Small groups of odd type

Adrien Deloro† and Eric Jaligot‡

†Rutgers University ‡CNRS, Lyon 1

Barcelona, 4th November 2008
A small group of finite Morley rank

PSL$_2$
Groups and rank
PSL\(_2\)
Results

A closer view

Adrien Deloro and Eric Jaligot

Small groups of odd type
1 Groups and rank
- Groups, rank, and algebraic groups
- Groups of low Morley rank
- Groups of finite MR and finite groups

2 PSL_2
- Early results
- Description
- Analysis

3 Results
- The notion of smallness and results
- Difficulties and solutions
- The main tool
Groups of finite Morley rank appeared as \aleph_1-categorical groups.

Theorem (Baldwin, Zilber)

A simple group has finite Morley rank iff it is \aleph_1-categorical.

In the 80’s, Borovik and Poizat suggested a more naive approach.

Theorem (Poizat)

A group has finite Morley rank iff there is a rank function rk on the set of interpretable sets, which behaves like a dimension ought to.
Typical example of a group of finite Morley rank:

- an alg. group over an alg. closed field, equipped with the Zariski dimension.
- an infinite field of finite Morley rank is alg. closed (Macintyre)

slogan:

groups of finite Morley rank generalize alg. groups ranked by the Zariski dimension
Ranked groups and algebraic groups

- Analogies:
 - chain conditions
 - connected components for definable subgroups “H°”
 - generation lemmas (in part., G' is definable!)
 - presence of a field (sometimes)

Conjecture (Cherlin-Zilber)

A *simple* infinite group of finite Morley rank is (isomorphic to) an algebraic group over an algebraically closed field.
Let us attack the conjecture inductively.

Fact: There are no simple groups of Morley rank 1 or 2.

- Groups of Morley rank 1 are abelian (Reineke).
- Groups of Morley rank 2 are solvable (Cherlin).

Now what about groups of rank 3?
Some tapas:

- \(SL_2 = \{ M \in GL_2 : \det M = 1 \} \)
- \(Z(SL_2) = \{ \pm Id \} \)
- \(PSL_2 = SL_2/Z(SL_2) \)

\(PSL_2 \) is the smallest simple algebraic group:
Zariski dimension \(= 3 \), Lie rank \(= 1 \), Morley rank \(= 3 \text{rk} K \)

- \(PSL_2 \): only simple algebraic group of Zariski dimension 3
- \(PSL_2 \): only simple algebraic group of Lie rank 1
- \(PSL_2 \) is the basis of inductive arguments \(\rightarrow \) crucial piece

Main question of the talk:

Identify \(PSL_2 \) among small groups of finite Morley rank
Rank 3 and bad groups

Theorem (Cherlin)

A simple group of MR 3 is either $\text{PSL}_2(K)$ or a simple bad group.

- A **bad group** would be a weird non-algebraic configuration.
 - No fields involved.
 - Disjoint union of maximal subgroups.
 - No involutions.

- Open for 30 years!

- Moral:

 “low Morley rank” not a good notion of smallness
Conjecture (Cherlin-Zilber)

A simple infinite group of finite Morley rank is an algebraic group over an ACF.

Theorem (A logician’s CFSG)

A simple group of Morley rank 0 is

- the finite version of an algebraic group
- or something else.

Well... you know logicians.
A finite simple group is
- cyclic $\mathbb{Z}/p\mathbb{Z}$
- alternate A_n
- the finite version of an alg. group (Chevalley twists welcome)
- or one of 26 “sporadic” known exceptions.

- the only infinite cyclic group, \mathbb{Z}, is not ω-stable
- the infinite version of A_n is not stable (not M_C)
- fields of finite Morley rank do not allow Chevalley twists
- the sporadics may disappear when one goes to infinite objects
Borovik’s program

- The Cherlin-Zilber Conjecture looks like a simpler CFSG idea (Borovik): imitate CFSG
- (possible gain: a “generic”, simpler CFSG)
- Work with 2-elements, involutions, and their centralizers
- fortunately: good 2-Sylow theory
Four types

- Let S be a Sylow 2-subgroup. Then $S^\circ = U \ast T$, with
 - U of bounded exponent is 2-unipotent
 i.e. definable, connected, of exponent 2^k
 - $T \cong \mathbb{Z}_{2^\infty}^d$ is a 2-torus of Prüfer rank d
 \mathbb{Z}_{2^∞} is the Prüfer 2-group $\{z \in \mathbb{C} : z^{2^k} = 1 \text{ for some } k \in \mathbb{N}\}$

- One thus defines 4 “types” depending on structure of S°

<table>
<thead>
<tr>
<th>$U = 1$</th>
<th>$U \neq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 1$</td>
<td>2^\perp</td>
</tr>
<tr>
<td>even</td>
<td>mixt</td>
</tr>
</tbody>
</table>

- correspond to the char. of the expected underlying field
State of the Case-Division

- Cases $U \neq 1$ have been solved (Altınel, Borovik, Cherlin).
- Cases $U = 1$ are open.
- The case $U = T = 1$ looks so hard the Conjecture might fail.
 - no Feit-Thompson Theorem
 - FT: finite simple groups have involutions... (would kill bad groups!)

Yet one can work in odd type $S^\circ \simeq \mathbb{Z}_{2^\infty}^d$ ($U = 1$ but $T \neq 1$).

Problem: Identify PSL_2 among small groups of odd type.
In this section:

1. Groups and rank
 - Groups, rank, and algebraic groups
 - Groups of low Morley rank
 - Groups of finite MR and finite groups

2. PSL_2
 - Early results
 - Description
 - Analysis

3. Results
 - The notion of smallness and results
 - Difficulties and solutions
 - The main tool
The Hrushovski analysis

Theorem (Hrushovski)

Let a non-solvable group of finite MR G act definably and faithfully on a strongly minimal set. Then $G \simeq \text{PSL}_2$ and $\text{rk } G = 3$.

In practice, actions arise from coset spaces.

Corollary (Cherlin)

Let G be a non-solvable group of finite Morley rank with a definable subgroup of corank 1. Then $G \simeq \text{PSL}_2$ (and $\text{rk } G = 3$).

Moral: try to understand the action on coset spaces
Caution: this slide contains technical material.

Another identification result using actions.

Theorem (Delahan-Nesin)

Let G be a group of finite Morley rank. Assume that G is an infinite split Zassenhaus group. Assume further that the stabilizer of two points contains an involution. Then $G \cong \PSL_2$.

A Zassenhaus group is a 2-transitive group (G, X) s.t. $G_{x,y,z} = 1$. It is split if there is $N \triangleleft G_x$ s.t. $G_x = N \rtimes G_{x,y}$.
The setting

- Moral of last slide: useful abstract identification results exist
- From now on it will suffice to
 - fix an involution \(i \in G \)
 - fix a Borel \(B \supseteq C^\circ(i) \)
 - Recall that a Borel is a maximal definable, connected, solvable subgroup
 - split \(B \cong \mathbb{K}_+ \rtimes \mathbb{K}^\times \)
 - understand \(G/B \)
- Nesin’s machinery can then recognize \(\text{PSL}_2 \)
 - Question: find natural properties of \(\text{PSL}_2 \) characterizing it
- Latin letters for the abstract group; Greek for the true \(\text{PSL}_2 \).
Study of PSL_2

Let $\mathbb{K} \models \text{ACF} \neq 2$. Let’s have a look at $\text{PSL}_2(\mathbb{K})$.

- $\iota = \begin{pmatrix} i & \ \\ \ -i & \end{pmatrix}$
- $\beta = \left\{ \begin{pmatrix} t & a \\ t^{-1} & \end{pmatrix}, a \in \mathbb{K}, t \in \mathbb{K}^\times \right\} > C^\circ(\iota)$ is a Borel
- $\beta' = F^\circ(\beta) = \left\{ \begin{pmatrix} 1 & a \\ 1 & \end{pmatrix}, a \in \mathbb{K} \right\} \cong \mathbb{K}_+$
- $\Theta = \left\{ \begin{pmatrix} t \\ \ t^{-1} \end{pmatrix}, t \in \mathbb{K}^\times \right\} \cong \mathbb{K}^\times$
- Then $\beta = F^\circ(\beta) \times \Theta \cong \mathbb{K}_+ \times \mathbb{K}^\times$
Modelling the torus

- **Observations** in PSL_2:

 Let $\iota = \begin{pmatrix} i & \ 0 \\ 0 & -i \end{pmatrix} \in \Sigma^\circ$. Note that ι inverts $F^\circ(\beta)$.

 One has $\Theta = \left\{ \begin{pmatrix} t \\ t^{-1} \end{pmatrix}, t \in K^\times \right\} = C^\circ(\iota)$.

 Let $\omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \Sigma \setminus \Sigma^\circ$. Note that ω inverts Θ.

- **Modelisation** in G: for an involution $w \notin B$, let

 $$T[w] := \{ b \in B, b^w = b^{-1} \}$$

 $T[w]$ will be our model of the torus.

- **Target**: $B = (F^\circ(B))^{-i} \rtimes T[w]$.
Using $T[w]$

$i \in G$, $B \supseteq C^o(i)$ a Borel.

For an involution $w \notin B$, $T[w] = \{b \in B, b^w = b^{-1}\}$

For generic w, $\text{rg } T[w] \geq \text{rg } (F^o(B))^{-i}$.

Theorem (Zilber)

Let $A \rtimes T$ be a group of finite Morley rank with A, T two abelian definable infinite subgroups s.t. T is faithful and A is T-minimal.

Then there is a definable field K s.t. $A \simeq K_+$ and $T \hookrightarrow K^\times$.

- If $A \subseteq F^o(B)^{-i}$, ranks would force $T[w] \simeq K^\times$...
- ... but $T[w]$ has no reason to be a group!
- As $T[w] \subseteq B \cap B^w$, it would be good to control intersections of Borel subgroups
In this section:

1. Groups and rank
 - Groups, rank, and algebraic groups
 - Groups of low Morley rank
 - Groups of finite MR and finite groups

2. PSL$_2$
 - Early results
 - Description
 - Analysis

3. Results
 - The notion of smallness and results
 - Difficulties and solutions
 - The main tool
Locally solvable groups

- Recall MR is no suitable notion of smallness (as we are unable to solve MR = 3)
- Observation in (P)SL$_2$:
 - if $A < G$ is infinite and abelian, $N^G_\circ(A)$ is solvable.
 - Fails for finite A (e.g. $A = Z(SL_2)$)
 - characterizes (P)SL$_2$ among non-solvable alg. groups

Definition

A group G is locally solvable if: whenever $A < G$ is infinite and abelian, $N^G_\circ(A)$ is solvable.

- Nothing to do with f.g. subgroups; follows another tradition...
- ...from finite group theory and Thompson’s papers.
Theorem

Let G be a locally solvable non-solvable connected group of finite MR. Assume:

- $S^\circ \simeq \mathbb{Z}_{2^\infty}^d$ with $d \geq 1$
- and for any involution i $C_G^\circ(i)$ solvable.
- $G \nsubseteq PSL_2(\mathbb{K})$ for $\mathbb{K} \models ACF \neq 2$.

Then $C_G^\circ(i)$ is always a Borel and either:

1. $S \simeq \mathbb{Z}_{2^\infty}$
2. $S \simeq \mathbb{Z}_{2^\infty} \rtimes \langle i^g \rangle$ and $C^\circ(i)$ is abelian
3. $S \simeq \mathbb{Z}_{2^\infty}^2$ and the three involutions are conjugate
Complications

- Since the first counting arguments involving $T[w]$, the proofs have continuously grown more complex.
- Works by Nesin, J., Cherlin and J., D.
- Main issue: control intersections of Borel subgroups
Keywords

Here are some ingredients of a proof:

- strongly real elements and $T[w]$ sets
- $(0, d)$-Sylow subgroups
- Rigidity Lemmas
- The Bender method, Burdges’ style, revisited
- concentration of semi-simple elements and contradiction!
A key observation

- Fact:
 \[
 \text{In } (\text{P})\text{SL}_2, \text{ Borel subgroups meet on tori}
 \]
 (whatever that means)

- Question: can one mimic this fact in locally solvable groups?

- More precisely: can one prove that distinct Borel subgroups don’t share unipotent elements?

- Subtlety: “unipotent elements” is non-sense to us. Work with unipotent subgroups. Define them first!
Torsion unipotence

Observation:
If $\mathbb{K} \models ACF_p$, then $F^\circ(\beta) = \begin{pmatrix} 1 & * \\ 1 & 1 \end{pmatrix} = \{ g \in \beta : g^p = 1 \}$.

Definition
$U \leq G$ is p-unipotent if it is definable, connected, nilpotent, of exponent p^k.

Fact (Intersection control)
If G is locally $^\circ$ solvable$^\circ$ and $U \leq G$ is p-unipotent, then U lies in a unique Borel, and actually in its Fitting subgroup.

(In PSL_2, $\beta \cap \beta^\omega$ is a torus indeed, thus so is $T[\omega]$)
Burdges’ unipotence

Fact (Burdges)

For each integer $d \geq 1$, *there is a notion of* $(0, d)$-unipotence *(gradual unipotence)* *and a* d-*unipotence radical*

- d is a unipotence degree (more or less heavy)
- problems
 - the d-unipotence radical is not always in the Fitting!
 - the heaviest radical (last non-trivial) is in it.
- Caution! two Borels can share d-unipotence.
- two Borels of degree d can even share d-unipotence!
Rigidity Lemma

Fact (intersection control)

If G is locally solvable and $U \leq G$ is p-unipotent, then U is in a unique Borel, and actually in its Fitting subgroup.

Lemma

Let G be locally solvable and B a Borel with unipotence degree d. Let $U \triangleleft B$ be a $(0, d)$-unipotent subgroup. Then B is the only Borel of degree d that contains U.

- controlling the intersection $B \cap B^w$ is possible...
- ... which will enable us to split B. We’re done!
- Moral: Burdges’ 0-unipotence allows intersection control
Acknowledgments

Thank you!