GROUPS DEFINABLE IN LINEAR O-MINIMAL STRUCTURES:
THE NON-COMPACT CASE

PANTELIS E. ELEFHERIOU

Abstract. Let \(M = \langle M, +, <, 0, S \rangle \) be a linear o-minimal expansion of an ordered group, and \(G = \langle G, \oplus, e_G \rangle \) an \(n \)-dimensional group definable in \(M \). We show that if \(G \) is definably connected with respect to the \(t \)-topology, then it is definably isomorphic to a definable quotient group \(U/L \), for some convex \(\bigvee \)-definable subgroup \(U \) of \(\langle M^n, + \rangle \) and a lattice \(L \) of rank equal to the dimension of the ‘compact part’ of \(G \).

1. Introduction

This paper is a natural continuation of [ElSt]. Let \(M = \langle M, +, <, 0, \{ \lambda \}_{\lambda \in D} \rangle \) be an ordered vector space over an ordered division ring \(D \). It was shown in [ElSt, Theorem 1.4] that a definably compact group \(G \) definable in \(M \), satisfying the assumptions of the above abstract, is definably isomorphic to a definable quotient group \(U/L \), for some convex \(\bigvee \)-definable subgroup \(U \subseteq \langle M^n, + \rangle \) and a lattice \(L \) of rank \(n \). Here we consider the case where \(G \) is not necessarily definably compact, and generalize [ElSt, Theorem 1.4] towards a structure theorem analogous to the following classical theorem (see, for example, [Bour]).

Fact 1.1. Every connected abelian real Lie group is isomorphic to a direct sum of copies of the additive group \(\langle \mathbb{R}, + \rangle \) of the reals and the torus \(S^1 \).

Moreover, we prove our theorem in the more general setting where \(M \) is any linear o-minimal expansion of an ordered group.

Definition 1.2 ([LP]). An o-minimal expansion \(M = \langle M, +, <, 0, \ldots \rangle \) of an ordered group is called linear if for every \(M \)-definable function \(f : A \subseteq M^n \to M \), there is a partition of \(A \) into finitely many \(A_i \), such that for each \(i \), if \(x, y, x+t, y+t \in A_i \), then

\[
f(x + t) - f(x) = f(y + t) - f(y).
\]

For the rest of this introduction, let \(M \) be a linear o-minimal expansion of an ordered group. By ‘definable’ we mean ‘definable in \(M \) with parameters’.

By [Pil], we know that every definable group \(G \) can be equipped with a unique definable manifold topology that makes it into a topological group, called \(t \)-topology. In the rest of this introduction, all topological notions about such a \(G \) are referring to this \(t \)-topology.

Date: June 24, 2008 - Revised: February 16, 2009.
2000 Mathematics Subject Classification. 03C64, 46A40.
Key words and phrases. O-minimal structures, Quotient by lattice.
Research supported by the FCT grant SFRH/BPD/35000/2007.
It is known that a definably connected definable group G is abelian. (See, for example, [PeSt, Corollary 5.1].)

Fact 1.3 ([EdEl]). Every definable group G is a definable extension of a definably compact definable group B by $M^r = \langle M^r, +, 0 \rangle$, for some $r \in \mathbb{N}$. That is, there is a short exact sequence

$$0 \to M^r \to G \to B \to 0,$$

where all maps involved are definable homomorphisms.

We let $\sigma : B \to G$ be a definable global section; that is, a definable map such that $q \circ \sigma = \text{id}_B$. Let $K = \sigma(B)$ be the topological group with the structure induced by σ. We call K the compact part of G. Clearly, G is in definable bijection with $M^r \times K$ as abstract sets. As we know by examples in [PeS] and [Str], however, we cannot always expect G to be definably isomorphic to the direct sum of M^r and K. We show:

Theorem 1.4. Let G be a definably connected definable group of dimension n. Assume that the compact part of G has dimension s. Then G is definably isomorphic to a definable quotient group U/L, for some convex \forall-definable subgroup $U \leq \langle M^n, +, 0 \rangle$, and a lattice L of rank s.

The terminology in Theorem 1.4 was introduced in [ElSt], and we briefly recall it in Section 2 below. We obtain two corollaries. The first one is a generalization of Pillay’s Conjecture in the present context.

Proposition 4.1. Assume that M is sufficiently saturated, and let G be as in Theorem 1.4. Then there is a smallest type-definable subgroup G^{00} of G of bounded index, and G/G^{00} equipped with the logic topology is a compact Lie group of dimension s.

Proposition 5.8. Let G be as in Theorem 1.4. Then the o-minimal fundamental group of G is isomorphic to L.

Structure of the paper.

In Sections 2, 3 and 4, we handle the case where M is an ordered vector space over an ordered division ring.

Section 2 contains some definitions and basic results that were proved in [ElSt] without (using) the assumption that G is definably compact.

Section 3 contains the proof of Theorem 1.4, which we outline here. In analogy with [ElSt, Theorem 1.4], the proof consists of three steps. In Step I, we compare the two group operations \oplus and \cdot. In Step II, we find a suitable generic open s-parallelogram H in K. We then let U be the subgroup of $\langle M^n, +, 0 \rangle$ generated by the set $H^2 = M^r \times H$, and define a surjective group homomorphism $\phi : U \to G$. In Step III, we prove that the kernel $L = \ker(\phi)$ is a lattice of rank s.

In Section 4, we prove Proposition 4.1.

In Section 5, we extend our results to the case where M is any linear o-minimal expansion of an ordered group, and prove Proposition 5.8.

Acknowledgements. The work presented here was carried out during my Ph.D. studies at the University of Notre Dame. I thank my thesis supervisor Sergei Starchenko, as well as Ya’acov Peterzil for suggesting me the possibility of generalizing [ElSt, Theorem 1.4]. I also wish to thank the anonymous referee for his/her very valuable comments.
2. Preliminaries

Until Section 5, we fix a big sufficiently saturated ordered vector space $\mathcal{M} = \langle M, +, <, 0, \{\lambda\}_{\lambda \in D} \rangle$ over an ordered division ring $D = \langle D, +, \cdot, <, 0, 1 \rangle$.

The terminology and notation of this paper was introduced in [ElSt]. We recall the definitions that play an important role here, and refer the reader to [ElSt] for the rest.

Definition 2.1 ([ElSt], Section 1). Let $L \subseteq U \subseteq \langle M^n, + \rangle$. The group U/L is called a definable quotient group if there is a definable complete set $S \subseteq U$ of representatives for U/L, such that the induced group structure $\langle S, +_S \rangle$ is definable. In this case, we identify U/L with $\langle S, +_S \rangle$.

In [ElSt, Section 2], the t-topology of a definable group G and several notions relevant to it were fixed. In what follows, an index ‘t’ will indicate that the corresponding notion is taken with respect to the t-topology of G, if ambiguity would otherwise arise. In [ElSt, Section 3], basic facts about the definable structure of \mathcal{M} were established. In particular, the Linear Cell Decomposition Theorem (Linear CDT) was stated therein. Another important notion was that of an ‘open parallelogram’, which we now recall. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in D^n$ and $x \in M$, let us denote $\lambda x := (\lambda_1 x, \ldots, \lambda_n x)$.

Definition 2.2 ([ElSt], Definition 3.5). Let $0 < m \leq n$ and $c \in M^n$. An open m-parallelogram H with center c is a definable subset $H \subseteq M^n$ of the form

$$H = c + \{ \lambda_1 t_1 + \cdots + \lambda_m t_m : -e_1 < t_i < e_1 \},$$

for some fixed $e_i > 0$ in M and $\lambda_i \in D^n$, $1 \leq i \leq m$.

For the rest of this section, let $G = \langle G, \odot, e_G \rangle$ be a definable group, with $G \subseteq M^n$. We recall some basic results which were proved in [ElSt] without (using) the assumption that G is definably compact or t-connected.

Definition 2.3 ([ElSt], Definition 2.4). Let W^G be a fixed definable large t-open subset of G on which the \mathcal{M}- and t-topologies coincide. Let

$$V^G = \{ a \in G : \text{there is a } t\text{-open neighborhood } V_a \text{ of } a \text{ in } G,$$

such that $\forall x, y \in V_a, x \odot a \odot y = x - a + y \cap W^G$.}

By [ElSt, Lemma 2.5], V^G is a definable, large, open and t-open subset of G. By cell decomposition, V^G is the disjoint union of finitely many open (t-)connected components.

Fact 2.4 ([ElSt], Lemma 4.7). For all u, v in the same definably connected component of V^G, there is $r > 0$ in M, such that for all $\varepsilon \in (-r, r)^n$, we have $u + \varepsilon, v + \varepsilon \in G$, and

$$(u + \varepsilon) \odot u = (v + \varepsilon) \odot v.$$

It will often be convenient to assume that $e_G = 0 \in V^G$. In [ElSt, Lemma 4.9] it was shown that we may do so. Namely, it was shown there that (G, \odot, e_G) is definably isomorphic to a topological group $(G', +_G, 0)$ with $0 \in V^{G'}$. The critical lemma is the following fact, which we will also use here later.
Fact 2.5. Let $b \in V^G$ and $f : G \to M^n$ with
$$f(x) = (x \oplus b) - b.$$ If $G' = \langle f(G), +_1, 0 \rangle$ is the induced group, then $V^{G'} = V^G - b.$

Fact 2.5 was proved in [ElSt, Lemma 4.9]. In that proof, a generic element b was chosen, but only the property that $b \in V^G$ was used.

Finally, we state the main theorem from [ElSt], in a form that will be useful in the present paper (and whose proof can easily be extracted from [ElSt]).

Fact 2.6. Let $K = \langle K, \oplus_K, 0 \rangle \subseteq M^s$ be a definably compact, t-connected, definable group of dimension s. Assume that H is an open s-parallelogram, generic in K, such that
- H has center 0,
- H is contained in V^K.

Let U_H be the subgroup of $\langle M^s, + \rangle$ generated by H:
$$U_H = \langle H \rangle = \bigcup_{k<\omega} H + \cdots + H \leq M^s.$$ Then:
- the following map $\phi^K: U_H \to K$ is a well-defined, continuous, surjective group homomorphism: for all $x_1, \ldots, x_k \in H$, if $x = x_1 + \cdots + x_k$, then $\phi^K(x) = x_1 \oplus_K \cdots \oplus_K x_k$.
- $L^K = \ker(\phi^K)$ is a lattice of rank s,
- $U_H/L^K = \langle S, +_S \rangle$ is a definable quotient group and $\phi_{H|S}: \langle S, +_S \rangle \to K$ is a definable isomorphism.

That is, $K \cong_{df} U_H/L^K$.

The following fact can also be extracted from [ElSt, Step II], but we include its proof for completeness.

Fact 2.7. Let $K \subseteq M^s$ be a definably compact group of dimension s. Let W be a large definable subset of K. Then there is an open s-parallelogram $H \subseteq W$ which is generic in K.

Proof. Since W is large in K, it is also generic. By Linear CDT ([ElSt]), W is a finite union of linear cells, and by [PePi, Corollary 3.9], one of them, call it Y, must be generic. By [ElSt, Lemma 3.10], Y has dimension s. By [ElSt, Lemma 3.6], \overline{Y} is a finite union of closed s-parallelograms, say W_1, \ldots, W_l. For $i \in \{1, \ldots, l\}$, let $Y_i = \overline{Y} \cap W_i$. Then $Y = Y_1 \cup \cdots \cup Y_l$. By [ElSt, Lemma 3.10] again, one of the Y_i’s must be generic, say Y_1. Let $H = \text{Int}(Y_1)$. By [ElSt, Lemma 3.10], H is generic.

3. The proof of Theorem 1.4

As described in the introduction, the proof runs in three steps. Let $G = \langle G, \oplus, e_G \rangle$ be a definable group, with $G \subseteq M^n$.

Step I. Comparing \oplus with $+$.

Lemma 3.1. Assume that $e_G = 0$. Assume that H is an open m-parallelogram, $m \leq n$, contained in G such that:
This is [ElSt, Lemma 4.27], with identical proof. The assumption that

\[H \]

is contained in \(V^G \).

Then, for every \(x, y \in H \) such that \(x + y \in H \), we have:

\[x \oplus y = x + y. \]

Proof. We first notice that:

Claim 1. For all \(u, v \in H \), such that \(u \oplus v \in H \), there is \(r > 0 \) in \(M \), such that for all \(\varepsilon \in (-r, r)^n \), \(v + \varepsilon \in H \) and

\[u \oplus (v + \varepsilon) = (u \oplus v) + \varepsilon. \]

Indeed, by Fact 2.4, there is \(r > 0 \) in \(M \), such that \(\forall \varepsilon \in (-r, r)^n \),

\[(v + \varepsilon) \oplus v = [(u \oplus v) + \varepsilon] \oplus (u \oplus v). \]

Claim 2. Let \(\varepsilon(t) : [0, p] \to H, \varepsilon(0) = 0 \), be a path, such that \(\forall t \in [0, p], u + \varepsilon(t) \in H \). Then:

\[u \oplus \varepsilon(p) = u + \varepsilon(p). \]

Indeed, consider the function

\[f : G \to M^n \text{ with } x \mapsto (u \oplus x) - x. \]

We show that \(f \) is locally constant on \(\text{Im}(\varepsilon) \). Indeed, by Claim 1, \(\forall s \in [0, p], \exists z > 0 \), such that \(\forall t \in [s - z, s + z] \cap [0, p], \)

\[u \oplus \varepsilon(t) = u \oplus (\varepsilon(s) + \varepsilon(t) - \varepsilon(s)) = (u \oplus \varepsilon(s)) + \varepsilon(t) - \varepsilon(s). \]

Thus \(\forall t \in [s - z, s + z], f(\varepsilon(t)) = (u \oplus \varepsilon(t)) - \varepsilon(t) = (u \oplus \varepsilon(s)) - \varepsilon(s) = f(u + \varepsilon(s)) \).

It follows that \(f \) is constant on \(\text{Im}(\varepsilon) \) and equal to \((u \oplus 0) - 0 = u \). Thus, \(\forall t \in [0, p], (u \oplus \varepsilon(t)) - \varepsilon(t) = u \), that is, \(u \oplus \varepsilon(t) = u + \varepsilon(t) \). This proves Claim 2.

Now, let \(x, y \in H \), such that \(x + y \in H \). By [ElSt, Lemma 4.25], there is a path \(\varepsilon(t) \) in \(H \) from 0 to \(y \), such that the path \(x + \varepsilon(t) \) lies entirely in \(H \), as well. By Claim 2 for \(u = x \), we have: \(x \oplus y = x + y \).

Corollary 3.2. Let \(H \) be as in Lemma 3.1. Let \(x_1, \ldots, x_l \in H \) be such that for any subset \(\sigma \) of \(\{1, \ldots, l\} \), \(\sum_{j \in \sigma} x_j \in H \). Then, \(x_1 + \cdots + x_l = x_1 \oplus \cdots \oplus x_l \).

Proof. By induction on \(l \).

1 = 2. By Lemma 3.1.

1 > 2. \(x_1 + \cdots + x_l = x_1 + (x_2 + \cdots + x_l) = x_1 \oplus (x_2 \oplus \cdots \oplus x_l) = x_1 \oplus \cdots \oplus x_l \).

Corollary 3.3. Let \(H \) be as in Lemma 3.1. For every \(x_1, \ldots, x_l, y_1, \ldots, y_m \in H \), if \(x_1 + \cdots + x_l = y_1 + \cdots + y_m \), then \(x_1 \oplus \cdots \oplus x_l = y_1 \oplus \cdots \oplus y_m \).

Proof. This is [ElSt, Lemma 4.27], with identical proof. The assumption that \(G \) is definably compact in that proof is not used.

Step II. A generic open \(s \)-parallelogram of \(K \). As we saw in the introduction, \(G \) is a definable extension of a definably compact definable group \(B \) by

\[M' = \langle M^r, +, 0 \rangle, \]

for some \(r \in \mathbb{N} \):

\[0 \to M^r \xrightarrow{\sigma} G \xrightarrow{\phi} B \to 0. \]

Let \(\sigma : B \to G \) be a definable global section and \(K = \sigma(B) \). Then \(K \subseteq G \) is a definable complete set of representatives for \(G/M' \). We may choose \(\sigma \) so that
$e_G \in K$. We let $K = (K, \oplus_K, e_G)$ be the topological group with the structure induced by $\sigma : B \to K$. We have:

$$G = \{i(a) \oplus u : a \in M^r, u \in K\}.$$

Clearly, $i(\langle M \rangle) \cap K = \{e_G\}$. Thus there is a definable bijection $G \to \langle M \rangle \times K$, with $i(a) \oplus u \mapsto (a, u)$. Moreover, since K is definably compact of dimension $n - r$, using [ElSt, Lemma 3.7] we can find a definable injective map $f : K \to M^n - r$ with $f_2(e_G) = 0$. By taking the composition $i(a) \oplus u \mapsto (a, f(u))$, we may assume that:

1. $G = \langle M \rangle \times K \subseteq M^n$
2. $M^r \subseteq G$
3. $G = (G, \oplus, 0)$
4. $K = (K, \oplus_K, 0)$ is a definable complete set of representatives for G/M^r equipped with the induced group structure
5. for every $a \in M^r$ and $u \in K$, $a \oplus u = (a, u)$.

Furthermore, since V^G is a large definable subset of G, we may assume that

6. $V^G \cap K$ is large in K.

Indeed, if needed, we may take another section $\tau : K \to G$, $\tau(0) = 0$, such that a large subset of its image K' is contained in V^G. Then, we may project K' onto M^n. If π denotes this projection (which is a bijection), it remains to check that $V^G \cap \pi(K')$ is large in $\pi(K')$. Since π is piecewise linear, it suffices to show that for every $A \subseteq K'$ on which π is linear, $V^G \cap \pi(A)$ is large in $\pi(A)$. We show that $\pi(V^G \cap \pi(A)) \subseteq V^G \cap \pi(A)$, which is clearly enough. Assume $\pi(G) = (\pi(G), \ast, 0)$ is the induced group via π, and let $c \in \pi(V^G) \cap \pi(A)$. Since $\pi^{-1}(c) \in V^G$, there is a neighborhood V_c of c in $\pi(A)$ such that for all $x, y \in V_c$,

$$x - a \ast y = \pi(\pi^{-1}(x) \oplus_K \pi^{-1}(a) \oplus_K \pi^{-1}(y)) = \pi(\pi^{-1}(x) - \pi^{-1}(a) + \pi^{-1}(y)).$$

But since π is linear on A, the latter is equal to $\pi(\pi^{-1}(x)) = \pi(\pi^{-1}(a)) + \pi^{-1}(y) = x - a + y$.

Until Section 5, we fix an n-dimensional, t-connected definable group G, and its compact part K, such that conditions (1)-(6) above hold. Let $s = \dim(K) = n - r$.

As mentioned in the Introduction, G is abelian.

Observe that the t-topology of K is the same as the quotient topology induced by the canonical surjection $q : G \to G/M^r$, by [ElSt, Fact 2.1].

Lemma 3.4. For all $x_1, x_2 \in K$, there is $a \in M^r$, such that

$$x_1 \oplus_K x_2 = x_1 \oplus x_2 \oplus a.$$

Proof. Since $q(x_1 \oplus_K x_2) = q(\sigma(x_1 \oplus x_2)) = q(\sigma(x_1 \oplus x_2)) = q(x_1 \oplus x_2)$, we have $(x_1 \oplus_K x_2) \oplus (x_1 \oplus x_2) \in \ker(q) = M^r$. \(\square\)

We now proceed to define a suitable generic open s-parallelogram H in K. By Condition (6) above, $V^K \cap V^G \cap K$ is large in K. By Fact 2.7, there is an open s-parallelogram $H \subseteq K$, generic in K, contained in V^G and in V^K. We are going to show that H may be assumed to have center 0.

Lemma 3.5. The group G is definably isomorphic to a group $G' = (G', +_{G'}, 0)$, and there is a definably compact group $K' = (K', +_{K'}, 0)$, such that:
(1) \(G' = M^r \times K' \subseteq M^n \)

(2) \(M^r \subseteq G' \)

(3) (a) \(K' \subseteq G' \) is a definable complete set of representatives for \(G'/M^r \), and
(b) \(+_{K'} \) coincides with the group operation induced by the canonical surjection \(q : G' \twoheadrightarrow G'/M^r \).

(4) for every \(a \in M^r \) and \(u \in K' \), \(a +_{G'} u = (a, u) \)

(5) there is an open s-parallelagram \(H' \subseteq K' \), generic in \(K' \), such that:
(a) \(H' \) has center 0,
(b) \(H' \) is contained in \(V^{G'} \) and in \(V^K \).

Proof. Let \(c \) be the center of \(H \). Consider the following two definable bijections:

\[f_G : G \ni x \mapsto (x + c) - c \in f_G(G) \subseteq M^n, \]

\[f_K : K \ni x \mapsto (x +_K c) - c \in f_K(K) \subseteq M^n. \]

Now, let \(G' = f_G(G), K' = f_K(K), H' = f_K(H \cap_K c) = H - c. \) Let \(G' = (G', +_{G'}, 0) \) and \(K' = (K', +_{K'}, 0) \) be the induced topological group structures induced by \(f_G \) and \(f_K \), respectively. By [ElSt, Remark 2.2], \(f_G \) and \(f_K \) are definable isomorphisms, for all \(x, y \in G' \),

\[x +_{G'} y = [(x + c) \oplus c \oplus (y + c)] - c, \]

and for all \(x, y \in K' \),

\[x +_{K'} y = [(x + c) \oplus_0 c \oplus_K (y + c)] - c. \]

(1) For every \(x = (a, u) = a \oplus u \in G = M^r \times K \), we have:

\[f_G(x) = [(a \oplus u \oplus c) - c = [a \oplus u \oplus c \oplus (u \oplus_K c)] - c = (a \oplus u \oplus c \oplus (u \oplus_K c), u \oplus_K c) - (0, c) = (a \oplus u \oplus (u \oplus_K c), (u \oplus_K c) - c) \in M^r \times K', \]

by Lemma 3.1. Hence \(G' \subseteq M^r \times K' \). On the other hand, if \(y = (b, v) \in M^r \times K' \), let \(x = (a, u) \in K \) and \(a = b \oplus (u \oplus c) \oplus (u \oplus_K c) \in M^r \). It can be checked that \(f_G(x) = y \). Hence \(G' \supseteq M^r \times K' \).

(2) Observe that \(f_G(M^r) = M^r \). Indeed, for every \(x \in M^r \), \((x + c) - c = (x, c) - (0, c) = (x, 0) = x \).

(3) (a) We first show that \(K' \subseteq G' \). Let \((g \oplus_K c) - c \in K' \), for some \(g \in K \). Then \(g_1 = (g \oplus_K c) \oplus c \in G \) and \((g \oplus_K c) - c = (g_1 \oplus c) - c \in G' \).

We next show that \(K' \) is a definable set of representatives for \(G'/M^r \). Let \(g' = f_G(g) = (g \oplus c) - c \in G' \), for some \(g \in G \). Since \(G = \{ a \oplus k : a \in M^r, k \in K \} \), there are \(a \in M^r \) and \(k \in K \) such that \(g \oplus c = a \oplus k \). Then \(f_G(a) +_{G'} f_K(k \oplus_K c) = [(a \oplus c) - c] +_{G'} (k - c) = (a \oplus c \oplus c \oplus k) - c = (a \oplus k) - c = (g \oplus c) - c = g' \).

Finally, \(K' \) is complete: assume \(f_K(k_1) = f_G(a) +_{G'} f_K(k_2) \), for some \(k_1, k_2 \in K \) and \(a \in M^r \). We show \(k_1 = k_2 \) and, thus, \(f_K(k_1) = f_K(k_2) \). We have \(f_K(k_1) = (k_1 \oplus_K c) - c \) and \(f_G(a) +_{G'} f_K(k_2) = [(a \oplus c) - c] +_{G'} [(k_2 \oplus_K c) - c] = [a \oplus (k_2 \oplus_K c)] - c \). Thus, \(k_1 \oplus_K c = a \oplus (k_2 \oplus_K c) \). Since \(K \) is a complete set of representatives for \(G/M^r \), \(k_1 \oplus_K c = k_2 \oplus_K c \) and, thus, \(k_1 = k_2 \).

(3) (b) We show that for every \(x, y \in K' \), there is \(a \in M^r \) such that \(x +_{K'} y = x +_{G'} y +_{G'} a \). We have \(x +_{K'} y = [(x + c) \oplus_K c \oplus_K (y + c)] - c = [(x + c) \oplus c \oplus_E (y + c) \oplus b] - c \), for some \(b \in M^r \). Let \(a = f_G(b) = (b \oplus c) - c \in M^r \). Then we have \(x +_{G'} y +_{G'} a = [(x + c) \oplus c \oplus (y + c)] - c +_{G'} [(b \oplus c) - c] = [(x + c) \oplus c \oplus (y + c) \oplus c \oplus b \oplus c] - c = x +_{K'} y. \)
(4) We have
\[a + G, u = [(a + c) \ominus c \oplus (u + c)] - c = [(a, c) \ominus c \oplus (u, c)] - c = [(a, u) - (0, c)] = (a, u). \]

(5)(a) It is clear that \(H' = H - c \) is an open \(s \)-parallelogram with center 0. Since \(H \) is generic in \(K \), \(H \ominus_K c \) is generic in \(K \), and, thus, \(H' = f_K(H \ominus_K c) \) is generic in \(K' \). (b) By Fact 2.5 applied to \(f_G \) and \(f_K \) separately.

We may thus assume that: \(H \subseteq K \) is an open \(s \)-parallelogram, generic in \(K \), such that:

- \(H \) has center 0,
- \(H \) is contained in \(V^G \) and in \(V^K \).

We let \(H^G = \{ a \oplus u : a \in M', u \in H \} = M' \times H \).

Since \(H \) is generic in \(K \), it is easy to see that \(H^G \) is generic in \(G \).

Lemma 3.6. There is \(\Xi \in \mathbb{N} \), such that \(G = \underbrace{H^G \oplus \cdots \oplus H^G}_{\Xi \text{-times}} \).

Proof. By [ElSt, Lemma 4.29], there is \(\Xi \in \mathbb{N} \), such that \(K = \underbrace{H \oplus \cdots \oplus H}_\Xi \). Since \(G = \{ a \oplus u : a \in M', u \in K \} \), Lemma 3.4 gives \(G = \underbrace{H^G \oplus \cdots \oplus H^G}_{\Xi \text{-times}} \).

Definition 3.7. Let \(U_H \) be the subgroup of \(\langle M^s, +, 0 \rangle \) generated by \(H \); that is, \(U_H = \langle H \rangle = \bigcup_{k<\omega} H^k \), where \(H^k = \underbrace{H + \cdots + H}_k \). Let \(U \) be the subgroup of \(M^n = \langle M^n, +, 0 \rangle \) generated by \(H^G \); that is,

\[U = \langle H^G \rangle = \bigcup_{k<\omega} (H^G)^k. \]

Equivalently, \(U = M^r \times U_H \). By Corollary 3.3, the following function \(\phi : U \to G \) is well-defined. For all \(x_1 = (a_1, u_1), \ldots, x_k = (a_k, u_k) \in H^G = M^r \times H \), if \(x = x_1 + \cdots + x_n \), then
\[\phi(x) = x_1 \oplus \cdots \oplus x_k = (a_1 + \cdots + a_k) \oplus u_1 \oplus \cdots \oplus u_k. \]

Since \(M^r \) and \(U_H = (U_H, + | U_H, 0) \) are subgroups of \(M^n \), so is their direct product \(U = M^r \times U_H \). Easily, \(U \) is a \(\bigvee \)-definable group, and convexity of \(H \) implies convexity of \(U \).

Proposition 3.8. \(\phi \) is a \(t \)-continuous group homomorphism from \(U \) onto \(G \).

Proof. \(\phi \) is a group homomorphism, because if \(x = x_1 + \cdots + x_l \) and \(y = y_1 + \cdots + y_m \), with \(x_i, y_i \in K \), then \(\phi(x + y) = \phi(x_1 + \cdots + x_l + y_1 + \cdots + y_m) = x_1 + \cdots + x_l + y_1 + \cdots + y_m = \phi(x) + \phi(y) \). It is onto, by Lemma 3.6. Since \(\oplus \) is \(t \)-continuous, so is \(\phi \).

Thus, if we let \(L = \ker(\phi) \), we know that \(U/L \cong G \) as abstract groups.

Step III. \(L \) is a lattice of rank \(s \).

We begin with an easy lemma.
For every $x \in H_G$, $\phi(x) = x$.
(ii) For $x \in U$, since $\phi(x) \in G$, there are $x_1, \ldots, x_\Xi \in H_G$ such that $\phi(x) = x_1 + \cdots + x_\Xi$. Clearly, if $y = x_1 + \cdots + x_\Xi \in (H_G)^\Xi$, then $\phi(y) = (y)$.

Proof. The proof is quite standard, but we include it for completeness. Assume that $(a_1, u_1) \oplus \cdots \oplus (a_k, u_k) = (a, u)$. By taking $\sigma \circ q$ on both sides, we have $u_1 \oplus K \cdots K u_k = u$. On the other hand,$$egin{align*}
a_1 \oplus u_1 + \cdots + a_k \oplus u_k &= (a_1, u_1) + \cdots + (a_k, u_k) = (a, u) = a + u,
\end{align*}$$
and hence $a = a_1 + \cdots + a_k + h(u_1, \ldots, u_k)$. Finally, by Lemma 3.4, $h(u_1, \ldots, u_k) \in M^r$, allowing us to replace \oplus by $+$ in the last equation.

By Fact 2.6, $\phi^K : U_H \to K$ is well-defined and $L^K = \ker(\phi)$ has rank s. Let $\{w_1, \ldots, w_s\}$ be a fixed set of generators for L^K. For every $i \in \{1, \ldots, s\}$, define
$$v_i = -h(w_i^1, \ldots, w_i^k), w_i \in M^r \times U_H = U, \text{ where } w_i = w_i^1 + \cdots + w_i^k, w_i^j \in H.$$

Claim 3.11. \{v_1, \ldots, v_s\} is a Z-independent set of generators for L.

Proof. We first show that each v_i belongs to $L = \ker(\phi)$. By Lemma 3.10, if $x = (a, u) \in M^r \times U_H$, where $u = u_1 + \cdots + u_k$, $u \in H$, we have

$$(1) \quad \phi(x) = (a + h(u_1, \ldots, u_k), \phi^K(u)).$$

It follows that $\phi(v_i) = 0$.

Next we show that for every $x \in L$, there are $l_1, \ldots, l_s \in Z$ such that $x = l_1 v_1 + \cdots + l_s v_s$. Denote by $\tau : U \to U_H$ the group homomorphism $(a, u) \mapsto u$. Observe then, by (1), that $\phi(x) = 0$ implies $\phi^K(\tau(x)) = 0$. Hence, there are $l_1, \ldots, l_s \in Z$ such that
$$\tau(x) = l_1 w_1 + \cdots + l_s w_s = l_1 \tau(v_1) + \cdots + l_s \tau(v_s) = \tau(l_1 v_1 + \cdots + l_s v_s).$$

That is, $\tau(x) = (l_1 v_1 + \cdots + l_s v_s) = 0 \in H$. Hence $x = (l_1 v_1 + \cdots + l_s v_s) \in H^G = M^r \times H$. Since $L \cap H^G = \{0\}$, we have $x - (l_1 v_1 + \cdots + l_s v_s) = 0$.

Finally, if v_1, \ldots, v_s were not Z-independent, then $l_1 v_1 + \cdots + l_s v_s = 0$, for some $l_i \in Z$. Hence $l_1 w_1 + \cdots + l_s w_s = \tau(l_1 v_1 + \cdots + l_s v_s) = 0$, a contradiction.

Proof of Theorem 1.4. In Definition 3.7, we defined a convex \bigvee-definable subgroup $U \leq M^n$, and an onto group homomorphism $\phi : U \to G$ (Proposition 3.8). In Claim 3.11 we showed that $L = \ker(\phi) \leq U$ is a lattice of rank s.

Let $\Sigma = (H_G)^\Xi$, where Ξ is as in Lemma 3.6. Then Σ and $\phi|_\Sigma$ are definable. Moreover, the coset equivalence relation induced by U/L on Σ is definable, since, for all $x, y \in \Sigma$, we have $x - y \in L \Leftrightarrow \phi(x) = \phi(y)$. By Lemma 3.9(ii), Σ contains a complete set S of representatives for U/L, and thus, by definable choice, there is a definable such set S. By [ElSt, Claim 2.7], $U/L = \langle S, +_S \rangle$ is a definable quotient group. The restriction of ϕ on S is a definable group isomorphism between $\langle S, +_S \rangle$ and G. By [ElSt, Remark 2.2(ii)], we are done.
Corollary 3.12. For every \(k \in \mathbb{N} \), the \(k \)-torsion subgroup \(G[k] \) of \(G \) is isomorphic to \((\mathbb{Z}/k\mathbb{Z})^s \).

Proof. By Theorem 1.4, we may assume that \(G \) is a definable set of representatives for \(U/L \). For every \(x \in G \) then, we have
\[
x \oplus \cdots \oplus x = 0 \iff \phi(kx) = 0 \iff kx \in L \cong \mathbb{Z}^s.
\]
Hence, \(x \in G[k] \) if and only if there are unique \(l_1, \ldots, l_n \in \mathbb{Z} \) such that \(x = l_1 \frac{x_1}{k} + \cdots + l_n \frac{x_n}{k} \). Equivalently, since \(x \in G \),
\[
x = \phi(x) = \phi \left(\underbrace{\frac{x_1}{k}}_{l_1 \text{-times}} \oplus \cdots \oplus \underbrace{\frac{x_n}{k}}_{l_n \text{-times}} \right).
\]
Clearly then, the map \(f : G[k] \to (\mathbb{Z}/k\mathbb{Z})^s \), defined by
\[
f(x) = (l_1 \mod k, \ldots, l_s \mod k),
\]
is a well-defined, surjective group homomorphism. To see that it is injective, check that \(f(x) = f(y) \) implies \(x - y \in L \) and, hence, \(x = \phi(x) = \phi(y) = y \). \(\square \)

4. On Pillay’s Conjecture

In [BOPP], the existence of \(G^{00} \) was established for a group \(G \) definable in any \(\omega \)-minimal structure. Here, we compute the dimension of the compact Lie group \(G/G^{00} \), for our fixed \(G \) and \(\mathcal{M} \). The special case where \(G \) is definably compact constitutes Pillay’s Conjecture for \(\mathcal{M} \), proved separately in [ElSt, Proposition 5.1] and [Ons]. The reader is referred to [Pi2] for any terminology.

Proposition 4.1. There is a smallest type-definable subgroup \(G^{00} \) of \(G \) of bounded index, and \(G/G^{00} \) equipped with the logic topology is a compact Lie group of dimension \(s \). Namely, assuming Conditions (1)-(6) from page 6, \(G^{00} = M^r \times K^{00} \).

Proof. For \(i < \omega \), we define \(H_i \) inductively as follows: \(H_0 = H \), and \(H_{i+1} = \frac{1}{2} H_i \). Let also for every \(i < \omega \), \((H^G)_i = M^r \times H_i \). Denote
\[
B = \bigcap_{i < \omega} (H^G)_i = \bigcap_{i < \omega} (M^r \times H_i) = M^r \times \left(\bigcap_{i < \omega} H_i \right).
\]
Note that, by [ElSt, Proof of Proposition 5.1], \(\bigcup_{i < \omega} H_i = K^{00} \). Now, by Lemma 3.2, it is easy to see that \(B \) is a subgroup of \(G \). By induction and [ElSt, Lemma 4.28], each \(H_i \) is generic in \(K \). It follows that each \((H^G)_i \) is generic in \(G \), and, thus, \(B \) has bounded index in \(G \). Moreover, it is not hard to see that \(B \) is torsion-free, and, thus, by [BOPP], it must be the smallest type-definable subgroup \(G^{00} \) of \(G \) of bounded index, and \(G/G^{00} \) with the logic topology is a connected compact abelian Lie group. Hence \(G^{00} = B \) is torsion-free. By [BOPP], \(G^{00} \) is also divisible. It follows that for all \(k \), the \(k \)-torsion subgroup of \(G/G^{00} \) is isomorphic to the \(k \)-torsion subgroup of \(G \), which is isomorphic to \((\mathbb{Z}/k\mathbb{Z})^s \), by Corollary 3.12. Thus, \(G/G^{00} \) is isomorphic to the real \(s \)-torus and has dimension \(s \). \(\square \)
5. Linear o-minimal expansions of ordered groups

Here we show that Theorem 1.4 and Proposition 4.1 hold for a group G definable in a sufficiently saturated linear o-minimal expansion of an ordered group (see Propositions 5.7 and 5.5, respectively). The relation with the context of the previous sections is the following.

Fact 5.1 ([LP]). Let $\mathcal{M} = \langle M, +, <, 0, S \rangle$ be a linear o-minimal expansion of an ordered group. Then \mathcal{M} can be elementarily embedded into a reduct of an ordered vector space $\mathcal{N} = \langle N, +, <, 0, \{ \lambda \}_{\lambda \in D} \rangle$ over an ordered division ring D.

Let \mathcal{M} and \mathcal{N} be as above, sufficiently saturated, and G a t-connected, \mathcal{M}-definable group of dimension n. We may assume that \mathcal{M} is a reduct of \mathcal{N}, and, thus, G is also \mathcal{N}-definable. Then Theorem 1.4 and Proposition 4.1 are true but with all definability stated with respect to \mathcal{N}. Namely, since H is \mathcal{N}-definable, $U = \langle M^r \times H \rangle$ is \mathcal{N}-definable, and $G^{00} = \bigcap_{\lambda < \omega} (M^r \times H_\lambda)$ is type-definable in \mathcal{N}. We show however in Proposition 5.5 below that G^{00} is 'absolute'.

For a group G definable in a sufficiently saturated o-minimal structure \mathcal{M}, we denote by $G_{00}^{\mathcal{M}}$ the smallest type-definable in \mathcal{M} subgroup of G of bounded index (which exists by [BOPP, Theorem 1.1]). The following fact was pointed out by Pillay. (See [HPP] for any terminology.)

Fact 5.2 ([HPP]). Let T be an o-minimal theory, \mathcal{M} a sufficiently saturated model of T, and G a group definable in \mathcal{M}. Assume:

1. For all definable $X \subseteq G$, either X or $G \setminus X$ is generic.
2. There is a left-invariant Keisler measure on G.

Then (G^{00} exists and) G^{00} is torsion-free.

Fact 5.3 ([BOPP], Corollary 1.2). Let G be a group definable in some sufficiently saturated o-minimal structure \mathcal{M}. Assume that X is a torsion-free, type-definable in \mathcal{M}, subgroup of G of bounded index. Then $X = G_{00}^{\mathcal{M}}$.

Corollary 5.4. Let K be an abelian, definably compact group, definable in a sufficiently saturated o-minimal expansion \mathcal{M} of an ordered group. Let \mathcal{N} be a sufficiently saturated o-minimal expansion of \mathcal{M}. Then $K_{00}^{\mathcal{M}}$ is torsion-free and $K_{00}^{\mathcal{M}} = K_{00}^{\mathcal{N}}$.

Proof. We first verify that the assumptions of Fact 5.2 hold for K: (1) holds by [ElSt, Lemma 3.10], and (2) holds because K is abelian. It follows that $K_{00}^{\mathcal{M}}$ is torsion-free. By Fact 5.3, $K_{00}^{\mathcal{M}} = K_{00}^{\mathcal{N}}$. \square

In what follows, let $\mathcal{M} = \langle M, +, <, 0, S \rangle$ be a sufficiently saturated linear o-minimal expansion of an ordered group, G a t-connected, \mathcal{M}-definable group of dimension n, and \mathcal{N} a sufficiently saturated ordered vector space over an ordered division ring expanding \mathcal{M} as in Fact 5.1.

We may assume that there is a \mathcal{M}-definable group K of dimension s such that Conditions (1)-(6) from page 6 hold. Indeed, those conditions were established directly using the general Fact 1.3 (and not the assumption that \mathcal{M} were a vector space.)

Proposition 5.5. $G_{00}^{\mathcal{M}} = G_{00}^{\mathcal{N}}$. Therefore, $G/G_{00}^{\mathcal{M}}$ equipped with the logic topology is a compact Lie group of dimension s.

Proof. Since G and K are also \mathcal{N}-definable, we can find $H \subseteq K$ as in Step II of Section 3, which is \mathcal{N}-definable. By Proposition 4.1, $G_{\mathcal{N}}^{00} = M' \times K_{\mathcal{N}}^{00}$. Since K is abelian, $K_{\mathcal{M}}^{00}$ is torsion-free, by Corollary 5.4. Therefore, $M' \times K_{\mathcal{M}}^{00}$ is torsion-free. Since $K_{\mathcal{M}}^{00}$ has bounded index in K, easily $M' \times K_{\mathcal{M}}^{00}$ has bounded index in G. By Fact 5.3, $G_{\mathcal{M}}^{00} = M' \times K_{\mathcal{M}}^{00}$. But, by Corollary 5.4, $K_{\mathcal{M}}^{00} = K_{\mathcal{M}}^{00}$. It follows that $G_{\mathcal{M}}^{00} = M' \times K_{\mathcal{M}} = M' \times K_{\mathcal{M}}^{00} = G_{\mathcal{M}}^{00}$.

The rest follows from Proposition 4.1. □

In case G is definably compact, we obtain Pillay’s Conjecture in the linear setting.

Corollary 5.6 (Pillay’s Conjecture). Assume G is a t-connected, definably compact, \mathcal{M}-definable group of dimension s. Then there is a smallest type-definable in \mathcal{M} subgroup G^{00} of G of bounded index, and G/G^{00} equipped with the logic topology is a compact Lie group of dimension s.

Proposition 5.7. $U = < M' \times H >$ is \sqrt{s}-definable in \mathcal{M}. Therefore, G is definably isomorphic to a definable quotient group U/L, where U is a \sqrt{s}-definable in \mathcal{M} subgroup of M^n and L is a lattice of rank s.

Proof. Since K_{00} is type-definable in \mathcal{M} and it is contained in the \mathcal{N}-definable H, by compactness, there exists some \mathcal{M}-definable subset S of H that contains K_{00}. On the other hand, since $K_{00} = \bigcap_{k \subseteq H_k}$ contained in X, by compactness again, there exists some H_k contained in X. We have $H_k \subseteq X \subseteq H$, and therefore $U H = < X >$ is a \sqrt{s}-definable in \mathcal{M} subgroup of M^s. We have that $U = < M' \times X >$ is a \sqrt{s}-definable in \mathcal{M} subgroup of M^n.

The rest follows from Theorem 1.4. □

5.1. O-minimal fundamental group. The o-minimal fundamental group $\pi_1(G)$ of G can be defined as in the classical case except that all paths and homotopies are taken to be definable. We refer the reader to [ElSt, Section 6] for precise definitions. An adapted argument from that reference would show that $\pi_1(G) \cong L$, but the result in fact follows directly from [EdEl].

Proposition 5.8. $\pi_1(G) \cong L$.

Proof. By [ElSt, Corollary 1.5], there is $l \in \mathbb{N}$ such that $\pi_1(G) \cong \mathbb{Z}^l$ and $G[k] \cong (\mathbb{Z}/k\mathbb{Z})^l$. By Corollary 3.12, $l = s$. □

References

CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

E-mail address: pelefthe@gmail.com