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Abstract. Let M = 〈M, +, <, 0, S〉 be a linear o-minimal expansion of an
ordered group, and G = 〈G,⊕, eG〉 an n-dimensional group definable in M.
We show that if G is definably connected with respect to the t-topology, then it
is definably isomorphic to a definable quotient group U/L, for some convex

∨
-

definable subgroup U of 〈Mn, +〉 and a lattice L of rank equal to the dimension
of the ‘compact part’ of G.

1. Introduction

This paper is a natural continuation of [ElSt]. Let M = 〈M, +, <, 0, {λ}λ∈D〉
be an ordered vector space over an ordered division ring D. It was shown in [ElSt,
Theorem 1.4] that a definably compact group G definable in M, satisfying the
assumptions of the above abstract, is definably isomorphic to a definable quotient
group U/L, for some convex

∨
-definable subgroup U 6 〈Mn, +〉 and a lattice L of

rank n. Here we consider the case where G is not necessarily definably compact,
and generalize [ElSt, Theorem 1.4] towards a structure theorem analogous to the
following classical theorem (see, for example, [Bour]).

Fact 1.1. Every connected abelian real Lie group is isomorphic to a direct sum of
copies of the additive group 〈R, +〉 of the reals and the torus S1.

Moreover, we prove our theorem in the more general setting where M is any
linear o-minimal expansion of an ordered group.

Definition 1.2 ([LP]). An o-minimal expansion M = 〈M, +, <, 0, . . . 〉 of an or-
dered group is called linear if for every M-definable function f : A ⊆ Mn → M ,
there is a partition of A into finitely many Ai, such that for each i, if x, y, x+t, y+t ∈
Ai, then

f(x + t)− f(x) = f(y + t)− f(y).

For the rest of this introduction, let M be a linear o-minimal expan-
sion of an ordered group. By ‘definable’ we mean ‘definable in M with
parameters’.

By [Pi1], we know that every definable group G can be equipped with a unique de-
finable manifold topology that makes it into a topological group, called t-topology.
In the rest of this introduction, all topological notions about such a G are referring
to this t-topology.
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It is known that a definably connected definable group G is abelian. (See, for
example, [PeSt, Corollary 5.1].)

Fact 1.3 ([EdEl]). Every definable group G is a definable extension of a definably
compact definable group B by Mr = 〈Mr, +, 0〉, for some r ∈ N. That is, there is
a short exact sequence

0 → Mr → G
q→ B → 0,

where all maps involved are definable homomorphisms.

We let σ : B → G be a definable global section; that is, a definable map such
that q◦σ = idB . Let K = σ(B) be the topological group with the structure induced
by σ. We call K the compact part of G. Clearly, G is in definable bijection with
Mr ×K as abstract sets. As we know by examples in [PeS] and [Str], however, we
cannot always expect G to be definably isomorphic to the direct sum of Mr and
K. We show:

Theorem 1.4. Let G be a definably connected definable group of dimension n.
Assume that the compact part of G has dimension s. Then G is definably isomorphic
to a definable quotient group U/L, for some convex

∨
-definable subgroup U 6

〈Mn, +, 0〉, and a lattice L of rank s.

The terminology in Theorem 1.4 was introduced in [ElSt], and we briefly recall
it in Section 2 below. We obtain two corollaries. The first one is a generalization
of Pillay’s Conjecture in the present context.

Proposition 4.1. Assume that M is sufficiently saturated, and let G be as in
Theorem 1.4. Then there is a smallest type-definable subgroup G00 of G of bounded
index, and G/G00 equipped with the logic topology is a compact Lie group of dimen-
sion s.

Proposition 5.8. Let G be as in Theorem 1.4. Then the o-minimal fundamental
group of G is isomorphic to L.

Structure of the paper.
In Sections 2, 3 and 4, we handle the case where M is an ordered vector space

over an ordered division ring.
Section 2 contains some definitions and basic results that were proved in [ElSt]

without (using) the assumption that G is definably compact.
Section 3 contains the proof of Theorem 1.4, which we outline here. In analogy

with [ElSt, Theorem 1.4], the proof consists of three steps. In Step I, we compare
the two group operations ⊕ and +. In Step II, we find a suitable generic open
s-parallelogram H in K. We then let U be the subgroup of 〈Mn, +, 0〉 generated
by the set HG = Mr×H, and define a surjective group homomorphism φ : U → G.
In Step III, we prove that the kernel L = ker(φ) is a lattice of rank s.

In Section 4, we prove Proposition 4.1.
In Section 5, we extend our results to the case where M is any linear o-minimal

expansion of an ordered group, and prove Proposition 5.8.

Acknowledgements. The work presented here was carried out during my Ph.D.
studies at the University of Notre Dame. I thank my thesis supervisor Sergei
Starchenko, as well as Ya’acov Peterzil for suggesting me the possibility of gener-
alizing [ElSt, Theorem 1.4]. I also wish to thank the anonymous referee for his/her
very valuable comments.
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2. Preliminaries

Until Section 5, we fix a big sufficiently saturated ordered vector space
M = 〈M, +, <, 0, {λ}λ∈D〉 over an ordered division ring D = 〈D, +, ·, <, 0, 1〉.

The terminology and notation of this paper was introduced in [ElSt]. We recall
the definitions that play an important role here, and refer the reader to [ElSt] for
the rest.

Definition 2.1 ([ElSt], Section 1). Let L 6 U 6 〈Mn, +〉. The group U/L is
called a definable quotient group if there is a definable complete set S ⊆ U of
representatives for U/L, such that the induced group structure 〈S,+S〉 is definable.
In this case, we identify U/L with 〈S, +S〉.

In [ElSt, Section 2], the t-topology of a definable group G and several notions
relevant to it were fixed. In what follows, an index ‘t-’ will indicate that the
corresponding notion is taken with respect to the t-topology of G, if ambiguity
would otherwise arise. In [ElSt, Section 3], basic facts about the definable structure
of M were established. In particular, the Linear Cell Decomposition Theorem
(Linear CDT) was stated therein. Another important notion was that of an ‘open
parallelogram’, which we now recall. For λ = (λ1, . . . , λn) ∈ Dn and x ∈ M , let us
denote λx := (λ1x, . . . , λnx).

Definition 2.2 ([ElSt], Definition 3.5). Let 0 < m ≤ n and c ∈ Mn. An open
m-parallelogram H with center c is a definable subset H ⊆ Mn of the form

H = c + {λ1t1 + · · ·+ λmtm : −e1 < ti < ei},
for some fixed ei > 0 in M and λi ∈ Dn, 1 ≤ i ≤ m.

For the rest of this section, let G = 〈G,⊕, eG〉 be a definable group, with G ⊆
Mn. We recall some basic results which were proved in [ElSt] without (using) the
assumption that G is definably compact or t-connected.

Definition 2.3 ([ElSt], Definition 2.4). Let WG be a fixed definable large t-open
subset of G on which the M- and t- topologies coincide. Let

V G = {a ∈ G : there is a t-open neighborhood Va of a in G,

such that∀x, y ∈ Va, xª a⊕ y = x− a + y} ∩WG.

By [ElSt, Lemma 2.5], V G is a definable, large, open and t-open subset of G.
By cell decomposition, V G is the disjoint union of finitely many open (t-)connected
components.

Fact 2.4 ([ElSt], Lemma 4.7). For all u, v in the same definably connected com-
ponent of V G, there is r > 0 in M , such that for all ε ∈ (−r, r)n, we have
u + ε, v + ε ∈ G, and

(u + ε)ª u = (v + ε)ª v.

It will often be convenient to assume that eG = 0 ∈ V G. In [ElSt, Lemma 4.9]
it was shown that we may do so. Namely, it was shown there that (G,⊕, eG) is
definably isomorphic to a topological group (G′, +1, 0) with 0 ∈ V G′ . The critical
lemma is the following fact, which we will also use here later.
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Fact 2.5. Let b ∈ V G and f : G → Mn with

f(x) = (x⊕ b)− b.

If G′ = 〈f(G), +1, 0〉 is the induced group, then V G′ = V G − b.

Fact 2.5 was proved in [ElSt, Lemma 4.9]. In that proof, a generic element b was
chosen, but only the property that b ∈ V G was used.

Finally, we state the main theorem from [ElSt], in a form that will be useful in
the present paper (and whose proof can easily be extracted from [ElSt]).

Fact 2.6. Let K = 〈K,⊕K , 0〉 ⊆ Ms be a definably compact, t-connected, definable
group of dimension s. Assume that H is an open s-parallelogram, generic in K,
such that

• H has center 0,
• H is contained in V K .

Let UH be the subgroup of 〈Ms,+〉 generated by H:

UH =< H >=
⋃

k<ω

H + · · ·+ H︸ ︷︷ ︸
k−times

6 Ms.

Then:
• the following map φK : UH → K is a well-defined, continuous, surjective

group homomorphism: for all x1, . . . , xk ∈ H, if x = x1 + · · ·+ xk, then

φK(x) = x1 ⊕K · · · ⊕K xk.

• LK = ker(φK) is a lattice of rank s,
• UH/LK = 〈S, +S〉 is a definable quotient group and φH ¹S : 〈S, +S〉 → K is

a definable isomorphism.
That is, K ∼=def UH/LK .

The following fact can also be extracted from [ElSt, Step II], but we include its
proof for completeness.

Fact 2.7. Let K ⊆ Ms be a definably compact group of dimension s. Let W be a
large definable subset of K. Then there is an open s-parallelogram H ⊆ W which
is generic in K.

Proof. Since W is large in K, it is also generic. By Linear CDT ([ElSt]), W is a
finite union of linear cells, and by [PePi, Corollary 3.9], one of them, call it Y , must
be generic. By [ElSt, Lemma 3.10], Y has dimension s. By [ElSt, Lemma 3.6],
Y is a finite union of closed s-parallelograms, say W1, . . . , Wl. For i ∈ {1, . . . , l},
let Yi = Y ∩ Wi. Then Y = Y1 ∪ · · · ∪ Yl. By [ElSt, Lemma 3.10] again, one of
the Yi’s must be generic, say Y1. Let H = Int(Y1). By [ElSt, Lemma 3.10], H is
generic. ¤

3. The proof of Theorem 1.4

As described in the introduction, the proof runs in three steps. Let G =
〈G,⊕, eG〉 be a definable group, with G ⊆ Mn.

Step I. Comparing ⊕ with +.

Lemma 3.1. Assume that eG = 0. Assume that H is an open m-parallelogram,
m ≤ n, contained in G such that:
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• H has center 0,
• H is contained in V G.

Then, for every x, y ∈ H such that x + y ∈ H, we have:

x⊕ y = x + y.

Proof. We first notice that:

Claim 1. For all u, v ∈ H, such that u ⊕ v ∈ H, there is r > 0 in M , such that
for all ε ∈ (−r, r)n, v + ε ∈ H and

u⊕ (v + ε) = (u⊕ v) + ε.

Indeed, by Fact 2.4, there is r > 0 in M , such that ∀ε ∈ (−r, r)n,

(v + ε)ª v = [(u⊕ v) + ε]ª (u⊕ v).

Claim 2. Let ε(t) : [0, p] → H, ε(0) = 0, be a path, such that ∀t ∈ [0, p], u + ε(t) ∈
H. Then:

u⊕ ε(p) = u + ε(p).

Indeed, consider the function f : G → Mn with x 7→ (u ⊕ x) − x. We show that
f is locally constant on Im(ε). Indeed, by Claim 1, ∀s ∈ [0, p], ∃z > 0, such that
∀t ∈ [s− z, s + z] ∩ [0, p],

u⊕ ε(t) = u⊕ (
ε(s) + ε(t)− ε(s)

)
=

(
u⊕ ε(s)

)
+ ε(t)− ε(s).

Thus ∀t ∈ [s−z, s+z], f
(
ε(t)

)
=

(
u⊕ε(t)

)−ε(t) =
(
u⊕ε(s)

)−ε(s) = f
(
u+ε(s)

)
.

It follows that f is constant on Im(ε) and equal to (u⊕0)−0 = u. Thus, ∀t ∈ [0, p],(
u⊕ ε(t)

)− ε(t) = u, that is, u⊕ ε(t) = u + ε(t). This proves Claim 2.
Now, let x, y ∈ H, such that x + y ∈ H. By [ElSt, Lemma 4.25], there is a path

ε(t) in H from 0 to y, such that the path x + ε(t) lies entirely in H, as well. By
Claim 2 for u = x, we have: x⊕ y = x + y. ¤

Corollary 3.2. Let H be as in Lemma 3.1. Let x1, . . . , xl ∈ H be such that for
any subset σ of {1, . . . , l}, ∑

j∈σ xj ∈ H. Then, x1 + · · ·+ xl = x1 ⊕ · · · ⊕ xl.

Proof. By induction on l.
l = 2. By Lemma 3.1.
l > 2. x1 + · · ·+xl = x1 +(x2 + · · ·+xl) = x1⊕(x2⊕· · ·⊕xl) = x1⊕· · ·⊕xl. ¤

Corollary 3.3. Let H be as in Lemma 3.1. For every x1, . . . , xl, y1, . . . , ym ∈ H,
if x1 + · · ·+ xl = y1 + · · ·+ ym, then x1 ⊕ · · · ⊕ xl = y1 ⊕ · · · ⊕ ym.

Proof. This is [ElSt, Lemma 4.27], with identical proof. The assumption that G is
definably compact in that proof is not used. ¤

Step II. A generic open s-parallelogram of K. As we saw in the intro-
duction, G is a definable extension of a definably compact definable group B by
Mr = 〈Mr,+, 0〉, for some r ∈ N:

0 → Mr i→ G
q→ B → 0.

Let σ : B → G be a definable global section and K = σ(B). Then K ⊆ G is
a definable complete set of representatives for G/Mr. We may choose σ so that
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eG ∈ K. We let K = 〈K,⊕K , eG〉 be the topological group with the structure
induced by σ : B → K. We have:

G = {i(a)⊕ u : a ∈ Mr, u ∈ K}.
Clearly, i(Mr) ∩ K = {eG}. Thus there is a definable bijection G → Mr × K,
with i(a)⊕u 7→ (a, u). Moreover, since K is definably compact of dimension n− r,
using [ElSt, Lemma 3.7] we can find a definable injective map f : K → Mn−r with
f2(eG) = 0. By taking the composition i(a)⊕ u 7→ (

a, f(u)
)
, we may assume that:

(1) G = Mr ×K ⊆ Mn

(2) Mr 6 G
(3) G = 〈G,⊕, 0〉
(4) K = 〈K,⊕K , 0〉 is a definable complete set of representatives for G/Mr

equipped with the induced group structure
(5) for every a ∈ Mr and u ∈ K, a⊕ u = (a, u).

Furthermore, since V G is a large definable subset of G, we may assume that
(6) V G ∩K is large in K.

Indeed, if needed, we may take another section τ : K → G, τ(0) = 0, such that
a large subset of its image K ′ is contained in V G. Then, we may project K ′ onto
Ms. If π denotes this projection (which is a bijection), it remains to check that
V π(G) ∩π(K ′) is large in π(K ′). Since π is piecewise linear, it suffices to show that
for every A ⊆ K ′ on which π is linear, V π(G)∩π(A) is large in π(A). We show that
π(V G)∩π(A) ⊆ V π(G)∩π(A), which is clearly enough. Assume π(G) = 〈π(G), ∗, 0〉
is the induced group via π, and let c ∈ π(V G) ∩ π(A). Since π−1(c) ∈ V G, there is
a neighborhood Vc of c in π(A) such that for all x, y ∈ Vc,

x−∗ c ∗ y = π
(
π−1(x)ªK′ π−1(a)⊕K′ π−1(y)

)
= π

(
π−1(x)− π−1(a) + π−1(y)

)
.

But since π is linear on A, the latter is equal to π
(
π−1(x)

)−π
(
π−1(a)

)
+π

(
π−1(y)

)
=

x− a + y.

Until Section 5, we fix an n-dimensional, t-connected definable group
G, and its compact part K, such that conditions (1)-(6) above hold. Let
s = dim(K) = n− r.

As mentioned in the Introduction, G is abelian.
Observe that the t-topology of K is the same as the quotient topology induced

by the canonical surjection q : G → G/Mr, by [ElSt, Fact 2.1].

Lemma 3.4. For all x1, x2 ∈ K, there is a ∈ Mr, such that

x1 ⊕K x2 = x1 ⊕ x2 ⊕ a.

Proof. Since q(x1⊕K x2) = q
(
σq(x1⊕x2)

)
= qσ

(
q(x1⊕x2)

)
= q(x1⊕x2), we have

(x1 ⊕K x2)ª (x1 ⊕ x2) ∈ ker(q) = Mr. ¤

We now proceed to define a suitable generic open s-parallelogram H in K. By
Condition (6) above, V K ∩ V G ∩ K is large in K. By Fact 2.7, there is an open
s-parallelogram H ⊆ K, generic in K, contained in V G and in V K . We are going
to show that H may be assumed to have center 0.

Lemma 3.5. The group G is definably isomorphic to a group G′ = 〈G′, +G′ , 0〉,
and there is a definably compact group K ′ = 〈K ′, +K′ , 0〉, such that:
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(1) G′ = Mr ×K ′ ⊆ Mn

(2) Mr 6 G′

(3) (a) K ′ ⊆ G′ is a definable complete set of representatives for G′/Mr, and
(b) +K′ coincides with the group operation induced by the canonical sur-

jection q : G′ → G′/Mr

(4) for every a ∈ Mr and u ∈ K ′, a +G′ u = (a, u)
(5) there is an open s-parallelogram H ′ ⊆ K ′, generic in K ′, such that:

(a) H ′ has center 0,
(b) H ′ is contained in V G′ and in V K′

.

Proof. Let c be the center of H. Consider the following two definable bijections:

fG : G 3 x 7→ (x⊕ c)− c ∈ fG(G) ⊆ Mn,

fK : K 3 x 7→ (x⊕K c)− c ∈ fK(K) ⊆ Mn.

Now, let G′ = fG(G), K ′ = fK(K), H ′ = fK(H ªK c) = H − c. Let G′ =
〈G′,+G′ , 0〉 and K ′ = 〈K ′,+K′ , 0〉 be the induced topological group structures
induced by fG and fK , respectively. By [ElSt, Remark 2.2], fG and fK are definable
isomorphisms, for all x, y ∈ G′,

x +G′ y = [(x + c)ª c⊕ (y + c)]− c,

and for all x, y ∈ K ′,

x +K′ y = [(x + c)ªK c⊕K (y + c)]− c.

(1) For every x = (a, u) = a⊕ u ∈ G = Mr ×K, we have:

fG(x) = (a⊕ u⊕ c)− c = [a⊕ u⊕ cª (u⊕K c)⊕ (u⊕K c)]− c

=
(
a⊕ u⊕ cª (u⊕K c), u⊕K c

)− (0, c)

=
(
a⊕ u⊕ cª (u⊕K c), (u⊕K c)− c

) ∈ Mr ×K ′,

by Lemma 3.4. Hence G′ ⊆ Mr ×K ′. On the other hand, if y = (b, v) ∈ Mr ×K ′,
let x = (a, u) where u = (v + c)ªK c ∈ K and a = bª (u⊕ c)⊕ (u⊕K c) ∈ Mr. It
can be checked that fG(x) = y. Hence G′ ⊇ Mr ×K ′.

(2) Observe that fG(Mr) = Mr. Indeed, for every x ∈ Mr, (x ⊕ c) − c =
(x, c)− (0, c) = (x, 0) = x.

(3)(a) We first show that K ′ ⊆ G′. Let (g⊕K c)− c ∈ K ′, for some g ∈ K. Then
g1 = (g ⊕K c)ª c ∈ G and (g ⊕K c)− c = (g1 ⊕ c)− c ∈ G′.

We next show that K ′ is a definable set of representatives for G′/Mr. Let
g′ = fG(g) = (g⊕ c)− c ∈ G′, for some g ∈ G. Since G = {a⊕ k : a ∈ Mr, k ∈ K},
there are a ∈ Mr and k ∈ K such that g⊕ c = a⊕k. Then fG(a)+G′ fK(kªK c) =
[(a⊕ c)− c] +G′ (k − c) = (a⊕ cª c⊕ k)− c = (a⊕ k)− c = (g ⊕ c)− c = g′.

Finally, K ′ is complete: assume fK(k1) = fG(a)+G′ fK(k2), for some k1, k2 ∈ K
and a ∈ Mr. We show k1 = k2 and, thus, fK(k1) = fK(k2). We have, fK(k1) =
(k1⊕Kc)−c and fG(a)+G′fK(k2) = [(a⊕c)−c]+G′ [(k2⊕Kc)−c] = [a⊕(k2⊕Kc)]−c.
Thus, k1 ⊕K c = a ⊕ (k2 ⊕K c). Since K is a complete set of representatives for
G/Mr, k1 ⊕K c = k2 ⊕K c and, thus, k1 = k2.

(3)(b) We show that for every x, y ∈ K ′, there is a ∈ Mr such that x +K′ y =
x+G′y+G′a. We have x+K′y = [(x+c)ªKc⊕K(y+c)]−c =[(x+c)ªc⊕(y+c)⊕b]−c,
for some b ∈ Mr. Let a = fG(b) = (b⊕ c)− c ∈ Mr. Then we have x+G′ y +G′ a =(
[(x+c)ªc⊕(y+c)]−c

)
+G′ [(b⊕c)−c] = [(x+c)ªc⊕(y+c)ªc⊕b⊕c]−c = x+K′ y.
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(4) We have

a +G′ u = [(a + c)ª c⊕ (u + c)]− c = [(a, c)ª c⊕ (u + c)]− c

= [(a⊕ c)ª c⊕ (u + c)]− c = (a, u + c)− (0, c) = (a, u).

(5)(a) It is clear that H ′ = H−c is an open s-parallelogram with center 0. Since
H is generic in K, H ªK c is generic in K, and, thus, H ′ = fK(H ªK c) is generic
in K ′. (b) By Fact 2.5 applied to fG and fK separately. ¤

We may thus assume that: H ⊆ K is an open s-parallelogram, generic in K,
such that:

• H has center 0,
• H is contained in V G and in V K .

We let
HG = {a⊕ u : a ∈ Mr, u ∈ H} = Mr ×H.

Since H is generic in K, it is easy to see that HG is generic in G.

Lemma 3.6. There is Ξ ∈ N, such that G = HG ⊕ · · · ⊕HG

︸ ︷︷ ︸
Ξ−times

.

Proof. By [ElSt, Lemma 4.29], there is Ξ ∈ N, such that K = H ⊕ · · · ⊕H︸ ︷︷ ︸
Ξ−times

. Since

G = {a⊕ u : a ∈ Mr, u ∈ K}, Lemma 3.4 gives G = HG ⊕ · · · ⊕HG

︸ ︷︷ ︸
Ξ−times

. ¤

Definition 3.7. Let UH be the subgroup of 〈Ms, +, 0〉 generated by H; that is,
UH =< H >=

⋃
k<ω Hk, where Hk = H + · · ·+ H︸ ︷︷ ︸

k−times

. Let U be the subgroup of

Mn = 〈Mn, +, 0〉 generated by HG; that is,

U =< HG >=
⋃

k<ω

(HG)
k
.

Equivalently, U = Mr × UH . By Corollary 3.3, the following function φ : U → G
is well-defined. For all x1 = (a1, u1), . . . , xk = (ak, uk) ∈ HG = Mr × H, if
x = x1 + · · ·+ xn, then

φ
(
x) = x1 ⊕ · · · ⊕ xk = (a1 + · · ·+ ak)⊕ u1 ⊕ · · · ⊕ uk.

Since Mr and UH = 〈UH , +¹UH , 0〉 are subgroups of Mn, so is their direct
product U = Mr × UH . Easily, U is a

∨
-definable group, and convexity of H

implies convexity of U .

Proposition 3.8. φ is a t-continuous group homomorphism from U onto G.

Proof. φ is a group homomorphism, because if x = x1+· · ·+xl and y = y1+· · ·+ym,
with xi, yi ∈ H, then φ(x + y) = φ(x1 + · · ·+ xl + y1 + · · ·+ ym) = x1 ⊕ · · · ⊕ xl ⊕
y1 ⊕ · · · ⊕ ym = φ(x)⊕ φ(y). It is onto, by Lemma 3.6. Since ⊕ is t-continuous, so
is φ. ¤

Thus, if we let L = ker(φ), we know that U/L ∼= G as abstract groups.

Step III. L is a lattice of rank s.

We begin with an easy lemma.
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Lemma 3.9. (i) ker(φ) ∩HG = {0}.
(ii) Let Ξ be as in Lemma 3.6. Then ∀x ∈ U,∃y ∈ (HG)Ξ, y − x ∈ ker(φ).

Proof. (i) For every x ∈ HG, φ(x) = x.
(ii) For x ∈ U , since φ(x) ∈ G, there are x1, . . . , xΞ ∈ HG, such that φ(x) =

x1 ⊕ · · · ⊕ xΞ. Clearly, if y = x1 + · · ·+ xΞ ∈ (HG)Ξ, then φ(x) = φ(y). ¤

Lemma 3.10. For every x1 = (a1, u1), . . . , xk = (ak, uk) ∈ G = Mr ×K,

x1 ⊕ · · · ⊕ xk =
(
a1 + · · ·+ ak + h(u1, . . . , uk), u1 ⊕K · · · ⊕K uk

)
,

where h(u1, . . . , uk) = u1 ⊕ · · · ⊕ uk ª (u1 ⊕K · · · ⊕K uk) ∈ Mr.

Proof. The proof is quite standard, but we include it for completeness. Assume
that (a1, u1) ⊕ · · · ⊕ (ak, uk) = (a, u). By taking σ ◦ q on both sides, we have
u1 ⊕K · · · ⊕K uk = u. On the other hand,

a1 ⊕ u1 ⊕ · · · ⊕ ak ⊕ uk = (a1, u1)⊕ · · · ⊕ (ak, uk) = (a, u) = a⊕ u,

and hence a = a1⊕· · ·⊕ak⊕h(u1, . . . , uk). Finally, by Lemma 3.4, h(u1, . . . , uk) ∈
Mr, allowing us to replace ⊕ by + in the last equation. ¤

By Fact 2.6, φK : UH → K is well-defined and LK = ker(φ) has rank s. Let
{w1, . . . , ws} be a fixed set of generators for LK . For every i ∈ {1, . . . , s}, define

vi =
(− h(w1

i , . . . , wk
i ), wi

) ∈ Mr × UH = U, where wi = w1
i + · · ·+ wk

i , wj
i ∈ H.

Claim 3.11. {v1, . . . , vs} is a Z-independent set of generators for L.

Proof. We first show that each vi belongs to L = ker(φ). By Lemma 3.10, if
x = (a, u) ∈ Mr × UH , where u = u1 + · · ·+ uk, ui ∈ H, we have

φ(x) =
(
a + h(u1, . . . , uk), φK(u)

)
.(1)

It follows that φ(vi) = 0.
Next we show that for every x ∈ L, there are l1, . . . , ls ∈ Z such that x =

l1v1 + · · · + lsvs. Denote by τ : U → UH the group homomorphism (a, u) 7→ u.
Observe then, by (1), that φ(x) = 0 implies φK

(
τ(x)

)
= 0. Hence, there are

l1, . . . , lk ∈ Z such that

τ(x) = l1w1 + · · ·+ lsws = l1τ(v1) + · · ·+ lsτ(vs) = τ(l1v1 + · · ·+ lsvs).

That is, τ
(
x− (l1v1 + · · ·+ lsvs)

)
= 0 ∈ H. Hence x− (l1v1 + · · ·+ lsvs) ∈ HG =

Mr ×H. Since L ∩HG = {0}, we have x− (l1v1 + · · ·+ lsvs) = 0.
Finally, if v1, . . . , vs were not Z-independent, then l1v1 + · · ·+ lsvs = 0, for some

li ∈ Z. Hence l1w1 + · · ·+ lsws = τ(l1v1 + · · ·+ l1vs) = 0, a contradiction. ¤

Proof of Theorem 1.4. In Definition 3.7, we defined a convex
∨

-definable subgroup
U 6 Mn, and an onto group homomorphism φ : U → G (Proposition 3.8). In
Claim 3.11 we showed that L = ker(φ) 6 U is a lattice of rank s.

Let Σ = (HG)Ξ, where Ξ is as in Lemma 3.6. Then Σ and φ¹Σ are definable.
Moreover, the coset equivalence relation induced by U/L on Σ is definable, since,
for all x, y ∈ Σ, we have x − y ∈ L ⇔ φ¹Σ(x) = φ¹Σ(y). By Lemma 3.9(ii), Σ
contains a complete set S of representatives for U/L, and thus, by definable choice,
there is a definable such set S. By [ElSt, Claim 2.7], U/L = 〈S, +S〉 is a definable
quotient group. The restriction of φ on S is a definable group isomorphism between
〈S, +S〉 and G. By [ElSt, Remark 2.2(ii)], we are done. ¤
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Corollary 3.12. For every k ∈ N, the k-torsion subgroup G[k] of G is isomorphic
to (Z/kZ)s.

Proof. By Theorem 1.4, we may assume that G is a definable set of representatives
for U/L. For every x ∈ G then, we have

x⊕ · · · ⊕ x︸ ︷︷ ︸
k−times

= 0 ⇔ φ(kx) = 0 ⇔ kx ∈ L ∼= Zs.

Hence, x ∈ G[k] if and only if there are unique l1, . . . , ln ∈ Z such that x =
l1

v1
k + · · ·+ ls

vs

k . Equivalently, since x ∈ G,

x = φ(x) = φ
(v1

k

)
⊕ · · · ⊕ φ

(v1

k

)

︸ ︷︷ ︸
l1−times

⊕ · · · ⊕ φ
(vs

k

)
⊕ · · · ⊕ φ

(vs

k

)

︸ ︷︷ ︸
ls−times

.

Clearly then, the map f : G[k] → (Z/kZ)s, defined by

f(x) = (l1 modk, . . . , ls modk),

is a well-defined, surjective group homomorphism. To see that it is injective, check
that f(x) = f(y) implies x− y ∈ L and, hence, x = φ(x) = φ(y) = y. ¤

4. On Pillay’s Conjecture

In [BOPP], the existence of G00 was established for a group G definable in any
o-minimal structure. Here, we compute the dimension of the compact Lie group
G/G00, for our fixed G and M. The special case where G is definably compact
constitutes Pillay’s Conjecture for M, proved separately in [ElSt, Proposition 5.1]
and [Ons]. The reader is referred to [Pi2] for any terminology.

Proposition 4.1. There is a smallest type-definable subgroup G00 of G of bounded
index, and G/G00 equipped with the logic topology is a compact Lie group of dimen-
sion s. Namely, assuming Conditions (1)-(6) from page 6, G00 = Mr ×K00.

Proof. For i < ω, we define Hi inductively as follows: H0 = H, and Hi+1 = 1
2Hi.

Let also for every i < ω, (HG)i = Mr ×Hi. Denote

B =
⋂

i<ω

(HG)i =
⋂

i<ω

(Mr ×Hi) = Mr ×
(⋂

i<ω

Hi

)
.

Note that, by [ElSt, Proof of Proposition 5.1],
⋂

i<ω Hi = K00. Now, by Lemma
3.2, it is easy to see that B is a subgroup of G. By induction and [ElSt, Lemma
4.28], each Hi is generic in K. It follows that each (HG)i is generic in G, and, thus,
B has bounded index in G. Moreover, it is not hard to see that B is torsion-free,
and, thus, by [BOPP], it must be the smallest type-definable subgroup G00 of G of
bounded index, and G/G00 with the logic topology is a connected compact abelian
Lie group. Hence G00 = B is torsion-free. By [BOPP], G00 is also divisible. It
follows that for all k, the k-torsion subgroup of G/G00 is isomorphic to the k-torsion
subgroup of G, which is isomorphic to (Z/kZ)s, by Corollary 3.12. Thus, G/G00 is
isomorphic to the real s-torus and has dimension s. ¤
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5. Linear o-minimal expansions of ordered groups

Here we show that Theorem 1.4 and Proposition 4.1 hold for a group G de-
finable in a sufficiently saturated linear o-minimal expansion of an ordered group
(see Propositions 5.7 and 5.5, respectively). The relation with the context of the
previous sections is the following.

Fact 5.1 ([LP]). Let M = 〈M, +, <, 0, S〉 be a linear o-minimal expansion of an
ordered group. Then M can be elementarily embedded into a reduct of an ordered
vector space N = 〈N, +, <, 0, {λ}λ∈D〉 over an ordered division ring D.

Let M and N be as above, sufficiently saturated, and G a t-connected, M-
definable group of dimension n. We may assume that M is a reduct of N , and,
thus, G is also N -definable. Then Theorem 1.4 and Proposition 4.1 are true but
with all definability stated with respect to N . Namely, since H is N -definable,
U =< Mr×H > is

∨
-definable in N , and G00 =

⋂
i<ω (Mr ×Hi) is type-definable

in N . We show however in Proposition 5.5 below that G00 is ‘absolute’.
For a group G definable in a sufficiently saturated o-minimal structure M, we

denote by G00
M the smallest type-definable in M subgroup of G of bounded index

(which exists by [BOPP, Theorem 1.1]). The following fact was pointed out by
Pillay. (See [HPP] for any terminology.)

Fact 5.2 ([HPP]). Let T be an o-minimal theory, M a sufficiently saturated model
of T , and G a group definable in M. Assume:

(1) For all definable X ⊆ G, either X or G \X is generic.
(2) There is a left-invariant Keisler measure on G.

Then (G00 exists and) G00 is torsion-free.

Fact 5.3 ([BOPP], Corollary 1.2). Let G be a group definable in some sufficiently
saturated o-minimal structure M. Assume that X is a torsion-free, type-definable
in M, subgroup of G of bounded index. Then X = G00

M.

Corollary 5.4. Let K be an abelian, definably compact group, definable in a
sufficiently saturated o-minimal expansion M of an ordered group. Let N be a
sufficiently saturated o-minimal expansion of M. Then K00

M is torsion-free and
K00
M = K00

N .

Proof. We first verify that the assumptions of Fact 5.2 hold for K: (1) holds by
[ElSt, Lemma 3.10], and (2) holds because K is abelian. It follows that K00

M is
torsion-free. By Fact 5.3, K00

M = K00
N . ¤

In what follows, let M = 〈M, +, <, 0, S〉 be a sufficiently saturated linear
o-minimal expansion of an ordered group, G a t-connected, M-definable
group of dimension n, and N a sufficiently saturated ordered vector space
over an ordered division ring expanding M as in Fact 5.1.

We may assume that there is a M-definable group K of dimension s such that
Conditions (1)-(6) from page 6 hold. Indeed, those conditions were established
directly using the general Fact 1.3 (and not the assumption that M were a vector
space.)

Proposition 5.5. G00
M = G00

N . Therefore, G/G00
M equipped with the logic topology

is a compact Lie group of dimension s.
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Proof. Since G and K are also N -definable, we can find H ⊆ K as in Step II of
Section 3, which is N -definable. By Proposition 4.1, G00

N = Mr ×K00
N . Since K is

abelian, K00
M is torsion-free, by Corollary 5.4. Therefore, Mr ×K00

M is torsion-free.
Since K00

M has bounded index in K, easily Mr ×K00
M has bounded index in G. By

Fact 5.3, G00
M = Mr × K00

M. But, by Corollary 5.4, K00
M = K00

N . It follows that
G00
M = Mr ×K00

M = Mr ×K00
N = G00

N .
The rest follows from Proposition 4.1. ¤
In case G is definably compact, we obtain Pillay’s Conjecture in the linear setting.

Corollary 5.6 (Pillay’s Conjecture). Assume G is a t-connected, definably com-
pact, M-definable group of dimension s. Then there is a smallest type-definable in
M subgroup G00 of G of bounded index, and G/G00 equipped with the logic topology
is a compact Lie group of dimension s.

Proposition 5.7. U =< Mr×H > is
∨

-definable in M. Therefore, G is definably
isomorphic to a definable quotient group U/L, where U is a

∨
-definable in M

subgroup of Mn and L is a lattice of rank s.

Proof. Since K00 is type-definable in M and it is contained in the N -definable
H, by compactness, there exists some M-definable subset X of H that contains
K00. On the other hand, since K00 =

⋂
i<ω Hk is contained in X, by compact-

ness again, there exists some Hk contained in X. We have Hk ⊆ X ⊆ H, and
therefore UH =< X > is a

∨
-definable in M subgroup of Ms. We have that

U =< Mr ×X > is a
∨

-definable in M subgroup of Mn.
The rest follows from Theorem 1.4. ¤

5.1. O-minimal fundamental group. The o-minimal fundamental group π1(G)
of G can be defined as in the classical case except that all paths and homotopies
are taken to be definable. We refer the reader to [ElSt, Section 6] for precise
definitions. An adapted argument from that reference would show that π1(G) ∼= L,
but the result in fact follows directly from [EdEl].

Proposition 5.8. π1(G) ∼= L.

Proof. By [ElSt, Corollary 1.5], there is l ∈ N such that π1(G) ∼= Zl and G[k] ∼=
(Z/kZ)l. By Corollary 3.12, l = s. ¤
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