕ(x, a)} does not fork
over A.

Proof: Apply Proposition 8.3 with p(x) = π(x). 2

Corollary 8.10 (Open mapping theorem) Let T be stable and let A ⊆ B. The set
NF (B,A) of all p(x) ∈ S(B) which do not fork over A is closed in S(B) and the restriction
mapping p 7→ p � A from NF (B,A) onto S(A) is open.

Proof: The restriction map from S(C) onto S(B) is continuous and hence closed and
the image of NF (C, A) is NF (B,A). Hence it is enough to check that NF (C, A) is closed.
Now,

NC(C, A) =
⋂
M⊆A

{p ∈ S(C) : p coheirs from M}
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and for each M , {p ∈ S(C) : p coheirs from M} is closed since it is the closure of {tp(a/C) :
a ∈ M}. The fact that the restriction map from NF (B,A) onto S(A) is open is an
immediate consequence of point 2 of Proposition 8.9. 2

Corollary 8.11 If T is stable, any nonforking extension of a nonisolated type is noniso-
lated.

Proof: By Proposition 8.9 or Corollary 8.10. 2

Corollary 8.12 If T is simple, any nonforking extension of a type which is not isolated by
stable formulas is neither isolated by stable formulas.

Proof: By Proposition 8.9. 2
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Chapter 9

Lascar strong types

Here we will consider relations R and we always mean binary relations among α-sequences
of elements of C for some ordinal α. Usually α is intended to be a natural number but we
do not put restrictions.

Definition 9.1 A relation R is bounded if for some cardinal κ there is no sequence (ai :
i < κ) such that ¬R(ai, aj) for all i < j < κ. The relation is finite if this bound κ is
in fact a natural number. Observe that for definable relations finiteness is equivalent to
boundedness. Note also that bounded relations are always reflexive.

Remark 9.2 Any intersection of a bounded number of bounded relations is a bounded re-
lation.

Proof: Let (Rl : l < λ) be a sequence of bounded relations. For all l < λ let κl be a
bound for Rl and let κ = λ+ sup{κl : l < λ}. Assume that there are (ai : i < (2κ)+) such
that¬R(ai, aj) for all i < j < (2κ)+, where R =

⋂
l<λRl. By Erdös-Rado ((2κ)+ → (κ+)2κ)

for some l < λ there is a subset I ⊆ (2κ)+ of cardinality κ+ such that ¬Rl(ai, aj) for all
i < j in I. This contradicts the choice of κl. 2

Definition 9.3 A relation R is A-invariant if it is preserved under automorphisms of C
fixing A pointwise, that is, R(f(a), f(b)) whenever R(a, b) and f ∈ Aut(C/A).

Lemma 9.4 1. Every A-invariant relation R is definable by a union of types over A,
namely: R(a, b) ⇔ ab |=

∨
R(c,d)

∧
tp(cd/A).

2. The number of A-invariant relations on sequences of length α is bounded by 22|T |+|A|+|α|
.

3. There is a least A-invariant bounded equivalence relation (among sequences of a fixed
length).

Definition 9.5 We say that the sequences a, b have the same Lascar strong type over A
and we write a

Ls≡A b if a and b are equivalent in the least A-invariant bounded equivalence
relation. In case A = ∅ we omit it.

Definition 9.6 Let x, y be finite tuples of variables of the same length. We say that the
formula θ(x, y) is thick if it defines a relation which is finite and symmetric. For any set
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A and for any sequences of variables x, y of the same length, the set of all thick formulas
over A in (finite subtuples of) the variables x, y will be

ncA(x, y).

In case A = ∅ we omit it. For every natural number n, ncnA(x, y) is the type

∃y1 . . . yn−1(ncA(x, y1) ∧ ncA(y1, y2) ∧ . . . ∧ ncA(yn−1, y))

Remark 9.7 1. The conjunction and the disjunction of thick formulas are thick formu-
las.

2. Any consequence of a thick formula is a finite formula.

3. If ϕ(x, y) is finite then, ϕ(x, y) ∧ ϕ(y, x) is thick.

Lemma 9.8 For any a 6= b, |= ncA(a, b) if and only if a, b start an infinite A-indiscernible
sequence.

Proof: If a, b start an infinite A-indiscernible sequence, then |= θ(a, b) for any thick
formula θ(x, y) over A. Now assume |= ncA(a, b). Let p(x, y) = tp(ab/A). By Ramsey’s
Theorem and compactness, to prove that a, b start an infinite A-indiscernible sequence it
is enough to check that there is an infinite sequence (ai : i < ω) such that |= p(ai, aj) for
all i < j < ω. For this we have to prove for any ϕ ∈ p, the consistency of {ϕ(xi, xj) :
i < j < ω}. If this set of formulas is inconsistent, then ¬ϕ(x, y) is finite and therefore
(¬ϕ(x, y) ∧ ¬ϕ(y, x)) ∈ ncA(x, y). Hence |= ¬ϕ(a, b), a contradiction. 2

Proposition 9.9 The relation
Ls≡A of equality of Lascar strong type over A is the transitive

closure of the relation of starting an A-indiscernible sequence. Hence it is defined by the
infinite disjunction

∨
n ncnA(x, y).

Proof: Since the relation of starting an infinite indiscernible sequence is defined by the
type ncA(x, y) consisting of finite formulas, it is bounded. Hence its transitive closure E
is also bounded. Since E is a bounded A-invariant equivalence relation,

Ls≡A⊆ E. For the
other direction it suffices to show that if a, b start an infinite A-indiscernible sequence then
a

Ls≡A b. Let κ be a strict bound for the number of
Ls≡A-classes. Choose an A-indiscernible

sequence of length κ starting with a, b . If a 6Ls≡A b then by A-invariance a′ 6Ls≡A b′ for any
two different a′, b′ in the sequence, which contradicts the choice of κ. 2

Lemma 9.10 1. If |= ncA(a, b), then there is a model M ⊇ A such that a ≡M b.

2. If a ≡M b for some model M ⊇ A, then |= nc2
A(a, b).

Proof: 1. Fix an infinite A-indiscernible sequence I starting with a, b. By Proposition 1.1
I is indiscernible over some model M ⊇ A. Then a ≡M b.

2. Assume that a ≡M b for some model M ⊇ A. We show that |= ∃z(θ(a, z) ∧ θ(b, z))
for any thick formula θ(x, y) over A. Let n be the maximal length of a sequence a1, . . . , an
such that |= ¬θ(ai, aj) for all i < j ≤ n. We can find such a1, . . . , an in M . For some
i, j ≤ n, |= θ(a, ai) and |= θ(b, aj). Since a ≡M b we may take i = j. 2

Proposition 9.11 Equality of Lascar strong types over A is the transitive closure of the
relation of having the same type over a model containing A.
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Proof: Clear by Proposition 9.9 and Lemma 9.10. 2

Definition 9.12 The group Autf(C/A) of strong automorphisms over A of the monster
model C is the subgroup of Aut(C/A) generated by the automorphisms fixing a small sub-
model containing A:

Autf(C/A) = 〈
⋃
M⊇A

Aut(C/M)〉

Corollary 9.13 a
Ls≡A b if and only if f(a) = b for some f ∈ Autf(C/A).

Proof: It follows from Proposition 9.11. 2

Corollary 9.14 If a
Ls≡A b then for any c there is some d such that ac

Ls≡A bd
Proof: Choose f ∈ Autf(C/A) such that f(a) = b and put d = f(c). 2

Definition 9.15 Like in the case of A-invariance, there is a least type-definable over A
bounded equivalence relation (among sequences of a given length). We say that the sequences
a, b have the same KP-strong type over A or the same bounded type over A and we write
a

bdd≡ A b if a and b are equivalent in the least type-definable over A bounded equivalence
relation. We say that a, b have the same strong type over A and we write a

s≡A b if a and b
are equivalent in every A-definable finite equivalence relation. As usual, in case A = ∅ we
omit it.

Remark 9.16 1. If a
Ls≡A b, then a

bdd≡ A b.

2. If a
bdd≡ A b, then a

s≡A b.

3. If a
s≡A b, then a ≡A b.

Proof: 1 is clear since every equivalence relation type-definable over A is A-invariant.
Similarly for 2 since every A-definable finite equivalence relation is bounded and type-
definable over A. For 3 observe that for each ϕ(x) ∈ L(A), the equivalence relation E
defined by (ϕ(x) ↔ ϕ(y)) is A-definable and has only two classes. 2

Definition 9.17 The strong type of a over A is defined by

stp(a/A) = tp(a/acleq(A))

Lemma 9.18 stp(a/A) = stp(b/A) if and only a
s≡A b.

Proof: Assume stp(a/A) = stp(b/A). Let E be a finite A-definable equivalence relation,
say defined by ϕ(x, y, c) where c ∈ A and ϕ(x, y, z) ∈ L. Let ψ(z) ∈ tp(c) be the formula
expressing that ϕ(x, y, z) defines an equivalence relation in x, y and consider the relation
F (ux; vy) defined by

F (ux; vy) ⇔ (¬ψ(u) ∧ ¬ψ(v)) ∨ (ψ(u) ∧ u = v ∧ ϕ(x, y, u))

It is a 0-definable equivalence relation and therefore ac/F and bc/F are imaginary elements.
Since F (cx; cy) defines E and E is finite, these imaginaries are algebraic over A, that is,
they are elements of acleq(A). This clearly implies ac/F = bc/F and therefore E(a, b).

For the other direction, notice that according to Proposition 1.3 a relation R defined
by a formula ϕ(x) ∈ acleq(A) has finitely many A-conjugates and it is therefore union of
classes of a finite A-definable equivalence relation. 2
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Proposition 9.19 Let T be stable. If a
s≡A b, A ⊆ B, a |̂

A
B and b |̂

A
B, then a

s≡B b.

Proof: Let p(x) = stp(a/A) = stp(b/A), let p ∈ S(C) be a nonforking extension
of stp(a/B) and let q ∈ S(C) be a nonforking extension of stp(b/B). Since a |̂

A
B,

a |̂
A

acleq(B) and therefore p does not fork over A. By Corollary 8.6 p is definable over
acleq(A). By the same argument q is definable over acleq(A) and by Proposition 6.9 p = q.
Hence stp(a/B) = stp(b/B). 2

Corollary 9.20 If T is stable,
Ls≡A =

s≡A for every A.

Proof: Let a
s≡A b. Choose M ⊇ A such that M |̂

A
ab. Then a |̂

A
M and b |̂

A
M .

By Proposition 9.19 a ≡M b and hence by Lemma 9.10 and Proposition 9.9, a
Ls≡A b. 2

Theorem 9.21 (Finite equivalence relation theorem) Let T be stable. Let A ⊆ B,
r(x) ∈ S(A) and let p(x), q(x) ∈ S(B) be two different nonforking extensions of r. Then
for some ϕ(x) ∈ L(B) equivalent to a formula over acleq(A), ϕ ∈ p while ¬ϕ ∈ q. There is
also a finite A-definable equivalence relation E such that

p(x) ∪ q(y) ` ¬E(x, y)

Proof: Let p′(x) ∈ S(B ∪ acleq(A)) be an extension of p. If p′(x) � acleq(A) ∪ q(x) is
consistent then there is some extension q′(x) ∈ S(B∪acleq(A)) of q such that p′ � acleq(A) =
q′ � acleq(A). But then p′ and q′ are different nonforking extensions of the same strong type,
which contradicts Corollary 9.20. Hence p′(x) � acleq(A) ∪ q(x) is inconsistent and there is
some ψ(x) ∈ p′(x) � acleq(A) such that q(x) ` ¬ψ(x). Let ϕ(x) be the disjunction of all
B-conjugates of ψ. Then p(x) ` ϕ(x), q(x) ` ¬ϕ(x) and ϕ(x) ∈ L(acleq(A)) is equivalent
to a formula over B.

With respect to last assertion, by Proposition 1.3 ϕ(x) defines a union of classes of a
finite A-definable equivalence relation E and then clearly p(x) ∪ q(y) ` ¬E(x, y). 2



Chapter 10

The independence theorem

Lemma 10.1 Let T be simple. If (ai : i < ω + ω) is an infinite A-indiscernible sequence,
then (ai : ω ≤ i < ω + ω) is a Morley sequence over A{ai : i < ω}.

Proof: Let I = (ai : i < ω). Clearly (ai : ω ≤ i < ω + ω) is AI-indiscernible. It suffices
to show that it is AI-independent. Let X be a finite subset of {i : ω ≤ i < ω + ω} an let
i < ω + ω be greater than every element in X. By symmetry it will be enough to check
that aX |̂

AI
ai, where aX = (aj : j ∈ X). But this is clear since by A-indiscernibility

tp(aX/AIai) is finitely satisfiable in I. 2

Proposition 10.2 Let T be simple and let π(x, y) be a set of formulas over ∅. If (ai : i ∈ I)
is an A-indiscernible sequence and π(x, ai) does not fork over A for some i ∈ I, then⋃
i∈I π(x, ai) does not fork over A.

Proof: For notational convenience, we assume the ordered set I is ω and π(x, a0) does
not fork over A. Let us first assume that (ai : i < ω) is a Morley sequence over A.
Since π(x, a0) does not divide over A,

⋃
i<ω π(x, ai) is consistent. Let n < ω and let

Φ(x, y0, . . . , yn−1) = π(x, y1)∪ . . .∪π(x, yn). We will show that Φ(x, a0, . . . , an−1) does not
divide over A. If bi = an·i . . . an·i+n−1, then (bi : i < ω) is an infinite Morley sequence in
tp(b0/A) and

⋃
i<ω Φ(x, bi) is consistent. By Proposition 5.13, Φ(x, b0) does not divide over

A.

Now let us consider the general case, where (ai : i < ω) is just an A-indiscernible
sequence. Choose J = (bi : i < ω) such that (bi : i < ω)a(ai : i < ω) is A-indiscernible.
By Lemma 10.1 (ai : i < ω) is a Morley sequence over A ∪ J . Let p(x, y) ∈ S(AJ) be
such that p(x, a0) extends π(x, a0) and does not fork over A. Then it does not fork over
AJ and by the first case,

⋃
i<ω p(x, ai) does not fork over AJ . Let c |=

⋃
i<ω p(x, ai).

Then c |̂
AJ

(ai : i < ω). Since p(x, a0) does not fork over A, also c |̂
A
Ja0. Hence

c |̂
A
J(ai : i < ω), which shows that

⋃
i<ω π(x, ai) does not fork over A. 2

Lemma 10.3 Let T be simple. If a, b start an infinite A-indiscernible sequence and c |̂
Aa
b,

then for some d, the extended sequences ac, bd start an infinite A-indiscernible sequence also.

Proof: Assume A = ∅. Let c |̂
a
b and assume I = (ai : i < ω) is an infinite indiscernible

sequence with a = a0 and b = a1. Since (an : n ≥ 1) is a-indiscernible and c |̂
a
b, by

Lemma 4.5 there is an ac-indiscernible sequence (a′n : n ≥ 1) such that (an : n ≥ 1) ≡ab
(a′n : n ≥ 1). Thus we may assume that an = a′n for all n ≥ 1. Let c0 = c and choose for
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n ≥ 1 some cn such that
ca0a1 . . . ≡ cnanan+1 . . .

Since (an : n ≥ 1) is ac-indiscernible, cab ≡ caam. Hence cab ≡ cnanan+m, i.e., in the
sequence (cnan : n < ω) all triangles cnanan+m have the same type p(x, y, z) = tp(cab).
By Ramsey’s Theorem there is an indiscernible sequence (dnbn : n < ω) where all triangles
dnbnbn+m satisfy p(x, y, z). Clearly we may assume that c = d0, a = b0 and b = b1. Take
d = d1. 2

Proposition 10.4 Let T be simple and assume that ϕ(x, a)∧ψ(x, b) does not fork over A.
If b, b′ start an infinite A-indiscernible sequence and a |̂

Ab
b′, then ϕ(x, a) ∧ ψ(x, b′) does

not fork over A.

Proof: Apply Lemma 10.3 finding a′ such that ba, b′a′ start an infinite A-indiscernible
sequence. By Proposition 10.2, ϕ(x, a) ∧ ψ(x, b) ∧ ϕ(x, a′) ∧ ψ(x, b′) does not fork over A.
In particular ϕ(x, a) ∧ ψ(x, b′) does not fork over A. 2

Corollary 10.5 Let T be simple and assume that ϕ(x, a)∧ψ(x, b) does not fork over A. If
b

Ls≡A b′ and a |̂
A
bb′, then ϕ(x, a) ∧ ψ(x, b′) does not fork over A.

Proof: Find b1, . . . , bn such that b = b1, b′ = bn and bi, bi+1 start an infinite A-indiscernible
sequence. Let a′ be such that a′ ≡Abb′ a and a′ |̂

Abb′
b1, . . . bn. By Proposition 10.4 we see

that ϕ(x, a′) ∧ ψ(x, bi) does not fork over A for all i ≤ n. Hence ϕ(x, a) ∧ ψ(x, b′) does not
fork over A. 2

Lemma 10.6 Let T be simple. Let κ be a cardinal number bigger than |T | + |A|. If
(ai : i < κ) is A-independent and the length of every ai is smaller than κ, then for any a of
length smaller than κ there is some i < κ such that a |̂

A
ai.

Proof: By choice of κ, there is a proper subset B ⊆ {ai : i < κ} such that a |̂
AB
{ai :

i < κ}. Take ai 6∈ B. Then a |̂
AB

ai and, by Corollary 5.17, ai |̂ AB. By symmetry and
transitivity, a |̂

A
ai. 2

Lemma 10.7 Let T be simple. For any a,A and B ⊇ A there is a′ such that a′
Ls≡A a and

a′ |̂
A
B.

Proof: Let κ be a cardinal bigger than |T |+ |B| and bigger than the length of a. We may
assume that tp(a/A) is not algebraic. Let (ai : i < κ) be a Morley sequence in tp(a/A)
starting with a0 = a. By Lemma 10.6 there is some i < κ such that B |̂

A
ai. Clearly,

a
Ls≡A ai. 2

Lemma 10.8 Let T be simple and a
Ls≡A b. For any c, B there is some d such that ac

Ls≡A bd
and d |̂

Ab
B.

Proof: By Corollary 9.14 there is some d′ such that ac
Ls≡A bd′ and by Corollary 9.13,

there is a strong automorphism f ∈ Autf(C/A) such that f(ac) = bd′. By Lemma 10.7
there is some d such that d

Ls≡Ab d′ and d |̂
Ab
B. Again by Corollary 9.13 there is some

g ∈ Autf(C/Ab) such that g(d′) = d. It follows that g ◦ f ∈ Autf(C/A) and g ◦ f(ac) = bd.
Hence ac

Ls≡A bd. 2
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Corollary 10.9 (Independence Theorem) Let T be simple and a |̂
A
b. If there are

c, d such that |= ϕ(c, a), c |̂
A
a, |= ψ(d, b), d |̂

A
b, and c

Ls≡A d, then ϕ(x, a)∧ψ(x, b) does
not fork over A.

Proof: Using Lemma 10.8, choose b′ |̂
Ac
ab such that cb′

Ls≡A db. Then |= ϕ(c, a) ∧
ψ(c, b′) and c |̂

A
ab′. Therefore ϕ(x, a) ∧ ψ(x, b′) does not fork over A. Since a |̂

A
bb′ by

Corollary 10.5, ϕ(x, a) ∧ ψ(x, b) does not fork over A. 2

Corollary 10.10 Let T be simple.

1. Assume A is a common subset of B and C. Assume B |̂
A
C, and let b |̂

A
B,

c |̂
A
C, be such that b

Ls≡A c. Then for some d |̂
A
BC, d ≡B b and d ≡C c.

2. Let (ai : i ∈ I) be an A-independent sequence, let πi(x) a partial type over Aai which
does not fork over A and asume that whenever (bi : i ∈ I) is a sequence of realizations
bi |= πi then bi

Ls≡A bj for all i, j ∈ I. Then
⋃
i∈I πi(x) does not fork over A.

3. Let (ai : i ∈ I) be an M -independent sequence, let πi(x) a partial type over Mai which
does not fork over M and extends p(x) ∈ S(M). Then

⋃
i∈I πi(x) does not fork over

M .
Proof: 1 follows from Corollary 10.9. For 2 we may assume I = ω and then using 1 it
is easy to prove by induction that π0(x) ∪ . . . ∪ πn(x) does not for over A for all n < ω. 3
follows from 2 since bi ≡M bj implies bi

Ls≡M bj . 2

Proposition 10.11 Let T be simple. If a
Ls≡A b and a |̂

A
b, then a, b start a Morley

sequence (ai : i < ω) over A.
Proof: Let p = tp(ab/A). We prove first that for any cardinal κ there is an infinite
A-independent sequence (ai : i < κ) such that |= p(ai, aj) for all i < j < κ. Note that
this implies ai

Ls≡A aj . The sequence is constructed inductively starting with a0 = a and
a1 = b. We choose as aα a realization of

⋃
i<α p(ai, x) such that aα |̂

A
(ai : i < α). To do

this we need to prove that
⋃
i<α p(ai, x) does not fork over A. Note that c

Ls≡A d whenever
c |= p(ai, x) and d |= p(aj , x). Therefore it is clear that we can apply the generalized
version of the Independence Theorem stated in point 2 of Corollary 10.10 to obtain the
desired result. Now, once we have this A-independent sequence we still need to make it
A-indiscernible. But this can be done easily by Proposition 1.1. 2

Proposition 10.12 If T is simple, then a
Ls≡A b if and only if there is some c such that a, c

start an infinite A-indiscernible sequence and b, c start an infinite indiscernible sequence
over A.
Proof: Assume a

Ls≡A b and find with Lemma 10.7 some c such that c
Ls≡A a and c |̂

A
ab.

By Proposition 10.11 a, c start an infinite Morley sequence over A and b, c start an infinite
Morley sequence over A. 2

Corollary 10.13 If T is simple, then the relation
Ls≡A of equality of Lascar strong types

over A is type definable over A by ∃z(ncA(x, z) ∧ ncA(y, z)).
Proof: Clear, by Proposition 10.12. 2

Corollary 10.14 If T is simple, then
Ls≡A =

bdd≡ A for every A.

Proof: By Corollary 10.13,
Ls≡A is type-definable over A. 2
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Chapter 11

Canonical bases

T is simple in this chapter.

Definition 11.1 The multiplicity of a type p(x) ∈ S(A) is the number Mlt(p) of its global
nonforking extensions p(x) ∈ S(C). A stationary type is a type of multiplicity 1. Thus over
any B ⊇ A a stationary type p(x) ∈ S(A) has exactly one nonforking extension q(x) ∈ S(B).
We use the notation p|B for q.

Lemma 11.2 If p ∈ S(A) is stationary, its global nonforking extension is definable over
A.

Proof: Let p be the global nonforking extension of p, and let ϕ(x, y) ∈ L. We will show
that p � ϕ is A-definable. Let ∆ϕ(y) and ∆¬ϕ(y) the types over A given by Corollary 5.19
for p and ϕ and for p and ¬ϕ respectively. By compactness, the conjunction ψ(y) of a finite
subset of ∆ϕ(y) is inconsistent with ∆¬ϕ(y). It is clear that ψ(y) defines p � ϕ. 2

Corollary 11.3 If types over models are stationary, then T is stable.

Proof: Lemma 11.2 implies that in this situation every global type is definable. 2

Proposition 11.4 1. If p ∈ S(M) has bounded multiplicity, then p is stationary.

2. If p ∈ S(A) has bounded multiplicity, then every extension of p over acleq(A) is
stationary.

Proof: 1. Assume p ∈ S(M) has two nonforking extensions over A ⊇ M , say p1 and
p2. We will show that no nonforking extension of p is stationary. This implies that p has
a unbounded number of nonforking global extensions. Let q be a nonforking extension
of p over B ⊇ M . To show that q is not stationary we may assume B |̂

M
A. By the

Independence Theorem applied to p1 and q we obtain a type q1 ∈ S(AB) extending q ∪ p1

which does not fork over M . Similarly, by applying it to p2 and q we obtain a type
q2 ∈ S(AB) extending q ∪ p2 which does not fork over M . Then q1, q2 are two different
nonforking extensions of q over AB, which shows q is not stationary.

2 Let p′(x) ∈ S(acleq(A)) be a (nonforking) extension of p and let M ⊇ A. Any
nonforking extension of p′ over M has bounded multiplicity and by point 1 is stationary.
We show that p′ has only one nonforking extension over M . This will ensure the stationarity
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of p′. Let q1 ∈ S(M) be a nonforking extension of p′. By Lemma 11.2 the global nonforking
extension of q1 is M -definable. Since p′ has bounded multiplicity, this global nonforking
extension has a bounded number of acleq(A)-conjugates and therefore it is definable over
acleq(A). Therefore q1 is definable over acleq(A). Now assume q2 ∈ S(acleq(A)) is another
nonforking extension of p′. Again, q2 is stationary and definable over acleq(A).

Consider the respective definitions d1xϕ(x, y) ∈ L(acleq(A)) and d2xϕ(x, y) ∈ L(acleq(A))
of q1 and q2. We show that if ϕ(x, a) ∈ q1 then ϕ(x, a) ∈ q2. Let bi |= qi. Then bi |̂ AM
and |= ϕ(b1, a). Let r(y) = stp(a/A) and let ∆(x) be the partial type over acleq(A) given
by Corollary 5.19 for r(y) and ϕ−1(y, x) = ϕ(x, y). Then |= ∆(b1). Since it is a partial type
over acleq(A), also |= ∆(b2) and therefore there is some a′ such that a′ |̂

A
b2, a′ |= r(y)

and |= ϕ(b2, a′). We may find such a′ with the additional property that a′ |̂
Ab2

M . In this
case a′ |̂

M
b2 and hence by stationarity ϕ(x, a′) belongs to the global nonforking extension

of q2, that is, |= d2xϕ(x, a′). Since this formula is over acleq(A) and a
s≡A a′ we conclude

that |= d2xϕ(x, a), that is, ϕ(x, a) ∈ q2. 2

Remark 11.5 Let T be stable.

1. Any strong type is stationary.

2. Any type over a model is stationary.

Proof: Clear by Proposition 9.19. 2

Remark 11.6 If T is stable, then any two global nonforking extensions of p(x) ∈ S(A) are
A-conjugate.

Proof: Let p1, p2 ∈ S(C) be two nonforking extensions of p and let pi = pi � acleq(A). As in
the proof of Corollary 6.10, there is some f ∈ Aut(C/A) such that pf1 = p2. By Remark 11.5,
p2 is stationary. Since pf1 and p2 are nonforking extensions of p2, they coincide. 2

Proposition 11.7 Let T be stable.

1. Mlt(p) ≤ 2|T |.

2. If Mlt(p) ≥ ω, then Mlt(p) ≥ 2ω.

Proof: 1. Let p(x) ∈ S(A), assume p has bounded multiplicity and choose some B ⊆ A of
cardinality ≤ |T | such that p does not fork over B. Since every nonforking extension of p is
a nonforking extension of p � B, it is enough to check that Mlt(p � B) ≤ 2|T |. Let M ⊇ B
be a model of cardinality ≤ |T |. By Remark 11.5 every type over M extending p � B is
stationary, Mlt(p � B) is bounded by the number of extensions of p � B over M and this
number is ≤ |S(M)| ≤ 2|T |.

2. Note that the set of nonforking extensions over C of p(x) ∈ S(A) is a closed set
in S(C) in which (by Remark 11.6) any two points are connected by a homeomorphism
induced by an automorphism of C over A. Hence in case this set has an isolated point, any
other point is isolated and therefore it is finite. In case it does not have isolated points, it
is a nonempty perfect set and therefore it contains at least ≥ 2ω points. 2

Definition 11.8 Two stationary p(x) ∈ S(A), q(x) ∈ S(B) types are called parallel if they
have a common nonforking extension. We write then p ‖ q. Note that q = (p|AB) � B.
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Definition 11.9 Let p ∈ S(C) be definable. A subset B of Ceq is a canonical base of p if
for every f ∈ Aut(C), pf = p if and only if ffixes pointwise B. Clearly, p is definable over
A if and only if B ⊆ dcleq(A).

Remark 11.10 1. If p is definable and B is a canonical base of p, then p is definable
over B.

2. If B, B′ are canonical bases of the definable type p, then dcleq(B) = dcleq(B′).

3. Every definable global type has a canonical base.

Proof: For 3, choose for every ϕ(x, y) ∈ L a formula dpxϕ(x, y) defining p(x) � ϕ and let
cϕ ∈ Ceq be the canonical parameter of its definition dpxϕ(x, y). Then (cϕ : ϕ ∈ L) is a
canonical base of p. 2

Definition 11.11 Let T be stable and p(x) ∈ S(A) be a stationary type. We call B a
canonical base of p if B is a canonical base of the (definable) global nonforking extension
of p. We use the notation Cb(p) for dcleq(B) where B is a canonical base of p. Finally we
define Cb(a/A) = Cb(stp(a/A)).

Remark 11.12 Let T be stable. B is a canonical base of the stationary type p ∈ S(A) if
and only if for each f ∈ Aut(C): p ‖ pf if and only if f fixes B pointwise.

Proposition 11.13 Let T be stable.

1. Cb(a/A) ⊆ acleq(A).

2. If tp(a/A) is stationary, then Cb(a/A) ⊆ dcleq(A).

Proof: If f ∈ Aut(C/A) and p(x) ∈ S(A) is stationary, then pf = p ‖ p and therefore f
fixes pointwise Cb(p). Hence Cb(p) ⊆ dcleq(A). For 2 note that if tp(a/A) is stationary
then Cb(p) = Cb(a/A). 2

Proposition 11.14 Let T be stable. Let B be a canonical base of p(x) ∈ S(C). Then p
does not fork over A if and only if B ⊆ acleq(A). Moreover those following are equivalent:

1. p is definable over A.

2. B ⊆ dcleq(A).

3. p does not fork over A and p � A is stationary.

Proof: If p does not fork over A then p(x) = p � acleqA is stationary and has B as a
canonical base. Hence by Proposition 11.13 B ⊆ acleq(A). On the other hand if B ⊆ acleqA
then p is definable over acleq(A) and hence it does not fork over A.

Equivalence between 1 and 2 is immediate. Now we prove the equivalence with 3. If p
is definable over A, then p is the only element of its orbit in Aut(C/A) and hence p does
not fork over A (by Corollary 8.6 ) and p � A is stationary (by Remark 11.6). For the other
direction, if p does not fork over A and p � A is stationary, then clearly p is the only element
of its orbit in Aut(C/A) and therefore, by definition of canonical base, B ⊆ dcleq(A). 2

Proposition 11.15 Let T be stable. If B ⊆ A, the following are equivalent.
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1. a |̂
B
A

2. Cb(a/A) ⊆ acleq(B)

3. Cb(a/A) = Cb(a/B).

Proof: Equivalence between 1 and 2 follows from Proposition 11.14. Concerning 3, note
that if a |̂

B
A then stp(a/A) and stp(a/B) have the same global nonforking extension and

therefore Cb(a/A) = Cb(a/B). On the other hand, if their canonical bases coincide, then
Cb(a/A) = Cb(a/B) ⊆ acleq(B). 2

Lemma 11.16 Let T be stable. If a ∈ dcleq(b), then Cb(a/A) ⊆ Cb(b/A). Hence, two
interdefinable sequences have the same canonical base over any set.

Proof: Let f ∈ Aut(C/Cb(b/A)). We will show that stp(a/A) and stp(f(a)/f(A)) are par-
allel, which easily implies that f fixes pointwise Cb(a/A). Since stp(b/A) ‖ stp(f(b)/f(A)),
there is some c |̂

A
f(A) such that c |̂

f(A)
A, c

s≡A b and c
s≡f(A) f(b). Let h be a 0-

definable mapping such that h(b) = a. Then h(c) |̂
A
f(A), h(c) |̂

f(A)
A, h(c)

s≡A a and

h(c)
s≡f(A) f(a), and therefore stp(a/A) ‖ stp(f(a)/f(A)). 2

Lemma 11.17 Let p(x), q(y) ∈ S(A) and assume one of them is stationary. Let a, a′ be
realizations of p and let b, b′ be realizations of q. If a |̂

A
b and a′ |̂

A
b′ then ab ≡A a′b′.

If p and q is stationary, then tp(ab/A) is also stationary.

Proof: Without loss of generality, q is stationary. Choose c be such that ab ≡A a′c. Then
c ≡A b′, c |̂

A
a′ and b′ |̂

A
a′. Since q is stationary, c ≡Aa′ b′. Then a′b′ ≡A a′c ≡A ab.

With respect to the last assertion, assume B ⊇ A, cd ≡A ab, c′d′ ≡A ab, cd |̂
A
B, and

c′d′ |̂
A
B. Since p is stationary, c ≡B c′. Similarly, d ≡B d′. Moreover c |̂

B
d and

c′ |̂
B
d′. Therefore cd ≡B c′d′ and we conclude than tp(ab/A) is stationary. 2

Lemma 11.18 Let (I,<) be a linearly ordered set and for each i ∈ I, let pi(xi) ∈ S(A)
be stationary. Let (ai : i ∈ I) be a A-independent sequence where ai |= pi for all i ∈ I. If
(bi : i ∈ I) is an A-independent sequence such that bi |= pi for all i ∈ I, then (ai : i ∈ I) ≡A
(bi : i ∈ I). Moreover tp((ai : i ∈ I)/A) is stationary.

Proof: We can assume I is finite and then it can be proved easily by induction on |I|
using Lemma 11.17. 2

Definition 11.19 Let pi(xi) ∈ S(A) for each i ∈ I and assume each of the types pi is
stationary. The product of the types (pi : i ∈ I) is the stationary type tp((ai : i ∈ I)/A)
where (ai : i ∈ I) is A-independent and ai |= pi. By Lemma 11.18 it is well defined. We
denote it by

⊗
i∈I pi. In the finite case we use the notation p1⊗ . . .⊗ pn. If all the types pi

are equal to p(x) ∈ S(A), the notations are pI and pn.

Remark 11.20 If (ai : i < α) is an A-independent sequence of realizations of the stationary
type p(x) ∈ S(A), then it is a Morley sequence in p and tp((ai : i < α)/A) = pα. Hence,
if (bi : i < α) is another A-independent sequence of realizations of p, then (ai : i < α) ≡A
(bi : i < α).

Proof: A-indiscernibility of (ai : i < α) can be justified observing that for each n < ω, for
each i0 < . . . < in < α, tp(a0, . . . , an/A) = tp(ai0 , . . . , ain/A) = pn. 2
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Lemma 11.21 Let ϕ(x, y) ∈ L stable, let p ∈ S(C) and assume p � ϕ is M -definable. If cϕ
is the canonical parameter of some definition of p � ϕ over M , then cϕ ∈ dcleq(ai : i < ω)
for some Morley sequence (ai : i < ω) in p � M .

Proof: By Proposition 8.2 p � ϕ is definable over some Morley sequence (ai : i < ω) in
p � M . 2

Proposition 11.22 If T is stable, then for each Morley sequence (ai : i < ω) in stp(a/A),
Cb(a/A) ⊆ dcleq(ai : i < ω).

Proof: Let p be the global nonforking extension of p(x) = stp(a/A) and fix some ϕ(x, y) ∈
L and some model M ⊇ A. Let cϕ be the canonical parameter of a definition of p � ϕ.
By Lemma 11.21 cϕ ∈ dcleq(bi : i < ω) for some Morley sequence (bi : i < ω) in p � M .
Note that (bi : i < ω) is also a Morley sequence in stp(a/A). By Remark 11.20 (ai : i <
ω)

s≡A (bi : i < ω) and therefore there is some f ∈ Aut(C/acleq(A)) sending each bi to ai.
It follows that cϕ ∈ dcleq(ai : i < ω). Since Cb(a/A) is definable over (cϕ : ϕ ∈ L), we
conclude that Cb(a/A) ⊆ dcleq(ai : i < ω). 2
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Chapter 12

More on independence

Notation 12.1 In this chapter |̂ will be an arbitrary ternary invariant relation among
sets. We will use |̂ f for the forking-independence relation as defined in 5.1. Sometimes
we will say that |̂ is invariant just to stress this fact.

Definition 12.2 An independence relation is a ternary relation |̂ among sets satisfying
the following axioms:

1. Invariance. If A |̂
C
B and f ∈ Aut(C), then f(A) |̂

f(C)
f(B).

2. Monotonicity. If A |̂
C
B, A′ ⊆ A, and B′ ⊆ B, then A′ |̂

C
B′.

3. Right base monotonicity. If A |̂
C
B and C ⊆ D ⊆ B, then A |̂

D
B.

4. Right transitivity. If D ⊆ C ⊆ B, B |̂
C
A, and C |̂

D
A, then B |̂

D
A.

5. Left normality. If A |̂
C
B, then AC |̂

C
B.

6. Extension. If A |̂
C
B and B′ ⊇ B, then f(A) |̂

C
B′ for some f ∈ Aut(C/BC).

7. Left finite character. If A0 |̂
C
B for all finite A0 ⊆ A, then A |̂

C
B.

8. Weak local character. For every A there is a cardinal number κ(A) such that for any
B there is some C ⊆ B such that |C| < κ(A) and A |̂

C
B.

We say that the independence relation |̂ is strict if additionally satisfies

9. Anti-reflexivity. If A |̂
C
A, then A ⊆ acl(C).

For a sequence a, a |̂
C
B means that A |̂

C
B where A is the set enumerate by a. Similarly

for other notations like a |̂
C
b, etc.

Remark 12.3 Note that the property of right normality

if A |̂
C

B then A |̂
C

BC

55



56 CHAPTER 12. MORE ON INDEPENDENCE

follows from extension and invariance. Note also that right base monotonicity and weak
local character give the so called existence property:

A |̂
B

B.

Proposition 12.4 Assume |̂ satisfies the first five axioms of independence and also the
extension property. If a |̂

C
B, then there is a BC-indiscernible sequence (ai : i < ω) such

that ai ≡BC a and (aj : j < i) |̂
C
ai for all i < ω.

Proof: Since a |̂
C
B, by the extension property for any λ we can construct a sequence

(ai : i < λ) such that a0 = a, ai ≡BC a0, and ai |̂ C B(aj : j < i). If we choose λ big
enough and we apply Proposition 1.1, we obtain a BC-indiscernible sequence (a′i : i < ω)
such that for each n < ω there are i0 < . . . < in < λ such that a′0, . . . , a

′
n ≡BC ai0 , . . . , ain .

By monotonicity and invariance, a′i |̂ C(a′j : j < i) for all i < ω. We now claim that for all
n > 0,

(a′i : 0 < i < n) |̂
C

a′0

We prove it by induction on n. It is clear for n = 1. By the inductive hypothesis and left nor-
mality, C(a′i : 0 < i < n) |̂

C
a′0. By construction of the sequence and right base monotonic-

ity, a′n |̂
C(a′i:0<i<n)

a′0. By left normality again, C(a′i : 0 < i ≤ n) |̂
C(a′i:0<i<n)

a′0. Finally
by right transitivity C(a′i : 0 < i ≤ n) |̂

C
a′0 and by monotonicity (a′i : 0 < i ≤ n) |̂

C
a′0.

This finishes the induction.

By compactness, there is a sequence (a′′i : i < ω) such that for each n < ω, a′′0 , . . . , a
′′
n ≡BC

a′n, . . . , a
′
0. It is clear that it satisfies the required conditions. 2

Proposition 12.5 Assume |̂ satisfies the first five axioms of independence and also the
weak local character and the finite character properties. Assume there is a BC-indiscernible
sequence (ai : i < ω) such that ai ≡BC a and (aj : j < i) |̂

C
ai for all i < ω. Then B |̂

C
a.

Proof: Let κ(B) be the cardinal given for B by the weak local character property and
choose a regular cardinal κ > κ(B). We can extend our sequence to a BC-indiscernible
sequence (ai : i < κ). By finite character and invariance, (aj : j < i) |̂

C
ai for all i < κ.

By weak local character there is some D ⊆ C ∪ {ai : i < κ} such that |D| < κ and
B |̂

D
C(ai : i < κ). By regularity of κ, D ⊆ C ∪{aj : j < i} for some i < κ. By right base

monotonicity, B |̂
C(aj :j<i)

C(aj : j < κ) and by monotonicity, B |̂
C(aj :j<i)

ai. By left
normality BC(aj : j < i) |̂

C(aj :j<i)
ai and also C(aj : j < i) |̂

C
ai. By right transitivity,

BC(aj : j < i) |̂
C
ai. By monotonicity B |̂

C
ai. Since a ≡BC ai, by invariance B |̂

C
a.

2

Corollary 12.6 Any independence relation is symmetric, that is: if A |̂
C
B, then B |̂

C
A.

Proof: It is an immediate consequence of propositions 12.4 and 12.5. 2

Definition 12.7 For any invariant |̂ we define |̂ ∗ as follows: A |̂ ∗
C
B if and only if

for all B′ ⊇ B there is some f ∈ Aut(C/BC) such that f(A) |̂
C
B′.

Remark 12.8 For any |̂ , |̂ ∗ is also invariant and A |̂ ∗
C
B implies A |̂

C
B.

Proposition 12.9 For any monotone |̂ , |̂ ∗ has the extension property.
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Proof: Let A |̂ ∗
C
B and B ⊆ B′. Let a enumerate A and let x be a corresponding

sequence of variables. We claim that there is a type p(x) ∈ S(CB′) extending tp(a/CB)
and such that for each cardinal κ there is a κ-saturated model M ⊇ CB′ and some a′ |= p
such that a′ |̂

C
M . Assume not, and fix for each p(x) ∈ S(CB′) extending tp(a/CB)

a corresponding cardinal κp for which there is no κp-saturated model M ⊇ CB′ with a
realization a′ |= p such that a′ |̂

C
M . Let κ be the supremum of all these cardinals κp and

choose a κ-saturated model M ⊇ CB′. Since a |̂ ∗
C
B, there is some a′ ≡CB a such that

a′ |̂
C
M . Then p(x) = tp(a′/CB′) satisfies the requirements of the claim.

Now we use the claim fixing some p(x) ∈ S(CB′) as indicated. Let a′ |= p. We will show
that a′ |̂ ∗

C
B′. This will establish the extension property for |̂ ∗. Let B′′ ⊇ B′. We need

to show that for some a′′ ≡CB′ a′ (i.e., some a′′ |= p), a′′ |̂
C
B′′. Let κ = |C ∪B′|+ + |B′′|

and by the claim choose a κ-saturated M ⊇ CB′ and some a′′ |= p such that a′′ |̂
C
M .

By κ saturation there is an automorphism f ∈ Aut(C/CB′) such that f(B′′) ⊆ M . By
monotonicity a′′ |̂

C
f(B′′). By invariance f−1(a′′) |̂

C
B′′. Since f−1(a′′) |= p we have

finished. 2

Remark 12.10 Each one of the properties of monotonicity, right base monotonicity, right
transitivity, left normality, and anti-reflexivity is preserved when passing from |̂ to |̂ ∗.

Proposition 12.11 Assume |̂ satisfies the first five axioms of independence and also left
finite character. If |̂ ∗ satisfies weak local character, then |̂ ∗ is an independence relation.

Proof: By Remark 12.10 and Proposition 12.9 we only need to show that |̂ ∗ has left finite
character. But first we check that |̂ ∗ is symmetric. Note that |̂ ∗ satisfies the hypotheses
of Proposition 12.4 and |̂ satisfies the hypotheses of Proposition 12.5. Hence A |̂ ∗

C
B

implies B |̂
C
A. Now assume A |̂ ∗

C
B and let us prove that B |̂ ∗

C
A. Let A′ ⊇ A. Since

A′ |̂ ∗
AC

AC, by extension there is some f ∈ Aut(C/AC) such that f(A′) |̂ ∗
AC

ACB. By
monotonicity f(A′) |̂ ∗

AC
B. Since A |̂ ∗

C
B, by right transitivity and monotonicity of |̂ ∗,

f(A′) |̂ ∗
C
B. Hence B |̂

C
f(A′) and f−1(B) |̂

C
A′, which shows that B |̂ ∗

C
A.

Assume that for any finite tuple a ∈ A, a |̂ ∗
C
B. To prove that A |̂ ∗

C
B, consider

some B′ ⊇ B. By existence and extension, there is some f ∈ Aut(C/BC) such that
f(A) |̂ ∗

CB
B′. Hence A |̂ ∗

CB
f−1(B′). By symmetry f−1(B′) |̂ ∗

BC
A. For each tuple

a ∈ A, we have a |̂ ∗
C
B and a |̂ ∗

BC
f−1(B′). By symmetry and right transitivity we

obtain then a |̂ ∗
C
f−1(B′) for all tuples a ∈ A. Hence a |̂

C
f−1(B′) for all tuples a ∈ A.

By left finite character of |̂ , A |̂
C
f−1(B′). By invariance f(A) |̂

C
B′. 2

Proposition 12.12 Let |̂ be monotone. Then |̂ = |̂ ∗ if and only if |̂ has the exten-
sion property.

Proof: One directions follows from Proposition 12.9. The other direction is clear by
definition of |̂ ∗ since |̂ ∗ refines |̂ . 2

Definition 12.13 It has already mentioned that |̂ f is nonforking independence. We de-
fine |̂ d as nondividing independence. To be precise:

1. A |̂ d
C
B if and only if for any sequence a ∈ A, tp(a/BC) does not divide over C.

2. A |̂ f
C
B if and only if for any sequence a ∈ A, tp(a/BC) does not fork over C.
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Proposition 12.14 ( |̂ d)∗ = |̂ f .

Proof: By Remark 4.4 we know that |̂ f has the extension property. Since |̂ f implies
|̂ d, it follows that |̂ f implies ( |̂ d)∗. For the other direction, assume A( |̂ d)∗CB but
A 6 |̂ f

C
B. For some tuple a ∈ A, for some formula ϕ(x, y) ∈ L, for some b ∈ BC, |= ϕ(a, b)

and ϕ(x, b) forks over C. Then for some ψ1(x, y1), . . . , ψn(x, yn) ∈ L, for some b1, . . . , bn,
|= ϕ(x, b) → ψ1(x, b1)∨. . .∨ψn(x, bn) and each ψ(x, bi) divides over C. LetB′ = Bb1, . . . , bn.
By assumption there is some a′ ≡BC a such that a′ |̂ d

C
B′. Since |= ϕ(a′, b), for some i,

|= ψi(a′, bi). This implies that tp(a′/B′) divides over C, a contradiction. 2

Remark 12.15 |̂ d has the properties of invariance, monotonicity, right base monotonic-
ity, right transitivity, left normality, finite character and anti-reflexivity. Therefore |̂ f
satisfies all this properties and moreover it satisfies extension.

Proof: For right transitivity see Proposition 4.6 and for anti-reflexivity see point 5 in
Remark 4.2. The other properties are straightforward. 2

Proposition 12.16 The following are equivalent.

1. T is simple

2. |̂ f satisfies weak local character.

3. |̂ d satisfies weak local character.

4. |̂ f is an independence relation.

5. |̂ d is an independence relation.

Proof: We know that simplicity of T implies all the other conditions. It is clear that
4 implies 2 and that 5 implies 3. It is also clear that 2 implies 3. We check now that
simplicity follows from 3. Assume T is not simple. Then for some p(x) ∈ S(∅) for some
ϕ(x, y) ∈ L, for some k < ω, D(p(x), ϕ, k) = ∞. The cardinal κ(a) given by weak local
character of |̂ d is clearly the same for any realization of a of p. Let κ be regular and
bigger than this cardinal. By Proposition 3.9 there is a sequence (ai : i < κ) such that
p(x)∪{ϕ(x, ai) : i < κ} is consistent and for each i < κ, ϕ(x, ai) k-divides over {aj : j < i}.
Let a |= p(x) ∪ {ϕ(x, ai) : i < κ}. By choice of κ, there is some C ⊆ {ai : i < κ} such
that |C| < κ and tp(a/{ai : i < κ}) does not divide over C. By regularity of κ, for some
i < κ, C ⊆ {aj : j < i}. Then tp(a/{aj : j ≤ i}) does not divide over {aj : j < i}. But this
contradicts the fact that |= ϕ(a, ai) and that ϕ(x, ai) divides over {aj : j < i}. 2

Remark 12.17 Assume |̂ is invariant and has weak local character. Let α be an ordinal
number. There is a cardinal number κ such that for each α-sequence a, for each set B there
is some C ⊆ B such that |C| < κ and a |̂

C
B.

Proof: Let x be a sequence of variables of length α and let p(x) ∈ S(∅). By weak local
character, for each a |= p there is some cardinal κ(a) witnessing the property for a. By
invariance κ(a) is the same for each a |= p. Let us call it κp. Now the supremum of all κp
for p(x) ∈ S(∅) satisfies the required condition. 2
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Definition 12.18 We will be dealing with some arbitrary independence relation |̂ and we
would like to use for it the standard terminology developed for nonforking independence |̂ f
in simple theories. By Corollary 12.6 we know that |̂ is symmetric. Therefore |̂ is also
left transitive and has right finite character. A |̂ -independent over C sequence will be a
sequence (ai : i < α) such that ai |̂ C(aj : j < i) for all i < α. Such a sequence will be
called a |̂ -Morley sequence over C if additionally it is C-indiscernible.

Let A ⊆ B, p(x) ∈ S(A) and p(x) ⊆ q(x) ∈ S(B). We say that q(x) is a |̂ -free
extension of p(x) if for some a |= q, a |̂

A
B. In this case we also say that q is |̂ -free over

A.

We say that |̂ satisfies the Independence Theorem over C, if whenever a ≡C b, C ⊆
A∩B, A |̂

C
B, a |̂

C
A, and b |̂

C
B, then there is some c |̂

C
AB such that c ≡A a and

c ≡B b. In other terms, if C ⊆ A ∩ B and A |̂
C
B, for any two types p(x) ∈ S(A) and

q(x) ∈ S(B) which are |̂ -free over C and have a common restriction to C, their union
can be extended to a complete type over AB which is |̂ -free over C.

Proposition 12.19 |̂ d is finer than any independence relation |̂ , that is: if A |̂ d
C
B,

then A |̂
C
B.

Proof: Assume a |̂ d
C
b but a 6 |̂

C
b. Let κ(a) be the cardinal given for a by the weak

local character property and choose a regular κ > κ(a). We check that there is a |̂ -
Morley sequence (bi : i < κ) over C starting with b0 = b. Since b |̂

C
C, there a C-

indiscernible sequence (bi : i < κ) starting with b0 = b which is |̂ -independent over C,
that is bi |̂ C(bj : j < i) for all i < κ. Its initial segment (bi : i < ω) can be obtained as
in Proposition 12.4 (using freely the symmetry of |̂ ) and for its extension to a sequence
of length κ we need only to preserve C-indiscernibility since |̂ -independence over C is
granted by invariance and finite character. Now let p(x, y) = tp(ab/C). Since p(x, b) does
not divide over C,

⋃
i<κ p(x, bi) is consistent. Let a′ be a realization of this union of types.

Then a′bi ≡C ab for all i < κ, which implies that a′ 6 |̂
C
bi for all i < κ. If a′ |̂

C(bj :j<i)
bi

then (by transitivity) a′ |̂
C
bi, which is not the case. Hence a′ 6 |̂

C(bj :j<i)
bi for all i < κ.

But this contradicts the choice of κ since κ(a) = κ(a′) and therefore a′ |̂
C(bj :j<i)

(bj : j < κ)
for some i < κ. 2

Lemma 12.20 Let |̂ be an independence relation. Assume |̂ satisfies the Independence
Theorem over C. Then for any p(x, y) ∈ S(C), if (ai : i < α) is an |̂ -independent over C
and each p(x, ai) is a |̂ -free extension of its common restriction to C, then

⋃
i<α p(x, ai)

is |̂ -free over C.

Proof: We inductively construct a chain of types (qi : i < α) such that qi(x) ∈ S(C(aj :
j < i)) extends

⋃
j<i p(x, aj) and is |̂ -free over C. We begin with q0 = p(x, a0) � C and for

limit i we put qi =
⋃
j<i qj (which is |̂ -free by inductive hypothesis and finite character).

For the case qi+1 we apply the Independence Theorem to A = C(aj : j < i), B = Cai,
qi(x) ∈ S(A), and p(x, ai) ∈ S(B) (which are |̂ -free extensions of q0) obtaining a type
qi+1(x) ∈ S(AB) = S(C(aj : j < i+1)) extending p(x, ai)∪qi(x) and |̂ -free over C. Since⋃
i<α qi(x) is |̂ -free over C and contains

⋃
i<α p(x, ai), also

⋃
i<α p(x, ai) is |̂ -free over

C. 2

Theorem 12.21 T is simple if and only if there is an independence relation |̂ in T
which satisfies the Independence Theorem over models. Moreover if T is simple and |̂ is
as indicated, then |̂ = |̂ d.
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Proof: If T is simple then clearly |̂ d = |̂ f is an independence relation (see Propo-
sition 12.16) and satisfies the Independence Theorem over models (see Corollary 10.10).
For the other direction, by Proposition 12.19 we know that |̂ d ⊆ |̂ . We will show now
that |̂ ⊆ |̂ d. From this it will follow that |̂ = |̂ d and hence that |̂ d has weak local
character in T . By Proposition 12.16 T is simple.

Let a |̂
C
b. We check that a |̂ d

C
b. Let p(x, y) = tp(ab/C) and let (bi : i < ω) be

C-indiscernible with b0 = b. We will show that
⋃
i<ω p(x, bi) is consistent. Let κ(b) be

the cardinal number given for b by the weak local character property and choose a regular
cardinal κ > κ(b). Extend the given sequence to a C-indiscernible sequence (bi : i ≤ κ). By
Corollary 1.2 there is a model M ⊇ A such that (bi : i ≤ κ) is M -indiscernible. Starting
with M0 = M it is easy now to construct a chain of models (Mi : i < κ) such that
C(bj : j < i) ⊆ Mi and (bj : i < j ≤ κ) is Mi-indiscernible. Since κ(b) = κ(bκ), by
choice of κ, bk |̂

Mi
(Mj : j < κ) for some i < κ. Then bk |̂

Mi
(bj : i < j < κ). By

invariance and finite character, (bj : i < j < κ) is |̂ -independent over Mi and hence it is a
|̂ -Morley sequence over Mi. By conjugation over C, (bi : i < ω) is an |̂ -Morley sequence

over some model M ⊇ C. Let q(x) ∈ S(Mb0) a |̂ -free extension of p(x, b0) and choose
p′(x, y) ∈ S(M) such that q(x) = p′(x, b0). Then p′(x, bi) ∈ S(Mbi) is |̂ -free over M (in
fact over C). By Lemma 12.20,

⋃
i<ω p

′(x, bi) is consistent. In particular
⋃
i<ω p(x, bi) is

consistent. 2

Theorem 12.22 T is stable if and only if there is an independence relation |̂ in T which
satisfies one of the two equivalent conditions:

1. Types over models are |̂ -stationary, that is, for any p(x) ∈ S(M), for any B ⊇ M
there is only one |̂ -free extension of p over B.

2. Every type has a bounded number of |̂ -free extensions, that is, for each sequence of
variables x there is a cardinal µ such that for each p(x) ∈ S(A) for every B ⊇ A there
are at most µ |̂ -free extensions of p over B.

Moreover if T is stable and |̂ is as indicated, then |̂ = |̂ d.

Proof: If T is stable, T is simple and |̂ d = |̂ f is an independence relation. Moreover
(see Remark 11.5 and Proposition 11.7) conditions 1 and 2 hold.

1 implies 2. Let α be the length of x and let κ be the cardinal given by weak local
character according to Remark 12.17. Let µ = 2|T |+κ. We want to show that µ is an upper
bound for the number of |̂ -free extensions of p(x) ∈ S(A) over any other bigger set. For
this we may assume that |A| ≤ κ because there is some C ⊆ A of cardinality < κ such
that p is |̂ -free over C and then a bound for p � C is also a bound for p. There is a
model M ⊇ A of cardinality κ. The number of extensions of p to a complete type over M
is bounded by |S(M)| ≤ 2|T |+κ = µ. Since every type over M is stationary, the number of
|̂ -free extensions of p over any set is also bounded by µ.

2 implies stability of T and |̂ = |̂ d (and hence it implies 1 ). Fix µ as in 2 and fix
an n-tuple of variables x. Choose κ > |T | witnessing the weak local character of |̂ for
n as in Remark 12.17. Choose λ ≥ µ such that λ = λ<κ. We show that T is stable in
λ. Let |A| ≤ λ. For each p(x) ∈ S(A) there is some C ⊆ A such that p is |̂ -free over
C and |C| < κ. There are ≤ λ<κ = λ such subsets C ⊆ A, over each such C there are
≤ 2|T |+|C| ≤ λ<κ = λ types q(x) ∈ S(C) and for each q(x) ∈ S(C) there are at most µ ≤ λ
|̂ -free extensions of q over A. The number of types p(x) ∈ S(A) is therefore bounded by λ.
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Thus, T is stable. By Proposition 12.19 we know that |̂ d ⊆ |̂ . To check that |̂ ⊆ |̂ d
assume p(x) = tp(a/BC) divides over C. Every global extension p ∈ S(C) of p forks over C
and therefore has an unbounded number of C-conjugates. But if p is |̂ -free over C then
over any bigger set p has an extension which is |̂ -free over C and hence the number of its
C-conjugates is bounded by µ. Therefore a 6 |̂

C
B. 2

Proposition 12.23 The following are equivalent.

1. T is not simple.

2. For some ϕ(x, y) ∈ L there is an indiscernible sequence (ciai : i < ω) such that for all
i < ω, |= ϕ(ci, a0) and ϕ(x, ai) divides over {cjaj : j < i}.

3. For some ϕ(x, y) ∈ L, there are a tuple c and some c-indiscernible sequence (ai : i < ω)
such that for all i < ω, |= ϕ(c, ai) and ϕ(x, ai) divides over {aj : j < i}.

4. For some ϕ(x, y) ∈ L, there are a tuple c and some c-indiscernible sequence (ai : i ≤ ω)
such that |= ϕ(c, aω) and ϕ(x, aω) divides over {ai : i < ω}.

Proof: 1 ⇒ 2. If T is not simple, then (see Proposition 3.9) for some ϕ(x, y) ∈ L, for
some k < ω there is a sequence (di : i < ω) such that {ϕ(x, di) : i < ω} is consistent and
ϕ(x, di) k-divides over {dj : j < i} for each i < ω. By Proposition 1.1 we may assume
(di : i < ω) is indiscernible. We now inductively define (ciai : i < ω) in such a way that
ϕ(x, ai) divides over {cjaj : j < i} and |= ϕ(cia0) ∧ . . . ∧ ϕ(ci, ai). Indiscernibility can
be obtained again by an application of Proposition 1.1. We start the construction with
a0 = d0 choosing then c0 such that |= ϕ(c0, a0). Since ϕ(x, d1) k-divides over a0, there
is an a0-indiscernible sequence (bi : i < ω) such that bi ≡a0 d1 and {ϕ(x, bi) : i < ω} is
k-inconsistent. By Proposition 1.1 we may assume it is a0c0-indiscernible. Set a1 = b0 and
choose c1 such that |= ϕ(c1, a0) ∧ ϕ(c1, a1). Then ϕ(x, a1) k-divides over a0, c0. Changing
(di : 2 ≤ i < ω) by (d′i : 2 ≤ i < ω) such that a0a1(d′i : 2 ≤ i < ω) ≡ (di : i < ω) if necessary
we can continue carrying out the construction.

2 ⇒ 3. By indiscernibility we may extend the sequence (ciai : i < ω) and therefore
assume that dividing is always with respect to some fixed k < ω. We can also take ω + 1
as index set, in which case |= ϕ(cω, ai) for all i < ω. Then put c = cω and note that
(ai : i < ω) is c–indiscernible and that for all i < ω, ϕ(x, ai) k-divides over {aj : j < i}.

3 ⇒ 4. Extend the sequence (ai : i < ω) to a c-indiscernible sequence (ai : i ≤ ω).

4 ⇒ 1. Assume ϕ(x, aω) k-divides over {ai : i < ω}. By indiscernibility for all i < ω,
ϕ(x, ai) k-divides over {aj : j < i}. By c-indiscernibility, |= ϕ(c, ai) for all i < ω and
therefore {ϕ(x, ai) : i < ω} is consistent, which contradicts simplicity of T . 2

Theorem 12.24 The following are equivalent

1. T is simple.

2. |̂ d is symmetric.

3. |̂ f is symmetric.

4. |̂ d is left transitive.

5. |̂ f is left transitive.
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Proof: By proposition 5.15 and by the fact that in a simple theory |̂ d = |̂ f , conditions
2 and 3 follow from 1.

2 ⇒ 4 and 3 ⇒ 5. Since |̂ d and |̂ f are right transitive, it is clear that symmetry
implies they are left transitive.

4 ⇒ 1 and 5 ⇒ 1. Fix an ordered set of order type ω+ 2 +ω∗, where ω∗ is the reverse
order of ω, say

0 < 1 < · · · < ω < ω + 1 < · · · < −2 < −1.

where ω∗ = {−1,−2, . . .}. Assume T is not simple. By Proposition 12.23 and compactness
there is some ϕ(x, y) ∈ L for which there is an indiscernible sequence (ciai : i ∈ ω+2+ω∗)
such that for each i, ϕ(x, ai) divides over {cjaj : j < i} and for all j ≤ i, |= ϕ(ci, aj).
Let I = {ai : i ∈ ω} and let J = {ai : i ∈ ω∗}. Since |= ϕ(cω+1, aω), cω+1 6 |̂ dI Jaω.

Since tp(cω+1/IJ) is finitely satisfiable in I, cω+1 |̂ f
I
J . Since tp(cω+1/aωIJ) is finitely

satisfiable in J , cω+1 |̂ f
IJ
aω. This contradicts left transitivity of |̂ d and |̂ f .

2



Chapter 13

Supersimple theories

Definition 13.1 T is supersimple if for all p ∈ S(A) (in finitely many variables) there is
a finite A0 ⊆ A such that p does not fork over A0. In other words, for any tuple a, for any
set A, there is a finite A0 ⊆ A such that a |̂

A0
A. By Proposition 4.11 this implies T is

simple. T is superstable if it is stable and supersimple.

Definition 13.2 κ(T ) is the least cardinal µ such that for each tuple a, for each set A
there is some B ⊆ A such that |B| < µ and a |̂

B
A. If there is not such cardinal µ we set

κ(T ) = ∞.

Remark 13.3 1. T is simple iff κ(T ) <∞ iff κ(T ) ≤ |T |+.

2. T is supersimple iff κ(T ) = ω.

Proposition 13.4 The following are equivalent:

1. T is supersimple

2. There is no infinite sequence (ϕi(x, ai) : i < ω) such that {ϕi(x, ai) : i < ω} is
consistent and for each i < ω, ϕi(x, ai) divides (forks) over {aj : j < i}.

3. There is no infinite increasing chain (pi(x) : i < ω) of types pi(x) ∈ S(Ai) such that
each pi+1 is a forking (dividing) extension of pi.

Proof: Similar to the proof of Proposition 4.11. A forking (dividing) chain of types gives
easily a forking (dividing) chain of formulas and conversely. If there are not infinite forking
chains of formulas, the theory is simple and therefore forking and dividing coincide. 2

Definition 13.5 Lascar ranks SU and U are ordinal valued (or ∞) and are defined for
complete types over sets in finitely many variables. SU is defined by:

• SU(p) ≥ 0.

• SU(p) ≥ α+ 1 iff there is a forking extension q of p such that SU(q) ≥ α.

• SU(p) ≥ α iff SU(p) ≥ β for all β < α in case α is a limit number.
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As usual, SU(p) = ∞ if SU(p) ≥ α for all α, and SU(p) = α if SU(p) ≥ α but SU(p) 6≥
α+ 1. U is defined by the same conditions for 0 and for a limit number β. For a successor
ordinal the rule is as follows:

• For p(x) ∈ S(A), U(p) ≥ α + 1 iff for each cardinal number λ there is a set B ⊇ A
and there are at least λ many types q(x) ∈ S(B) extending p and such that U(q) ≥ α.

We will use the notation SU(a/A) = SU(tp(a/A)) and U(a/A) = U(tp(a/A)).

Remark 13.6 SU is a foundation rank, the foundation rank of complete types over sets
with the relation of being a forking extension. In general, if R is a binary relation, the
foundation rank of R is the mapping r assigning to every element of the domain of R an
ordinal number (or ∞) according to the following rules:

1. r(a) ≥ 0

2. r(a) ≥ α+ 1 iff r(b) ≥ α for some b such that aRb.

3. r(a) ≥ α iff r(a) ≥ β for all β < α if α is a limit number.

By induction on α (and induction on β in the case α+ 1) one easily sees that

4. If r(a) ≥ α and α ≥ β then r(a) ≥ β.

and therefore if one defines

5. r(a) = ∞ in case r(a) ≥ α for all α

6. r(a) = sup{α : r(a) ≥ α} otherwise,

it is clear that r(a) = α iff r(a) ≥ α and r(a) 6≥ α+ 1.

Some properties of SU are better understood keeping in mind that it is a foundation
rank. The following will be helpful:

7. If aRb and r(a) <∞, then r(a) > r(b).

8. If R is transitive, the rank r is connected: if r(a) = α <∞ and β < α, then r(b) = β
for some b such that aRb.

9. If there is a sequence (ai : i < ω) such that a = a0 and aiRai+1 for all i < ω, then
r(a) = ∞.

10. If there is an ordinal number α such that for all a, r(a) ≥ α implies r(a) = ∞ then:
if r(a) = ∞, then there is a sequence (ai : i < ω) such that a = a0 and aiRai+1 for
all i < ω.

Proof: 7 is clear since by definition if r(b) ≥ α and aRb then r(a) ≥ α + 1. 8 is proven
by induction on α using 7. For 9, prove that for all i, r(ai) ≥ α for any α by induction on
α. For 10 note that the hypothesis implies that if r(a) = ∞ then r(b) = ∞ for some b such
that aRb. 2

Remark 13.7 SU(p) = 0 iff p is algebraic iff U(p) = 0.
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Proposition 13.8 Let T be simple and let p(x) ⊆ q(x) be complete types.

1. If q is a nonforking extension of p, then SU(p) = SU(q).

2. If SU(p) = SU(q) <∞, then q is a nonforking extension of p.

Proof: 1. Clearly SU(p) ≥ SU(q). We now prove by induction on α that SU(p) ≥ α
implies SU(q) ≥ α. Consider the case SU(p) ≥ α + 1. Let p(x) ∈ S(A) and q(x) ∈ S(B).
For some C ⊇ A there is a forking extension p′ ∈ S(C) of p such that SU(p′) ≥ α. Changing
C if necessary, we may assume that there is some b |= q such that b |= p′ and C |̂

Ab
B.

Then b |̂
C
B, and hence q′ = tp(b/CB) is a nonforking extension of p′. By inductive

hypothesis SU(q′) ≥ α. Since q′ is a forking extension of q, SU(q) ≥ α+ 1. Point 2 is clear
and corresponds to point 7 of Remark 13.6. 2

Proposition 13.9 If T is stable, then U = SU .

Proof: By Corollary 8.6 in a stable theory a global type p ∈ S(C) forks over A if and
only if it has a bounded orbit in Aut(C/A). By induction on α we prove that SU(p) ≥ α
iff U(p) ≥ α. Consider the case α + 1. Assume p ∈ S(A), SU(p) ≥ α + 1 and q ∈ S(B)
is a forking extension of p with SU(q) ≥ α. A nonforking extension q ∈ S(C) of q has
unboundedly many A-conjugates. Fix λ and choose a set C ⊆ B such that q � C has λ
many conjugates over C. By proposition 13.8 and by inductive hypothesis U(q � C) ≥ α and
then all its A-conjugates over C have also U -rank ≥ α. This means that U(p) ≥ α+ 1. For
the other direction, assume U(p) ≥ α+1 and choose λ > Mlt(p), the number of nonforking
extensions of p. There is a set B ⊆ A over which p has λ extensions of U -rank ≥ α. By
choice of λ, one of them, say q ∈ S(B) is a forking extension. By inductive hypothesis
SU(q) ≥ α. Then SU(p) ≥ α+ 1. 2

Lemma 13.10 Let T be simple.

1. There is some ordinal α such that SU(p) ≥ α implies SU(p) = ∞

2. If SU(p) = ∞, there is a forking extension q of p such that SU(q) = ∞

Proof: 1. Assume for every ordinal α there is a complete type pα(x) ∈ S(Aα) such that
α ≤ SU(pα) < ∞. Since there is a subset B ⊆ Aα such that |B| ≤ |T | and pα does not
fork over B, by Lemma 13.8 we may assume that in fact |Aα| ≤ |T |. For each α there
are boundedly many types p(x) ∈ S(Aα) and therefore there is an ordinal βα such that
SU(p) ≤ βα if p(x) ∈ S(Aα) and SU(p) < ∞. Fix an enumeration aα of Aα. Clearly
βα = βα′ if tp(aα) = tp(aα′). This contradicts the fact that there are only boundedly many
types tp(aα) of such sequences aα.

2 follows from 1 as shown in points 9, 10 of Remark 13.6. 2

Proposition 13.11 If T is simple, the following are equivalent for p ∈ S(A).

1. SU(p) = ∞

2. There is a forking chain of types (pn : n < ω) starting with p = p0.

3. Some q ∈ S(B) extending p forks over AB0 for any finite subset B0 ⊆ B.

Proof: 2 ⇔ 3 is like in Proposition 4.11. 1 ⇔ 2 follows from Lemma 13.10 and points 9,
10 of 13.6. 2
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Remark 13.12 If p(x) ∈ S(M) is not definable, then U(p) = ∞.

Proof: As explained in the proof of Proposition 7.9 for each cardinal λ there is a modelN �
M over which there are λ different strong heirs of p. Since all they are again nondefinable,
this can be used to show that U(p) = ∞. 2

Proposition 13.13 1. T is supersimple if and only if SU(p) <∞ for all p.

2. T is superstable if and only if U(p) <∞ for all p.

Proof: 1 follows from Proposition 13.11 and Proposition 13.3.

2. If T is superstable, T is stable and by Proposition 13.9 SU = U . Since T is also
supersimple, by 1 U(p) < ∞ for all p. For the other direction, it is enough to show that
stability follows from the condition U(p) < ∞ for all p. If T is not stable then there is a
nondefinable type p(x) ∈ S(M) over some model M . Then we apply Remark 13.12. 2

Remark 13.14 If SU(p) = α < ∞, then for any β < α there is some q ⊇ p such that
SU(q) = β.

Proof: By point 8 of Remark 13.6. 2

Notation 13.15 We will denote by α ⊕ β the natural sum of the ordinals α, β. Every
ordinal number α can be written uniquely in Cantor normal form as α =

∑k
i=0 ω

αini where
α0 > . . . > αk are ordinals and n0, . . . , nk are natural numbers > 0. If β =

∑j
i=0 ω

βimi

is also in Cantor normal form , then α ⊕ β =
∑l
i=0 ω

γiri where γ0 > . . . > γl enumerates
α0, . . . , αk, β0, . . . , βj and

ri =

 np if γi = αp 6∈ {β0, . . . , βj}
mp if γi = βp 6∈ {α0, . . . , αk}
np +mq if γi = αp = βq

This sum is the least operation F : On × On → On which is strictly increasing in both
arguments. Clearly, for natural numbers n,m, n+m = n⊕m.

Theorem 13.16 (Lascar inequalities) Let T be simple. If SU(ab/A) <∞, then

SU(a/Ab) + SU(b/A) ≤ SU(ab/A) ≤ SU(a/Ab)⊕ SU(b/A).

Proof: It is easy to see by induction on α that if SU(a/A) ≥ α, then SU(ab/A) ≥ α.
Hence SU(ab/A) ≥ SU(a/A). From SU(ab/A) < ∞ it follows then SU(a/A) < ∞ and
SU(b/A) <∞. Then we can freely use Proposition 13.8.

To check the inequality SU(ab/A) ≤ SU(a/Ab) ⊕ SU(b/A), we prove by induction on
α that if SU(ab/A) ≥ α, then SU(a/Ab) ⊕ SU(b/A) ≥ α. This is clear for α = 0 and for
limit α. Let us consider the case α + 1. Assume SU(ab/A) ≥ α + 1. For some B ⊇ A we
have SU(ab/B) ≥ α and ab 6 |̂

A
B. Since ab 6 |̂

A
B, either b 6 |̂

A
B or a 6 |̂

Ab
B. Therefore

SU(b/A) > SU(b/B) or SU(a/Ab) > SU(a/Bb). By monotonicity of natural addition of
ordinal numbers, SU(a/Ab)⊕ SU(b/A) > SU(a/Bb)⊕ SU(b/B). By inductive hypothesis
SU(a/Bb)⊕ SU(b/B) ≥ α. Hence SU(a/Ab)⊕ SU(b/A) ≥ α+ 1.

To check the inequality SU(a/Ab) + SU(b/A) ≤ SU(ab/A) we show by induction on α
that if SU(b/A) ≥ α, then SU(ab/A) ≥ SU(a/Ab) + α. The cases α = 0 and α limit are
straightforward. For the case α + 1, assume SU(b/A) ≥ α + 1. Then for some B ⊇ A,
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SU(b/B) ≥ α and b 6 |̂
A
B. We may assume that B |̂

Ab
a. By inductive hypothesis

SU(ab/B) ≥ SU(a/Bb)+α. Since b 6 |̂
A
B, also ab 6 |̂

A
B and then SU(ab/A) > SU(ab/B).

Since a |̂
Ab
B we have SU(a/Ab) = SU(a/Bb). Therefore SU(ab/A) > SU(ab/B) ≥

SU(a/Bb) + α = SU(a/Ab) + α. We then conclude SU(ab/A) ≥ SU(a/Ab) + α+ 1. 2

Corollary 13.17 If T is simple and SU(ab/A) < ω, then

SU(ab/A) = SU(a/Ab) + SU(b/A)

Proof: As remarked above, for natural numbers n,m, n+m = n⊕m. 2

Proposition 13.18 Let T be simple.

1. If a ∈ acl(Ab), then SU(ab/A) = SU(b/A).

2. If acl(aA) = acl(bA) then SU(a/A) = SU(b/A).

Proof: 1. Clearly SU(ab/A) ≥ S(b/A). Moreover it is easy to check by induction on α
that SU(ab/A) ≥ α implies SU(b/A) ≥ α. 2 follows from 1. 2

Definition 13.19 An abstract rank is a mapping R assigning an ordinal or ∞ to complete
types over sets and satisfying the following conditions:

1. If f ∈ Aut(C), then R(p) = R(pf ).

2. If p ⊆ q, then R(p) ≥ R(q).

3. If p ∈ S(A) and A ⊆ B, then there is some extension q ∈ S(B) of p such that
R(p) = R(q).

4. Let p ∈ S(A) be such that R(p) <∞. There is a cardinal κ such that for each B ⊇ A,
p has at most κ extensions q ∈ S(B) such that R(p) = R(q).

Remark 13.20 Let R be an abstract rank. If p ∈ S(M) is not definable, then R(p) = ∞.

Proof: Choose α minimal for which there is some nondefinable p ∈ S(M) over some model
M with R(p) = α. Let κ be the cardinal given by condition 4 in the definition of rank.
As shown in the proof of Proposition 7.9 there is a model N �M over which there are κ+

different strong heirs of p. All are nondefinable and one of them must have rank < α, a
contradiction. 2

Proposition 13.21 Let R be an abstract rank.

1. Let T be stable, p ⊆ q, and R(p) < ∞. Then R(p) = R(q) iff q is a nonforking
extension of p.

2. If R(p) <∞ for every complete type p, then T is superstable.

Proof: 1. Let p ∈ S(A), A ⊆ B, and p ⊆ q ∈ S(B). We assume T is stable and
R(p) < ∞. Fix κ, a bound for the extensions p of rank R(p). We can find a model
M ⊇ A such that all nonforking extensions of p over M are A-conjugate in M and such
that each forking extension of p over M has more than κ A–conjugates in M . There is an
extension q′ ∈ S(M) of q with R(q) = R(q′). Now, if q forks over A then also q′ forks and
therefore q′ has more than κ A-conjugates. By definition of rank R(p) > R(q′). Now assume



68 CHAPTER 13. SUPERSIMPLE THEORIES

R(p) > R(q) and q does not fork over A. Let q′ ∈ S(M) be a nonforking extension of q and
choose r ∈ S(M), an extension of p of rank R(p) = R(r). As shown before, r does not fork
over A. By choice of M , q′ and r are A-conjugate. Hence R(p) = R(r) = R(q′) = R(q).

2. It suffices to show stability of T since then we can use point 1 to easily verify that T
is supersimple. If T is unstable then some type p ∈ S(M) is nondefinable. By Remark 13.20
R(p) = ∞. 2

Proposition 13.22 In a stable theory U is an abstract rank and it is minimal, that is
U(p) ≤ R(p) for any other abstract rank R.

Proof: If T is stable, then U = SU and by Proposition 13.8 whenever p ⊆ q and U(p) <∞,
q is a nonforking extension of p iff U(p) = U(q). Since in a stable theory a type has only
a bounded number of nonforking extensions, the requirements in the definition of abstract
rank are fulfilled. Minimality is easily checked showing by induction on α that if R is a
rank and U(p) ≥ α, then R(p) ≥ α. 2

Corollary 13.23 T is superstable if and only if there is an abstract rank R such that
R(p) <∞ for all p.

Proof: If T is superstable, then U is an abstract rank and U(p) < ∞ for all p. The rest
follows from Proposition 13.21. 2

Proposition 13.24 Let T be stable and p(x) ∈ S(A).

1. If U(p) <∞, then for any B ⊇ A there are at most 2|T |+ |B| extensions q(x) ∈ S(B)
of p.

2. If U(p) = ∞ then for any cardinal λ ≥ |T | + |A| there is a set B ⊇ A such that
|B| ≤ λ and p has at least λω extensions q(x) ∈ S(B).

Proof: If T is stable, then U = SU . By Proposition 13.11, if U(p) <∞ then any complete
type q over B ⊇ A extending p does not fork over AB0 for some finite B0 ⊆ B. Since
there are only 2|T | extensions of p to a complete type q(x) ∈ S(AB0) for B0 finite, and
each such type q has at most 2|T | nonforking extensions over B, it is easy to check that
2|T | + |B| is a correct upper bound for the number of extensions of p over B. On the other
hand, if U(p) = ∞ by Lemma 13.10 p has a forking extension q of U -rank ∞. Let q be a
global nonforking extension of q. Then q forks over A and therefore it has an unbounded
orbit in Aut(C/A). Note that every complete type between p and q has U -rank ∞. Fix a
set A1 ⊇ A such that |A1| ≤ λ and for which there are different types ri(x) ∈ S(A1) for
i < λ which can be extended to A-conjugates of q. Note that U(ri) = ∞. Iterating this
procedure we obtain a chain of sets (An : n < ω) of cardinality |An| ≤ λ and a tree of types
(ps : s ∈ λ<ω) such that ps ∈ S(An) if s ∈ λn, p∅ = p, ps ⊆ ps′ if s ⊆ s′, ps 6= ps′ if s 6= s′

and U(ps) = ∞. If we put pf =
⋃
s⊆f ps for f ∈ λω, we obtain a family (pf : f ∈ λω) of λω

many complete extensions of p over the set B =
⋃
n<ω An of cardinality |B| ≤ λ. 2

Theorem 13.25 The following are equivalent:

1. T is superstable.

2. For all A, |S(A)| ≤ |A|+ 2|T |.

3. For all λ ≥ 2|T |, T is λ-stable.
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4. There is some cardinal µ such that for all λ ≥ µ, T is λ-stable.

Proof: 1 ⇒ 2. There are only 2|T | types over ∅, and by Proposition 13.24 and Proposi-
tion 13.13 each p(x) ∈ S(∅) has at most 2|T | + |A| complete extensions over A.

It is clear that 2 ⇒ 3 and that 3 ⇒ 4.

4 ⇒ 1. If T is not superstable then, by Proposition 13.13 there is some p(x) ∈ S(A)
such that U(p) = ∞. Choose λ ≥ µ + |T | + |A| such that λω > λ. By Proposition 13.24
there is a set B ⊇ A of cardinality ≤ λ such that p has at least λω complete extensions over
B. Clearly T is not λ-stable. 2
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Chapter 14

More ranks

Definition 14.1 D rank is defined for formulas ϕ(x) ∈ L(C) as follows:

1. D(ϕ(x)) ≥ 0 iff ϕ(x) is consistent.

2. D(ϕ(x)) ≥ α+1 iff for some ψ(x, y) ∈ L for all cardinal numbers λ there is an infinite
sequence (ai : i < λ) such that {ψ(x, ai) : i < λ} is k–inconsistent for some k < ω
and for each i < λ, |= ψ(x, ai) → ϕ(x) and D(ψ(x, ai)) ≥ α.

3. D(ϕ(x)) ≥ β iff D(ϕ(x)) ≥ α for all α < β for limit β.

The definition is extended to arbitrary sets of formulas π(x) by

D(π(x)) = min{D(ϕ) : ϕ is a finite conjunction of formulas in π(x)}.

Remark 14.2 If ϕ(x) ∈ L(A), then D(ϕ(x)) ≥ α+1 iff |= ψ(x) → ϕ(x) and D(ψ(x)) ≥ α
for some ψ(x) ∈ L(C) which divides over A.

Proposition 14.3 1. There is an ordinal α such that for all ϕ(x) ∈ L(C), if D(ϕ) ≥ α,
then D(ϕ) = ∞.

2. If ϕ(x) ∈ L(A) and D(ϕ(x)) = ∞, then D(ψ(x)) = ∞ for some ψ(x) such that
|= ψ(x) → ϕ(x) and ψ(x) divides over A.

3. D(ϕ(x)) = ∞ if and only if there is a sequence (ϕi(x) : i < ω) of consistent formulas
ϕi(x) ∈ L(Ai) such that ϕ = ϕ0, |= ϕi+1(x) → ϕi(x) and ϕi+1(x) divides over⋃
j≤iAj.

4. T is supersimple iff D(ϕ) <∞ for all ϕ.

Proof: 1 is easy, like in Lemma 13.10, 2 follows from 1, and 3 follows from 2. Lastly, 4
follows from 3 and Proposition 13.4. 2

Lemma 14.4 1. If π1(x) ` π2(x), then D(π1) ≤ D(π2).

2. D(π) = 0 if and only if π is algebraic.

3. D(ϕ ∨ ψ) = max{D(ϕ), D(ψ)}.
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4. If π(x) is a partial type over A, there is some p(x) ∈ S(A) such that π ⊆ p and
D(π) = D(p).

5. If π(x) is a partial type, there is some finite conjunction ϕ(x) of formulas of π(x)
such that D(π) = D(ϕ).

Proof: 4 follows from 3. Concerning 3, it is clear that D(ϕ), D(ψ) ≤ D(ϕ ∨ ψ). Then
it suffices to show that if D(ϕ ∨ ψ) ≥ α, then D(ϕ) ≥ α or D(ψ) ≥ α, and this can be
shown by induction on α. Consider the case α + 1. Assume D(ϕ ∨ ψ) ≥ α + 1. For
some θ and A, |= θ → (ϕ ∨ ψ), (ϕ ∨ ψ) ∈ L(A), θ divides over A, and D(θ) ≥ α. Note
that |= θ ↔ (θ ∧ ϕ) ∨ (θ ∧ ψ) and hence the inductive hypothesis gives D(θ ∧ ϕ) ≥ α or
D(θ ∧ ψ) ≥ α. We conclude D(ϕ) ≥ α+ 1 or D(ψ) ≥ α+ 1. 2

Remark 14.5 If T is simple, then SU ≤ D.

Definition 14.6 The continuous rank RC (also denoted with R∞) is defined for all sets
of formulas (in finitely many variables) as follows:

1. RC(π(x)) ≥ 0 iff π(x) is consistent.

2. RC(π(x)) ≥ α+1 iff for any conjunction ϕ(x) of formulas in π(x) for any cardinal λ
there is a sequence (πi(x) : i < λ) of partial types πi(x) 3 ϕ(x) such that CR(πi) ≥ α
and πi ∪ πj is inconsistent for all i < j < λ.

3. RC(π(x)) ≥ β iff RC(π(x)) ≥ α for all α < β if β is a limit number.

For a formula ϕ(x) we set RC(ϕ) = RC({ϕ}).

Lemma 14.7 1. If π(x) ` π′(x), then RC(π) ≤ RC(π′).

2. RC(π) = 0 if and only if π is algebraic.

3. If π(x) is a partial type over A,

RC(π) = min{RC(ϕ) : ϕ is a finite conjunction of formulas in π}

and therefore there is a finite conjunction ϕ(x) of formulas in π(x) such that RC(π) =
RC(ϕ).

4. RC(π ∪ {(ϕ ∨ ψ)}) = max{RC(π ∪ {ϕ}), RC(π ∪ {ψ})}.

5. If π(x) is a partial type over A, there is some p(x) ∈ S(A) such that π ⊆ p and
RC(π) = RC(p).

Proof: 1. It is an induction on α: if RC(π) ≥ α, then RC(π′) ≥ α. In the case α + 1,
given ϕ a conjunction of formulas in π′ and given a cardinal λ, we first find ψ, a conjunction
of formulas in π such that ψ ` ϕ, and then we use the hypothesis RC(π) ≥ α+ 1 to find a
sequence (πi(x) : i < λ) of pairwise incompatible types πi 3 ψ with RC(πi) ≥ α and then
we set π′i = πi∪{ϕ}. Since πi ` π′i, by inductive hypothesis RC(π′i) ≥ α. Hence (π′i : i < λ)
witness that RC(π′) ≥ α+ 1.

For 3, choose ϕ, a conjunction of formulas in π of minimal RC-rank, and show by
induction on α that RC(ϕ) ≥ α implies RC(π) ≥ α.

4. By 1 it is clear that RC(π∪{ϕ∨ψ}) ≥ max{RC(π∪{ϕ}), RC(π∪{ψ})} ≥ α. Hence
we only have to show that if RC(π∪{ϕ∨ψ}) ≥ α, then max{RC(π∪{ϕ}), RC(π∪{ψ})} ≥ α,
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and this can be done by induction on α. As usual, we consider only the case α+1. Assume
RC(π ∪ {ϕ}) 6≥ α + 1 and RC(π ∪ {ψ}) 6≥ α + 1. Hence we have δ1, δ2, conjunctions of
formulas in π, and λ1, λ2, cardinal numbers, such that there is no sequence (πi : i < λ1)
of pairwise incompatible types πi 3 (δ1 ∧ ϕ) with RC(πi) ≥ α and there is no sequence
(πi : i < λ2) of pairwise incompatible types πi 3 (δ2∧ψ) with RC(πi) ≥ α. Let δ = (δ1∧δ2)
and let λ = max{λ1, λ2}. There is a sequence (πi : i < λ) of pairwise incompatible types
πi 3 (δ ∧ (ϕ ∨ ψ)) with RC(πi) ≥ α. Note that πi ≡ πi ∪ {δ} ∪ {ϕ ∨ ψ} and then, by 1,
RC(πi ∪ {δ} ∪ {ϕ∨ψ}) ≥ α and by inductive hypothesis either RC(πi ∪ {δ} ∪ {ϕ}) ≥ α or
RC(πi∪{δ}∪{ψ}) ≥ α. Again by 1, either RC(πi∪{δ1}∪{ϕ}) ≥ α or RC(πi∪{δ2}∪{ψ}) ≥
α. One of these two possibilities takes place λ times, contradicting the choice of λ1 and λ2.

5 follows from 4 as in other similar situations. 2

Remark 14.8 RC(π(x)) ≥ α+ 1 iff for each ϕ(x), conjunction of formulas of π, for each
cardinal λ there is a set A and there is a family (pi(x) : i < λ) of different types pi(x) ∈ S(A)
such that RC(pi) ≥ α for all i < λ.

Proof: By point 5 of Lemma 14.7. 2

Proposition 14.9 If T is stable, then D = RC.

Proof: It is enough to check it for formulas and then it is clear: after Corollary 8.6, for
stable T and ϕ(x) ∈ L(A), RC(ϕ(x)) ≥ α + 1 if and only if there is some ψ(x) such that
|= ψ(x) → ϕ(x), ψ(x) forks over A, and RC(ϕ) ≥ α. 2

Proposition 14.10 T is superstable if and only if RC(ϕ) <∞ for any ϕ.

Proof: One direction follows from Proposition 14.9 and point 4 of Proposition 14.3.
For the other direction note that U(p) ≤ RC(p) for any complete type p and then apply
Proposition 13.13. 2

Definition 14.11 An abstract rank R is a continuous rank if for each α, for each A,
{p(x) ∈ S(A) : R(p) < α} is an open subset of S(A).

Proposition 14.12 If T is stable, RC is the smallest continuous rank in T .

Proof: By definition and by Lemma 14.7 it is clear that RC always satisfies conditions
1–3 of the definition of abstract rank. For condition 4 we need to assume T is stable. By
Proposition 14.9 RC = D. If p(x) ∈ S(A), RC(p) = α <∞, and q is a forking extension of
p of the same rank RC(q) = α, then q contains a formula ϕ(x) which forks over A. We can
assume that RC(ϕ) = α and that ϕ implies some ψ(x) ∈ p of rank RC(ψ) = α. But then
D(ψ) ≥ α + 1, which is a contradiction. Therefore, all extensions q of p with RC(q) = α
are nonforking extensions and by stability its number is bounded by the multiplicity of p,
which is ≤ 2|T |. It follows that RC is an abstract rank.

Point 3 of Lemma 14.7 implies that RC is continuous. If R is another continuous rank,
then by induction on α one sees that if RC(p) ≥ α then R(p) ≥ α. Consider the case α+1.
Let p(x) ∈ S(A) be such that RC(p) ≥ α+1. We will show that for any ϕ ∈ p there is some
q ∈ S(A) such that ϕ ∈ q and R(q) ≥ α+ 1. Continuity of R will imply then R(p) ≥ α+ 1.
Now, by Remark 14.8 for each cardinal λ there is some B such that there are at least λ
types q(x) ∈ S(B) such that ϕ(x) ∈ q and RC(q) ≥ α. We may assume that always A ⊆ B.
Since there are only 2|T |+|A| types over A, for some r(x) ∈ S(A) such that ϕ ∈ r and for
each cardinal λ there is some B such that there are at least λ types q(x) ∈ S(B) such that
r ⊆ q and RC(q) ≥ α. By inductive hypothesis R(q) ≥ α for all such q. By condition 4 in
the definition of abstract rank R(r) ≥ α+ 1. 2
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Definition 14.13 The Morley rank of a global type p ∈ Sn(C), RM(p), is its Cantor-
Bendixson rank in the space Sn(C). The Morley rank of a partial type π(x), RM(π), (Where
x is a n-tuple of variables) is the Cantor-Bendixson rank of the closed set {p ∈ Sn(C) : π ⊆
π} and its Morley degree, DM(π), is the Cantor-Bendixson degree of this closed set. By
compactness, DM(π) is finite if RM(π) <∞. It is clear that

RM(π) = max{RM(p) : π ⊆ p}

For a formula ϕ we set RM(ϕ) = RM({ϕ} and DM(ϕ) = DM({ϕ}).

Remark 14.14 1. RM(ϕ(x)) ≥ 0 iff ϕ(x) is consistent

2. RM(ϕ(x)) ≥ α+ 1 iff there is a sequence (ϕi(x) : i < ω) such that |= ϕi(x) → ϕ(x),
RM(ϕi) ≥ α, and ϕi(x) ∧ ϕj(x) is inconsistent for all i 6= j.

3. RM(ϕ) ≥ α iff RM(ϕ) ≥ β for all β < α if α is a limit number.

Proof: These are well-known properties of the Cantor-Bendixson rank of clopen sets in
boolean spaces. 2

Remark 14.15 RM(ϕ(x)) ≥ α+1 iff there for each n < ω there is a sequence (ϕi(x) : i <
n) such that |= ϕi(x) → ϕ(x), RM(ϕi) ≥ α, and ϕi(x)∧ϕj(x) is inconsistent for all i 6= j.
Hence the degree DM(ϕ(x)) can be defined (in case RM(ϕ) = α < ∞) as the maximal n
for which there is a sequence (ϕi(x) : i < n) such that |= ϕi(x) → ϕ(x), RM(ϕi) ≥ α, and
ϕi(x) ∧ ϕj(x) is inconsistent for all i 6= j.

Proof: If for each n < ω we have such sequence (ϕi(x) : i < n), then the number of types
p(x) ∈ S(C) of Cantor-Bendixson rank ≥ α containing ϕ must be infinite. 2

Proposition 14.16 For any partial type π,

1. RM(π) = min{RM(ϕ) : ϕ is a conjunction of formulas in π}

2. DM(π) = min{DM(ϕ) : ϕ is a conjunction of formulas in π and RM(ϕ) = RM(π)}

Proof: Again this is a well-known property of the Cantor-Bendixson rank and degree of
closed sets in boolean spaces. 2

Remark 14.17 Morley rank can be computed in any ω-saturated model M containing the
parameters of the type as the Cantor-Bendixson rank in S(M) of the closed set determined
by the type.

Proof: It is enough to check it for formulas and in this case we can use Remark 14.14.
The parameters needed in the sequence (ϕi(x) : i < ω) to check that RM(ϕ(x)) ≥ α + 1
build a countable sequence and its type over the parameters of ϕ can be realized in M . 2

Proposition 14.18 Morley rank is a continuous rank.

Proof: All conditions in the definition of an abstract rank are easily seen to be satisfied
by Morley rank. The bound for the number of extensions with the same rank of a type p(x)
is DM(p). Continuity follows from Proposition 14.16. 2

Corollary 14.19 In a stable theory, U ≤ RC ≤ RM .
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Proof: By propositions 14.18, 13.22, and 14.12. 2

Definition 14.20 T is totally trascendental if and only if RM(ϕ) <∞ for all ϕ.

Theorem 14.21 1. If T is λ-stable for some λ < 2ω , then T is totally trascendental.

2. Any totally trascendental theory is λ-stable for all λ ≥ |T |.

Proof: 1. Assume RM(ϕ) = ∞. By standard topological arguments we can build a tree
of formulas (ϕs : s ∈ 2<ω) such that ϕ∅ = ϕ, RM(ϕs) = ∞, ϕs ≡ ϕsa0 ∨ ϕsa1 and
ϕsa0 ∧ ϕsa1 is inconsistent. Every branch f ∈ 2ω gives rise to a type πf = {ϕs : s ⊆ f}
and this produces a set of 2ω incompatible partial types over a countable set of parameters,
contradicting λ-stability of T .

2. Let λ ≥ |T | and let |A| ≤ λ. For each p(x) ∈ S(A) choose some ϕp(x) ∈ S(A) such
that RM(p) = RM(ϕp) and DM(p) = DM(ϕp). Since T is totally trascendental, for any
ψ(x) ∈ L(A), ψ ∈ p iff RM(ϕp ∧ ψ) = RM(ϕp) and DM(ϕp ∧ ψ) = DM(ϕp). It follows
that p 6= q implies ϕp 6= ϕq. Hence |S(A)| has as an upper bound the number |T |+ |A| of
formulas ϕ(x) ∈ L(A). 2

Corollary 14.22 Totally trascendental theories, and in particular ω-stable theories, are
superstable.

Proof: By theorems 14.21 and 13.25. 2

Definition 14.23 T is small if for all n, |Sn(∅)| ≤ ω.

Remark 14.24 The following are equivalent:

1. T is small

2. For all n, for all finite A, |Sn(A)| ≤ ω.

3. For all finite A, |S1(A)| ≤ ω

4. T has a saturated countable model.

Proof: 1 ⇒ 2 can be justified by a standard counting types argument. 2 ⇒ 3 is clear. For
3 ⇒ 4, the countable saturated model can be constructed as a union

⋃
n∈ω An of countable

sets An such that each complete 1-type over a finite subset of An is realized in An+1. 4 ⇒
1 is clear since all p(x) ∈ Sn(∅) can be realized in the countable saturated model. 2

Remark 14.25 1. ω-categorical theories are small.

2. ω-stable theories are small.

Proof: Clear. 2

Corollary 14.26 T is ω-stable if and only if T is small, superstable, and every complete
type has finite multiplicity.

Proof: Let T be ω-stable. By Remark 14.25 T is small and by Corollary 14.22 T is
superstable. By Theorem 14.21 T is totally trascendental and therefore the multiplicity of
a type is its Morley degree. The other direction is just a counting types argument like in
the proof of Theorem 13.25. 2
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Corollary 14.27 Superstable ω-categorical theories are ω-stable.

Proof: By Corollary 14.26, since by ω-categoricity for each finite A there are only finitely
many complete n-types over A. Moreover by ω-categoricity if A is finite there is a finest finite
A-definable equivalence on relation on n-tuples and together with the Finite Equivalence
Relation Theorem 9.21 this implies that all multiplicities of complete types over A are finite.
2

Definition 14.28 An abstract rank R is cantorian iff any type p(x) ∈ S(A) has rank
R(p) ≥ α+ 1 in case p is an accumulation point of {q(x) ∈ S(A) : R(q) ≥ α}.

Proposition 14.29 Let p(x) ∈ S(A). Then RM(p) ≥ α + 1 iff for some B ⊇ A some
extension q(x) ∈ S(B) of p is an accumulation point of {r(x) ∈ S(B) : RM(r) ≥ α}.

Proof: Let RM(p) ≥ α+1 and choose an ω-saturated model M ⊇ A and let q(x) ∈ S(M)
an extension of p of Morley rank ≥ α + 1. By Remark 14.17 q has Cantor-Bendixson
rank ≥ α + 1 in S(M) and therefore it is an accumulation point of types r(x) ∈ S(M) of
Cantor-Bendixson rank ≥ α. Again by Remark 14.17, these types r have Morley rank ≥ α.

For the other direction it is enough to prove that RM(q) ≥ α+ 1, in other words, that
RM is cantorian. For this it is enough to show that each ϕ ∈ q is contained in some q ∈ S(C)
of Cantor-Bendixson rank ≥ α + 1, that is, ϕ is contained in infinitely many q ∈ S(C) of
Cantor-Bendixson rank ≥ α. We know that each such ϕ is contained in infinitely many
types r(x) ∈ S(B) of Morley rank ≥ α. But we can choose for each such r(x) ∈ S(B) an
extension q(x) ∈ S(C) of Cantor-Bendixson rank ≥ α. 2

Proposition 14.30 RM is the smallest cantorian rank.

Proof: By propositions 14.18 and 14.29, RM is a cantorian rank. Let R be another
cantorian rank. We prove by induction on α that RM(p) ≥ α implies R(p) ≥ α. Consider
the case α + 1. Assume p(x) ∈ S(A) and RM(p) ≥ α + 1. By Proposition 14.29 for some
B ⊇ A, some q(x) ∈ S(B) extending p is an accumulation point of {r(x) ∈ S(B) : RM(r) ≥
α}. By inductive hypothesis, this set is contained in {r(x) ∈ S(B) : R(r) ≥ α} and hence
q is an accumulation point of this set. Since R is cantorian, R(q) ≥ α + 1 and therefore
R(p) ≥ α+ 1. 2

Theorem 14.31 If T is superstable and ω-categorical, then U is cantorian and therefore
U = RC = RM .

Proof: Let p(x) ∈ S(A) be an accumulation point of {q(x) ∈ S(A) : U(q) ≥ α}. By
corollaries 14.26 and 14.22, every type has finite multiplicity and hence we can find a finite
subset A0 ⊆ A such that p does not fork over A0 and p0 = p � A0 has p as its only nonforking
extension over A. By ω-categoricity, the type p0(x) is isolated by some ϕ0(x) ∈ p0. By
assumption, there is some q(x) ∈ S(A) such that ϕ0(x) ∈ q, U(q) ≥ α and p 6= q. It follows
that q forks over A0. Hence U(p) = U(p0) ≥ U(q) + 1 ≥ α + 1. The rest follows from
Proposition 14.30 and Corollary 14.19. 2



Chapter 15

Hyperimaginaries

Definition 15.1 For any set A, a A-hiperimaginary is an equivalence class [a]E of a se-
quence a under a type-definable over A equivalence relation E. In order to simplify nota-
tion we set aE = [a]E and we often identify the equivalence relation E with the partial type
over A which defines E. Clearly A-imaginaries are A-hyperimaginaries. A hiperimaginary
is a ∅-hyperimaginary. We sometimes use Cheq for the class of all hyperimaginaries. If
a = (ai : i < α) for some ordinal α, we say that α is the length of the hyperimaginary aE.
Finitary hyperimaginaries are hyperimaginaries of finite length. Countable hyperimaginar-
ies are hyperimaginaries of countable length.

Definition 15.2 An automorphism f ∈ Aut(C) fixes a hyperimaginary aE if f(aE) = aE,
that is, if |= E(a, f(a)). Let A be a class of hyperimaginaries. The definable closure of A,
dclheq(A), is the class of all hyperimaginaries fixed by all automorphisms fixing pointwise
A, that is

dclheq(A) = {b ∈ Cheq : f(b) = b for all f ∈ Aut(C/A)}

Since a hyperimaginary can have any length, dclheq(A) is a proper class. As usual, if a is
a sequence of hyperimaginaries, dclheq(a) is dclheq(A) where A is the set enumerated in a.
Notice that if A is a set of imaginaries then dcleq(A) = dclheq(A) ∩ Ceq. We say that the
sequences of hyperimaginaries a,b are equivalent if dclheq(a) = dclheq(b). This is clearly
equivalent to Aut(C/a) = Aut(C/b). In this case we write a ∼ b.

Lemma 15.3 Any sequence of hyperimaginaries is equivalent to a hyperimaginary.

Proof: Let a = ([ai]Ei
: i ∈ I) be a sequence of hiperimaginaries, where Ei is an

equivalence relation among Ji-sequences and ai = (a(i,j) : j ∈ Ji). Put K =
⋃
i∈I{i} × Ji

and consider the equivalence relation E defined by

E((x(i,j) : (i, j) ∈ K), (y(i,j) : (i, j) ∈ K)) ↔
∧
i∈I

Ei((x(i,j) : j ∈ Ji), (y(i,j) : j ∈ Ji)).

Clearly e = [(a(i,j) : (i, j) ∈ K)]E is a hyperimaginary and a ∼ e. 2

Lemma 15.4 Any hyperimaginary is equivalent to a sequence of countable hyperimaginar-
ies.
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Proof: We can assume that the type E(x, y) defining the equivalence relation E is closed
under conjunction and all its formulas are symmetric: ` ϕ(x, y) → ϕ(y, x) for all ϕ(x, y) ∈
E(x, y). It will be enough to find for each ϕ(x, y) ∈ E(x, y) a countable partial type
Eϕ(x, y) ⊆ E(x, y) containing ϕ(x, y) which defines an equivalence relation. Given ϕ(x, y) ∈
E(x, y) we set Eϕ = {ϕn : n ∈ ω}, where ϕ0 = ϕ and ϕn+1(x, y) ∈ E(x, y) satisfies
` ϕn+1(x, y) ∧ ϕn+1(y, z) → ϕn(x, z). Existence of such a ϕn+1 follows by compactness
from the fact that E(x, y) ∪ E(y, z) ` ϕn(x, z). 2

Lemma 15.5 Let π(x) be a partial type over A. If E is an equivalence relation on real-
izations of π and it is type-definable over A, then there exists an equivalence relation F
defined for all sequences of the length of x which is type-definable over A and agrees with
E in π(C).

Proof: Set F (x, y) ⇔ (π(x) ∧ π(y) ∧ E(x, y)) ∨ x = y. 2

Proposition 15.6 Let e be a hyperimaginary and let b be a sequence in C. If e ∈ dclheq(b)
then e ∼ bE for some 0-type-definable equivalence relation E.

Proof: Let e = aF . Since aF is type-definable over a and it is b-invariant, it is type-
definable over b and there is a partial type π(x, y) over ∅ such that π(x, b) defines aF . Let
p(y) = tp(b). If b′ |= p then π(x, b′) defines an F -class, and hence either defines e or a class
disjoint with it. Thus ∃x(π(x, y) ∧ π(x, z)) defines an equivalence relation G in p(C). By
Lemma 15.5 there is an equivalence relation E which is type definable over ∅ and agrees
with G in p(C). It is easy to see that e ∼ bE . 2

Corollary 15.7 If e ∈ dclheq(A) for some set A of cardinality ≤ κ then e is equivalent to
a hyperimaginary of length ≤ κ.

Proof: It follows from Proposition 15.6. 2

Definition 15.8 The algebraic closure of A, a class of hyperimaginaries, is the class
aclheq(A) consisting in all hyperimaginaries having finite orbit under the group of all auto-
morphisms fixing pointwise A, that is

aclheq(A) = {b ∈ Cheq : |{f(b) : f ∈ Aut(C/A)}| < ω}.

As usual, if a enumerates A we put aclheq(a) = aclheq(A). The bounded closure of A is the
class bdd(A) consisting in all hyperimaginaries having a bounded orbit under the group of
all automorphisms fixing pointwise A, that is

bdd(A) = {b ∈ Cheq : |{f(b) : f ∈ Aut(C/A)}| < |C|}.

As usual, if a enumerates A we put aclheq(a) = aclheq(A) and bdd(a) = bdd(A). A
hyperimaginary b is A-bounded if b ∈ bdd(A).

Remark 15.9 Ceq ∩ bdd(A) = Ceq ∩ aclheq(A) = acleq(A) for any class of imaginaries A.

Proof: By compactness, if a hyperimaginary has infinitely many conjugates it has un-
boundedly many. 2

Definition 15.10 We define now the type tp(aE/bF ) of a hyperimaginary aE over some
hyperimaginary bF . For each formula ϕ(x, y) ∈ L let ΦE,F (x, y) be the partial type

∃x′y′(E(x, x′) ∧ F (y, y′) ∧ ϕ(x′, y′)).
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We define tp(aE/bF ) as the union of all partial types ΦE,F (x, b) where |= ϕ(a′, b′) for
some a′, b′ such that E(a, a′) and F (b, b′). It is a partial type over b but the choice of
another representative b′′ in the F -class of b gives an equivalent partial type over b′′. In a
similar way we can be define tp(aE/b) and tp(b/aE) for any sequence b of hyperimaginaries
and also tp(aE/A) for any class A of hyperimaginaries. As usual, e ≡c d means that
tp(e/c) = tp(d/c).

Proposition 15.11 The following are equivalent:

1. tp(aE/cF ) = tp(bE/cF )

2. tp(ac) = tp(b′c′) for some b′, c′ such that E(b′, b) and F (c′, c).

3. tp(a′c′′) = tp(b′c′) for some a′, c′′, b′c′ such that E(a′, a), F (c′′, c), E(b′, b) and F (c′, c).

4. There is some f ∈ Aut(C/cF ) such that f(aE) = bE

Proof: 4 ⇒ 1, 2 ⇒ 3 and 3 ⇒ 4 are clear. For 1 ⇒ 2, notice that if tp(aE/cF ) =
tp(bE/cF ) and p(x, y) = tp(a, c), then

π(x, y) = E(x, b) ∪ F (y, c) ∪ p(x, y)

is consistent. If |= π(b′, c′), then E(b′, b), F (c′, c) and tp(ac) = tp(b′c′). 2

Definition 15.12 A complete type over a hyperimaginary e in the real variables x is a
type of the form p(x) = tp(a/e) where a ∈ C is a sequence of the length of x. We use
the notation p(x) ∈ S(e) to express this situation. Of course, p(x) is a partial type over
a representative of e but it is complete in the sense that for any a, b |= p(x) there is some
f ∈ Aut(C/e) such that f(a) = b.

Proposition 15.13 For any hyperimaginary e, the relation F (x, y) ⇔ tp(x/e) = tp(y/e)
is type-definable over any representative of e.

Proof: If e = aE , then F (x, y) ⇔ ∃u(E(a, u) ∧ tp(xa) = tp(xu)). 2

Proposition 15.14 For any set of hyperimaginaries A there are hyperimaginaries a, b such
that bdd(A) = dclheq(a) and aclheq(A) = dclheq(b).

Proof: By Lemma 15.4 bdd(A) = dclheq(B) if B is the class of all hyperimaginaries in
bdd(A) of length α for some α ≤ ω. For each such α ≤ ω there are at most 2|T | many 0-type-
definable equivalence relations on α-sequences. For each such equivalence relation E there is
an upper bound κE for the number of hyperimaginaries eE in B: there are at most 2|T |+|A|

possibilities for p(x) = tp(e/A) and for each such p(x) there are boundedly many d |= p
with dE ∈ B. If κ is the supremum of all these κE , it follows that |B| ≤ κ+2|T |+|A| and we
can choose a sequence c enumerating B. By Lemma 15.3, c ∼ b for some hyperimaginary
b. Clearly dclheq(b) = dclheq(B) = bdd(A). The case aclheq(A) is similar. 2

Lemma 15.15 For any A-hyperimaginary e, there is some hyperimaginary e′ such that
Aut(C/e′) = {f ∈ Aut(C/A) : f(e) = e}. If e is A-bounded, e′ is A-bounded.

Proof: Let e = bE where E is a type-definable over A equivalence relation. Let a
enumerate A, let p(x) = tp(a), and let E = E(x, y; a). We define

F (xz, yu) ⇔ (z = u ∧ p(u) ∧ E(x, y; z)) ∨ xz = yu

It is a 0-type-definable equivalence relation. It is easy to see that e′ = baF is as required.
2
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Proposition 15.16 a
bdd≡ A b if and only if a ≡bdd(A) b.

Proof: Consider first the case A = ∅. By Proposition 15.14 we can assume bdd(∅) is a
single hyperimaginary. The equivalence relation E(a, b) ⇔ tp(a/bdd(∅)) = tp(b/bdd(∅)) is
bounded and by Proposition 15.13 it is type-definable over any representative. Since it is
invariant, it is also type-definable over ∅ and hence

bdd≡⊆ E. For the other direction, assume
E(a, b). Note that e = [a]bdd

≡
is a bounded hyperimaginary and thus e ∈ bdd(∅). Hence

there is some f ∈ Aut(C/e) such that f(a) = b, which implies a
bdd≡ b. The general case

can not be obtained by simply applying the case just proven to T (A) since bdd(A) is the
class of all A-bounded hyperimaginaries while bdd(∅) computed in T (A) is the class of all
A-bounded A-hyperimaginaries. But Lemma 15.15 helps to solve this difficulty. 2

Lemma 15.17 For any 0-type-definable equivalence relation E, the following are equiva-
lent:

1. aE ∈ dclheq(M)

2. aE ∈ bdd(M)

3. E(x, a) is finitely satisfiable in M .

Proof: Clearly 1 implies 2. We will show 2 ⇒ 3 and 3 ⇒ 1. Assume first that some
formula ϕ(x, a) ∈ E(x, a) is not satisfiable in M . For each cardinal κ we can build a coheir
sequence over M , (ai : i < κ), starting with a0 = a. If i < j < κ, then |= ¬ϕ(ai, aj) since
otherwise, by indiscernibility, |= ϕ(a, aj) and hence ϕ(x, a) would be satisfiable in M . Since
κ can be arbitrarily large and the elements of the coheir sequence have the same type over
M and have different E-classes, aE 6∈ bdd(M).

For 3 ⇒ 1, assume E(x, a) is finitely satisfiable in M and let f ∈ Aut(C/M) and
ϕ(x, y) ∈ E(x, y). We will show that |= ϕ(a, f(a)). This will imply E(a, f(a)) and therefore
f(aE) = aE . We may assume that E(x, y) is closed under conjunction and hence ` ψ(x, z)∧
ψ(z, y) → ϕ(x, y) for some symmetric ψ(x, y) ∈ E(x, y). Since ψ(x, a) is satisfiable in M ,
there is some c ∈ M such that |= ψ(c, a). Since a ≡M f(a), we have also |= ψ(c, f(a)).
From this it follows that |= ϕ(a, f(a)). 2

Proposition 15.18 bdd(b) =
⋂
b∈dclheq(M) dclheq(M)

Proof: If a ∈ bdd(b) and b ∈ dclheq(M) then clearly a ∈ bdd(M) and by Lemma 15.17
we conclude a ∈ dclheq(M). For the other direction, let us choose a model M such that
b ∈ dclheq(M) (for instance, a model containing a representative of b) and let us choose a
cardinal κ > 2|T |+|M |. If a 6∈ bdd(b), there is a family (ai : i < κ) of different b-conjugates
of a starting with a0 = a. By choice of κ there are i < j < κ such that ai ≡M aj . Hence
for some a′ 6= a we have a ≡M a′, which implies a 6∈ dclheq(M). 2

Proposition 15.19 Let p(x) ∈ S(A).

1. The restriction
Ls≡A� p of

Ls≡A to p(C) is the finest bounded A-invariant equivalence
relation on realizations of p.

2. The restriction
bdd≡ A� p of

bdd≡ A to p(C) is the finest bounded type-definable over A
equivalence relation on realizations of p.
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Proof: Since
Ls≡A� p is bounded and A-invariant, it contains the finest bounded A-invariant

equivalence relation E on p(C). Similarly,
bdd≡ A� p contains the finest bounded type-definable

over A equivalence relation F on p(C). On the other hand,

E(x, y) ∨ (¬p(x) ∨ ¬p(y))

is bounded and A-invariant, and therefore it contains
Ls≡A. The corresponding result with

respect to
bdd≡ A and F is more involved. Assume a, b realize p(x) and a

bdd≡ A b. We will show
that F (a, b). By Proposition 15.16 a ≡bdd(A) b. Choose with Lemma 15.5 an extension F ′

of F which is an equivalence relation on all sequences of the length of a, is type-definable
over A and agrees with F on p. Then e = [a]F = [a]F ′ is an A-bounded A-hyperimaginary.
By Lemma 15.15 there is an A-bounded hyperimaginary e′ such that Aut(C/e′) = {f ∈
Aut(C/A) : f(e) = e}. Since e′ ∈ bdd(A), a ≡e′ b, which implies that f(a) = b for some
f ∈ Aut(C/A) such that f(e) = e and therefore implies that F (a, b). 2

Proposition 15.20 If E is a bounded equivalence relation on realizations of p(x) ∈ S(A)
and it is type-definable over A, then there exists a bounded equivalence relation F defined
for all sequences of the length of x which is type-definable over A and agrees with E in p(C).

Proof: Since
bdd≡ A� p ⊆ E, it suffices to set F (x, y) ⇔ (p(x)∧ p(y)∧E(x, y))∨ x bdd≡ A y. 2

Proposition 15.21 Any A-bounded A-hyperimaginary is an equivalence class of a bounded
type-definable over A equivalence relation.

Proof: Let E be a type-definable over A equivalence relation and let aE be an A-bounded
A-hyperimaginary. Let p(x) = tp(a/A) and note that each A-conjugate of aE is an E-class
which is also a union of

bdd≡ A-classes. Hence if F is defined by

F (x, y) ⇔ ∃z(p(z) ∧ E(x, z) ∧ E(y, z)) ∨ x bdd≡ A y

then F is a bounded equivalence relation which is type-definable over A and aE = aF . 2

Proposition 15.22 Let e, d be hyperimaginaries such that e ∈ bdd(d) and let A be the
set of all d-conjugates of e. There is some hyperimaginary c such that Aut(C/c) = {f ∈
Aut(C) : f(A) = A}.

Proof: Let e = aE and d = bG. We may assume every ϕ(x, y) ∈ E(x, y) is symmetric.
Since e ∈ bdd(d), for any ϕ(x, y) there is a maximal nϕ < ω for which there is a sequence
(ai : i < nϕ) such that de ≡ d[ai]E for each i < nϕ and |= ¬ϕ(ai, aj) for all i < j < nϕ. Fix
a witnessing sequence (aϕi : i < nϕ). Let p(z, x) = tp(d, e), let rϕ(z, xi)i<nϕ be the type⋃

i<nϕ

p(z, xi) ∪ {¬ϕ(xi, xj) : i < j < nϕ}

and let us define F (z1, z2) by∧
ϕ(x,y)∈E(x,y)

∃(xi : i < nϕ)(rϕ(z1, xi)i<nϕ
∧ rϕ(z2, xi)i<nϕ

)

Note that F is independent of the choice of representatives z1, z2 in G-classes.

Claim: For any f ∈ Aut(C), |= F (b, f(b)) iff f(A) = A.
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Proof of the claim: Assume first f(A) = A. Therefore f−1(A) = A. Clearly, |=
rϕ(b, aϕi )i<nϕ . Note that [aϕi ]E ∈ A and hence f−1([aϕi ]E) ∈ A and f−1([aϕi ]E) ≡d e, that is,
|= p(b, f−1(aϕi )) for all i < nϕ. It follows that rϕ(f(b), aϕi )i<nϕ and thus F (b, f(b)). For the
other direction, let e′ = [a′]E ∈ A (which means de ≡ de′) and assume F (b, f(b)). For each
ϕ ∈ E(x, y) choose some (cϕi : i < nϕ) such that |= rϕ(b, cϕi )i<nϕ

and |= rϕ(f(b), cϕi )i<nϕ
.

Then |= ¬ϕ(cϕi , c
ϕ
j ) for i < j < nϕ and d[cϕi ]E ≡ f(d)[cϕi ]E ≡ de ≡ de′ ≡ f(d)f(e′) =

f(d)[f(a′)]E for all i < nϕ. By maximality of nϕ, |= ϕ(f(a′), cϕi ) for some i < nϕ. Therefore
E(f(a′), y) ∪ p(b, y) is consistent and thus de ≡ d[f(a′)]E = df(e′), that is, f(e′) ∈ A. This
proves f(A) ⊆ A. Since also F (b, f−1(b)), we get the equality f(A) = A.

The claim is obviously true for any other b′ such that [b′]G = d. From the claim it
follows that F is an equivalence relation on realizations of tp(d). Hence we may assume F
is an equivalence relation on all sequences of the length of b. Clearly the hyperimaginary
bF fulfills the requirements.

2



Chapter 16

Forking for hyperimaginaries

Definition 16.1 Let A be a set of hyperimaginaries and let I be a set linearly ordered by <.
The sequence of hyperimaginaries (ei : i ∈ I) is indiscernible over A or it is A-indiscernible
if for any n < ω, for any two increasing sequences of indices i0 < . . . < in and j0 < . . . < jn,
tp(ei0 , . . . , ein/A) = tp(ej0 , . . . , ejn/A). In practice we may always assume that A is a
single hyperimaginary. Note that the type-definable equivalence relations corresponding to
the hyperimaginaries ei are in fact the same and hence we can write ei = [ai]E for a single
E.

Lemma 16.2 Let d be a hyperimaginary.

1. Let I, J be linearly ordered infinite sets. If (ei : i ∈ I) is a d-indiscernible sequence
of hyperimaginaries, then there is a d-indiscernible sequence (ci : j ∈ J) such that
for any n < ω, for any two increasing sequences of indices i0 < . . . < in ∈ I and
j0 < . . . < jn ∈ J , ei0 , . . . , ein ≡d cj0 , . . . , cjn .

2. If (ei : i ∈ I) and (di : i ∈ I) are d-indiscernible sequence of hyperimaginaries and
(ei : i ∈ I0) ≡d (di : i ∈ I0) for each finite subset I0 ⊆ I, then f((ei : i ∈ I)) = (di :
i ∈ I) for some f ∈ Aut(C/d).

Proof: 1. By compactness. For 2 note that it follows that (ei : i ∈ I) ≡d (di : i ∈ I). 2

Proposition 16.3 If (ei : i ∈ I) is a sequence of hyperimaginaries indiscernible over
the hyperimaginary d, then for some representative ḋ of d some sequence (ėi : i ∈ I) of
corresponding representatives of (ei : i ∈ I) is ḋ-indiscernible.

Proof: Fix d′, a representative of d. Since the sequence we seek is just a realization of
some partial type over d′ and representatives of the hyperimaginaries ei, we may assume
(I,<) = (ω,<). Let κ be an infinite cardinal number larger than the length of d′, and
larger than the length of every representative of ei, and let λ = i(2κ)+ . By the Lemma 16.2
we can extend (ei : i < ω) to a d-indiscernible sequence (ei : i < λ). Choose corresponding
representatives [ai]E = ei. By Proposition 1.1 there is a d′-indiscernible sequence (ci : i < ω)
such that for all n < ω there are some i0 < . . . < in < λ such that c0 . . . cn ≡ḋ ai0 . . . ain .
Since ([ci]E : i < ω) ≡d (ei : i < ω), for some representative ḋ of d there exists a ḋ-
indiscernible sequence (ėi : i < ω) such that [ėi]E = ei. 2

Proposition 16.4 Let d be a hyperimaginary.

83
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1. For any hyperimaginary e 6∈ bdd(d), there is a d-indiscernible sequence (ei : i < ω) of
distinct hyperimaginaries starting with e0 = e.

2. If the sequence of hyperimaginaries (ei : i ∈ I) is d-indiscernible, then it is also
indiscernible over bdd(d).

Proof: 1 Let e = aE . Since e 6∈ bdd(d), for some ϕ(x, y) ∈ E(x, y) there are (ai : i < ω)
such that a = a0 ≡d ai and |= ¬ϕ(ai, aj) for all i < j < ω. By Ramsey’s Theorem and
compactness we find a d-indiscernible sequence (bi : i < ω) such that |= ¬ϕ(bi, bj) for all
i < j < ω and b0 ≡d a. Then a d-conjugate of ([bi]E : i < ω) satisfies the requirements.

2. By Proposition 16.3 some sequence (ėi : i ∈ I) of representatives is indiscernible over
some representative ḋ of d. By Corollary 1.2 (ėi : i ∈ I) is indiscernible over some model
M containing ḋ. By Proposition 15.18, bdd(d) ⊆ dclheq(M) and hence (ėi : i ∈ I) and
(ei : i ∈ I) are indiscernible over bdd(d). 2

Definition 16.5 The formula ϕ(x, a) divides over the hyperimaginary e (with respect to
k) if there is some e-indiscernible sequence (ai : i < ω) with a0 = a for which {ϕ(x, ai) :
i < ω} is inconsistent (k-inconsistent). The formula ϕ(x, a) forks over e if there are
formulas ψ1(x, b1), . . . , ψn(x, bn) such that ϕ(x, a) ` ψ1(x, b1) ∨ . . . ∨ ψn(x, bn) and each
ψi(x, bi) divides over e. The set of formulas π(x) divides (forks) over e if π(x) implies some
formula which divides (forks) over e. The hyperimaginary a is independent independence!
of hyperimaginaries of the hyperimaginary b over the hyperimaginary e (written a |̂

e
b)

if tp(a/be) does not fork over e. Other notions like Morley sequences can be defined in a
similar way and we will make use of them when necessary.

Proposition 16.6 A partial type π(x) divides over the hyperimaginary e with respect to k
if and only if it divides over some representative of e with respect to k.

Proof: By Proposition 16.3. 2

Remark 16.7 Let π(x, y) be a partial type over ∅. Then π(x, b) divides over the hyper-
imaginary e if and only if for some e-indiscernible sequence (bi : i < ω) with b = b0,⋃
i<ω π(x, bi) is inconsistent.

Lemma 16.8 For any hyperimaginaries a, b, e: tp(a/be) does not divide over e if and
only if for any e-indiscernible sequence I 3 b there is some a′ ≡eb a such that I is ea′-
indiscernible.

Proof: We adapt the proof of Lemma 4.5. From right to left it is easy. For the other
direction, assume tp(a/be) does not divide over e and, to simplify notation, let I = ([bi]E :
i < ω) be e-indiscernible with b = [b0]E . By Proposition 16.3 we may assume that (bi :
i < ω) is indiscernible over some representative ė of e. Let π(x, ė, b0) = tp(a/eb) and let
Γ(x, ė, bi)i<ω be the set of formulas expressing that (bi : i < ω) is indiscernible over ėx.
It is enough to show that π(x, ė, b0) ∪ Γ(x, ė, bi)i<ω is consistent. By the previous remark,⋃
i<ω π(x, ė, bi) is consistent and can be realized by some c. Let Γ0(x, ė, bi)i<ω be a finite

subset of Γ(x, ė, bi)i<ω. By Ramsey’s Theorem, there is a one-to-one mapping f : ω → ω
such that |= Γ0(c, ė, f(bi))i<ω. Now take some c′ such that c′(bi : i < ω) ≡ė c(f(bi) : i < ω)
and note that c′ realizes Γ0(x, ė, bi)i<ω and π(x, ė, b0). 2

Proposition 16.9 For any hyperimaginaries a, b, c, d: if tp(b/cd) does not divide over d
and tp(a/cbd) does not divide over bd, then tp(ab/cd) does not divide over d.
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Proof: By Lemma 16.8. 2

Proposition 16.10 1. Let π(x) be a partial type over A. If π does not fork over the
hyperimaginary e, then some completion p(x) ∈ S(A) of π does not fork over e.

2. Let a, b, c be hyperimaginaries such that a |̂
b
c. Then for any hyperimaginary d, there

is some a′ ≡bc a such that a′ |̂
b
cd.

Proof: 1. As in Remark 4.4, the reason is that π(x)∪{¬ϕ(x) : ϕ(x) ∈ L(A) forks over e}
is consistent. 2. Fix representatives ḃ, ċ, ḋ of b, c, d and put tp(a/bc) = π(x, ḃ, ċ). By 1
there exists a completion p(x) ∈ S(ḃċḋ) of π(x, ḃ, ċ) which does not fork over b. Let E be
the equivalence relation of a, let ȧ |= p and let a′ = ȧE . Then a′ ≡bc a and ȧ |̂

b
ċḋ. Since

tp(ȧ/bċḋ) ` tp(a′/bcd) we also have a′ |̂
b
cd. 2

Proposition 16.11 Let e be a hyperimaginary.

1. If π(x) divides over e and π(x) is a partial type over A, then π(x) divides over ė for
any representative ė of e such that ė |̂

e
A.

2. If T is simple, then a |̂
e
e for any sequence a.

3. If T is simple, then a partial type π(x) forks over e if and only if π(x) forks over some
representative of e.

Proof: 1. Fix ϕ(x, y) ∈ L and b ∈ A such that π(x) ` ϕ(x, b) and ϕ(x, b) divides over
e. Then for some e-indiscernible sequence (bi : i < ω) with b = b0, {ϕ(x, bi) : i < ω}
is inconsistent. Since ė |̂

e
b, by Lemma 16.8 there is another ė-indiscernible sequence

(b′i : i < ω) with b = b′0 and such that {ϕ(x, b′i) : i < ω} is inconsistent. Then ϕ(x, b) divides
over ė.

2. Choose a representative ė of e. We will check that the partial type π(x, ė) = tp(a/e)
does not fork over e. Assume π(x, ė) ` ϕ1(x, a1)∨. . .∨ϕn(x, an) where every ϕi(x, ai) divides
over e with respect to ki. Let k = max{k1, . . . , kn}, let ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}, and
let m = D(π(x, ė),∆, k). By Proposition 3.10 there is a completion p(x) ∈ S(ėa1, . . . , an)
of π(x, ė) with D(p(x),∆, k) = m. For some i, ϕi(x, ai) ∈ p. Now, ϕi(x, ai) divides over e
with respect to k and by Proposition 16.6 it divides over some representative ë of e with
respect to k. Notice that π(x, ė) ≡ π(x, ë). Then m = D(π(x, ë) ∪ {ϕi(x, ai)},∆, k) ≥
D(π(x, ë),∆, k) + 1 = m+ 1, a contradiction.

3. Assume π(x) ` ϕ1(x, a1) ∨ . . . ∨ ϕn(x, an) where every ϕi(x, ai) divides over e. By 2
and Proposition 16.10 we can choose a representative ė of e such that ė |̂

e
a1, . . . , an. By

1 every ϕi(x, ai) divides over ė. Hence π(x) forks over ė. 2

Corollary 16.12 If T is simple, a partial type forks over a hyperimaginary e if and only
if it divides over e.

Proof: By Proposition 16.11 and Proposition 5.14. 2

Proposition 16.13 Let T be simple. For any hyperimaginaries a, b, c, d:

1. If ab |̂
c
d, then a |̂

c
d and a |̂

bc
d.

2. If a |̂
b
cd , then a |̂

b
d and a |̂

bc
d.
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3. a |̂
b
b.

4. There is some a′ ≡b a such that a′ |̂
b
c.

5. If a |̂
c
d and b |̂

ac
d, then ab |̂

c
d.

6. a |̂
b
bdd(b).

7. If d |̂
c
ab, then a |̂

c
b iff a |̂

cd
b

Proof: 1 and 2 follow straightforward from Corollary 16.12 and the definition of dividing.
To check that a |̂

bc
d in 1 it could be convenient to use Remark 16.7 applied to tp(a/bcd).

3. Write tp(a/b) = π(x, b0), where b0 is a representative of b. By Corollary 4.14, π(x, b0)
does not fork over b0. If we choose another representative b1 of b we get equivalent partial
types π(x, b0) y π(x, b1) and hence π(x, b0) does not fork over b1 either. By Proposición 16.6,
π(x, b0) does not fork over b.

4 follows from 3 and Proposition 16.10, while 5 follows from Proposition 16.9 and
Corollary 16.12.

6. By 4 there is some a′ ≡b a such that a′ |̂
b
bdd(b). There is some f ∈ Aut(C/b) such

that f(a′) = a. Since f fixes setwise bdd(b), if we apply f we obtain a |̂
b
bdd(b).

7. Assume d |̂
c
ab and a |̂

c
b. By 2 d |̂

ac
b and then by 5 da |̂

c
b. By 1 a |̂

cd
b.

Assume now d |̂
c
ab and a |̂

cd
b. By 2 d |̂

c
b and by 5, ad |̂

c
b. Then by 1 a |̂

c
d. 2

Proposition 16.14 (Symmetry and transitivity) If T is simple, then independence is
symmetric and transitive for hyperimaginaries, that is, for any hyperimaginaries a, b, c, d:

1. a |̂
b
c if and only if c |̂

b
a.

2. If a |̂
b
c and a |̂

bc
d, then a |̂

b
cd.

Proof: 2 is a consequence of 1 and of point 5 of Proposition 16.13. For 1, we show first
that we may assume that a is a sequence of elements in C. For this we use several times
Proposition 16.13. Choose with point 4 some representative a0 of a such that a0 |̂

a
bc. By

point 2 a0 |̂
ab
c. If we assume a |̂

b
c by point 5 we get aa0 |̂

b
c and by point 1 a0 |̂

b
c.

Since a ∈ dclheq(a0), it follows that tp(c/ba0) ` tp(c/ba). If we were able to prove then
that c |̂

b
a0 we would conclude that c |̂

b
a. Thus we assume a ∈ C.

As a second step we show now that we can also assume c is a sequence of elements in C.
Choose representatives b0 of b and c0 of c and let π(x, b0, c0) = tp(a/bc). It is a partial type
over b0c0 and it does not fork over b since we assume a |̂

b
c. By Proposition 16.10, some

completion p(x) ∈ S(b0c0) of π(x, b0, c0) does not fork over b. Let a′ |= p. Then a′ ≡bc a and
a′ |̂

b
b0c0 (note that tp(a′/b0c0) ` tp(a′/b0c0b)). Since these are sequences in C, b0c0 |̂

b
a′

and then by Proposition 16.13 c0 |̂
b
a′. Let f ∈ Aut(C/bc) be such that f(a′) = a. Then

f(c0) |̂
b
a and f(c0) is a representative of c. Since tp(f(c0)/ba) ` tp(c/ba), we conclude

that c |̂
b
a.

Thus we must finally consider the case where a and c are sequences of elements of
C. Assume a |̂

b
c. Choose a representative ḃ of b such that ḃ |̂

b
ac. By point 7 of

Proposition 16.13, a |̂
bḃ
c. Since b ∈ dclheq(ḃ), ḃ ∼ bḃ and therefore a |̂

ḃ
c. By symmetry

of independence in C, c |̂
ḃ
a. Again, we get c |̂

bḃ
a and by point 7 of Proposition 16.13,

c |̂
b
a. 2
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Proposition 16.15 (Local character) Let T be simple, let a be a hyperimaginary and
let b = (bi : i ∈ I) be a sequence of hyperimaginaries. Then a |̂

(bi:i∈J)
b for some J ⊆ I

such that |J | ≤ |T |.

Proof: We may assume I = {i : i < κ} for some cardinal κ. Choose inductively
representatives b′i of bi such that b′i |̂ bi

b(b′j : j < i) for all i < κ. It is then easy to
see that for all subsets J of κ, (b′i : i ∈ J) |̂

(bi:i∈J)
b. We can find a subset J0 ⊆ κ such

that |J0| ≤ |T | and tp(a/b) (represented as a partial type over (b′i : i < κ)) does not fork
over (b′i : i ∈ J0). By symmetry and transitivity it does not fork over (bi : i ∈ J0) either. 2

Corollary 16.16 Let T be simple. For any hyperimaginaries a, b there is some hyperimag-
inary e of length ≤ |T | such that e ∈ dclheq(b) and a |̂

e
b.

Proof: By Lemma 15.4 there is a sequence (bi : i ∈ I) of countable hyperimaginaries bi
such that b ∼ (bi : i ∈ I). By Proposition 16.15 there is some J ⊆ I such that |J | ≤ |T |
and a |̂

(bi:i∈J)
(bi : i ∈ I). Then e = (bi : i ∈ J) satisfies the requirements. 2

Proposition 16.17 (Independence Theorem) Let T be simple, let a, b, c, d be hyper-
imaginaries such that a |̂

M
b, c |̂

M
a, d |̂

M
b and c ≡M d. Then there is some hyper-

imaginary e |̂
M
ab such that e ≡Ma c and e ≡Mb d.

Proof: We may assume that c and d are sequences of elements of C (replace c by a
representative ċ such that ċ |̂

c
Ma and then replace d by some representative ḋ such that

ċ ≡M ḋ and ḋ |̂
Md

b). Choose representatives a0, b0 of a and b such that a0 |̂
M
b0.

Consider tp(c/aM) tp(d/bM) as partial types over Ma0 and Mb0 respectively. They can
be extended to complete types p(x) ∈ S(Ma0) and q(x) ∈ S(Mb0) which do not fork over
M . Note that p � M = q � M . By the Independence Theorem for ordinary types there is
some e0 |= p ∪ q such that e0 |̂

M
a0b0. Then e0 is a representative of the hyperimaginary

e we seek. 2

Definition 16.18 For any hyperimaginary e, the group of strong automorphisms over
e is the group Autf(C/e) generated by all Aut(C/M) where e ∈ dclheq(M). The Lascar
strong type over e of a hyperimaginary a is the orbit Lstp(a/e) of a under Autf(C/e).
Hence Lstp(a/e) = Lstp(b/e) if and only if for some n < ω there are models Mi and
hyperimaginaries ai such that e ∈ dclheq(Mi) and

a = a0 ≡M0 a1 ≡M1 a2 ≡M3 . . . ≡Mn an+1 = b

Remark 16.19 For any hyperimaginaries a, b, e:

1. Lstp(a/e) = Lstp(b/e) if and only if Lstp(a′/e) = Lstp(b′/e) for some representatives
a′ of a and b′ of b.

2. If a ≡M b and e ∈ dclheq(M) then for some hyperimaginary c, there are infinite
e-indiscernible sequences I, J , such that a, c ∈ I and c, b ∈ J .

3. If a, b ∈ I for some infinite e-indiscernible sequence I, then a ≡M b for some model
M such that e ∈ dclheq(M).

4. Lstp(a/e) = Lstp(b/e) if and only if for some n < ω there are infinite e-indiscernible
sequences Ii and hyperimaginaries ai such that a = a0, ai, ai+1 ∈ Ii and an+1 = b.
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Proof: 1 is clear. For 2, take representatives a′, b′ of a, b such that a′ ≡M b′. By point 2
of Lemma 9.10, there is some c′ and some M -indiscernible sequences I, J such that a′, c′ ∈ I
and c′, b′ ∈ J . The corresponding sequences of equivalence classes are as required.

3. Let I be a e-indiscernible sequence such that a, b ∈ I. By Proposition 16.3, there are
representatives a′, b′, e′ of a, b, e such that for some e′-indiscernible sequence J , a′, b′ ∈ J .
By point 1 of Lemma 9.10, a′ ≡M b′ for some model M 3 e′. Then e ∈ dclheq(M) and
a ≡M b.

4 is a consequence of points 2 and 3. 2

Definition 16.20 Le e be a hyperimaginary. A type-definable relation E is type-definable
over e if it is e-invariant. Note that this is equivalent to say that E is type-definable over any
representative of e. An equivalence class of a sequence in a type-definable over e equivalence
relation is an e-hyperimaginary.

Lemma 16.21 Let e be a hyperimaginary. For any e-hyperimaginary h there is a hyper-
imaginary h′ such that h′ ∼ he, that is Aut(C/h′) = Aut(C/he). Moreover h′ is e-bounded
if h is e-bounded.

Proof: It is a generalization of Lemma 15.15, with a similar proof. Let h = bE where E
is a type-definable over e equivalence relation. Let ė be a representative of e, say ėG = e,
let p(x) = tp(ė), and let E = E(x, y; ė). We define

F (xz, yu) ⇔ (G(z, u) ∧ p(z) ∧ p(u) ∧ E(x, y; z)) ∨ xz = yu

It is a 0-type-definable equivalence relation and it is easy to see that h′ = bėF is as required.
2

Lemma 16.22 Let T be simple. Let a, b, e be hyperimaginaries such that a |̂
e
b and a ≡e b.

For any representative a′ of a there is some representative b′ of b such that a′ |̂
e
b′ and

a′ ≡e b′.

Proof: Choose as b′ some representative of b such that b′ ≡e a′ and b′ |̂
eb
a′. 2

Lemma 16.23 Let T be simple. Let a, b, e be hyperimaginaries such that a ≡M b for some
model M such that e ∈ dclheq(M). Then a ≡N b for some model N such that e ∈ dclheq(N)
and ab |̂

e
N .

Proof: We may assume that a, b are sequences of elements of C. Choose a model M ′ ≡e M
such that M ′ |̂

e
M and then choose a model N such that N ≡M M ′ and tp(N/Mab) is

a coheir of tp(N/M). Then N |̂
e
M and by Proposition 7.6 N |̂

M
ab. By transitivity,

N |̂
e
ab. Since tp(N/Mab) does not split over M and a ≡M b, it follows that a ≡N b. 2

Proposition 16.24 Let T be simple. For any hyperimaginaries a, b, e such that Lstp(a/e) =
Lstp(b/e) and a |̂

e
b there is some model M such that a ≡M b, ab |̂

e
M and e ∈ dclheq(M).

Moreover a, b ∈ I for some infinite M -indiscernible sequence I.

Proof: Fix n < ω, fix models Mi for i ≤ n and sequences ai for i ≤ n + 1 such that
e ∈ dclheq(Mi) and

a = a0 ≡M0 a1 ≡M1 a2 ≡M3 . . . ≡Mn an+1 = b

By Lemma 16.23 we may assume that aiai+1 |̂
e
Mi. Hence we can also assume that

Mi |̂ e a0, . . . , an+1(Mj : j < i). It follows that a0, . . . , an+1 |̂
e
M0, . . . ,Mn. Note that
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a0 |̂
M0,...,Mn

an+1. Let b0 = a0, let bn+1 = an+1 and for 1 ≤ i ≤ n choose bi ≡M0,...,Mn
ai

and such that bi |̂ M0,...,Mn
bn+1(bj : j < i) for any i ≤ n. It follows that (bj : j ≤ n+ 1) is

independent over M0, . . . ,Mn. Note that

a = b0 ≡M0 b1 ≡M1 b2 ≡M3 . . . ≡Mn
bn+1 = b

Since bi |̂ eM0, . . . ,Mn the sequence (bj : j ≤ n+1) is also independent over e. By changing
the modelsMi as we did before if necessary we may assume that b0, . . . , bn+1 |̂

e
M0, . . . ,Mn.

Independency of (bj : j ≤ n+1) over M0, . . . ,Mn still holds. Now we proceed by induction
on n. The case n = 0 follows directly from Lemma 16.23. Using the inductive hypothesis
it is enough now to consider the case n = 1.

We have a = b0 ≡M0 b1 ≡M1 b2 = b. Let f ∈ Aut(C/M0) such that f(b1) = b0. Then
M1 |̂

M0
b1b2, f(M1) |̂

M0
b0 and b0 |̂

M0
b1b2 and by the Independence Theorem (Proposi-

tion 16.17) there is a modelN such thatN |̂
M0

b0b1b2, N ≡M0b1b2 M1 andN ≡M0b0 f(M1).
Then b0N ≡ b0f(M1) ≡ b1M1 ≡ b2M1 ≡ b2N and clearly b0b2 |̂

e
N .

The last assertion follows from Proposition 10.11 since a |̂
M
b and by Lemma 16.22 we

can assume a, b are sequences of elements in C. 2

Proposition 16.25 If T is simple, then for any hyperimaginaries a, b, e the following are
equivalent:

1. Lstp(a/e) = Lstp(b/e)

2. For some hyperimaginary c there are infinite e-indiscernible sequences I, J , such that
a, c ∈ I and c, b ∈ J .

3. a ≡bdd(e) b.

Proof: By Remark 16.19 it is clear that 2 implies 1 and that 1 implies 3. To prove 2 from
1 find c such that c |̂

e
ab and Lstp(a/e) = Lstp(c/e) and then use Proposition 16.24. To

find such c one needs to adapt the proof of Lemma 10.7, but this is straightforward. Finally
we show that 1 follows from 3. We may assume that a, b are sequences of elements in C. The
condition in 2 can be expressed by a partial type Φ(x, y, d) over any representative d of e.
Hence Φ(x, y, d) defines equality of Lascar strong type over e, a bounded equivalence relation
E which is type-definable over e. Now aE is an e-hyperimaginary and by Lemma 16.21 there
is a hyperimaginary c such that c ∼ e, aE . Since aE is e-bounded, c ∈ bdd(e). By 3, there
is some f ∈ Aut(C/bdd(e)) such that f(a) = b. Since f(c) = c, bE = f(aE) = aE and
hence Lstp(a/e) = Lstp(b/e). 2

Corollary 16.26 (Independence theorem for hyperimaginary Lascar strong types)
Let T be simple, let a, b, c, d, h be hyperimaginaries such that a |̂

h
b, c |̂

h
a, d |̂

h
b and

c ≡bdd(h) d. Then there is some hyperimaginary e |̂
h
ab such that e ≡bdd(h)a c and

e ≡bdd(h)b d.

Proof: By Proposition 16.25, Lstp(c/h) = Lstp(d/h) and then by Proposition 16.24
c ≡M d for some model M such that cd |̂

h
M and h ∈ dclheq(M). We can assume that

M |̂
cdh

ab and therefore M |̂
h
abcd. It follows that a |̂

M
b, c |̂

M
a and d |̂

M
b. By

Proposition 16.17 there is some e |̂
M
ab such that e ≡Ma c and e |̂

Mb
d. Clearly e |̂

h
ab,

e ≡bdd(h)a c and e ≡bdd(h)b d. 2
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Chapter 17

Canonical bases revisited

Definition 17.1 Let p(x) be a complete type over the hyperimaginary h in the real variables
x, that is, p(x) = tp(c/h) where h is a hyperimaginary and c is a sequence of elements of
C. We say that p(x) is an amalgamation base if the independence theorem is true for
p(x). That is, if for any hyperimaginaries a, b such that a |̂

h
b, for any c, d such that

tp(c/h) = p(x) = tp(d/h), c |̂
h
a, and d |̂

h
b, there is some e |̂

h
ab such that e ≡ha c and

e ≡hb d. As shown in Proposition 16.17 and in Corollary 16.26, in a simple theory any type
over a model and any type over a hyperimaginary of the form bdd(h) is an amalgamation
base.

If p(x) is an amalgamation base, the amalgamation class of p is the class Pp consisting
in all amalgamation bases q(x) such that for some n < ω there are amalgamation bases
(pi(x) : i ≤ n) such that p = p0, q = pn and for every i < n, pi and pi+1 have a common
nonforking extension. Note that Pp = Pq if q ∈ Pp.

Remark 17.2 1. In a simple theory, any stationary type is an amalgamation base.

2. In a stable theory, any amalgamation base is a stationary type.

Proof: 1. Given a, b, c, d, h and a stationary type p(x) over h as in the definition of
amalgamation base, any realization e of the unique nonforking extension of p over h, a, b
satisfies the requirements.

2. Let T be stable, let p(x) a complete type over the hyperimaginary h and let us assume
p is an amalgamation base. If p is not stationary, then it has two different nonforking
extensions over ah for some hyperimaginary a. We can assume that a enumerates a model
M such that h ∈ dclheq(M). Then p has two different nonforking extensions p1, p2 over
M . Choose now a model N such that h ∈ dclheq(N) and N |̂

h
M . By stability, p1 is

stationary. Let q1(x) ∈ S(N) be the unique type over N which is parallel to p1. Since
p is an amalgamation base, we can amalgamate q1 and p2, that is, for some e |̂

h
MN ,

tp(e/N) = q1 and tp(e/M) = p2. But tp(e/M) is parallel to tp(e/N) and hence p2, p1 are
parallel and they must be the same type over M . 2

Proposition 17.3 Let T be simple, let A be a set of parameters in C and p(x) ∈ S(A). If
p is finitely satisfiable in A, then it is an amalgamation base.

Proof: We prove that tp(a/A) ` tp(a/bdd(A)). The rest follows from Corollary 16.26.
Assume a ≡A b. By Proposition 15.16 it is enough to check that a

bdd≡ A b. Let E be a

91
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type-definable over A bounded equivalence relation and let us prove that E(a, b). Consider
some ϕ(x, y) ∈ E(x, y) and choose some thick formula ψ(x, y) ∈ E(x, y) such that |=
ψ(x, y)∧ψ(y, z) → ϕ(x, z). Since A 6= ∅ we can choose a maximal sequence a0, . . . , an in A
such that ¬ψ(ai, aj) for all i < j ≤ n. We claim that |= ψ(a, ai) for some i ≤ n. Otherwise∧
i≤n ¬ψ(x, ai) ∈ tp(a/A) and by finite satisfiability we find some a′ ∈ A realizing this

formula, contradicting the maximality of a0, . . . , an. Similarly, |= ψ(b, aj) for some j ≤ n.
Since a ≡A b, i = j. Then |= ψ(a, ai) ∧ ψ(ai, b) and by choice of ψ, |= ϕ(a, b). 2

Corollary 17.4 Let T be simple. If (ai : i ≤ ω) is indiscernible, then tp(aω/(ai : i < ω))
is an amalgamation base.

Proof: It is a consequence of Proposition 17.3 since tp(aω/(ai : i < ω)) is finitely satisfiable
in {ai : i < ω}. 2

Lemma 17.5 Let T be simple, let R be a type-definable over ∅ symmetric and reflexive
relation on sequences of a given length. Assume that whenever R(a, b), R(a, c), and b |̂

a
c,

then R(b, c). Then the transitive closure of R is the two step composition R2 = R ◦ R.
Therefore the transitive closure of R is type-definable over ∅. In fact, for any sequences a, b
the following are equivalent:

1. For some n < ω there are a0, . . . , an such that a = a0, b = an and for each i < n,
R(ai, ai+1).

2. There is some c such that R(a, c), R(b, c), a |̂
b
c, and b |̂

a
c.

3. There is some c such that R(a, c) and R(b, c).

Proof: Let us fix an equivalence class C of the transitive closure of R. We will restrict our
attention to sequences a, b ∈ C. Choose a complete type p(x) = tp(a) of some a ∈ C. Let
κ = |T |+ length(x) and fix an enumeration ((ϕi, ki) : i < κ) of all pairs consisting in some
formula ϕ(x, y) ∈ L and some natural number k < ω. We inductively define the sequence
(ni : i < κ): ni is the greatest n < ω for which there are a, b ∈ C such that a |= p, R(a, b),
D(tp(b/a), ϕi, ki) = n and for each j < i, D(tp(b/a), ϕj , kj) ≥ nj . By compactness, there
are a, b ∈ C such that a |= p and D(tp(b/a), ϕi, ki) = ni for all i < κ.

Claim 1. If p′(x) = tp(a′) for some other a′ ∈ C and we define a similar sequence (n′i : i < κ)
for p′, then ni = n′i for all i < κ

Proof of the claim: by induction on the length of an R-path in C connecting a real-
ization of p′ with a realization of p. Assume a′ is connected to a realization of p by
an R-path of length n + 1, and hence R(a′, a′′) for some a′′ connected to a realization
of p by an R-path of length n. By the inductive hypothesis we may choose some b
such that R(a′′, b) and D(tp(b/a′′), ϕi, ki) = ni for all i < κ. We may assume that
b |̂

a′′
a′, and hence the hypothesis of our Lemma gives R(a′, b). Then, for all i < κ,

n′i ≥ D(tp(b/a′), ϕi, ki) ≥ D(tp(b/a′′a′), ϕi, ki) = D(tp(b/a′′), ϕi, ki) = ni. Since the situa-
tion is completely symmetric, ni ≥ n′i for all i < κ. 2claim 1

We need only to prove 1 ⇒ 2, and it is enough to do it for sequences in C. This can
be done by induction on the length n of an R-path joining a and a′. The starting case is
clear, and for the case n+ 1 we will need the following

Claim 2. Assume a1, a2, a3, a4 are an R-path in C, R(a2, b) and D(tp(b/a2), ϕi, ki) ≥ ni
for all i < κ. If a2 |̂

a3
a1, a2 |̂

a1
a3, a2 |̂

a1a3
a4, and b |̂

a2
a1a3a4 then R(aj , b) and

b |̂
aj
a1a2a3a4 for all j.
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Proof of the claim: by the hypothesis of the Lemma we easily see that R(aj , b) for j =
1, 2, 3. Since a2 |̂

a3
a4, we see that R(a2, a4) and since moreover b |̂

a2
a4 we conclude

that also R(a4, b). We show by induction on i < κ that ni = D(tp(b/aj), ϕi, ki) =
D(tp(b/a1a2a3a4), ϕi, ki). By the inductive hypothesis and by construction of the sequence
(ni : i < κ) we see that ni ≥ D(tp(b/aj), ϕi, ki). But since b |̂

a2
a1a3a4

D(tp(b/aj), ϕi, ki) ≥ D(tp(b/a1a2a3a4), ϕi, ki) = D(tp(b/a2), ϕi, ki) ≥ ni.

Hence b |̂
aj
a1a2a3a4. 2claim 2

We continue with the case n + 1. Assume there is an R-path of length n + 1 joining
a1 and a4. For some a3, R(a3, a4) and there is an R-path of length n joining a1 and a3.
By inductive hypothesis, there is some a2 such that R(a1, a2), R(a3, a2), a2 |̂

a3
a1, and

a2 |̂
a1
a3. We may clearly assume that a2 |̂

a1a3
a4. If we now choose b such that R(a2, b),

D(tp(b/a2), ϕi, ki) ≥ ni for all i < κ and b |̂
a2
a1a3a4, by claim 2 we get R(a1, b), R(a4, b),

b |̂
a1
a4, and b |̂

a4
a1. 2

Notation 17.6 We say p(x, a) is an amalgamation base to mean that a is a sequence of
elements of C, p(x, y) is a complete type over ∅ implying q(y) = tp(a/∅) and p(x, a) ∈ S(a)
is an amalgamation base. Note that in a simple theory if q(x) is an arbitrary amalgamation
base there is always some amalgamation base p(x, a) (where a enumerates a model) with
the same amalgamation class Pp(x,a) = Pq(x).

Lemma 17.7 Le T be simple and let p(x, a) be an amalgamation base. If q(x, b) ∈ Pp(x,a)
is another amalgamation base, then for some n < ω there are a0, . . . , an realizing tp(a) such
that a = a0, and p(x, ai), p(x, ai+1) have a common nonforking extension for all i < n and
also p(x, an) and q(x, b) have a common nonforking extension.

Proof: It is enough to prove that for any amalgamation bases q(x, c), r(x, d), if p(x, a)
and q(x, c) have a common nonforking extension and also q(x, c) and r(x, d) have a common
nonforking extension, then for some b ≡ a, p(x, a) and p(x, b) have a common nonforking
extension and also p(x, b) and r(x, d) have a common nonforking extension. To check this,
let us choose b ≡c a such that b |̂

c
ad. Since b ≡c a, it is clear that p(x, b) and q(x, c)

have a common nonforking extension s1(x, b, c). Now let s2(x, c, d) a common nonforking
extension of q(x, c) and r(x, d). Since b |̂

c
d and q(x, c) is an amalgamation base, s1(x, b, c)

and s2(x, c, d) have a common extension s(x, b, c, d) which does not fork over c. Then
s(x, b, c, d) is a common nonforking extension of r(x, d) and p(x, b). We finish the proof
showing that also p(x, a) and p(x, b) have a common nonforking extension. On the one
hand s1(x, b, c) is a common nonforking extension of p(x, b) and q(x, c). On the other hand
q(x, c) and p(x, a) have a common nonforking extension s3(x, a, c). Since a |̂

c
b, we see

that s1(x, b, c) y s3(x, a, c) have a common extension s′(x, a, b, c) which does not fork over
c. Clearly it is a common nonforking extension of p(x, a) and p(x, b). 2

Definition 17.8 Let p(x) be an amalgamation base and let Pp be its amalgamation class.
A canonical base of p is a hyperimaginary e such that for any f ∈ Aut(C), f(e) = e if and
only if f fixes setwise Pp. Clearly, if e′ is another canonical base of p then e ∼ e′. Note
that e ∈ dclheq(a) if p(x) is a type over a. Moreover if q(x) ∈ Pp, then e is also a canonical
base of q(x).

Theorem 17.9 In a simple theory, any amalgamation base has a canonical base.
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Proof: As remarked above, it is enough to consider an amalgamation base of the form
p(x, a) (that is, where a is a sequence in C). Consider the binary relation R on realizations of
tp(a) defined by: R(a1, a2) iff p(x, a1) and p(x, a2) have a common nonforking extension. It
is reflexive and symmetric. For each ϕ(x, y) ∈ L, for each k < ω let nϕ,k = D(p(x, a), ϕ, k).
It is then easy to see that R is type-definable by the partial type (over ∅) expressing that
a1, a2 realize tp(a) and for all ϕ ∈ L, for all k < ω, D(p(x, a1) ∪ p(x, a2), ϕ, k) ≥ nϕ,k.

It is easy to check that R satisfies the other conditions of Lemma 17.5 and therefore
its transitive closure E is also type-definable. Note that E is an equivalence relation on
realizations of tp(a) and by Lemma 17.7 E(a, b) holds if and only if p(x, b) ∈ Pp(x,a). By
Lemma 15.5 we can extend E to a 0-type-definable equivalence relation on all sequences of
the length of a. Hence we can consider the hyperimaginary e = aE . It is clear that e is a
canonical base of p(x, a). 2

Lemma 17.10 Let T be simple, let p(x, a) be an amalgamation base and let e be a canonical
base of p(x, a). If q(x, b) ∈ Pp(x,a) and a |̂

e
b then p(x, a) and q(x, b) have a common

nonforking extension.

Proof: Fix amalgamation bases p0(x, a0), . . . , pn(x, an) such that p0(x, a0) = p(x, a),
pn(x, an) = q(x, b) and for all i < n, pi(x, ai) and pi+1(x, ai+1) have a common nonforking
extension. We may assume that all the sequences ai are of the same length. We may
apply 17.5 to the relation R defined by R(b1, b2) iff there are i, j ≤ n such that b1 ≡ ai,
b2 ≡ aj and pi(x, b1), pj(x, b2) have a common nonforking extension. Hence there is an
amalgamation base r(x, c) such that p(x, a), r(x, c) have a common nonforking extension,
r(x, c), q(x, b) have a common nonforking extension, c |̂

a
b, and c |̂

b
a. Since a |̂

e
b and

e ∈ dclheq(b) ∩ dclheq(c) from this it follows that a |̂
c
b. By amalgamating these types we

conclude that p(x, a) y q(x, b) have a common nonforking extension. 2

Notation 17.11 If p(x) is a complete type over a hyperimaginary a and e ∈ dclheq(a), then
by p(x) � e we refer to the type tp(b/e) where b is an arbitrary realization of p. Note that if
q(x) is another complete type and e is also definable over its domain, then the consistency
of p(x) ∪ q(x) implies p � e = q � e.

Theorem 17.12 Let T be simple, let p(x, a) be an amalgamation base, and let e be a
canonical base of p(x, a). Then

1. Any q(x) ∈ Pp(x,a) is a nonforking extension of p(x, a) � e.

2. p(x, a) � e ∈ Pp(x,a).

3. If q(x, b) is an amalgamation base and p(x, a), q(x, b) have a common nonforking
extension, then e ∈ dclheq(b).

4. If p(x, a) and q(x, b) ∈ S(b) have a common nonforking extension, then e ∈ bdd(b).

Proof: 1. We first show that p(x, a) does not fork over e. Choose b ≡e a such that b |̂
e
a.

Then p(x, b) ∈ Pp(x,a) and by Lemma 17.10 p(x, a) and p(x, b) have a common nonforking
extension. Hence, for some c |= p(x, a) ∪ p(x, b), c |̂

a
b and c |̂

b
a. Since e ∈ dclheq(b), by

transitivity c |̂
e
a and thus p(x, a) does not fork over e. Clearly this implies that any other

q(x, b) ∈ Pp(x,a) (where b is a sequence in C) does not fork either over e. But we need also
to consider the case of a type q(x) ∈ Pp(x,a) over a hyperimaginary h. Choose a sequence
m enumerating a model such that h ∈ dclheq(m) and let r(x,m) ∈ Pp(x,a) be a nonforking
extension of q(x). Then r(x,m) does not fork over e and hence q(x) does not fork over e.
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2. Let p0(x) = p(x, a) � e and P = Pp(x,a). Choose q(x,m) ∈ P such that m enumerates
a model and e ∈ dclheq(m). Then p0 = q(x,m) � e. Since bdd(e) ⊆ dclheq(m) and
q(x,m) � bdd(e) is an amalgamation base, by 1 q(x,m) � bdd(e) ∈ P. Therefore some
extension p′0 of p0 over bdd(e) belongs to P. We will see now that this implies that all
extensions of p0 over bdd(e) belong to P. Let p′′0(x) = tp(c/bdd(e)) be any such extension
and choose b such that p′0 = tp(b/bdd(e)). Then f(b) = c for some f ∈ Aut(C/e). Clearly,
f fixes setwise bdd(e) and (p′0)

f = p′′0 . Since f(e) = e, f fixes setwise P, and thus p′′0 ∈ P,
as we wanted to show.

Next we check that p0 is an amalgamation base. By 1 from this it will follow that
p0 ∈ P. Let m,n enumerate models such that e ∈ dclheq(m) ∩ dclheq(n) and m |̂

e
n.

Assume q1(x,m), q2(x, n) are nonforking extensions of p0. Note that bdd(e) ⊆ dclheq(m)
and hence q1(x,m) extends q1(x,m) � bdd(e), which is an extension of p0 and therefore an
element of P. This implies q1(x,m) ∈ P. By similar reasons q2(x, n) ∈ P. By Lemma 17.10
q1(x,m), q2(x, n) have a common nonforking extension which, by transitivity, does not fork
over e.

3 is clear since q(x, b) ∈ Pp(x,a), and 4 follows from 3 because some extension of q(x, b)
over bdd(b) belongs to Pp(x,a). 2

Definition 17.13 If p(x) is an amalgamation base in a simple theory, Cb(p) is, by defini-
tion, dclheq(e) where e is a canonical base of p. The canonical type of Pp will be p0 = p � e.
Notice that p0 ∈ Pp and that Pp is precisely the set of all nonforking extensions of p0. For
any a, b we define Cb(a/b) = Cb(Lstp(a/b)). This notation agrees with the one introduced
for canonical bases of stationary types in stable theories.

Lemma 17.14 For simple T the following are equivalent:

1. a |̂
b
c

2. Cb(a/bc) = Cb(a/b)

3. Cb(a/bc) ⊆ bdd(b)

Proof: 1 ⇒ 2. If a |̂
b
c, then Lstp(a/bc) and Lstp(a/b) belong to the same amalgamation

class.

2 ⇒ 3. Since Cb(a/b) ⊆ bdd(b).

3 ⇒ 1. This follows from the fact that a |̂
Cb(a/bc)

bc. 2

Proposition 17.15 Let T be simple. If p(x) ∈ S(A) is an amalgamation base and (ai :
i < ω) is a Morley sequence in p, then Cb(p) ⊆ dclheq(ai : i < ω). Moreover, if T is
supersimple, then Cb(p) ⊆ bdd(ai : i < n) for some n < ω.

Proof: Extend the Morley sequence (ai : i < ω) to a Morley sequence (ai : i ≤ ω) in p.
By Corollary 17.4 tp(aω/(ai : i < ω) is an amalgamation base. Since tp(aω/A(ai : i < ω))
is finitely satisfiable in {ai : i < ω} by Remark 4.4 aω |̂

(ai:i<ω)
A. Since aω |̂

A
(ai : i < ω)

and aω |̂
(ai:i<ω)

A, p = tp(aω/A) and tp(aω/(ai : i < ω)) have the same amalgamation

class. Therefore by Theorem 17.12 Cb(p) = Cb(tp(aω/(ai : i < ω)) ⊆ dclheq(ai : i < ω).

Assume now T is supersimple. Choose n < ω such that aω |̂
(ai:i<n)

(ai : i < ω). Then
aω |̂

(ai:i<n)
A and therefore Cb(p) ⊆ bdd(ai : i < n). 2
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Chapter 18

Elimination of hyperimaginaries

Definition 18.1 T eliminates a hyperimaginary e if there is a sequence of imaginaries
(ei : i ∈ I) such that e ∼ (ei : i ∈ I). T eliminates hyperimaginaries if T eliminates every
hypermaginary.

Proposition 18.2 Let e = aE a hyperimaginary and let p(x) = tp(a). Then T eliminates
e if and only if there is a family (Ei : i ∈ I) of 0-definable equivalence relations such that
E � p = (

⋂
i∈I Ei) � p. In fact it suffices to require that the Ei are 0-definable relations

whose restrictions Ei � p to p(C) are equivalence relations.

Proof: It is enough to require that the Ei are equivalence relations on p(C) since, by
compactness, it is always possible to find a formula ϕi(x) ∈ p such that Ei is an equivalence
relation on ϕi(C).

Assume e = aE is a hyperimaginary and choose a family (Ei : i ∈ I) of 0-definable
equivalence relations such that on p(x) = tp(a) the equivalence relation E agrees with⋂
i∈I Ei. Then e ∼ (ei : i ∈ I) where ei = aiEi

, if ai is the subtuple of a corresponding to
the variables of Ei. For the other direction, by assumption there is a sequence (ei : i ∈ I)
of imaginaries ei such that e ∼ (ei : i ∈ I). Let pi(x, y) = tp(aai) for each i ∈ I. Then:

1. E(x, x′) ∪ pi(x, y) ∪ pi(x′, y′) ` Ei(y, y′)

2. pi(a, ai)

3. p(x) ` ∃ypi(x, y)

By compactness we can substitute a single formula ϕi(x, y) ∈ pi for pi(x, y) and still have
these properties. We then define

Fi(y, z) ⇔ ∃uv(Ei(u, v) ∧ ϕi(y, u) ∧ ϕi(z, v)).

Clearly Fi is definable over ∅, Fi � p is an equivalence relation, and E � p = (
⋂
i∈I Fi) � p.

2

Corollary 18.3 T eliminates hyperimaginaries if and only if for any p(x) ∈ S(∅) for any
0-type-definable equivalence relation on p(C) there is a family (Ei : i ∈ I) of 0-definable
equivalence relations such that E = (

⋂
i∈I Ei) � p. In fact it suffices to require that the Ei

are 0-definable relations whose restrictions Ei � p to p(C) are equivalence relations.

97
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Proof: By Proposition 18.2. 2

Lemma 18.4 Let E be an intersection of definable (possibly with parameters) equivalence
relations. If E is type-definable over ∅, then E is an intersection of 0-definable equivalence
relations.

Proof: Let E =
⋂
i∈I Ei where every Ei is an equivalence relation, defined by ϕi(x, y, ai),

with ϕi(x, y, z) ∈ L. Assume Σ(x, y) is a type over ∅ defining E and let pi(z) = tp(ai).
Then Σ(x, y) ∪ pi(z) ` ϕi(x, y, z), and thus Σ(x, y) ` ∀z (ψi(z) → ϕi(x, y, z)) for some
ψi(z) ∈ pi. We can choose it so that ψi(z) implies ϕi(x, y, z) is an equivalence relation in
x, y. Then

∀z (ψi(z) → ϕi(x, y, z))

defines (over ∅) an equivalence relation Fi such that E ⊆ Fi ⊆ Ei. Hence E =
⋂
i∈I Fi. 2

Proposition 18.5 If T eliminates hyperimaginaries, then also T (A) eliminates hyperimag-
inaries.

Proof: By Lemma 15.15. 2

Lemma 18.6 If a is a sequence of imaginaries, e ∈ dclheq(a) is a hyperimaginary and
a ∈ bdd(e), then e ∼ b for some sequence b of imaginaries.

Proof: Let a = (ai : i ∈ I) where every ai is a imaginary. For each finite J ⊆ I let
aJ = (ai : i ∈ J). Then aJ ∈ acleq(e). Consider the finite set bJ = {f(aJ) : f ∈ Aut(C/e)}
as a single imaginary. This means that bJ ∈ Ceq and f(bJ) = bJ if and only if f permutes
the orbit of aJ in Aut(C/e). Now let b = (bJ : J ⊆ I is finite ). It is clear that b ∈ dclheq(e).
We check now that e ∈ dclheq(b). Assume f fixes b. Then for each finite J , aJ ≡e f(aJ)
and therefore a ≡e f(a). Hence f(a)e ≡ ae ≡ f(a)f(e). Since e ∈ dclheq(a), also f(e) ∈
dclheq(f(a)) and hence e = f(e). 2

Lemma 18.7 Let T be simple. If tp(a/e) is an amalgamation base, then tp(a/e) ≡
Lstp(a/e).

Proof: Assume a′ ≡e a. Then a |̂
e
bdd(e), a′ |̂

e
bdd(e), and bdd(e) |̂

e
bdd(e). By

definition of amalgamation base, for some b |̂
e
bdd(e), b ≡bdd(e) a, and b ≡bdd(e) a′.

Therefore a ≡bdd(e) a
′, that is, Lstp(a/e) = Lstp(a′/e). 2

Proposition 18.8 Let T be simple. If e = aE is a hyperimaginary, then e ∈ dclheq(Cb(a/e)).

Proof: We first show that e ∈ bdd(Cb(a/e)). By Theorem 17.12, a |̂
Cb(a/e)

e and

since e ∈ dclheq(a), e |̂
Cb(a/e)

e. Therefore e ∈ bdd(Cb(a/e)). Since tp(a/Cb(a/e)) is
an amalgamation base, by Lemma 18.7 tp(a/Cb(a/e)) ≡ tp(a/bdd(Cb(a/e))) ` tp(a/e).
Let f ∈ Aut(C/Cb(a/e)). Then a ≡Cb(a/e) f(a) and therefore a ≡e f(a). It follows that
E(a, f(a)) and hence f(e) = e. 2

Proposition 18.9 Let T be simple. If for each amalgamation base p(x), the canonical base
Cb(p) is equivalent to a sequence of imaginaries, then T eliminates hyperimaginaries.

Proof: Let e = aE be an hyperimaginary. By assumption there is a sequence d of
imaginaries such that Cb(a/e) ∼ d. Then d ∈ bdd(e). By Proposition 18.8

e ∈ dclheq(Cb(a/e)) ⊆ dclheq(d).

By Lemma 18.6 e ∼ d′ for some sequence of imaginaries d′. 2
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Corollary 18.10 Stable theories eliminate hyperimaginaries.

Proof: By Proposition 18.9 and by the fact that canonical bases in stable theories are
sequences of imaginaries. 2

Proposition 18.11 Let E be a 0-type-definable equivalence relation and let E∗ be the equiv-
alence relation given by

E∗(a, b) ⇔ E(a′, b′) for some a′ ≡ a, b′ ≡ b

Then E is an intersection of 0-definable equivalence relations if and only if E∗ is an intersec-
tion of 0-definable equivalence relations and for each p(x) ∈ S(∅), E � p = E∩ (p(C)×p(C))
is an intersection of 0-definable equivalence relations.

Proof: Note that the two following conditions are equivalent to E∗(a, b):

1. E(a, c) for some c ≡ b.

2. E(a, a′) and E(b, b′) for some a′ ≡ b′.

If E(a, b) is witnessed by E(a′, b′) where a′ ≡ a and b′ ≡ b, and we choose c such that
ac ≡ a′b′ then c witness that 1 holds. For 1 ⇒ 2 just take a′ = c and b′ = b. Finally if
a′, b′ are as in 2 and we choose c, d such that a′ad ≡ b′cb, then E(c, b), a ≡ c and b ≡ b.

Now assume E =
⋂
i∈I Ei for 0-definable equivalence relations Ei. Then obviously for

each p ∈ S(∅), E agrees with
⋂
i∈I Ei on p. Moreover E∗ =

⋂
i∈I,ϕ∈LEiϕ where Eiϕ(x, y)

is the equivalence relation defined by

∃z(ϕ(z) ∧ Ei(x, z)) ↔ ∃z(ϕ(z) ∧ Ei(y, z))

For the other direction, assume E∗ is an intersection of 0-definable equivalence relations
and for each p(x) ∈ S(∅), E � p =

⋂
i∈Ip

Eip � p for a family of 0-definable equivalence
relations Eip. We can assume that the type E(x, y) defining the equivalence relation E is
made of reflexive and symmetric formulas. Fix some p(x) ∈ S(∅) and choose some a |= p.
For each i ∈ Ip we can find some formula σip(x, y) ∈ E(x, y) and some ψip(x) ∈ p such that

σip(x, y) ∧ ψip(x) ∧ ψip(y) ` Eip(x, y)

We can also find some σip(x, y) ∈ E(x, y) such that

σip(x, y) ∧ σip(y, z) ∧ σip(z, u) ` σip(x, u)

and some 0-definable equivalence relation E∗
ip in the family whose intersection is E∗ such

that
E∗
ip(x, a) ` ∃y(ψip(y) ∧ σip(x, y))

Consider the relation Fip(x, y) defined by the disjunction of (¬E∗
ip(x, a) ∧ ¬E∗

ip(y, a)) with

(E∗
ip(x, a) ∧ E∗

ip(y, a) ∧ ∃uv(ψip(u) ∧ ψip(v) ∧ σip(x, u) ∧ σip(y, v) ∧ Eip(u, v)))

Note that the definition is in fact independent of the choice of the realization a of p. It is
clearly reflexive and symmetric. It is not difficult to see that it is also transitive. We claim
that

E = E∗ ∩
⋂

p∈S(∅),i∈Ip

Fip
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By Lemma 18.4 this will show that E is an intersection of 0-definable equivalence relations.

Assume E(b, c). Then E∗(b, c). Let p(x) ∈ S(∅), let i ∈ Ip, and let a |= p. We want to
check that Fip(c, d). We may assume E∗

ip(b, a) ∧ E∗
ip(c, a). By choice of E∗

ip we know that
there are c′, d′ such that |= ψip(c′)∧ σip(c, c′) and |= ψip(d′)∧ σip(d, d′). Then |= σip(c′, d′)
and therefore Eip(c′, d′).

For the other direction, assume E∗(c, d) and Fip(c, d) for all p, i. Let p(x) = tp(c).
As remarked above, E(c′, d) for some c′ ≡ c. It is enough to show that E(c, c′) and for
this we have to check that Eip(c, c′) for all i ∈ Ip. Note that Fip(c, d) and Fip(d, c′) since
we have already shown that E(x, y) implies Fip(x, y). Hence Fip(c, c′) and by definition
of Fip there are b, b′ such that |= ψip(b) ∧ σip(c, b) ∧ ψip(b′) ∧ σip(c′, b′) ∧ Eip(b, b′). Note
that |= ψip(c) ∧ ψip(b) ∧ σip(c, b) and thus Eip(c, b). Similarly Eip(c′, b′) and we conclude
Eip(c, c′). 2

Lemma 18.12 Let T be small and let E be a 0-type-definable equivalence relation on Cn

such that: if E(a, b), a ≡ a′ and b ≡ b′, then E(a′, b′). Then E is an intersection of
0-definable equivalence relations.

Proof: We claim that whenever ¬E(a, b) then for some ϕab ∈ L, |= ϕab(a) ∧ ¬ϕab(b) and
E(x, y) ∧ ϕab ∧ ¬ϕab(y) is inconsistent. If this is the case we can then express E as an
intersection of 0-definable equivalence relations as follows:

E(x, y) ⇔
∧

¬E(a,b)

ϕab(x) ↔ ϕab(y)

In order to prove this claim, assume ¬E(a, b) and set p(x) = tp(a), q(x) = tp(b). We first
observe that E(x, y)∪p(x)∪q(y) is inconsistent and hence we can choose ϕ(x) ∈ p(x), ψ(y) ∈
q(y) such that E(x, y)∧ϕ(x)∧ψ(y) is inconsistent and ¬ϕ(x)∧¬ψ(x) is of minimal Cantor-
Bendixson rank α in the space Sn(∅) and of minimal degree in this rank. If ¬ϕ(x)∧¬ψ(x)
is inconsistent we set ϕab = ϕ and this choice satisfies the requirements. Otherwise we
choose a type p′(x) ∈ Sn(∅) of rank α containing the formula ¬ϕ(x) ∧ ¬ψ(x) and also a
realization c |= p′. Now, if there if some a′ |= ϕ and some b′ |= ψ such that E(a′, c) and
E(b′, c) then E(x, y) ∧ ϕ(x) ∧ ψ(y) turns out to be consistent. Hence we may assume that
there is no a′ |= ϕ such that E(a′, c), that is, E(x, y)∧ϕ(x)∧p′(y) is inconsistent. Therefore
E(x, y) ∧ ϕ(x) ∧ ψ′(y) is inconsistent for some ψ′ ∈ p′. Note that either ¬ϕ(x) ∧ ¬ψ′(x)
has rank < α or has rank α and smaller degree than ¬ϕ(x) ∧ ¬ψ(x). This contradicts the
previous choice of ϕ(x) and ψ(x). 2

Theorem 18.13 Let T be small.

1. If E is a 0-type-definable equivalence relation on Cn, then E is an intersection of
0-definable equivalence relations.

2. T eliminates all finitary hyperimaginaries.

3. For any finite set A,
bdd≡ A =

s≡A.

4. If T is simple, then
Ls≡A =

s≡A for any A.

Proof: 1. We apply Proposition 18.11. It is clear that E∗ satisfies the hypothesis of
Lemma 18.12 and therefore it is an intersection of 0-definable equivalence relations. Now
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fixe some p(x) ∈ Sn(∅) and choose some c |= p. We have to show that for some family
(Ei : i ∈ I) of 0-definable equivalence relations, E � p =

⋂
i∈I Ei � p. Consider the relation

F (x, y) ⇔ for some z, cx ≡ zy and E(c, z)

It is an equivalence relation and it is type-definable over c. Since T (c) is small and in T (c)
the relation F satisfies the hypothesis of Lemma 18.12, there is some family (Fi : i ∈ I) of
equivalence relations Fi such that F =

⋂
i∈I Fi and for each i ∈ I there is some ϕi(x, y, z) ∈

L such that ϕi(x, y, c) defines Fi. Now let

Ei(x, y) ⇔ ∀u(ϕi(u, x, x) ↔ ϕi(u, y, y))

It is clearly an equivalence relation. We check that E � p =
⋂
i∈I Ei � p. It suffices to see

that for any a |= p, E(a, c) iff Ei(a, c) for all i ∈ I. Assume E(a, c), let i ∈ I, let b be
arbitrary and choose b′ such that ab ≡ cb′. Then F (b, b′) and therefore |= ϕi(b, b′, c). Since
ϕi(x, y, c) defines an equivalence relation, |= ϕi(b, c, c) ↔ ϕi(b′, c, c). By automorphism,
|= ϕi(b, c, c) ↔ ϕi(b, a, a) and thus Ei(a, c). For the other direction, assume Ei(a, c) for
all i ∈ I. Since |= ϕi(a, a, a), we get |= ϕi(a, c, c) and hence F (a, c). This clearly implies
E(a, c).

2. It follows from 1 and Corollary 18.3.

3. Since T (A) is again small we may assume A = ∅. It is enough to check the equality
for finite sequences and this case follows straightforward from 1 since it implies that on
n-tuples

bdd≡ is an intersection of finite 0-definable equivalence relations.

4. If T is simple, T (A) is also simple and by Corollary 10.14
bdd≡ A =

Ls≡A. By Corol-
lary 10.13, a

Ls≡A b iff a
Ls≡A′ b for all finite A′ ⊆ A. Same for

s≡A. Then we can apply
3.

2

Example 18.14 1. (Pillay-Poizat) There is a superstable theory T (of U -rank 1) where
we can find a 0-type-definable equivalence relation which is not an intersection of
0-definable equivalence relations.

2. (Adler) There is an ω-categorical (hence small) theory which does not eliminate hy-
perimaginaries. It is a theory with the strict order property.

Definition 18.15 A formula ϕ(x, y) ∈ L is low if there is some n < ω such that for
any indiscernible sequence (ai : i < ω), if {ϕ(x, ai) : i < ω} is inconsistent, then it is
n-inconsistent. We say that T is low if it is simple and every formula is low in T .

Definition 18.16 Let ϕ(x, y) ∈ L. For any set of formulas π(x) we define the rank D(π, ϕ)
as follows

1. D(π, ϕ) ≥ 0 iff π(x) is consistent.

2. D(π, ϕ) ≥ α + 1 iff for some a, ϕ(x, a) divides over the parameters of π and D(π ∪
{ϕ(x, a)}, ϕ) ≥ α

3. D(π, ϕ) ≥ α iff D(π, ϕ) ≥ β for all β < α if α is a limit ordinal number.

Remark 18.17 1. D(π, ϕ, k) ≤ D(π, ϕ) ≤ D(π)
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2. If π(x) is a partial type over A, then D(π, ϕ) ≥ α + 1 iff for some a, ϕ(x, a) divides
over A and D(π ∪ {ϕ(x, a)}, ϕ) ≥ α

Proposition 18.18 Let T be simple and let ϕ(x, y) ∈ L. Those following are equivalent:

1. ϕ(x, y) is low.

2. There is some k < ω such that for all π, D(π, ϕ) = D(π, ϕ, k).

3. D(x = x, ϕ) < ω.

4. There is some n < ω such that for all k < ω, D(x = x, ϕ, k) < n.

5. There is some n < ω such that ϕ divides at most n times.

6. {(a, b) ∈ C : ϕ(x, a) divides over b} is type-definable over ∅.

Proof: 1 ⇒ 2. Fix n < ω as in the definition of low. If ϕ(x, a) divides over A, it divides
over A with respect to n. Hence D(π, ϕ) = D(π, ϕ, n).

2 ⇒ 3. By simplicity, D(x = x, ϕ, k) < ω.

3 ⇒ 4 is clear since D(x = x, ϕ, k) ≤ D(x = x, ϕ).

4 ⇒ 5. Fix n as in 4. If ϕ divide m times, there are sequences (ai : i < m) and
(ki : i < m) such that {ϕ(x, ai) : i < m} is consistent and for each i < m, ϕ(x, ai) divides
over (aj : j < i) with respect to ki. If k = maxi<m ki then ϕ(x, ai) divides over (aj : j < i)
with respect to k and hence m ≤ n.

5 ⇒ 3. By Proposition 3.7.

5 ⇒ 1. If (ai : i < ω) is indiscernible, and {ϕ(x, ai) : i < ω} is inconsistent but not
k + 1-inconsistent, then (ai : i < k) witnesses that ϕ(x, y) divides k times.

1 ⇒ 6. It follows from 1 that there is some k < ω such that for all sequences a, b
if ϕ(x, a) divides over b, then ϕ(x, a) divides over b with respect to k. But {(a, b) ∈ C :
ϕ(x, a) divides over b with respect to k} is type-definable over ∅.

6 ⇒ 1. Assume ϕ(x, y) is not low. For each k < ω let (aki : i < ω+ω) be an indiscernible
sequence such that {ϕ(x, aki ) : i < ω + ω} is inconsistent but not k-inconsistent. Choose a
nonprincipal ultrafilter D over ω and let (ci : i < ω+ω) be a realization of the ultraproduct
of types

∏
D(pk : k < ω) where pk = tp(aki : i < ω+ω). Then (ci : i < ω+ω) is indiscernible

and {ϕ(x, ci) : ω ≤ i < ω + ω} is k-consistent for every k < ω and hence it is consistent.
Let c = (ci : i < ω). By Lemma 10.1, (ci : ω ≤ i < ω + ω) is a Morley sequence over c.
By Proposition 5.13 ϕ(x, cω) does not divide over c. Assume π(x, y) is a partial type over
∅ defining dividing as in 6. Since, for each k < ω, ϕ(x, akω) divides over bk = (aki : i < ω),
we have |= π(akω, bk) and therefore |= π(cω, c). But then ϕ(x, cω) divides over c. 2

Remark 18.19 Conditions 3, 4, 5 of Proposition 18.18 are equivalent in any theory T .
Moreover, if they hold for any ϕ, the theory T is simple.

Remark 18.20 If T is low, then T (A) is also low for any set A.

Proof: This is clear, for instance, from point 6 of Proposition 18.18 since ϕ(x, a, b, c)
divides over bc in T if and only if ϕ(x, a, b, c) divides over b in T (c). 2

Proposition 18.21 1. Any stable theory is low.
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2. Any supersimple theory of finite D rank is low.

Proof: By Proposition 18.18 2 is clear, since D(x = x, ϕ) ≤ D(x = x). For 1, assume
{ϕ(x, ai) : i < n} is consistent and ϕ(x, ai) divides over (aj : j < i) for each i < n. Let
b |=

∧
i<n ϕ(x, ai) and let pi(x) = tp(b/{aj : j < i}) for i = 1, . . . , n. By Corollary 8.7,

CBϕ(pi) > CBϕ(pi+1) for all i < n and therefore ω > CBϕ(x = x) ≥ D(x = x, ϕ). 2

Example 18.22 (Casanovas-Kim) There are supersimple nonlow theories.

Definition 18.23 The Zariski topology in CI is the topology whose closed sets are the type-
definable (over subsets of C) subsets of CI . If E is a 0-type-definable equivalence relation in
a type-definable over ∅ subclass of CI , the logic topology or the Kim-Pillay topology is the
quotient topology of the Zariski topology. If π(x) is the type defining the domain of E and
X = π(C)/E is the quotient, then A ⊆ X is closed iff {a |= π : aE ∈ A} is type-definable.
In this context we will always identify E with the type defining it and we will assume that
the type E(x, y) is closed under finite conjunctions and that E(x, y) ` π(x) ∪ π(y).

Proposition 18.24 Let π(x) be a type over ∅, let E be a 0-type-definable equivalence rela-
tion on π(C), and consider the Kim-Pillay space X = π(C)/E.

1. Y ⊆ X is closed iff for some type-definable class A, Y = {aE : a ∈ A}.

2. X is Hausdorff.

3. A basis of open sets is given by the collection of all

Uaϕ = {bE :|= ϕ(a′, b′) for all a′, b′ such that E(a, a′), E(b, b′}

where a |= π and ϕ = ϕ(x, y) ∈ E.

4. X is compact iff E is bounded.

Proof: 1. If A = Φ(C), then {a : aE ∈ Y } is defined by the type

Ψ(x) = ∃y(E(x, y) ∧ Φ(y))

2 is clear. We check 3. Note that {b |= π : bE 6∈ Uaϕ} is type-definable and hence
Uaϕ is open. Let U be open and aE ∈ U . We will show that aE ∈ Uaϕ ⊆ U for some
ϕ(x, y) ∈ E(x, y). We may assume that {b |= π : bE 6∈ U} = {b |= π :|= ψ(b)} for some
formula ψ(x) ∈ L(C). Then E(x, y) ∧ ψ(x) ` ψ(y). By compactness ϕ(x, y) ∧ ψ(x) ` ψ(y)
for some ϕ(x, y) ∈ E(x, y). It is easily seen that ϕ works.

4. Assume first E is bounded and let (Fi : i ∈ I) be a family of closed sets with the finite
intersection property. For each i ∈ I choose a type Φi(x) such that Fi = {aE : a |= Φi}.
If the number of E-classes is bounded by κ, the number of closed sets in X is bounded by
2κ and hence |I| ≤ 2κ. Therefore

⋃
i∈I Φi is a partial type over a subset of C and we can

realize it by some a ∈ C. Clearly, aE ∈ Fi for all i ∈ I. For the other direction, assume now
X is compact. Fix ϕ(x, y) ∈ E(x, y). We will show that ϕ is finite on π, that is, there is no
infinite sequence (ai : i ∈ ω) of realizations ai of π such that |= ¬ϕ(ai, aj) for all i < j < ω.
From this it follows that E is bounded. Assume there is such a sequence (ai : i ∈ ω). We
can extend it to a maximal one (ai : i ∈ I). Then for any a |= π there is some i ∈ I such
that |= ϕ(a, ai), that is X ⊆

⋃
i∈I Uaiϕ. By compactness of X, for some finite I0 ⊆ I,

X ⊆
⋃
i∈I0 Uaiϕ. This contradicts the choice of the sequence. 2
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Proposition 18.25 Let π(x) be a type over ∅, let E be a 0-type-definable equivalence re-
lation on π(C), and consider the Kim-Pillay space X = π(C)/E. The following conditions
are equivalent.

1. X is 0-dimensional.

2. E is an intersection of 0-definable equivalence relations.

3. For each ϕ(x, y) ∈ E there is some ϕ′(x, y) ∈ E such that

(a) π(x) ∪ π(y) ` ϕ′(x, y) → ϕ(x, y).

(b) E(x, x′) ∪ E(y, y′) ` ϕ′(x, y) → ϕ′(x′, y′).

Proof: 1 ⇒ 2. Let (Oi : i ∈ I) be a basis of clopen sets. For each i ∈ I there is some
formula ϕi(x) ∈ L(C) such that {a |= π :|= ϕi(a)} = {a |= π : aE ∈ Oi}. Let a |= π.
Since {aE} is closed, there is a subset Ia ⊆ I such that {aE} =

⋂
i∈Ia

Oi. For each i ∈ I,
(ϕi(x) ↔ ϕi(y)) defines an equivalence relation. It is easy to check that E can be defined
by ∧

a|=π

∧
i∈Ia

(ϕi(x) ↔ ϕi(y))

2 ⇒ 3. Let E =
⋂
i∈I Ei where each Ei is a 0-definable equivalence relation. If ϕ(x, y) ∈

E(x, y), then for some i ∈ I, Ei(x, y) ` ϕ(x, y) and clearly ϕ′(x, y) = Ei(x, y) satisfies all
the requirements.

3 ⇒ 1. Let (Uaϕ : a |= π, ϕ ∈ E) be the basis of open sets described in Proposition 18.24.
For each ϕ ∈ E choose ϕ′ as in 3. Then (Uaϕ′ : a |= π, ϕ ∈ E) is again a basis of open sets.
It is easy to check that in fact each Uaϕ′ is clopen. 2

Proposition 18.26 If T is simple, then T eliminates all bounded hyperimaginaries if and
only if Lstp = stp, that is, if and only if for all sequences a, b: a

Ls≡ b iff a
s≡ b.

Proof: It is clear that if T eliminates all bounded hyperimaginaries, then Aut(C/bdd(∅)) =
Aut(C/acleq(∅)) and therefore Lstp = stp. For the other direction, let e = aE be a bounded
hyperimaginary. By Proposition 15.21 we can assume E is a bounded equivalence rela-
tion. By Corollary 10.14,

Ls≡ is the least bounded 0-type-definable equivalence relation and
therefore aE splits into a bounded number of Lascar strong types. By assumption and by
Proposition 18.2 for each bEa there is a sequence of imaginaries b′ such that bLs

≡
∼ b′. Let

(bi : i ∈ I) be a sequence of representatives of Lascar strong types of elements in aE . Then
e ∈ dclheq(b′i : i ∈ I) and (b′i : i ∈ I) ∈ bdd(e). By Lemma 18.6 e is equivalent to a sequence
of imaginaries. 2

Lemma 18.27 Let T be simple, p(y) ∈ S(∅) and let ψ1(x, y), . . . , ψn(x, y) ∈ L. Then

{(a1, . . . , an) : a1, . . . , an are independent realizations of p and the formula

ψ1(x, a1) ∧ . . . ∧ ψn(x, an) does not fork over ∅}

is type-definable over ∅.

Proof: The case n = 1 is clear by Proposition 5.13 and Corollary 5.20. For the general
case, notice that it is enough to deal with Morley sequences in p since we only are interested
in independent a1, . . . , an. 2
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Theorem 18.28 Let T be a low theory.

1. T eliminates all bounded hyperimaginaries.

2. For any set A, for any sequences a, b: a
s≡A b iff a

Ls≡A b.

Proof: 1 follows from 2 and Proposition 18.26.

2. By Remark 18.20, we can assume A = ∅. Let E =
Ls≡ and consider e = aE , a

bounded hyperimaginary. We will show that we can eliminate e using Proposition 18.2.
Let p(x) = tp(a). We use point 3 of Proposition 18.25 to show that on E � p is an
intersection of 0-definable equivalence relations. Let ϕ(x, y) ∈ E � p. We need to find
ϕ′(x, y) ∈ E � p such that ϕ′(x, y) ` ϕ(x, y) and E(x, x′) ∧ E(y, y′) ∧ ϕ′(x, y) ` ϕ′(x′, y′).
Choose ϕ̄ ∈ E(x, y) � p such that

ϕ̄(x, y) ∧ ϕ̄(y, z) ∧ ϕ̄(z, u) ∧ ϕ̄(u, v) ` ϕ(x, v)

Consider the following binary relation R(b, c) on realizations b, c of p :

ϕ̄(x, b′) ∧ ϕ̄(x, c′) does not fork over ∅ for some b′, c′ |= p such that E(b, b′), E(c, c′), b′ |̂ c′

We will check that R is definable by some formula ϕ′ as above. Since e ∈ bdd(∅), for any
b |= p the type E(x, b) does not fork over ∅. This implies that we can find an independent
sequence b1, b2, b3 in the E-class bE , which shows that ϕ̄(x, b1)∧ϕ̄(x, b2) does not fork over ∅.
It follows that whenever b, c |= p and E(b, c) then R(b, c). By choice of ϕ̄, whenever R(b, c)
then |= ϕ(b, c). Finally, it is obvious that if E(b, b′), E(c, c′), and R(b, c), then R(b′, c′).

To check the definability of R we show that R and its complement are type-definable.
Type-definability of R follows from Lemma 18.27 and Corollary 5.20. For the complement
R̄ of R we need to use lowness of T . First note that, since E =

Ls≡, by Corollary 10.5, for
all b, c, b′, c′ realizing p, if b |̂ c, b′ |̂ c′, E(b, b′), and E(c, c′), if ϕ̄(x, b) ∧ ϕ̄(x, c) does not
fork over ∅, then also ϕ̄(x, b′) ∧ ϕ̄(x, c′) does not fork over ∅. Hence for b, c |= p, R̄(b, c)
if and only if there are b′, c′ |= p such that E(b, b′), E(c, c′), b′ |̂ c′ and ϕ̄(x, b′) ∧ ϕ̄(x, c′)
forks over ∅. By Proposition 18.18 and Corollary 5.20 it is easily seen that this relation is
type-definable over ∅. 2
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