Lipschitz continuity properties

Raf Cluckers
(joint work with G. Comte and F. Loeser)

K.U.Leuven, Belgium

MODNET Barcelona Conference
3 - 7 November 2008
1 Introduction

2 The real setting (Kurdyka)

3 The p-adic setting (C., Comte, Loeser)
Introduction

Definition

A function \(f : X \rightarrow Y \) is called Lipschitz continuous with constant \(C \) if, for each \(x_1, x_2 \in X \) one has

\[
d(f(x_1), f(x_2)) \leq C \cdot d(x_1, x_2),
\]

where \(d \) stands for the distance.

(Question)

When is a definable function piecewise \(C \)-Lipschitz for some \(C > 0 \)?
Clearly

\[\mathbb{R}_0^+ \rightarrow \mathbb{R} : x \mapsto \frac{1}{x} \]

is not Lipschitz continuous,

nor is

\[\mathbb{R}_0^+ \rightarrow \mathbb{R} : x \mapsto \sqrt{x}, \]

because the derivatives are unbounded.
The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic [1])

Let $f : X \subset \mathbb{R}^n \to \mathbb{R}$ be a definable C^1-function such that

$$\left| \frac{\partial f}{\partial x_i} \right| < M$$

for some M and each i.

Then there exist a finite partition of X and $C > 0$ such that on each piece, the restriction of f to this piece is C-Lipschitz. Moreover, this finite partition only depends on X and not on f. (And C only depends on M and n.)

A whole framework is set up to obtain this (and more).
For example, suppose that $X \subset \mathbb{R}$ and $f : X \rightarrow \mathbb{R}$ is C^1 with $|f'(x)| < M$.

Then it suffices to partition X into a finite union of intervals and points.

Indeed, let $I \subset X$ be an interval and $x < y$ in I. Then

\[
|f(x) - f(y)| = |\int_x^y f'(z)dz| \\
\leq \int_x^y |f'(z)|dz \leq M|y - x|.
\]

(Hence one can take $C = M$.)
A set $X \subset \mathbb{R}^n$ is called an \textit{s-cell} if it is a cell for some affine coordinate system on \mathbb{R}^n.

An \textit{s-cell} is called \textit{L-regular} with constant M if all “boundary” functions that appear in its description as a cell (for some affine coordinate system) have partial derivatives bounded by M.
The real setting

Theorem (Kurdyka, subanalytic, semi-algebraic)

Let $A \subset \mathbb{R}^n$ be definable.

Then there exists a finite partition of A into L-regular s-cells with some constant M. (And M only depends on n.)
Lemma

Let $A \subset \mathbb{R}^n$ be an L-regular s-cell with some constant M. Then there exists a constant N such that for any $x, y \in A$ there exists a path γ in A with endpoints x and y and with

$$\text{length}(\gamma) \leq N \cdot |x - y|$$

(And N only depends on n and M.)

Proof.

By induction on n.

(Uses the chain rule for differentiation and the equivalence of the L_1 and the L_2 norm.)
Corollary (Kurdyka)

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a definable function such that

$$|\frac{\partial f}{\partial x_i}| < M$$

for some M and each i. Then f is piecewise C-Lipschitz for some C.
Proof.

One can integrate the (directional) derivative of f along the curve γ to obtain

$$f(x) - f(y)$$

as the value of this integral.

On the other hand, one can bound this integral by

$$c \cdot \text{length}(\gamma) \cdot M$$

for some c only depending on n, and one is done since

$$\text{length}(\gamma) \leq N \cdot |x - y|$$
Indeed, use

\[\int_0^1 \frac{d}{dt} f \circ \gamma(t) dt, \]

plus chain rule, and use that the Euclidean norm is equivalent with the \(L_1 \)-norm.
Proof of existence of partition into L-regular cells.

By induction on n. If $\dim A < n$ then easy by induction. We only treat the case $n = 2$ here. Suppose $n = \dim A = 2$. We can partition A into s-cells such that the boundaries are ε-flat (that is, the tangent lines at different points on the boundary move “ε-little”), by compactness of the Grassmannian. Now choose new affine coordinates intelligently. Finish by induction.
The \(p \)-adic setting

No notion of intervals, paths joining two points (let alone a path having endpoints), no relation between integral of derivative and distance. Moreover, geometry of cells is more difficult to visualize and to describe than on reals.
A p-adic cell $X \subset \mathbb{Q}_p$ is a set of the form

$$\{ x \in \mathbb{Q}_p \mid |a| < |x - c| < |b|, x - c \in \lambda P_n \},$$

where P_n is the set of nonzero n-th powers in \mathbb{Q}_p, $n \geq 2$. c lies outside the cell but is called “the center” of the cell.

In general, for a family of definable subsets X_y of \mathbb{Q}_p, a, b, c may depend on the parameters y and then the family X is still called a cell.
A cell $X \subset \mathbb{Q}_p$ is naturally a union of balls. Namely, (when $n \geq 2$) around each $x \in X$ there is a unique biggest ball B with $B \subset X$.

The ball around x depends only on $\text{ord}(x - c)$ and the m first p-adic digits of $x - c$.

Hence, these balls have a nice description using the center of the cell.

Let’s call these balls “the balls of the cell”.
Let $f : X \to \mathbb{Q}_p$ be definable with $X \subset \mathbb{Q}_p$.

From the study in the context of b-minimality we know that we can find a finite partition of X into cells such that f is C^1 on each cell, and either injective or constant on each cell.

Moreover, $|f'|$ is constant on each ball of any such cell.

Moreover, if f is injective on a cell A, then f sends any ball of A bijectively to a ball in \mathbb{Q}_p, with distances exactly controlled by $|f'|$ on that ball.
(Question)

Can we take the cells A such that each $f(A)$ is a cell?
Main point: is there a center for $f(A)$?

Answer (new): Yes. (not too hard.)
Corollary

Let \(f : X \subset \mathbb{Q}_p \rightarrow \mathbb{Q}_p \) be such that \(|f'| \leq M \) for some \(M > 0 \). Then \(f \) is piecewise \(C \)-Lipschitz continuous for some \(C \).

Proof.

On each ball of a cell, we are ok since \(|f'| \) exactly controls distances. A cell \(A \) has of course only one center \(c \), and the image \(f(A) \) too, say \(d \). Only the first \(m \) \(p \)-adic digits of \(x - c \) and \(\text{ord}(x - c) \) are fixed on a ball, and similarly in the “image ball” in \(f(A) \). Hence, two different balls of \(A \) are send to balls of \(f(A) \) with the right size, the right description (centered around the same \(d \)). Hence done.

(easiest to see if only one \(p \)-adic digit is fixed.)
The same proof yields:
Let $f_y : X_y \subset \mathbb{Q}_p \to \mathbb{Q}_p$ be a (definable) family of definable functions in one variable with bounded derivative. Then there exist C and a finite partition of X (yielding definable partitions of X_y) such that for each y and each part in X_y, f_y is C-Lipschitz continuous thereon.
Theorem

Let Y and $X \subset \mathbb{Q}_p^m \times Y$ and $f : X \rightarrow \mathbb{Q}_p$ be definable. Suppose that the function $f_y : X_y \rightarrow \mathbb{Q}_p$ has bounded partial derivatives, uniformly in y.

Then there exists a finite partition of X making the restrictions of the f_y C-Lipschitz continuous for some $C > 0$.

(This theorem lacked to complete another project by Loeser, Comte, C. on p-adic local densities.)
We will focus on \(m = 2 \). The general induction is similar. Use coordinates \((x_1, x_2, y)\) on \(X \subset \mathbb{Q}_p^2 \times Y \). By induction and the case \(m = 1 \), we may suppose that \(f_{x_1,y} \) and \(f_{x_2,y} \) are Lipschitz continuous.

We can’t make a path inside a cell, but we can “jump around” with finitely many jumps and control the distances under \(f \) of the jumps.

So, recapitulating, if we fix \((x_1, y)\), we can move \(x_2 \) freely and control the distances under \(f \), and likewise for fixing \((x_2, y)\).
But, a cell in two variables is not a product of two sets in one variable!

Idea: simplify the shape of the cell.

We may suppose that X is a cell with center c.

Either the derivative of c w.r.t. x_1 is bounded, and then we may suppose that it is Lipschitz by the case $m = 1$ (induction).

Problem: what if the derivative is not bounded?

(Surprising) answer (new): switch the order of x_1 and x_2 and use c^{-1}, the compositional inverse. This yields a cell!

By the chain rule, the new center has bounded derivative.
Hence, we may suppose that the center is identically zero, after the bi-Lipschitz transformation

$$(x_1, x_2, y) \mapsto (x_1, x_2 - c(x_1, y), y).$$

Do inductively the same in the x_1-variable (easier since it only depends on y).

The cell X_y has the form

$$\{x_1, x_2 \in \mathbb{Q}_p^2 \mid |a(x_1, y)| < |x_2| < |b(x_1, y)|, x_2 \in \lambda P_n, (x_1, y) \in A'\},$$

Now jump from the begin point (x_1, x_2) to $(x_1, a(x_1))$.

jump to $(x'_1, a(x'_1))$

jump to (x'_1, x'_2).

We have connected (x_1, x_2) with (x'_1, x'_2).

Problem: Does $a(x_1)$ have bounded derivative? (recall Kurdyka L-regular).

Solution: if not, then just “switch” “certain aspects” of role of x_1 and x_2. Done.
Open questions:

1) Can one do it based just on the compactness of the Grassmannian?

2) Uniformity in p?