GROUPS DEFINABLE IN LINEAR O-MINIMAL STRUCTURES: THE NON-COMPACT CASE

PANTELIS E. ELEFTHERIOU

Abstract

Let $\mathcal{M}=\langle M,+,<, 0, S\rangle$ be a linear o-minimal expansion of an ordered group, and $G=\left\langle G, \oplus, e_{G}\right\rangle$ an n-dimensional group definable in \mathcal{M}. We show that if G is definably connected with respect to the t-topology, then it is definably isomorphic to a definable quotient group U / L, for some convex \bigvee definable subgroup U of $\left\langle M^{n},+\right\rangle$ and a lattice L of rank equal to the dimension of the 'compact part' of G.

1. Introduction

This paper is a natural continuation of [ElSt]. Let $\mathcal{M}=\left\langle M,+,<, 0,\{\lambda\}_{\lambda \in D}\right\rangle$ be an ordered vector space over an ordered division ring D. It was shown in [ElSt, Theorem 1.4] that a definably compact group G definable in \mathcal{M}, satisfying the assumptions of the above abstract, is definably isomorphic to a definable quotient group U / L, for some convex \bigvee-definable subgroup $U \leqslant\left\langle M^{n},+\right\rangle$ and a lattice L of rank n. Here we consider the case where G is not necessarily definably compact, and generalize [ElSt, Theorem 1.4] towards a structure theorem analogous to the following classical theorem (see, for example, [Bour]).
Fact 1.1. Every connected abelian real Lie group is isomorphic to a direct sum of copies of the additive group $\langle\mathbb{R},+\rangle$ of the reals and the torus S^{1}.

Moreover, we prove our theorem in the more general setting where \mathcal{M} is any linear o-minimal expansion of an ordered group.

Definition $1.2([\mathrm{LP}])$. An o-minimal expansion $\mathcal{M}=\langle M,+,<, 0, \ldots\rangle$ of an ordered group is called linear if for every \mathcal{M}-definable function $f: A \subseteq M^{n} \rightarrow M$, there is a partition of A into finitely many A_{i}, such that for each i, if $x, y, x+t, y+t \in$ A_{i}, then

$$
f(x+t)-f(x)=f(y+t)-f(y) .
$$

For the rest of this introduction, let \mathcal{M} be a linear o-minimal expansion of an ordered group. By 'definable' we mean 'definable in \mathcal{M} with parameters'.

By [Pi1], we know that every definable group G can be equipped with a unique definable manifold topology that makes it into a topological group, called t-topology. In the rest of this introduction, all topological notions about such a G are referring to this t-topology.

[^0]It is known that a definably connected definable group G is abelian. (See, for example, [PeSt, Corollary 5.1].)
Fact 1.3 ([EdEl]). Every definable group G is a definable extension of a definably compact definable group B by $M^{r}=\left\langle M^{r},+, 0\right\rangle$, for some $r \in \mathbb{N}$. That is, there is a short exact sequence

$$
0 \rightarrow M^{r} \rightarrow G \xrightarrow{q} B \rightarrow 0
$$

where all maps involved are definable homomorphisms.
We let $\sigma: B \rightarrow G$ be a definable global section; that is, a definable map such that $q \circ \sigma=i d_{B}$. Let $K=\sigma(B)$ be the topological group with the structure induced by σ. We call K the compact part of G. Clearly, G is in definable bijection with $M^{r} \times K$ as abstract sets. As we know by examples in [PeS] and [Str], however, we cannot always expect G to be definably isomorphic to the direct sum of M^{r} and K. We show:
Theorem 1.4. Let G be a definably connected definable group of dimension n. Assume that the compact part of G has dimension s. Then G is definably isomorphic to a definable quotient group U / L, for some convex \bigvee-definable subgroup $U \leqslant$ $\left\langle M^{n},+, 0\right\rangle$, and a lattice L of ranks.

The terminology in Theorem 1.4 was introduced in [EISt], and we briefly recall it in Section 2 below. We obtain two corollaries. The first one is a generalization of Pillay's Conjecture in the present context.
Proposition 4.1. Assume that \mathcal{M} is sufficiently saturated, and let G be as in Theorem 1.4. Then there is a smallest type-definable subgroup G^{00} of G of bounded index, and G / G^{00} equipped with the logic topology is a compact Lie group of dimension s.
Proposition 5.8. Let G be as in Theorem 1.4. Then the o-minimal fundamental group of G is isomorphic to L.

Structure of the paper.
In Sections 2, 3 and 4, we handle the case where \mathcal{M} is an ordered vector space over an ordered division ring.

Section 2 contains some definitions and basic results that were proved in [ElSt] without (using) the assumption that G is definably compact.

Section 3 contains the proof of Theorem 1.4, which we outline here. In analogy with [ElSt, Theorem 1.4], the proof consists of three steps. In Step I, we compare the two group operations \oplus and + . In Step II, we find a suitable generic open s-parallelogram H in K. We then let U be the subgroup of $\left\langle M^{n},+, 0\right\rangle$ generated by the set $H^{G}=M^{r} \times H$, and define a surjective group homomorphism $\phi: U \rightarrow G$. In Step III, we prove that the kernel $L=\operatorname{ker}(\phi)$ is a lattice of rank s.

In Section 4, we prove Proposition 4.1.
In Section 5, we extend our results to the case where \mathcal{M} is any linear o-minimal expansion of an ordered group, and prove Proposition 5.8.

Acknowledgements. The work presented here was carried out during my Ph.D. studies at the University of Notre Dame. I thank my thesis supervisor Sergei Starchenko, as well as Ya'acov Peterzil for suggesting me the possibility of generalizing [ElSt, Theorem 1.4]. I also wish to thank the anonymous referee for his/her very valuable comments.

2. Preliminaries

Until Section 5, we fix a big sufficiently saturated ordered vector space $\mathcal{M}=\left\langle M,+,<, 0,\{\lambda\}_{\lambda \in D}\right\rangle$ over an ordered division ring $D=\langle D,+, \cdot,<, 0,1\rangle$.

The terminology and notation of this paper was introduced in [ElSt]. We recall the definitions that play an important role here, and refer the reader to [ElSt] for the rest.

Definition 2.1 ([ElSt], Section 1). Let $L \leqslant U \leqslant\left\langle M^{n},+\right\rangle$. The group U / L is called a definable quotient group if there is a definable complete set $S \subseteq U$ of representatives for U / L, such that the induced group structure $\left\langle S,+_{S}\right\rangle$ is definable. In this case, we identify U / L with $\left\langle S,+{ }_{S}\right\rangle$.

In [ElSt, Section 2], the t-topology of a definable group G and several notions relevant to it were fixed. In what follows, an index ' t-' will indicate that the corresponding notion is taken with respect to the t-topology of G, if ambiguity would otherwise arise. In [ElSt, Section 3], basic facts about the definable structure of \mathcal{M} were established. In particular, the Linear Cell Decomposition Theorem (Linear CDT) was stated therein. Another important notion was that of an 'open parallelogram', which we now recall. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in D^{n}$ and $x \in M$, let us denote $\lambda x:=\left(\lambda_{1} x, \ldots, \lambda_{n} x\right)$.

Definition 2.2 ([ElSt], Definition 3.5). Let $0<m \leq n$ and $c \in M^{n}$. An open m-parallelogram H with center c is a definable subset $H \subseteq M^{n}$ of the form

$$
H=c+\left\{\lambda_{1} t_{1}+\cdots+\lambda_{m} t_{m}:-e_{1}<t_{i}<e_{i}\right\}
$$

for some fixed $e_{i}>0$ in M and $\lambda_{i} \in D^{n}, 1 \leq i \leq m$.
For the rest of this section, let $G=\left\langle G, \oplus, e_{G}\right\rangle$ be a definable group, with $G \subseteq$ M^{n}. We recall some basic results which were proved in [ElSt] without (using) the assumption that G is definably compact or t-connected.

Definition 2.3 ([ElSt], Definition 2.4). Let W^{G} be a fixed definable large t-open subset of G on which the \mathcal{M} - and t - topologies coincide. Let

$$
\begin{gathered}
V^{G}=\left\{a \in G: \text { there is a } t \text {-open neighborhood } V_{a} \text { of } a \text { in } G,\right. \\
\text { such that } \left.\forall x, y \in V_{a}, x \ominus a \oplus y=x-a+y\right\} \cap W^{G} .
\end{gathered}
$$

By [ElSt, Lemma 2.5], V^{G} is a definable, large, open and t-open subset of G. By cell decomposition, V^{G} is the disjoint union of finitely many open (t-)connected components.

Fact 2.4 ([ElSt], Lemma 4.7). For all u, v in the same definably connected component of V^{G}, there is $r>0$ in M, such that for all $\varepsilon \in(-r, r)^{n}$, we have $u+\varepsilon, v+\varepsilon \in G$, and

$$
(u+\varepsilon) \ominus u=(v+\varepsilon) \ominus v .
$$

It will often be convenient to assume that $e_{G}=0 \in V^{G}$. In [ElSt, Lemma 4.9] it was shown that we may do so. Namely, it was shown there that $\left(G, \oplus, e_{G}\right)$ is definably isomorphic to a topological group $\left(G^{\prime},{ }_{1}, 0\right)$ with $0 \in V^{G^{\prime}}$. The critical lemma is the following fact, which we will also use here later.

Fact 2.5. Let $b \in V^{G}$ and $f: G \rightarrow M^{n}$ with

$$
f(x)=(x \oplus b)-b
$$

If $G^{\prime}=\left\langle f(G),+_{1}, 0\right\rangle$ is the induced group, then $V^{G^{\prime}}=V^{G}-b$.
Fact 2.5 was proved in [ElSt, Lemma 4.9]. In that proof, a generic element b was chosen, but only the property that $b \in V^{G}$ was used.

Finally, we state the main theorem from [ElSt], in a form that will be useful in the present paper (and whose proof can easily be extracted from [ElSt]).
Fact 2.6. Let $K=\left\langle K, \oplus_{K}, 0\right\rangle \subseteq M^{s}$ be a definably compact, t-connected, definable group of dimension s. Assume that H is an open s-parallelogram, generic in K, such that

- H has center 0 ,
- H is contained in V^{K}.

Let U_{H} be the subgroup of $\left\langle M^{s},+\right\rangle$ generated by H :

$$
U_{H}=<H>=\bigcup_{k<\omega} \underbrace{H+\cdots+H}_{k-\text { times }} \leqslant M^{s} .
$$

Then:

- the following map $\phi^{K}: U_{H} \rightarrow K$ is a well-defined, continuous, surjective group homomorphism: for all $x_{1}, \ldots, x_{k} \in H$, if $x=x_{1}+\cdots+x_{k}$, then

$$
\phi^{K}(x)=x_{1} \oplus_{K} \cdots \oplus_{K} x_{k}
$$

- $L^{K}=\operatorname{ker}\left(\phi^{K}\right)$ is a lattice of rank s,
- $U_{H} / L^{K}=\left\langle S,+{ }_{S}\right\rangle$ is a definable quotient group and $\phi_{H \upharpoonright S}:\langle S,+S\rangle \rightarrow K$ is a definable isomorphism.
That is, $K \cong_{\text {def }} U_{H} / L^{K}$.
The following fact can also be extracted from [ElSt, Step II], but we include its proof for completeness.

Fact 2.7. Let $K \subseteq M^{s}$ be a definably compact group of dimension s. Let W be a large definable subset of K. Then there is an open s-parallelogram $H \subseteq W$ which is generic in K.

Proof. Since W is large in K, it is also generic. By Linear CDT ([ElSt]), W is a finite union of linear cells, and by $[\mathrm{PePi}$, Corollary 3.9], one of them, call it Y, must be generic. By [ElSt, Lemma 3.10], Y has dimension s. By [ElSt, Lemma 3.6], \bar{Y} is a finite union of closed s-parallelograms, say W_{1}, \ldots, W_{l}. For $i \in\{1, \ldots, l\}$, let $Y_{i}=Y \cap W_{i}$. Then $Y=Y_{1} \cup \cdots \cup Y_{l}$. By [ElSt, Lemma 3.10] again, one of the Y_{i} 's must be generic, say Y_{1}. Let $H=\operatorname{Int}\left(Y_{1}\right)$. By [ElSt, Lemma 3.10], H is generic.

3. The proof of Theorem 1.4

As described in the introduction, the proof runs in three steps. Let $G=$ $\left\langle G, \oplus, e_{G}\right\rangle$ be a definable group, with $G \subseteq M^{n}$.

Step I. Comparing \oplus with + .
Lemma 3.1. Assume that $e_{G}=0$. Assume that H is an open m-parallelogram, $m \leq n$, contained in G such that:

- H has center 0 ,
- H is contained in V^{G}.

Then, for every $x, y \in H$ such that $x+y \in H$, we have:

$$
x \oplus y=x+y
$$

Proof. We first notice that:
Claim 1. For all $u, v \in H$, such that $u \oplus v \in H$, there is $r>0$ in M, such that for all $\varepsilon \in(-r, r)^{n}, v+\varepsilon \in H$ and

$$
u \oplus(v+\varepsilon)=(u \oplus v)+\varepsilon .
$$

Indeed, by Fact 2.4, there is $r>0$ in M, such that $\forall \varepsilon \in(-r, r)^{n}$,

$$
(v+\varepsilon) \ominus v=[(u \oplus v)+\varepsilon] \ominus(u \oplus v)
$$

Claim 2. Let $\varepsilon(t):[0, p] \rightarrow H, \varepsilon(0)=0$, be a path, such that $\forall t \in[0, p], u+\varepsilon(t) \in$ H. Then:

$$
u \oplus \varepsilon(p)=u+\varepsilon(p)
$$

Indeed, consider the function $f: G \rightarrow M^{n}$ with $x \mapsto(u \oplus x)-x$. We show that f is locally constant on $\operatorname{Im}(\varepsilon)$. Indeed, by Claim $1, \forall s \in[0, p], \exists z>0$, such that $\forall t \in[s-z, s+z] \cap[0, p]$,

$$
u \oplus \varepsilon(t)=u \oplus(\varepsilon(s)+\varepsilon(t)-\varepsilon(s))=(u \oplus \varepsilon(s))+\varepsilon(t)-\varepsilon(s)
$$

Thus $\forall t \in[s-z, s+z], f(\varepsilon(t))=(u \oplus \varepsilon(t))-\varepsilon(t)=(u \oplus \varepsilon(s))-\varepsilon(s)=f(u+\varepsilon(s))$. It follows that f is constant on $\operatorname{Im}(\varepsilon)$ and equal to $(u \oplus 0)-0=u$. Thus, $\forall t \in[0, p]$, $(u \oplus \varepsilon(t))-\varepsilon(t)=u$, that is, $u \oplus \varepsilon(t)=u+\varepsilon(t)$. This proves Claim 2.

Now, let $x, y \in H$, such that $x+y \in H$. By [ElSt, Lemma 4.25], there is a path $\varepsilon(t)$ in H from 0 to y, such that the path $x+\varepsilon(t)$ lies entirely in H, as well. By Claim 2 for $u=x$, we have: $x \oplus y=x+y$.

Corollary 3.2. Let H be as in Lemma 3.1. Let $x_{1}, \ldots, x_{l} \in H$ be such that for any subset σ of $\{1, \ldots, l\}, \sum_{j \in \sigma} x_{j} \in H$. Then, $x_{1}+\cdots+x_{l}=x_{1} \oplus \cdots \oplus x_{l}$.

Proof. By induction on l.
$\mathbf{l}=\mathbf{2}$. By Lemma 3.1.
$\mathbf{l}>\mathbf{2} . x_{1}+\cdots+x_{l}=x_{1}+\left(x_{2}+\cdots+x_{l}\right)=x_{1} \oplus\left(x_{2} \oplus \cdots \oplus x_{l}\right)=x_{1} \oplus \cdots \oplus x_{l}$.
Corollary 3.3. Let H be as in Lemma 3.1. For every $x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{m} \in H$, if $x_{1}+\cdots+x_{l}=y_{1}+\cdots+y_{m}$, then $x_{1} \oplus \cdots \oplus x_{l}=y_{1} \oplus \cdots \oplus y_{m}$.
Proof. This is [ElSt, Lemma 4.27], with identical proof. The assumption that G is definably compact in that proof is not used.

Step II. A generic open s-parallelogram of K. As we saw in the introduction, G is a definable extension of a definably compact definable group B by $M^{r}=\left\langle M^{r},+, 0\right\rangle$, for some $r \in \mathbb{N}$:

$$
0 \rightarrow M^{r} \xrightarrow{i} G \xrightarrow{q} B \rightarrow 0
$$

Let $\sigma: B \rightarrow G$ be a definable global section and $K=\sigma(B)$. Then $K \subseteq G$ is a definable complete set of representatives for G / M^{r}. We may choose σ so that
$e_{G} \in K$. We let $K=\left\langle K, \oplus_{K}, e_{G}\right\rangle$ be the topological group with the structure induced by $\sigma: B \rightarrow K$. We have:

$$
G=\left\{i(a) \oplus u: a \in M^{r}, u \in K\right\} .
$$

Clearly, $i\left(M^{r}\right) \cap K=\left\{e_{G}\right\}$. Thus there is a definable bijection $G \rightarrow M^{r} \times K$, with $i(a) \oplus u \mapsto(a, u)$. Moreover, since K is definably compact of dimension $n-r$, using [ElSt, Lemma 3.7] we can find a definable injective map $f: K \rightarrow M^{n-r}$ with $f_{2}\left(e_{G}\right)=0$. By taking the composition $i(a) \oplus u \mapsto(a, f(u))$, we may assume that:
(1) $G=M^{r} \times K \subseteq M^{n}$
(2) $M^{r} \leqslant G$
(3) $G=\langle G, \oplus, 0\rangle$
(4) $K=\left\langle K, \oplus_{K}, 0\right\rangle$ is a definable complete set of representatives for G / M^{r} equipped with the induced group structure
(5) for every $a \in M^{r}$ and $u \in K, a \oplus u=(a, u)$.

Furthermore, since V^{G} is a large definable subset of G, we may assume that
(6)

$$
V^{G} \cap K \text { is large in } K
$$

Indeed, if needed, we may take another section $\tau: K \rightarrow G, \tau(0)=0$, such that a large subset of its image K^{\prime} is contained in V^{G}. Then, we may project K^{\prime} onto M^{s}. If π denotes this projection (which is a bijection), it remains to check that $V^{\pi(G)} \cap \pi\left(K^{\prime}\right)$ is large in $\pi\left(K^{\prime}\right)$. Since π is piecewise linear, it suffices to show that for every $A \subseteq K^{\prime}$ on which π is linear, $V^{\pi(G)} \cap \pi(A)$ is large in $\pi(A)$. We show that $\pi\left(V^{G}\right) \cap \pi(A) \subseteq V^{\pi(G)} \cap \pi(A)$, which is clearly enough. Assume $\pi(G)=\langle\pi(G), *, 0\rangle$ is the induced group via π, and let $c \in \pi\left(V^{G}\right) \cap \pi(A)$. Since $\pi^{-1}(c) \in V^{G}$, there is a neighborhood V_{c} of c in $\pi(A)$ such that for all $x, y \in V_{c}$,

$$
x-_{*} c * y=\pi\left(\pi^{-1}(x) \ominus_{K^{\prime}} \pi^{-1}(a) \oplus_{K^{\prime}} \pi^{-1}(y)\right)=\pi\left(\pi^{-1}(x)-\pi^{-1}(a)+\pi^{-1}(y)\right) .
$$

But since π is linear on A, the latter is equal to $\pi\left(\pi^{-1}(x)\right)-\pi\left(\pi^{-1}(a)\right)+\pi\left(\pi^{-1}(y)\right)=$ $x-a+y$.

Until Section 5, we fix an n-dimensional, t-connected definable group G, and its compact part K, such that conditions (1)-(6) above hold. Let $s=\operatorname{dim}(K)=n-r$.

As mentioned in the Introduction, G is abelian.
Observe that the t-topology of K is the same as the quotient topology induced by the canonical surjection $q: G \rightarrow G / M^{r}$, by [ElSt, Fact 2.1].
Lemma 3.4. For all $x_{1}, x_{2} \in K$, there is $a \in M^{r}$, such that

$$
x_{1} \oplus_{K} x_{2}=x_{1} \oplus x_{2} \oplus a
$$

Proof. Since $q\left(x_{1} \oplus_{K} x_{2}\right)=q\left(\sigma q\left(x_{1} \oplus x_{2}\right)\right)=q \sigma\left(q\left(x_{1} \oplus x_{2}\right)\right)=q\left(x_{1} \oplus x_{2}\right)$, we have $\left(x_{1} \oplus_{K} x_{2}\right) \ominus\left(x_{1} \oplus x_{2}\right) \in \operatorname{ker}(q)=M^{r}$.

We now proceed to define a suitable generic open s-parallelogram H in K. By Condition (6) above, $V^{K} \cap V^{G} \cap K$ is large in K. By Fact 2.7, there is an open s-parallelogram $H \subseteq K$, generic in K, contained in V^{G} and in V^{K}. We are going to show that H may be assumed to have center 0 .

Lemma 3.5. The group G is definably isomorphic to a group $G^{\prime}=\left\langle G^{\prime},+G^{\prime}, 0\right\rangle$, and there is a definably compact group $K^{\prime}=\left\langle K^{\prime},+_{K^{\prime}}, 0\right\rangle$, such that:
(1) $G^{\prime}=M^{r} \times K^{\prime} \subseteq M^{n}$
(2) $M^{r} \leqslant G^{\prime}$
(3) (a) $K^{\prime} \subseteq G^{\prime}$ is a definable complete set of representatives for G^{\prime} / M^{r}, and
(b) $+_{K^{\prime}}$ coincides with the group operation induced by the canonical surjection $q: G^{\prime} \rightarrow G^{\prime} / M^{r}$
(4) for every $a \in M^{r}$ and $u \in K^{\prime}, a+{ }_{G^{\prime}} u=(a, u)$
(5) there is an open s-parallelogram $H^{\prime} \subseteq K^{\prime}$, generic in K^{\prime}, such that:
(a) H^{\prime} has center 0 ,
(b) H^{\prime} is contained in $V^{G^{\prime}}$ and in $V^{K^{\prime}}$.

Proof. Let c be the center of H. Consider the following two definable bijections:

$$
\begin{gathered}
f_{G}: G \ni x \mapsto(x \oplus c)-c \in f_{G}(G) \subseteq M^{n} \\
f_{K}: K \ni x \mapsto\left(x \oplus_{K} c\right)-c \in f_{K}(K) \subseteq M^{n}
\end{gathered}
$$

Now, let $G^{\prime}=f_{G}(G), K^{\prime}=f_{K}(K), H^{\prime}=f_{K}\left(H \ominus_{K} c\right)=H-c$. Let $G^{\prime}=$ $\left\langle G^{\prime},+{ }_{G^{\prime}}, 0\right\rangle$ and $K^{\prime}=\left\langle K^{\prime},+_{K^{\prime}}, 0\right\rangle$ be the induced topological group structures induced by f_{G} and f_{K}, respectively. By [ElSt, Remark 2.2], f_{G} and f_{K} are definable isomorphisms, for all $x, y \in G^{\prime}$,

$$
x+{G^{\prime}} y=[(x+c) \ominus c \oplus(y+c)]-c,
$$

and for all $x, y \in K^{\prime}$,

$$
x+_{K^{\prime}} y=\left[(x+c) \ominus_{K} c \oplus_{K}(y+c)\right]-c .
$$

(1) For every $x=(a, u)=a \oplus u \in G=M^{r} \times K$, we have:

$$
\begin{aligned}
f_{G}(x) & =(a \oplus u \oplus c)-c=\left[a \oplus u \oplus c \ominus\left(u \oplus_{K} c\right) \oplus\left(u \oplus_{K} c\right)\right]-c \\
& =\left(a \oplus u \oplus c \ominus\left(u \oplus_{K} c\right), u \oplus_{K} c\right)-(0, c) \\
& =\left(a \oplus u \oplus c \ominus\left(u \oplus_{K} c\right),\left(u \oplus_{K} c\right)-c\right) \in M^{r} \times K^{\prime},
\end{aligned}
$$

by Lemma 3.4. Hence $G^{\prime} \subseteq M^{r} \times K^{\prime}$. On the other hand, if $y=(b, v) \in M^{r} \times K^{\prime}$, let $x=(a, u)$ where $u=(v+c) \ominus_{K} c \in K$ and $a=b \ominus(u \oplus c) \oplus\left(u \oplus_{K} c\right) \in M^{r}$. It can be checked that $f_{G}(x)=y$. Hence $G^{\prime} \supseteq M^{r} \times K^{\prime}$.
(2) Observe that $f_{G}\left(M^{r}\right)=M^{r}$. Indeed, for every $x \in M^{r},(x \oplus c)-c=$ $(x, c)-(0, c)=(x, 0)=x$.
(3)(a) We first show that $K^{\prime} \subseteq G^{\prime}$. Let $\left(g \oplus_{K} c\right)-c \in K^{\prime}$, for some $g \in K$. Then $g_{1}=\left(g \oplus_{K} c\right) \ominus c \in G$ and $\left(g \oplus_{K} c\right)-c=\left(g_{1} \oplus c\right)-c \in G^{\prime}$.

We next show that K^{\prime} is a definable set of representatives for G^{\prime} / M^{r}. Let $g^{\prime}=f_{G}(g)=(g \oplus c)-c \in G^{\prime}$, for some $g \in G$. Since $G=\left\{a \oplus k: a \in M^{r}, k \in K\right\}$, there are $a \in M^{r}$ and $k \in K$ such that $g \oplus c=a \oplus k$. Then $f_{G}(a)+{ }_{G^{\prime}} f_{K}\left(k \ominus_{K} c\right)=$ $[(a \oplus c)-c]+_{G^{\prime}}(k-c)=(a \oplus c \ominus c \oplus k)-c=(a \oplus k)-c=(g \oplus c)-c=g^{\prime}$.

Finally, K^{\prime} is complete: assume $f_{K}\left(k_{1}\right)=f_{G}(a)+{ }_{G^{\prime}} f_{K}\left(k_{2}\right)$, for some $k_{1}, k_{2} \in K$ and $a \in M^{r}$. We show $k_{1}=k_{2}$ and, thus, $f_{K}\left(k_{1}\right)=f_{K}\left(k_{2}\right)$. We have, $f_{K}\left(k_{1}\right)=$ $\left(k_{1} \oplus_{K} c\right)-c$ and $f_{G}(a)+G_{G^{\prime}} f_{K}\left(k_{2}\right)=[(a \oplus c)-c]+_{G^{\prime}}\left[\left(k_{2} \oplus_{K} c\right)-c\right]=\left[a \oplus\left(k_{2} \oplus_{K} c\right)\right]-c$. Thus, $k_{1} \oplus_{K} c=a \oplus\left(k_{2} \oplus_{K} c\right)$. Since K is a complete set of representatives for $G / M^{r}, k_{1} \oplus_{K} c=k_{2} \oplus_{K} c$ and, thus, $k_{1}=k_{2}$.
(3)(b) We show that for every $x, y \in K^{\prime}$, there is $a \in M^{r}$ such that $x+K_{K^{\prime}} y=$ $x+{ }_{G^{\prime}} y+{ }_{G^{\prime}} a$. We have $x+{ }_{K^{\prime}} y=\left[(x+c) \ominus_{K} c \oplus_{K}(y+c)\right]-c=[(x+c) \ominus c \oplus(y+c) \oplus b]-c$, for some $b \in M^{r}$. Let $a=f_{G}(b)=(b \oplus c)-c \in M^{r}$. Then we have $x+{ }_{G^{\prime}} y+{ }_{G^{\prime}} a=$ $([(x+c) \ominus c \oplus(y+c)]-c)+{G^{\prime}}[(b \oplus c)-c]=[(x+c) \ominus c \oplus(y+c) \ominus c \oplus b \oplus c]-c=x+{ }_{K^{\prime}} y$.
(4) We have

$$
\begin{aligned}
a+{G^{\prime}}^{\prime} u & =[(a+c) \ominus c \oplus(u+c)]-c=[(a, c) \ominus c \oplus(u+c)]-c \\
& =[(a \oplus c) \ominus c \oplus(u+c)]-c=(a, u+c)-(0, c)=(a, u) .
\end{aligned}
$$

(5)(a) It is clear that $H^{\prime}=H-c$ is an open s-parallelogram with center 0 . Since H is generic in $K, H \ominus_{K} c$ is generic in K, and, thus, $H^{\prime}=f_{K}\left(H \ominus_{K} c\right)$ is generic in K^{\prime}. (b) By Fact 2.5 applied to f_{G} and f_{K} separately.

We may thus assume that: $H \subseteq K$ is an open s-parallelogram, generic in K, such that:

- H has center 0 ,
- H is contained in V^{G} and in V^{K}.

We let

$$
H^{G}=\left\{a \oplus u: a \in M^{r}, u \in H\right\}=M^{r} \times H
$$

Since H is generic in K, it is easy to see that H^{G} is generic in G.
Lemma 3.6. There is $\Xi \in \mathbb{N}$, such that $G=\underbrace{H^{G} \oplus \cdots \oplus H^{G}}_{\Xi-\text { times }}$.
Proof. By [ElSt, Lemma 4.29], there is $\Xi \in \mathbb{N}$, such that $K=\underbrace{H \oplus \cdots \oplus H}_{\Xi-\text { times }}$. Since $G=\left\{a \oplus u: a \in M^{r}, u \in K\right\}$, Lemma 3.4 gives $G=\underbrace{H^{G} \oplus \cdots \oplus H^{G}}_{\Xi-\text { times }}$.

Definition 3.7. Let U_{H} be the subgroup of $\left\langle M^{s},+, 0\right\rangle$ generated by H; that is, $U_{H}=<H>=\bigcup_{k<\omega} H^{k}$, where $H^{k}=\underbrace{H+\cdots+H}_{k-\text { times }}$. Let U be the subgroup of $M^{n}=\left\langle M^{n},+, 0\right\rangle$ generated by H^{G}; that is,

$$
U=<H^{G}>=\bigcup_{k<\omega}\left(H^{G}\right)^{k}
$$

Equivalently, $U=M^{r} \times U_{H}$. By Corollary 3.3, the following function $\phi: U \rightarrow G$ is well-defined. For all $x_{1}=\left(a_{1}, u_{1}\right), \ldots, x_{k}=\left(a_{k}, u_{k}\right) \in H^{G}=M^{r} \times H$, if $x=x_{1}+\cdots+x_{n}$, then

$$
\phi(x)=x_{1} \oplus \cdots \oplus x_{k}=\left(a_{1}+\cdots+a_{k}\right) \oplus u_{1} \oplus \cdots \oplus u_{k} .
$$

Since M^{r} and $U_{H}=\left\langle U_{H},+_{{ }_{U}}, 0\right\rangle$ are subgroups of M^{n}, so is their direct product $U=M^{r} \times U_{H}$. Easily, U is a \bigvee-definable group, and convexity of H implies convexity of U.
Proposition 3.8. ϕ is a t-continuous group homomorphism from U onto G.
Proof. ϕ is a group homomorphism, because if $x=x_{1}+\cdots+x_{l}$ and $y=y_{1}+\cdots+y_{m}$, with $x_{i}, y_{i} \in H$, then $\phi(x+y)=\phi\left(x_{1}+\cdots+x_{l}+y_{1}+\cdots+y_{m}\right)=x_{1} \oplus \cdots \oplus x_{l} \oplus$ $y_{1} \oplus \cdots \oplus y_{m}=\phi(x) \oplus \phi(y)$. It is onto, by Lemma 3.6. Since \oplus is t-continuous, so is ϕ.

Thus, if we let $L=\operatorname{ker}(\phi)$, we know that $U / L \cong G$ as abstract groups.

Step III. L is a lattice of rank s.

We begin with an easy lemma.

Lemma 3.9. (i) $\operatorname{ker}(\phi) \cap H^{G}=\{0\}$.
(ii) Let Ξ be as in Lemma 3.6. Then $\forall x \in U, \exists y \in\left(H^{G}\right)^{\Xi}, y-x \in \operatorname{ker}(\phi)$.

Proof. (i) For every $x \in H^{G}, \phi(x)=x$.
(ii) For $x \in U$, since $\phi(x) \in G$, there are $x_{1}, \ldots, x_{\Xi} \in H^{G}$, such that $\phi(x)=$ $x_{1} \oplus \cdots \oplus x_{\Xi}$. Clearly, if $y=x_{1}+\cdots+x_{\Xi} \in\left(H^{G}\right)^{\Xi}$, then $\phi(x)=\phi(y)$.
Lemma 3.10. For every $x_{1}=\left(a_{1}, u_{1}\right), \ldots, x_{k}=\left(a_{k}, u_{k}\right) \in G=M^{r} \times K$,

$$
x_{1} \oplus \cdots \oplus x_{k}=\left(a_{1}+\cdots+a_{k}+h\left(u_{1}, \ldots, u_{k}\right), u_{1} \oplus_{K} \cdots \oplus_{K} u_{k}\right),
$$

where $h\left(u_{1}, \ldots, u_{k}\right)=u_{1} \oplus \cdots \oplus u_{k} \ominus\left(u_{1} \oplus_{K} \cdots \oplus_{K} u_{k}\right) \in M^{r}$.
Proof. The proof is quite standard, but we include it for completeness. Assume that $\left(a_{1}, u_{1}\right) \oplus \cdots \oplus\left(a_{k}, u_{k}\right)=(a, u)$. By taking $\sigma \circ q$ on both sides, we have $u_{1} \oplus_{K} \cdots \oplus_{K} u_{k}=u$. On the other hand,

$$
a_{1} \oplus u_{1} \oplus \cdots \oplus a_{k} \oplus u_{k}=\left(a_{1}, u_{1}\right) \oplus \cdots \oplus\left(a_{k}, u_{k}\right)=(a, u)=a \oplus u
$$

and hence $a=a_{1} \oplus \cdots \oplus a_{k} \oplus h\left(u_{1}, \ldots, u_{k}\right)$. Finally, by Lemma 3.4, $h\left(u_{1}, \ldots, u_{k}\right) \in$ M^{r}, allowing us to replace \oplus by + in the last equation.

By Fact $2.6, \phi^{K}: U_{H} \rightarrow K$ is well-defined and $L^{K}=\operatorname{ker}(\phi)$ has rank s. Let $\left\{w_{1}, \ldots, w_{s}\right\}$ be a fixed set of generators for L^{K}. For every $i \in\{1, \ldots, s\}$, define $v_{i}=\left(-h\left(w_{i}^{1}, \ldots, w_{i}^{k}\right), w_{i}\right) \in M^{r} \times U_{H}=U$, where $w_{i}=w_{i}^{1}+\cdots+w_{i}^{k}, w_{i}^{j} \in H$.
Claim 3.11. $\left\{v_{1}, \ldots, v_{s}\right\}$ is a \mathbb{Z}-independent set of generators for L.
Proof. We first show that each v_{i} belongs to $L=\operatorname{ker}(\phi)$. By Lemma 3.10, if $x=(a, u) \in M^{r} \times U_{H}$, where $u=u_{1}+\cdots+u_{k}, u_{i} \in H$, we have

$$
\begin{equation*}
\phi(x)=\left(a+h\left(u_{1}, \ldots, u_{k}\right), \phi^{K}(u)\right) . \tag{1}
\end{equation*}
$$

It follows that $\phi\left(v_{i}\right)=0$.
Next we show that for every $x \in L$, there are $l_{1}, \ldots, l_{s} \in \mathbb{Z}$ such that $x=$ $l_{1} v_{1}+\cdots+l_{s} v_{s}$. Denote by $\tau: U \rightarrow U_{H}$ the group homomorphism $(a, u) \mapsto u$. Observe then, by (1), that $\phi(x)=0$ implies $\phi^{K}(\tau(x))=0$. Hence, there are $l_{1}, \ldots, l_{k} \in \mathbb{Z}$ such that

$$
\tau(x)=l_{1} w_{1}+\cdots+l_{s} w_{s}=l_{1} \tau\left(v_{1}\right)+\cdots+l_{s} \tau\left(v_{s}\right)=\tau\left(l_{1} v_{1}+\cdots+l_{s} v_{s}\right)
$$

That is, $\tau\left(x-\left(l_{1} v_{1}+\cdots+l_{s} v_{s}\right)\right)=0 \in H$. Hence $x-\left(l_{1} v_{1}+\cdots+l_{s} v_{s}\right) \in H^{G}=$ $M^{r} \times H$. Since $L \cap H^{G}=\{0\}$, we have $x-\left(l_{1} v_{1}+\cdots+l_{s} v_{s}\right)=0$.

Finally, if v_{1}, \ldots, v_{s} were not \mathbb{Z}-independent, then $l_{1} v_{1}+\cdots+l_{s} v_{s}=0$, for some $l_{i} \in \mathbb{Z}$. Hence $l_{1} w_{1}+\cdots+l_{s} w_{s}=\tau\left(l_{1} v_{1}+\cdots+l_{1} v_{s}\right)=0$, a contradiction.
Proof of Theorem 1.4. In Definition 3.7, we defined a convex \bigvee-definable subgroup $U \leqslant M^{n}$, and an onto group homomorphism $\phi: U \rightarrow G$ (Proposition 3.8). In Claim 3.11 we showed that $L=\operatorname{ker}(\phi) \leqslant U$ is a lattice of rank s.

Let $\Sigma=\left(H^{G}\right)^{\Xi}$, where Ξ is as in Lemma 3.6. Then Σ and $\phi_{\Gamma_{\Sigma}}$ are definable. Moreover, the coset equivalence relation induced by U / L on Σ is definable, since, for all $x, y \in \Sigma$, we have $x-y \in L \Leftrightarrow \phi_{\Gamma_{\Sigma}}(x)=\phi_{\Gamma_{\Sigma}}(y)$. By Lemma 3.9(ii), Σ contains a complete set S of representatives for U / L, and thus, by definable choice, there is a definable such set S. By [ElSt, Claim 2.7], $U / L=\langle S,+s\rangle$ is a definable quotient group. The restriction of ϕ on S is a definable group isomorphism between $\left\langle S,+_{S}\right\rangle$ and G. By [ElSt, Remark 2.2(ii)], we are done.

Corollary 3.12. For every $k \in \mathbb{N}$, the k-torsion subgroup $G[k]$ of G is isomorphic to $(\mathbb{Z} / k \mathbb{Z})^{s}$.

Proof. By Theorem 1.4, we may assume that G is a definable set of representatives for U / L. For every $x \in G$ then, we have

$$
\underbrace{x \oplus \cdots \oplus x}_{k-\text { times }}=0 \Leftrightarrow \phi(k x)=0 \Leftrightarrow k x \in L \cong \mathbb{Z}^{s} .
$$

Hence, $x \in G[k]$ if and only if there are unique $l_{1}, \ldots, l_{n} \in \mathbb{Z}$ such that $x=$ $l_{1} \frac{v_{1}}{k}+\cdots+l_{s} \frac{v_{s}}{k}$. Equivalently, since $x \in G$,

$$
x=\phi(x)=\underbrace{\phi\left(\frac{v_{1}}{k}\right) \oplus \cdots \oplus \phi\left(\frac{v_{1}}{k}\right)}_{l_{1}-\text { times }} \oplus \cdots \oplus \underbrace{\phi\left(\frac{v_{s}}{k}\right) \oplus \cdots \oplus \phi\left(\frac{v_{s}}{k}\right)}_{l_{s}-\text { times }} .
$$

Clearly then, the map $f: G[k] \rightarrow(\mathbb{Z} / k \mathbb{Z})^{s}$, defined by

$$
f(x)=\left(l_{1} \bmod k, \ldots, l_{s} \bmod k\right),
$$

is a well-defined, surjective group homomorphism. To see that it is injective, check that $f(x)=f(y)$ implies $x-y \in L$ and, hence, $x=\phi(x)=\phi(y)=y$.

4. On Pillay's Conjecture

In [BOPP], the existence of G^{00} was established for a group G definable in any o-minimal structure. Here, we compute the dimension of the compact Lie group G / G^{00}, for our fixed G and \mathcal{M}. The special case where G is definably compact constitutes Pillay's Conjecture for \mathcal{M}, proved separately in [ElSt, Proposition 5.1] and [Ons]. The reader is referred to [Pi 2$]$ for any terminology.

Proposition 4.1. There is a smallest type-definable subgroup G^{00} of G of bounded index, and G / G^{00} equipped with the logic topology is a compact Lie group of dimension s. Namely, assuming Conditions (1)-(6) from page 6, $G^{00}=M^{r} \times K^{00}$.

Proof. For $i<\omega$, we define H_{i} inductively as follows: $H_{0}=H$, and $H_{i+1}=\frac{1}{2} H_{i}$. Let also for every $i<\omega,\left(H^{G}\right)_{i}=M^{r} \times H_{i}$. Denote

$$
B=\bigcap_{i<\omega}\left(H^{G}\right)_{i}=\bigcap_{i<\omega}\left(M^{r} \times H_{i}\right)=M^{r} \times\left(\bigcap_{i<\omega} H_{i}\right) .
$$

Note that, by [ElSt, Proof of Proposition 5.1], $\bigcap_{i<\omega} H_{i}=K^{00}$. Now, by Lemma 3.2, it is easy to see that B is a subgroup of G. By induction and [ElSt, Lemma 4.28], each H_{i} is generic in K. It follows that each $\left(H^{G}\right)_{i}$ is generic in G, and, thus, B has bounded index in G. Moreover, it is not hard to see that B is torsion-free, and, thus, by [BOPP], it must be the smallest type-definable subgroup G^{00} of G of bounded index, and G / G^{00} with the logic topology is a connected compact abelian Lie group. Hence $G^{00}=B$ is torsion-free. By [BOPP], G^{00} is also divisible. It follows that for all k, the k-torsion subgroup of G / G^{00} is isomorphic to the k-torsion subgroup of G, which is isomorphic to $(\mathbb{Z} / k \mathbb{Z})^{s}$, by Corollary 3.12. Thus, G / G^{00} is isomorphic to the real s-torus and has dimension s.

5. LINEAR O-MINIMAL EXPANSIONS OF ORDERED GROUPS

Here we show that Theorem 1.4 and Proposition 4.1 hold for a group G definable in a sufficiently saturated linear o-minimal expansion of an ordered group (see Propositions 5.7 and 5.5 , respectively). The relation with the context of the previous sections is the following.

Fact 5.1 ([LP]). Let $\mathcal{M}=\langle M,+,<, 0, S\rangle$ be a linear o-minimal expansion of an ordered group. Then \mathcal{M} can be elementarily embedded into a reduct of an ordered vector space $\mathcal{N}=\left\langle N,+,<, 0,\{\lambda\}_{\lambda \in D}\right\rangle$ over an ordered division ring D.

Let \mathcal{M} and \mathcal{N} be as above, sufficiently saturated, and G a t-connected, \mathcal{M} definable group of dimension n. We may assume that \mathcal{M} is a reduct of \mathcal{N}, and, thus, G is also \mathcal{N}-definable. Then Theorem 1.4 and Proposition 4.1 are true but with all definability stated with respect to \mathcal{N}. Namely, since H is \mathcal{N}-definable, $U=<M^{r} \times H>$ is \bigvee-definable in \mathcal{N}, and $G^{00}=\bigcap_{i<\omega}\left(M^{r} \times H_{i}\right)$ is type-definable in \mathcal{N}. We show however in Proposition 5.5 below that G^{00} is 'absolute'.

For a group G definable in a sufficiently saturated o-minimal structure \mathcal{M}, we denote by $G_{\mathcal{M}}^{00}$ the smallest type-definable in \mathcal{M} subgroup of G of bounded index (which exists by [BOPP, Theorem 1.1]). The following fact was pointed out by Pillay. (See [HPP] for any terminology.)

Fact 5.2 ([HPP]). Let T be an o-minimal theory, \mathcal{M} a sufficiently saturated model of T, and G a group definable in \mathcal{M}. Assume:
(1) For all definable $X \subseteq G$, either X or $G \backslash X$ is generic.
(2) There is a left-invariant Keisler measure on G.

Then (G^{00} exists and) G^{00} is torsion-free.
Fact 5.3 ([BOPP], Corollary 1.2). Let G be a group definable in some sufficiently saturated o-minimal structure \mathcal{M}. Assume that X is a torsion-free, type-definable in \mathcal{M}, subgroup of G of bounded index. Then $X=G_{\mathcal{M}}^{00}$.
Corollary 5.4. Let K be an abelian, definably compact group, definable in a sufficiently saturated o-minimal expansion \mathcal{M} of an ordered group. Let \mathcal{N} be a sufficiently saturated o-minimal expansion of \mathcal{M}. Then $K_{\mathcal{M}}^{00}$ is torsion-free and $K_{\mathcal{M}}^{00}=K_{\mathcal{N}}^{00}$.
Proof. We first verify that the assumptions of Fact 5.2 hold for K : (1) holds by [ElSt, Lemma 3.10], and (2) holds because K is abelian. It follows that $K_{\mathcal{M}}^{00}$ is torsion-free. By Fact 5.3, $K_{\mathcal{M}}^{00}=K_{\mathcal{N}}^{00}$.

In what follows, let $\mathcal{M}=\langle M,+,<, 0, S\rangle$ be a sufficiently saturated linear o-minimal expansion of an ordered group, G a t-connected, \mathcal{M}-definable group of dimension n, and \mathcal{N} a sufficiently saturated ordered vector space over an ordered division ring expanding \mathcal{M} as in Fact 5.1.

We may assume that there is a \mathcal{M}-definable group K of dimension s such that Conditions (1)-(6) from page 6 hold. Indeed, those conditions were established directly using the general Fact 1.3 (and not the assumption that \mathcal{M} were a vector space.)
Proposition 5.5. $G_{\mathcal{M}}^{00}=G_{\mathcal{N}}^{00}$. Therefore, $G / G_{\mathcal{M}}^{00}$ equipped with the logic topology is a compact Lie group of dimension s.

Proof. Since G and K are also \mathcal{N}-definable, we can find $H \subseteq K$ as in Step II of Section 3, which is \mathcal{N}-definable. By Proposition 4.1, $G_{\mathcal{N}}^{00}=M^{r} \times K_{\mathcal{N}}^{00}$. Since K is abelian, $K_{\mathcal{M}}^{00}$ is torsion-free, by Corollary 5.4. Therefore, $M^{r} \times K_{\mathcal{M}}^{00}$ is torsion-free. Since $K_{\mathcal{M}}^{00}$ has bounded index in K, easily $M^{r} \times K_{\mathcal{M}}^{00}$ has bounded index in G. By Fact 5.3, $G_{\mathcal{M}}^{00}=M^{r} \times K_{\mathcal{M}}^{00}$. But, by Corollary $5.4, K_{\mathcal{M}}^{00}=K_{\mathcal{N}}^{00}$. It follows that $G_{\mathcal{M}}^{00}=M^{r} \times K_{\mathcal{M}}^{00}=M^{r} \times K_{\mathcal{N}}^{00}=G_{\mathcal{N}}^{00}$.

The rest follows from Proposition 4.1.
In case G is definably compact, we obtain Pillay's Conjecture in the linear setting.
Corollary 5.6 (Pillay's Conjecture). Assume G is a t-connected, definably compact, \mathcal{M}-definable group of dimension s. Then there is a smallest type-definable in \mathcal{M} subgroup G^{00} of G of bounded index, and G / G^{00} equipped with the logic topology is a compact Lie group of dimension s.
Proposition 5.7. $U=<M^{r} \times H>$ is \bigvee-definable in \mathcal{M}. Therefore, G is definably isomorphic to a definable quotient group U / L, where U is a \bigvee-definable in \mathcal{M} subgroup of M^{n} and L is a lattice of rank s.
Proof. Since K^{00} is type-definable in \mathcal{M} and it is contained in the \mathcal{N}-definable H, by compactness, there exists some \mathcal{M}-definable subset X of H that contains K^{00}. On the other hand, since $K^{00}=\bigcap_{i<\omega} H_{k}$ is contained in X, by compactness again, there exists some H_{k} contained in X. We have $H_{k} \subseteq X \subseteq H$, and therefore $U_{H}=<X>$ is a \bigvee-definable in \mathcal{M} subgroup of M^{s}. We have that $U=<M^{r} \times X>$ is a \bigvee-definable in \mathcal{M} subgroup of M^{n}.

The rest follows from Theorem 1.4.
5.1. O-minimal fundamental group. The o-minimal fundamental group $\pi_{1}(G)$ of G can be defined as in the classical case except that all paths and homotopies are taken to be definable. We refer the reader to [ElSt, Section 6] for precise definitions. An adapted argument from that reference would show that $\pi_{1}(G) \cong L$, but the result in fact follows directly from [EdEl].

Proposition 5.8. $\pi_{1}(G) \cong L$.
Proof. By [ElSt, Corollary 1.5], there is $l \in \mathbb{N}$ such that $\pi_{1}(G) \cong \mathbb{Z}^{l}$ and $G[k] \cong$ $(\mathbb{Z} / k \mathbb{Z})^{l}$. By Corollary $3.12, l=s$.

References

[BOPP] A. Berarducci, M. Otero, Y. Peterzil and A. Pillay, A descending chain condition for groups definable in o-minimal structures, Annals of Pure and Applied Logic 134 (2005), 303-313.
[Bour] N. Bourbaki, Lie groups and Lie algebras. Chapters 1-3, Elements of Mathematics, Springer-Verlag, 1989.
[vdD] L. van den Dries, Tame topology and o-minimal structures, Cambridge University Press, Cambridge, 1998.
[EdEl] M. Edmundo and P. Eleftheriou, Definable group extensions in semi-bounded o-minimal structures, to appear in Math. Logic Quarterly.
[ElSt] P. Eleftheriou and S. Starchenko, Groups definable in ordered vector spaces over ordered division rings, Journal of Symbolic Logic 72 (2007), 1108-1140.
[HPP] E. Hrushovski, Y. Peterzil and A. Pillay, Groups, measures, and the NIP, J. Amer. Math. Soc. 21 (2008), 563-596.
[LP] J. Loveys and Y. Peterzil, Linear o-minimal structures, Israel Journal of Mathematics 81 (1993), 1-30.
[Ons] A. Onshuus, Groups definable in $\langle\mathbb{Q},+,<\rangle$. Preprint 2005.
[PePi] Y. Peterzil and A. Pillay, Generic sets in definably compact groups, Fundamenta Mathematicae (2) 193 (2007), 153-170.
[PeSt] Y. Peterzil and S. Starchenko, Definable homomorphisms of abelian groups in o-minimal structures, Annals of Pure and Applied Logic 101 (2000), 1-27.
[PeS] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of ominimal groups, J. London Math. Soc. (2) 69 (1999), 769-786.
[Pi1] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
[Pi2] A. Pillay, Type definability, compact Lie groups, and o-minimality, J. of Math. Logic, 4 (2004), 147-162.
[Str] A. Strzebonski, Euler charateristic in semialgebraic and other o-minimal groups, J. Pure Appl. Algebra 96 (1994), 173-201.

CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
E-mail address: pelefthe@gmail.com

[^0]: Date: June 24, 2008 - Revised: February 16, 2009.
 2000 Mathematics Subject Classification. 03C64, 46A40.
 Key words and phrases. O-minimal structures, Quotient by lattice.
 Research supported by the FCT grant SFRH/BPD/35000/2007.

