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Abstract

We compare two different notions of generic expansions of countable satu-
rated structures. On one hand there is a kind of genericity related to model-
companions and to amalgamation constructions à la Hrushovski-Fräıssé; on
the other, there is a notion of generic expansions defined via topological prop-
erties and Baire category theory. The second type of genericity was first
formulated by Truss for automorphisms. We work with a later generalization,
due to Ivanov, to finite tuples of predicates and functions.

Let N be a countable saturated model of some complete theory T , and let
(N, σ) denote an expansion of N to the signature L0 which is a model of some
universal theory T0. Let Trich be the theory of some suitably defined generic
(or rich, in our terminology) model, obtained from the amalgamation class
naturally associated to T0. We prove that (N, σ) is Truss-generic if and only
if (N, σ) is an e-atomic model of Trich. When T is ω–categorical and Trich is
model-complete, the e-atomic models are simply the atomic models of Trich.
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1 Introduction

In model theory and descriptive set theory there are two main notions of a generic

expansion of a model. In some cases, the expansions of a given model that one

obtains through these notions are similar enough that it is natural to ask whether,

and how, they are related.

Let T be a theory with quantifier elimination in a language L. Let L0 = L ∪ {f},
where f is a unary function symbol. Let T0 be T together with the sentences which

say that f is an automorphism.

One notion of genericity was introduced by Lascar in [Lasc2]. Lascar constructs

some models of T0 that have certain properties of universality and homogeneity. The

interpretations of f in these models are called beaux automorphismes in [Lasc2], and

generic automorphisms later on (e.g. [ChaHr] and [ChaPi]). When T0 has a model

companion Tc, Tc turns out to be the theory of these universal homogeneous models

and, in this case, all sufficiently saturated models of Tc are generic automorphisms

(see [ChaPi]).

A second notion of genericity was introduced by Truss in [Tru1]. The inter-

pretation of f in a countable model M � T0 is Truss-generic if its conjugacy

class is comeagre in the canonical topology on Aut(M). More generally, a tuple

(f1, . . . , fn) ∈ Aut(M)n is generic in this sense if {(f g1 , . . . , f gn) : g ∈ Aut(M)} is

comeagre in the product space Aut(M)n. Truss-generic automorphisms populate

rather different habitats: they are a useful tool in the two main techniques for re-

constructing ω–categorical structures from their automorphism group, namely, the

small index property [Lasc1] and Rubin’s weak ∀∃-interpretations [Rubin] (see

e.g. [HHLS] and [BaMac] for specific applications of Truss generics). The exis-

tence of a comeagre conjugacy class is often interesting in its own right: for an

ω-categorical structure M , it implies that Aut(M) cannot be written non trivially

as a free product with amalgamation [MacTh]. See also a recent paper by Kechris

and Rosendal [KeRo] for a wealth of topological consequences in Polish groups.

Ivanov generalises Truss-genericity so that it applies to predicates, and indeed to

arbitrary finite signatures [Ivan]. His work concerns the relation of ‘generic expan-

sions’ of ω-categorical structures to generalized quantifiers in the context of second-

order logic. Lascar’s genericity also applies to predicates: in [ChaPi] the authors

show that for a complete L-theory T , L0 = L∪{r}, where r is a unary relation and

T0 = T , T0 has a model companion if and only if T eliminates the ∃∞ quantifier.

Models obtained by a generalised version of the Fräıssé construction yield yet another

notion of genericity. In most cases, this is known to be closely related to genericity

à la Lascar. Many examples can be found among ω–categorical structures. For
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instance, the random graph can be obtained as a Fräıssé limit, and also as follows: let

L0 contain only a binary relation r, and let T0 say that r is irreflexive and symmetric

(for uniformity with the previous examples, we may think of T0 as the expansion of

the theory of infinite set in the empty language L). The model companion of T0 is the

theory of the random graph. Another example is Hrushovski’s new strongly minimal

set [Hru1] (the famous construction which refutes Zilber’s trichotomy conjecture):

this structure can be thought of as the model companion of some cleverly chosen

theory T0 in the language L0 that contains only a ternary predicate.

In Sections 2 and 3 we introduce a minor generalization of Fräıssé constructions: we

consider amalgamation classes where the joint embedding property (JEP) fails, and

we call them unconnected. The motivation is to provide a framework where the two

definitions of genericity can be compared, by abstracting the properties that yield the

relevant results in [Lasc2] and [ChaPi]. In Sections 4 and 5 we clarify the relation

between generic models obtained through generalised Fräıssé constructions (some-

times called Hrushovski amalgamations) and generic models defined using the model

companion of some theory. Unless the amalgamation class involved is connected (i.e.

JEP holds), the two notions are not equivalent (Remark 5.4). In Theorem 5.3, we

show that they coincide when the class is full (Definition 4.6).

In Sections 6 and 7 we work with a given countable saturated model N � T and we

consider the set Exp(N, T0) of expansions of N that model T0. We endow Exp(N, T0)

with a topology which makes it a Polish space. Our topology is the one in [Ivan],

a natural generalisation of the canonical topology on Aut(N). Let Trich be the

theory of the expansions of N that are generic in the sense of generalised Fräıssé

constructions. We prove that the existentially closed expansions of N which model

Trich,∀∃ are a comeagre subset of Exp(N, T0).

In Section 6 we also define a set of ‘slighly saturated’ expansions of N which we call

smooth. A smooth expansion of N realizes all types of the form (∗) p�L(x)∪{ϕ(x)},
where p�L(x) is a type in the base language L and ϕ(x) is a quantifier-free formula in

the expanded language L0. We prove that smooth expansions are a comeagre subset

of Exp(N, T0). Finally, in Section 7 we define e-atomic expansions. An e-atomic

expansion is existentially closed, smooth, and only realizes p(x) if p�∀(x) ∪ p�∃(x)

is isolated by types of the form ∃y p(x, y), where p(x, y) is as in (∗). We show

that e-atomic expansions are exactly the expansions that are generic in the sense

of [Tru1]. When T is ω-categorical and Trich is model-complete, this amounts to

showing that Truss generic expansions are exactly the atomic models of Trich.

Finally, in Section 8 we give some examples: Truss-generic automorphims of the

random graph and Truss-generic black fields.

When Σ is a (possibly infinite) set of formulas, we shall sometimes write Σ + ϕ to
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mean Σ ∪ {ϕ}, and Σ→ ϕ for Σ ` ϕ.

The first author is grateful to Alexander Berenstein for helpful initial remarks, and

to Enrique Casanovas and Dugald Macpherson for useful conversation.

2 Inductive amalgamation classes.

In this section we give a self-contained axiomatization of inductive amalgamation

classes. In a terminology which has recently gained popularity, we axiomatize a

type of abstract elementary class (AEC), see e.g. [Bald]. The AECs we consider

live in first-order logic: in our setting, the relation �K contains the relation of

elementary substructure in some first-order language. There is a stylistic difference

in our approach: we base the axiomatization on the notion of morphism, while in

the literature on AEC the primitive notion is that of submodel (here denoted by ≤,

elsewhere often denoted by �K).

An inductive amalgamation class contains structures and partial maps between

structures. It is partitioned into connected components, within each of which an

appropriate version of the joint embedding property holds. The trivial, yet canon-

ical, example contains all the infinite models of a given theory T0 and all partial

elementary maps between models. This class is not connected unless T0 is complete.

The connected components consist of models of the same completion of T0. The

saturated models are the rich models of this class, according to the terminology

defined below.

A concrete example of an inductive amalgamation class is given by fields and partial

isomorphisms (i.e. restrictions of isomorphisms between subrings). This class is not

connected: each connected component contains all the fields of a given characteristic.

Algebraically closed fields with infinite transcendence degree are the rich models of

this class.

Finally, highly non trivial examples are obtained from Hrushovski-style constructions

such as [Hru1]: in such settings, one works with an inductive amalgamation class

where structures are the models of some theory T0 and the maps considered are

partial isomorphisms between self-sufficient subsets.

Throughout this paper, a map is a triple f : M → N where M is a structure called

the domain of the map, N is a structure called the co-domain of the map, and

f is a function in the set-theoretic sense with dom f ⊆ M and rng f ⊆ N . We

call dom f the domain of definition of the map and rng f the range of the map.

If A ⊆ dom f we say that f is defined on A. The composition of two maps is

defined in the obvious way when the co-domain of the first map is the domain of
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the second map. The inverse of f : M → N is defined when f is injective (which

will always be the case in this paper) and it is the map f−1 : N →M .

Fix a countable language L and let M and N be two structures of signature L. A

partial isomorphism is a map f : M → N such that

M � ϕ(a) ⇔ N � ϕ(fa)

for every quantifier-free formula ϕ(x) and every tuple a ∈ dom f . In other words, f

can be extended to an isomorphism between substructures. An elementary map

is defined similarly but with ϕ(x) ranging over all formulas. A partial isomorphism

which is a total map is called quantifier-free embedding and a total elementary

map is called an elementary embedding. Generally, in the literature, the term

embedding tout court means quantifier-free embedding, but in our context it is more

natural to use embedding as in Definition 2.2 below.

2.1 Definition. An inductive amalgamation class is a nonempty class K contain-

ing two sorts of elements: infinite1structures of signature L and maps between struc-

tures. We require that K satisfies axioms K0-K4, R, In and AP below. �

Henceforth, by model we shall mean “structure in K”, and by morphism “map in

K”. The letters M , N , etc. will denote models. All the notions introduced below

are relative to K, though reference to it is usually omitted.

K0 The class of models is closed under elementary equivalence.

K1 Every morphism is a partial isomorphism.

K2 Every elementary map is a morphism.

K3 The class of morphisms is closed under inverse and composition.

We shall write M ≤ N when M ⊆ N and idM : M → N is a morphism. We

say that M is a submodel of N , or that N extends M . By K2, submodels are

substructures and elementary substructures are submodels. From K3 it follows that

≤ is a transitive relation. Moreover, if K ⊆ N ≤ M , then K ≤ M iff K ≤ N . In

fact, if K ≤M then by transitivity K ≤ N . For the converse it suffices to compose

idK : K → N with the inverse of idM : M → N .

2.2 Definition. A total morphism f : M → N is called an embedding of M into N . �

If f : M → N is en embedding then f [M ] ≤ N . In fact, as f−1 : f [M ] → M is an

isomorphism, by K2 it is a morphism. By composing it with f : M → N , we can

1Traditionally, the amalgamation classes used in Fräıssé-like constructions only contain finite
structures, which are not apt to describe other recent applications (e.g. Examples 6.9 and 8.4).
Infinite structures offer a more convenient framework. We do not have a general recipe for translat-
ing finite amalgamation classes into inductive amalgamation classes: an ad hoc approach in many
examples, though, suggests that such a translation is always possible (cf. Examples 3.2 and 8.1).
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conclude that the natural embedding of f [M ] into N is also a morphism.

It will be convenient to use the following axiom, which is rather harmless.

R The restriction of a morphisms is a morphism. That is if f : M → N is a morphism

and h ⊆ f then h : M → N is also a morphism.

The following axiom is called amalgamation property:

AP If fi : M → Ni for i = 1, 2 are morphisms then there is a model N and two

embeddings hi : Ni → N such that h1f1 = h2f2.

There is a more compact formulation of the amalgamation property. To state it we

need the notion of extension of a morphism: we say that the morphism f ′ : M ′ → N ′

extends f : M → N if f ′ extends f as a function, M ≤M ′, and N ≤ N ′.

AP′ Every morphism f : M → N has an extension to an embedding h : M → N ′.

We claim that AP′ is equivalent to standard amalgamation. To prove that AP′

follows from AP, amalgamate f : M → N and idM : M → M . For the converse

direction, extend the map f2f
−1
1 : N1 → N2 to an embedding h : N1 → N . This and

idN2 : N2 → N are the two embeddings hi : Ni → N required in AP.

We say that the class K is connected if the joint embedding property holds,

that is:

JEP For every pair of models M1 and M2 there are a model N and embeddings fi : Mi →
N for i = 1, 2.

By AP, the relation of being embeddable into the same model is an equivalence

relation. We define the connected components of K to be the equivalence classes

of this relation.

2.3 Remark. If in the definition of JEP we replace embeddings by morphisms , we

obtain an equivalent property. By AP, Mi and N embed in some model Ni. Suppose

fi : N → Ni are the embeddings obtained. A further application of AP to f1, f2

gives the required embeddings of each Mi into N ′.

2.4 Remark. As a special case of Remark 2.3, we obtain the following: M and N

belong to the same connected component iff there is a morphism between M and

N .

By a chain of models we mean a sequence of models 〈Mα : α < λ〉 such that

Mα ≤ Mβ whenever α < β. An amalgamation class is inductive if the following

axiom holds.

In The union of a chain of models is a model that extends every element of the chain.
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The property that follows is the finite character of morphisms. We state it here

for reference, but we do not need to assume it as an axiom. In fact, we shall prove

it in Theorem 3.7 below.

FC If all finite restrictions of f : M → N are morphisms then f : M → N is a morphism.

3 Rich models.

Throughout this section, we shall work in an inductive amalgamation class K.

3.1 Definition. Let λ be an infinite cardinal. A model U is λ–rich if every morphism

f : M → U such that |f | < |M | ≤ λ has an extension to an embedding of M into

U . That is, there is a total morphism h : M → U such that f ⊆ h. When λ = |U |
we say that U is rich.

Using the downward Löwenheim-Skolem Theorem and FC, it is not difficult to prove

that when λ is uncountable we can replace |f | < |M | ≤ λ with |M | < λ (as

in [ChaPi]) and obtain an equivalent notion. On the other hand, for countable

λ the situation is different: finite models might not exist, so the notion might be

trivial.

3.2 Example. The countable random graph is a rich model of the inductive amalga-

mation class that contains all infinite graphs and all partial isomorphisms between

them. Most Fräıssé limits of finite structures can also be thought of as rich models

of a suitably defined inductive amalgamation class.

3.3 Theorem. [Existence] Let λ and κ be cardinals such that 2λ ≤ κ = κ<λ. Then

every model U0 of cardinality ≤ κ embeds in a λ–rich model U of cardinality κ.

Proof. Let U0 be given. We may assume |U0| = κ. We define by induction a chain

of models 〈Uα : α < κ〉 such that |Uα| = κ for all α < κ. Let U :=
⋃
α<κ Uα.

At successor stage α+ 1, let f : M → Uα be the least morphism—in a well-ordering

that we specify below—such that |f | < |M | ≤ λ and f has no extension to an

embedding f ′ : M → Uα. Apply AP′ to obtain an embedding f ′ : M → U ′ that

extends f : M → Uα. By Löwenheim-Skolem we may assume |Uα| = |U ′|. Let

Uα+1 = U ′. At stage with α limit, simply let Uα :=
⋃
β<α Uβ.

The well-ordering mentioned needs to be chosen so that in the end we forget nobody.

So, first at each stage we well-order the isomorphism-type of the morphisms f :

M → Uα such that f < |M | ≤ λ. Then the required well-ordering is obtained

by dovetailing all these well-orderings. The length of this enumeration is at most

2λ · κ<λ, which is κ by hypothesis.
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We check that U is λ–rich. Suppose that f : M → U is a morphism and |f | <
|M | ≤ λ. The cofinality of κ is larger than |f |, hence rng f ⊆ Uα for some α < κ.

So f : M → Uα is a morphism and at some stage β we have ensured the existence

of an extension of f : M → Uα that embeds M into Uβ+1. �

Theorem 3.3 is too general to yield a sharp bound on the cardinality of U . For

instance, it cannot be used to infer the existence of countable rich models. How-

ever, it will enable us at the end of this section to define Trich for any inductive

amalgamation class.

3.4 Corollary. Let λ be an inaccessible cardinal. Then every model of cardinality

≤ λ embeds in a rich model of cardinality λ. �

We prefer to work with rich, rather than λ-rich, models. In order to guarantee the

existence of λ-rich models in full generality, we shall assume the existence of as many

inaccessible cardinals as needed. This assumption will make our proofs smoother,

but it is not necessary: it could be eliminated at the cost of complicating notation.

3.5 Theorem. [Uniqueness] Let U and V be λ–rich models. Then any morphism f :

U → V is an elementary map. When |f | < |U | = |V | = λ, f can be extended to an

isomorphism.

Proof. We may assume that f is finite. To prove the elementarity of f , it suffices

to extend f : U → V by back-and-forth to an isomorphism between countable

elementary substructures of U and V . The details are left to the reader.

To prove the second part of the claim, we extend f : U → V by back-and-forth,

taking care to ensure totality and surjectivity. At limit stages we can safely take

unions, since by the first part of the theorem morphisms between U and V are

elementary. �

By Remark 2.4 there is a morphism between U and V iff the two models belong

to the same connected component. So, given connected component and cardinality

there is at most one rich model.

3.6 Corollary. [Homogeneity] Rich models are homogeneous in the sense that every

morphism f : U → U of cardinality < |U | has an extension to an automorphism of

U . In particular, by K2, rich models are elementarily homogeneous. �

3.7 Theorem. [Finite character] The map f : M → N is a morphism iff h : M → N is

a morphism for every finite h ⊆ f .

Proof. One direction is simply axiom R. For the converse, suppose that h : M →
N is a morphism for every finite h ⊆ f . By Theorem 3.3 we may assume M,N ≤ U

for some rich model U . So, h : U → U is a morphism and, by Theorem 3.5,

elementary. So f is also elementary on U , hence it is a morphism by K2. As
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M,N ≤ U the map f : M → N is also a morphism because it is a composition of

morphisms. �

By a chain of morphisms we mean a sequence of morphisms fα : Mα → Nα, where

the α–th morphism extends the β-th morphism, for every β < α. The following is

an immediate consequence of the finite character of morphisms.

3.8 Corollary. The union of a chain of morphisms is a morphism that extends every

element of the chain. �

The following corollary needs to be assumed as an axiom in AECs: in standard

axiomatizations such as [Bald] our Axiom K2 is not available, hence Theorem 3.7

does not hold.

3.9 Corollary. Let 〈Mα : α < λ〉 be a chain of models. Let Mλ :=
⋃
α<λMα. If N is

a model such that Mα ≤ N for every α < λ then Mλ ≤ N .

Proof. By 3.7 and 3.8. �

Note that λ–rich models are in particular ω–rich. So the following corollary of

Theorem 3.5 is immediate.

3.10 Corollary. In each connected component, all rich models have the same theory

and this is also the theory of λ–rich models, for any λ. �

Let Trich be the set of sentences that hold in every rich model of the class K. This

is called the theory of the rich models. In general Trich is not a complete theory:

it is complete if and only if K is connected (by Theorem 3.5).

4 Saturation

In this section we show that saturation of rich models is never accidental: rather, it

is an intrinsic property of the amalgamation class being considered. This generalizes

Proposition 10 in [Lasc2] or also Theorem 2.5 of [KueLa]. We shall also isolate a

natural property, which we call fullness, and show that it does not hold in general

(but it holds trivially in all connected amalgamation classes). In the next section,

we shall use this property to obtain another characterization of saturation of rich

models.

Throughout this section, we shall work in an inductive amalgamation class K.

4.1 Theorem. Assume that K is connected. The following are equivalent:

1. some λ–rich model is λ–saturated;

2. all λ–rich models are λ–saturated; and
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3. every λ–saturated model M � Trich is λ–rich.

Proof. We prove 1 ⇒ 2. Let U be a λ–rich and λ–saturated model. Let V be

λ–rich. We shall use the fact that every morphism between U and V , or between

elementary substructures of them, is an elementary map. This a consequence of

Theorem 3.5. Let a ∈ V be a tuple of length < λ. Let x be a finite tuple of

variables. We claim that any type p(x, a) is realized in V . Let V ′ be a model of

cardinality ≤ λ such that a ∈ V ′ � V . Since K is connected there is an elementary

embedding f : V ′ → U . Let c be such that U � p(c, fa). Let U ′ be a model of

cardinality ≤ λ such that fa, c ∈ U ′ � U . Let h : U ′ → V be an elementary

embedding that extends f−1 : U ′ � V . Then hc is the required realisation of p(x, a)

in V .

To prove 2 ⇒ 3, assume that M is a λ–saturated model such that M � Trich. Let

U be a λ–rich model such that |U | > |M |. Let f : N → M be a morphism, where

|f | < |N | ≤ λ. We claim that f can be extended to an embedding. Let M ′ be a

structure of cardinality≤ λ such that rng f ⊆M ′ �M . As Trich is a complete theory,

U ≡ M ′ and, by λ–saturation, there is an elementary embedding g : M ′ → U . By

λ–richness, there is a morphism h : N → U that extends gf : N → U . As M is

λ–saturated, there is an elementary embedding k : h[N ]→ M . Then k : U → M is

a morphism, so kh : N →M is the required embedding.

Finally, the implication 3⇒ 1 is clear. �

An analogous theorem holds for saturated rich models. The proof is similar.

4.2 Theorem. Assume that K is connected. The following are equivalent:

1. some rich model is saturated;

2. all rich models are saturated; and

3. every saturated model M � Trich is rich. �

Observe that when K is not connected these results hold within each connected

component.

Finally, the following theorem shows that saturation and λ–saturation are both

equivalent to a certain property of morphisms.

4.3 Theorem. Let λ be any infinite cardinal. The following are equivalent:

1. all λ–rich models are λ–saturated;

2. all rich models are saturated;

3. if U is rich, M ≡ U , and M ≤ U , then M � U ;

4. if U is rich, M ≡ U , then any morphism f : M → U is elementary.

Proof. The equivalence 3⇔ 4 is clear. We prove 1⇒ 3. Suppose that U is rich.

We may assume that λ ≤ |U | (otherwise we prove the claim for a sufficiently large
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rich model in the same connected component as U ; then 3 follows easily). By 1, U

is saturated. Let A ⊆ M be any finite set and let M ′ be a countable model such

that A ⊆M ′ �M . If we show that M ′ � U , M � U follows from the arbitrarity of

A. As M ′ ≡ U , by saturation there is a model M ′′ � U which is isomorphic to M ′.

Let f : M ′ → M ′′ be this isomorphism. Then f : U → U is a morphism and, as U

is rich, an elementary map by 3.5. So M ′ � U as required. The implication 2 ⇒ 3

is similar.

Finally, we assume 4 and prove that if U is λ–rich then it is λ–saturated. As λ is

arbitrary, both 4⇒ 1 and 4⇒ 2 follow. Let p(x) be a type over some set A ⊆ U of

cardinality < λ. Fix some model M ≡A U of cardinality ≤ λ that realizes p(x). By

4, there is an elementary embedding f : M → U over A. Hence U realizes p(x). �

4.4 Corollary. Let U be a rich model and suppose it is saturated. Then for any

M ≡ N ≡ U , every morphism f : M → N is elementary.

Proof. Let V be a rich model and let h : N → V be an embedding. As V and

U are in the same connected component, they are elementarily equivalent. Then

h : N → V and hf : M → V are elementary by Theorem 4.3. Then f : M → N is

elementary as well. �

The models M and N in Theorem 4.3 and its corollaries are required to be elemen-

tarily equivalent to some rich model. It would be convenient to replace this condition

by M,N � Trich but this is not possible in general: the following example shows that

there may be models where Trich holds which are not elementarily equivalent to any

rich model.

4.5 Example. The language L0 contains a binary predicate r and the constants cn, for

n ≤ ω. The models of K are the structures of signature L0 where the following

axioms hold:

0. ci 6= cj for every distinct i, j ≤ ω,

1. ∀x ¬r(x, x),

2. ∀x y [r(x, y)↔ r(y, x)],

3. ∃x r(ci, x) → ¬∃x r(cj, x) for every distinct i, j ≤ ω.

So, models are graphs with countably many vertices named; these vertexes are, with

one possible exception, isolated. Now for each n < ω we define Kn to be the class

of models where one of the following conditions holds:

a. ∃x r(cn, x), or

b. ¬∃x r(ci, x) for every i ≤ ω and there are exactly n triangles (i.e. cliques of size

3).

Finally, let Kω be the class of the models where one of the following conditions
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holds:

a′. ∃x r(cω, x), or

b′. ¬∃x r(ck, x) and there are more than k triangles for every k < ω

So, Kn, for any n ≤ ω, contains two sorts of graphs: those where cn is the unique

constant which is non-isolated and those where all constants are isolated. When all

constants are isolated, the graph contains exactly n triangles if n < ω, or infinitely

many if n = ω.

As morphisms of K we take all partial isomorphisms between models in the same

component Kn. We shall verify that K is an inductive amalgamation class. The

only axioms that require a proof are K3 and AP. To prove K3 it is enough to observe

that models in different components are not elementarily equivalent. To prove AP it

suffices to show that ifM1 andM2 are models in the same component Kn andM1∩M2

is a common substructure, then there is a model N that is a superstructure of both

M1 and M2. There are two cases. If Mi � ∃x r(cn, x) for either one of i ∈ {1, 2},
we let N be the free amalgam of M1 and M2 over M1 ∩M2, that is, N = M1 ∩M2

with no extra edges added. Otherwise we take N = M1 ∪M2 ∪ {a}, were a is a new

vertex and let rN := rM1 ∪rM2 ∪{〈cn, a〉, 〈a, cn〉}. This ensures that N � ∃x r(cn, x),

so that axiom 3 holds. Axioms 0–2 are clear.

We now describe a countable rich model U ∈ Kn. This is the disjoint union of

two structures Urand and Uisol: the first is a random graph, and the second contains

only isolated vertices. The structure Urand contains cn, while Uisol contains all other

constants and infinitely many other vertices. In Urand the vertex cn is non isolated

(no vertex is isolated in a random graph) so axiom 3 holds.

We check that the model U described above is rich. Let f : M → U be a morphism,

i.e. a partial isomorphism, with |f | < |M | ≤ |U |. We can extend f to f ′ so that

{ci : i ≤ ω} ⊆ dom f ′. Let f ′ = frand ∪ fisol where rng frand ⊆ Urand and rng fisol ⊆
Uisol. We can extend frand to an embedding of M r dom fisol into Urand, because this

is a random graph. This proves that U is rich.

Consider a structure M which is the disjoint union of a countable random graph

and a set of isolated vertices containing all the constants and infinitely many other

elements. Since in M all constants are isolated, M is not elementary equivalent to

any rich model. But every formula ϕ true in M also holds in some rich model U

(e.g. if cn does not occur in ϕ, then ϕ will hold in U ∈ Kn). �

The example above motivates the following definition.

4.6 Definition. We say that an inductive amalgamation class is full if for every model

M , if all formulas of Th(M) hold in some rich model then Th(M) holds in some

rich model. �
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By axiom K3, a rich model where Th(M) holds is necessarily in the same connected

component as M . So in each connected component of a full amalgamation class

only one completion of Trich is realized by a model.

Connected amalgamation classes are trivially full. To sum up we state the follow-

ing theorem—a corollary of the definition above—which generalizes Theorems 4.1

and 4.3 to the case where K is full.

4.7 Theorem. Suppose K is full. Then the following are equivalent:

1. all rich models are saturated,

2. all λ–rich models are λ–saturated,

3. all saturated model M � Trich are rich,

4. all morphisms between models M,N � Trich are elementary,

5. M ≤ N ⇔ M � N , for any pair of models M,N � Trich. �

5 Model companions

In this section we generalize some results of [ChaPi], namely Section 3.4 and Propo-

sition 3.5: we show that their results for model companions of models with an au-

tomorphism hold in the context of inductive amalgamation classes. We also prove

that the existence of model companions is equivalent to the fullness of the class plus

saturation of rich models.

We fix an inductive amalgamation class K. First, we re-examine the results of the

previous section under the following assumption:

# if M,N � Trich, then M ⊆ N ⇔ M ≤ N .

This condition is equivalent to claiming that partial isomorphisms are embeddings

(i.e. total morphisms) as soon as they are total maps.

5.1 Theorem. Assume that # holds in K. Then the following are equivalent:

1. Trich is model-complete,

2. all rich models are saturated and K is full.

Proof. By # we can replace ‘≤’ with ‘⊆’ in the last assertion of Theorem 4.7 and

obtain

† if M,N � Trich, then M ⊆ N ⇔ M � N .

Observe that † implies that K is full. �

We say that K is axiomatizable if there is a theory T0 such that M is a model if

and only if M � T0. In this case, we also say that K is axiomatised by T0.

13



5.2 Theorem. Assume that K is axiomatised by a theory T0. Then T0,∀ = Trich,∀.

Proof. Every structure modelling T0 is a model, hence the substructure of a rich

model. So Trich,∀ ⊆ T0,∀. Vice versa, as T0 holds in every model, it holds a fortiori

in every rich model, so T0 ⊆ Trich. �

5.3 Theorem. Assume K is axiomatizable by T0 and assume that # holds in K. Then

the following are equivalent:

1. Trich is model-complete.

2. Trich is the model companion of T0.

3. all rich models are saturated and K is full,

Vice versa, if T0 has a model companion, then Trich is this model companion.

Proof. The equivalences 1⇔ 2⇔ 3 are clear by Theorems 5.1 and 5.2. To prove

the second claim, we assume T0 has a model companion Tc. To see that Tc ⊆ Trich

it suffices to observe that, by #, rich models are existentially closed, so Tc holds in

every rich model. To prove the converse inclusion, let M0 � Tc be any structure.

We claim that M0 � Trich. As T0,∀ = T0,∀, every structure M � Tc is a substructure

of a rich model. Viceversa, every rich model is a substructure of some M � Tc. So

we can construct a chain of substructures

M0 ⊆ U0 ⊆M1 ⊆ U1 ⊆M2 ⊆ . . . . . . ,

where Mi � Tc and Ui is a rich model. It follows that Mi � Mi+1 and Ui � Ui+1.

Let

Uω :=
⋃
i∈ω

Ui =
⋃
i∈ω

Mi.

Then M0 � Uω. The union of a chain of rich models is ω–rich, so the theorem

follows. �

5.4 Remark. The requirement of fullness in 3 of Theorem 5.3 is necessary. The rich

models in Example 4.5 are all saturated, but Trich is not model-complete: the formula

∃y r(x, y) is not equivalent over Trich to any universal formula. In fact ∃y r(x, y) is not

preserved under substructure: if U is a rich model in Kω, then U � ∃y r(cω, y) but

in the model M ⊆ U constructed at the end of Example 4.5, we have ¬∃y r(cω, y). �

6 Baire categories of first-order expansions

Let T be a complete theory in the language L. Let L0 be the language L enriched

with finitely many new relation and function symbols.

6.1 Notation. From now on, we shall denote a structure of signature L0 by a pair

(N, σ), where N is a structure of signature L and σ is the interpretation of the
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symbols in L r L0. So the results of the previous sections will hold for (M,σ),

(N, τ) etc. in place of M , N , etc. Let T0 be any theory of signature L0 containing

T . We write:

Exp(N, T0) :=
{
σ : (N, σ) � T0

}
,

We write Exp(N) for Exp(N, T ). �

There is a canonical topology on Exp(N), cf. [Ivan]. For a sentence ϕ with parame-

ters in N we define [ϕ]N := {σ : (N, σ) � ϕ}. The topology on Exp(N) is generated

by the open sets of the form [ϕ]N with ϕ quantifier-free. When N is countable, this

topology is completely metrizable: fix an enumeration {ai : i ∈ ω} of N , define

d(σ, τ) = 2−n, where n is the largest natural number such that for every tuple a in

{a0, . . . , an−1} and any symbols r, f in L0 r L,

a ∈ rσ ⇔ a ∈ rτ and fσ(a) = f τ (a),

where rσ is short for r(N,σ). When such an n does not exist, d(σ, τ) = 0.

The reader may easily verify that this metric is complete. We shall check that it

induces the topology defined above. Fix n and τ . Let ϕ be the conjunction of the

formulas of the form fa = b and ra which hold in (N, τ) for some b ∈ N and some

tuple a from {a0, . . . , an}. Then

[ϕ]N ⊆ {σ : d(σ, τ) < 2−n}

Vice versa, let ϕ be a sentence with parameters in N , and take an arbitrary τ ∈ [ϕ]N .

Let A be the set of parameters occurring in ϕ. Let n be large enough that

{tτ (a) : a ⊆ A and t is a subterm of a term appearing in ϕ} ⊆ {a0, . . . , an−1}.

Clearly (N, σ) � ϕ for any σ at distance < 2−n from τ so

{σ : d(σ, τ) < 2−n} ⊆ [ϕ]N

as required.

If g : M → N is an isomorphism and σ ∈ Exp(M) we write σg for the unique

expansion of N that makes g : (M,σ) → (N, σg) an isomorphism. Explicitly, for

every predicate r, every function f in L0 r L, and every tuple a ∈ N ,

(N, σg) � r a ⇐⇒ (M,σ) � r g−1a

(N, σg) � f a = b ⇐⇒ (M,σ) � g f g−1a = b

When M = N and g is an automorphism, we say that σ is conjugate to σg by g.

We write T0,∀ for the set of consequences of T0 that are universal modulo T . Note

that Exp(N, T0) ⊆ Exp(N, T0,∀) ⊆ Exp(N).
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6.2 Lemma. Let T have a countable saturated model N , and consider an arbitrary

expansion T0 of T to the signature L0. Then Exp(N, T0,∀) is the closure of Exp(N, T0)

in the above topology.

Proof. Let τ ∈ Exp(N, T0,∀) and suppose τ ∈ [ϕ]N . We claim that τ is adherent

to Exp(N, T0). As (N, τ) models the universal consequences of T0, there exists some

(N ′, τ ′) � T0 such that (N, τ) ⊆ (N ′, τ ′). Let A ⊆ N be the set of parameters

occurring in ϕ. As we can assume that N ′ is countable and saturated (in L), it is

isomorphic to N over A, hence [ϕ]N contains some element of Exp(N, T0).

Vice versa, suppose that τ /∈ Exp(N, T0,∀). Then for some parameter- and quantifier-

free formula ϕ(x) we have T0 ` ∀xϕ(x) and (N, τ) � ¬ϕ(a). Then the open set

[¬ϕ(a)]N separates τ from Exp(N, T0). �

6.3 Assumptions. In what follows, we shall work with a complete theory T with quan-

tifier elimination in the language L. We require that T is small and indicate by N

some given countable saturated model of T . Let T0 be an expansion of T of signature

L0, and assume that T0 is universal modulo T . Let K be an inductive amalgama-

tion class axiomatized by T0. We assume that hypothesis # of Section 5 holds in

K. �

6.4 Definition. We say that π(x) is a quantifier-free quasifinite type if it is

quantifier-free and contains only finitely many formulas not in L. We say that

(M,σ) is a smooth model if it realizes every quantifier-free quasifinite type which

has finitely many parameters and is finitely consistent in (M,σ). When (N, σ) is a

smooth model we simply say that σ is a smooth expansion. �

We write p�L(x) for the reduct to L of the type p(x). Since T eliminates quantifiers,

when convenient we may assume that p�L(x) is quantifier-free. So we may assume

that quantifier-free quasifinite types have the form p�L(x)+ϕ(x) for some quantifier-

free formula ϕ(x). When T is ω-categorical, any expansion is smooth.

We say that a model (M,σ) is existentially closed if every existential M–sentence

that holds in some model (U, υ) such that (M,σ) ⊆ (U, υ) holds in (M,σ) as well.

We opt for this definition though in our context it would be more natural to replace

⊆ with ≤. The proofs in Section 7 are more direct if we use the stronger notion of

existential closure given here.

By Lemma 6.2 and Assumptions 6.3, Exp(N, T0) is a closed subset of Exp(N), hence

it is complete.

6.5 Fact. The set of existentially closed smooth expansions is comeagre in Exp(N, T0).

Proof. Observe that existential closure and smoothness can be obtained simul-

taneously if in Definition 6.4 we replace ‘finitely consistent in (M,σ)’ with ‘finitely
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consistent in some model which is a superstructure of (M,σ)’.

Let π(x) be a quantifier-free quasifinite type with finitely many parameters in N .

Suppose π(x) is finitely consistent in some model (V, υ), where N ⊆ V . We prove

that the expansions of N that realize π(x) are an open dense set. As T is small,

there are at most countably many such types π(x), so the fact follows.

Let ϕ be an existential N–sentence consistent with T0. We may assume that (V, υ) �
ϕ + ∃x π(x). Let (M,σ) � (V, υ) be such that M is countable and saturated,

N ⊆M , and M contains a realization of π(x). As M and N are both countable and

saturated, there is an isomorphism g : M → N that fixes the parameters of π(x).

Then (N, σg) � ϕ+ ∃x π(x), so σg is the required expansion. �

6.6 Fact. Let Trich,∀∃ be the set of ∀∃–consequences of Trich. Then Trich,∀∃ holds in every

existentially closed model.

Proof. If (M,σ) is existentially closed and (V, υ) is a model extending (M,σ) then

(M,σ) �1 (V, υ). As we can always take (V, υ) rich, (M,σ) � Trich,∀∃. �

6.7 Corollary. The set of expansions that model Trich,∀∃ is a comeagre subset of

Exp(N, T0). �

6.8 Example. Let T be any complete small theory with quantifier elimination in the

language L. Let L0 rL contain only a unary relation symbol r and let T0 = T . We

define an inductive amalgamation class K. The models of K are the structures that

model T0. The morphisms of K are partial isomorphisms that have a domain of

definition which is algebraically closed in T , as well as any restriction of these maps.

It is easy to verify that all the axioms of Section 2 hold in K (free amalgamation

suffices to prove AP). Hypothesis # of Section 5 is trivially satisfied and all the

conditions in 6.3 are met.

Let acl(A) denote the algebraic closure in T . If acl(Ø) 6= Ø the class is not connected:

the set {a ∈ acl(Ø) : (M,σ) � r(a)} determines the connected component of the

model (M,σ). In [ChaPi] it is proved that if T eliminates the ∃∞ quantifier, then

T0 has a model companion: Trich. In this case, Trich is ∀∃–axiomatizable, so, by

Corollary 6.7, we have that Exp(N, Trich) is comeagre.

Finally, an example of an expansion that is not smooth. Suppose T is the theory of

the algebraically closed field of some fixed characteristic and letN be an algebraically

closed fields of infinite transcendence degree. The expansion where r(x) holds exactly

for the elements of acl(Ø) is not smooth. �

6.9 Example. Let T and L be as in Example 6.8. Let L0 r L contain two unary

function symbols f and f−1 and let T0 be T together with a sentence which says

that f is an automorphism with inverse f−1. We need a symbol for the inverse of
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f because we want T0 to be universal. The class K is defined as in Example 6.8.

Here the amalgamation property is not trivial: when it holds one says that T has

the PAPA [Lasc2]. So suppose T has the PAPA. Then hypothesis # of Section 5

is again trivially satisfied and all the conditions in 6.3 are met.

This class is not connected. As in the examples above, the restriction of f to acl(Ø)

determines the connected component of K to which the model belongs. It is consid-

erably more difficult to find a condition which guarantees the model-completeness

of Trich [BaShe]. An important example is the case where T is the theory of al-

gebraically closed fields [ChaHr]. Then Trich is also kown as ACFA. Let N be a

countable algebraically closed field of infinite transcendence degree. By Corollary 6.7

we may conclude that Exp(N, Trich) is comeagre.

7 Truss-generic expansions

Throughout this section we shall adopt the notation and the assumptions stated

in 6.3. In particular, N will be a given countable saturated model of T . Moreover,

we shall assume that K is connected, so that Trich is a complete theory. We shall

write Y for the set of existentially closed smooth expansions of N . From Fact 6.5

we know that Y is a comeagre subset of Exp(N, T0). We may consider Y as a

topological space in its own right with the topology inherited from Exp(N, T0).

If π(x, y) is a quantifier-free quasifinite type then in every smooth model the in-

finitary formula ∃y π(x, y) is equivalent to a type, namely the type {∃y ϕ(x, y) :

ϕ(x, y) ∈ π(x, y)}. Types of this form are called existential quasifinite.

Let b be a finite tuple in N . For any α ∈ Y we define the 1-diagram of α at b as

dg�1(α, b) :=
{
ϕ(b) : ϕ(x) universal or existential and (N,α) � ϕ(b)

}
,

and write Db for the set of 1-diagrams at b. On Db we define a topology whose basic

open sets are of the form

[π(b) ]D =
{

dg�1(α, b) : (N,α) � π(b)
}
,

where π(x) is any existential quasifinite type. We say that b is an e-isolated tuple

in α if dg�1(α, b) is an isolated point of Db. We may say b is e-isolated by π(x) in α.

It is sometimes convenient to use the syntactic counterpart of Db which we now

define. If p(x) is a complete type, we write p�∀(x), respectively p�∃(x) for the

set of universal, respectively existential, formulas in p(x). We write p�1(x) for

p�∀(x) + p�∃(x). We say that p(x) is realized in Y if it is realized in some (N, σ)

for some σ ∈ Y . Let Sx be the set of types of the form p�1(x), where p(x) is some
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complete parameter-free type realized in Y . On Sx define the topology where the

basic open sets are of the form

[π(x) ]S =
{
q�1(x) : π(x) ⊆ q(x)

}
,

where π(x) is some existential quasifinite type, and q(x) ranges over the parameter-

free types realized in Y . When [π(x)]S isolates p�1(x) in Sx, we say that p(x) is

e-isolated by π(x).

7.1 Fact. Let b be a tuple in N and let p�L(x) be the parameter-free type of b in the

language L. There is a homeomorphism h : Db → [p�L(x)]S. For every existential

quasifinte type π(x) containing p�L(x), the image under h of the set [π(b)]D is the

set [π(x)]S.

Proof. Let h be the function that takes the universal diagram dg�1(α, b) to the

universal type {ϕ(x) : ϕ(b) ∈ dg�1(α, b)}.

It is clear that h maps Db injectively to Sx. For surjecivity, let q(x) be a complete

parameter-free type realized in Y , say (N, σ) � q(a) for some σ ∈ Y , and suppose

that q�1(x) belongs to [π(x)]S. As p�L(x) ⊆ q(x), there is an isomorphism g : N → N

such that g(a) = b. Then q�1(x) is the image of dg�1(σ
g, b) under h. This proves

surjectivity. �

From this fact it is clear that b is e-isolated in α if and only if p(x), the parameter-free

type of b in (N,α), is e-isolated. The following lemma is also clear.

7.2 Lemma. Let p(x) be a complete parameter-free type realized in Y and let π(x) be

an existential quasifinite type such that p�L ⊆ π(x) ⊆ p(x). Then the following are

equivalent

1. p(x) is e-isolated by π(x);

2. π(x) → p�1(x) holds in every σ ∈ Y . �

7.3 Definition. Let α ∈ Y and let b be a finite tuple in N . We say that (N,α) is

an e-atomic model, or, for short, that α is e-atomic, if every finite tuple in N is

e-isolated. In other words, (N,α) realizes p�1(x) only if p(x) is e-isolated. �

The notion of e-atomic is virtually the same as Ivanov’s notion of (A,∃)–atomic

in [Ivan] but, since the context is different, a circumstantial comparison is not

straightforward.

7.4 Remark. As remarked in Section 6, when T is ω–categorical, every expansion is

smooth. When Trich is model-complete, every model of Trich is existentially closed

and every formula is equivalent to an existential (or, equivalently, to a universal)

formula. So, if Trich is model-complete and T is ω–categorical the e-atomic expansions

are exactly those such that (N,α) is an atomic model of Trich. �
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7.5 Theorem. Any two e-atomic expansions are conjugated.

Proof. Let α and β be e-atomic. We prove the following claim: any finite 1–

elementary map f : (N,α) → (N, β) can be extended to an isomorphisms. By

Fact 6.6 atomic expansion model Trich,∀∃. Recall that we are working in a connected

class, so Trich is a complete theory and any two models of Trich,∀∃ are 1–elementarily

equivalent. In other words, the empty map Ø : (N,α)→ (N, β) is 1–elementary, so

the theorem follows from the claim.

To prove the claim it suffices to show that for any finite tuple b we can extend f to

some 1–elementary map defined on b. The claim then follows by back and forth. Let

a be an enumeration of dom f . The tuple a b is e-isolated in α, say by some existential

quasifinite type π(v, x). Let p(v, x) = tp(a, b). By fattening π if necessary, we may

assume that it contains p�L(v, x). Since β is smooth and f is 1–elementary, the type

π(fa, x) is realized in β, say by c. By lemma 7.2, π(v, x) → p�1(v, x) holds both in

α and β, so f ∪ {〈b, c〉} gives the required extension. �

7.6 Fact. If an e-atomic expansion exists, then the set of e-atomic expansions is comea-

gre in Exp(N, T0).

Proof. We prove that the set of e-atomic expansions is a dense Gδ subset of Y ,

hence comeagre in Exp(N, T0).

To prove density, let ψ(x) be a parameter-free existential formula. Let a ∈ N be

such that ψ(a) is consistent with T0. We show that (N,α) � ψ(a) for some e-atomic

α. Write p�L(x) for the parameter-free type of a in the signature L. Let β be any

e-atomic expansion and let c be a realization of p�L(x) ∧ ψ(x) in (N, β). Let g be

an automorphism of N such that g(c) = a. Then α := βg is the required expansion.

Hence the set of e-atomic expansions is dense.

We now prove that the set of e-atomic expansions is a Gδ subset of Y . Let b be a

finite tuple and denote by Xb the set of expansions in Y where b is e-isolated. It

suffices to prove that Xb is an open subset of Y .

Let α ∈ Xb and let [πα(b)]D be the basic open subset of Db that isolates dg�1(α, b).

We may assume πα(b) has the form ∃y [ pα�L(b, y)∧ϕα(b, y) ]. So let aα be a witness

of the existential quantifier. We have that Y ∩ [ϕα(aα, b)]N ⊆ Xb. It follows that

Y ∩
⋃
α∈Xb

[ϕα(aα, b)]N = Xb.

Hence Xb is an open subset of Y . �

In [Tru1], a notion of generic automorphisms is introduced and a number of ex-

amples are given of countable, ω–categorical structures that have generic automor-

phisms. The following definition, which appears in [Ivan], generalizes the notion of

generic automorphisms to arbitrary expansions.
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7.7 Definition. We say that an expansion τ is Truss-generic if {τ g : g ∈ Aut(N)}
is a comeagre subset of Exp(N, T0).

7.8 Remark. There is at most one comeagre subset of Exp(N, T0) of the form {τ g :

g ∈ Aut(N)}. This is because any two sets of this form are either equal or disjoint,

and two comeagre sets in a Baire space have nonempty intersection.

The following theorem answers a question of [Tru2].

7.9 Theorem. Let α be any expansion. Then the following are equivalent:

1. α is e-atomic;

2. α is Truss-generic.

Proof. Let α be e-atomic. By Fact 7.6, the set X of e-atomic expansions is

comeagre. By Corollary 7.5, and because X is closed under conjugacy by elements

of Aut(N), X is of the form {τ g : g ∈ Aut(N)} for any e-atomic τ . By Remark 7.8,

X is exactly the set of Truss-generic expansions.

Vice versa, let α be Truss-generic. As smoothness and existential closure are guar-

anted by Fact 6.5, we only need to prove that α omits p�1(x) for any complete

parameter-free type p(x) that is not e-isolated. It suffices to prove that the set of

expansions in Y that omit p�1(x) is dense Gδ in Y , hence comeagre in Exp(N, T0).

Then some Truss-generic expansion omits it and, as Truss-generic expansions are

conjugated, the same holds for α.

Denote by Xb the set of expansions in Y that model ¬p�1(b). The set of expansions

in Y that omit p�1(x) is the intersection of Xb as the tuple b ranges over N . So, if

we can show that Xb is open dense in Y , we are done.

First we prove density. Let ψ(a, b) be an existential formula where a and b are

disjoint. We need to show that there is an expansion in Y that models ψ(a, b) ∧
¬p�1(b). Let q�L(z, x) be the parameter-free type of a, b in the language L. We claim

that ψ(z, x)∧ q�L(z, x)∧¬p�1(x) is consistent in Y , say it is realized by a′, b′ in some

expansion σ ∈ Y . If not, then ψ(z, x)∧ q�L(z, x) → p�1(x) holds in every expansion

in Y , which contradicts that p(x) is not e-isolated and proves the claim. There is an

automorfism g : N → N such that g(a′ b′) = a b. We conclude that ψ(a, b)∧¬p�1(b)

holds in (N, σg).

Now we prove that Xb is open in Y . Let σ ∈ Xb. We shall show that σ belongs

to a basic open set contained in Xb. If (N, σ) � ¬p�∀(b) the claim is obvious, so

suppose that (N, σ) � ¬ϕ(b) for some existential formula ϕ(x). The expansions in

Y are existentially closed, hence (see, for instance, Theorem 7.2.4 in [Hodg]) there

is an existential formula ψ(x), consistent in (N, σ), such that ψ(x)→ ϕ(x) holds for

every τ ∈ Y . Then σ ∈ [∃xψ(x)]N ⊆ Xb as required. �
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7.10 Lemma. The following are equivalent:

1. Truss-generic expansions exist;

2. for every finite b, the isolated points are dense in Db.

3. for every finite x, the isolated points are dense in Sx.

Proof. The equivalence 2 ⇔ 3 is clear by Fact 7.1. The direction 1 ⇒ 3 is a

corollary of Theorem 7.9. To prove the converse we assume 2 and construct a set ∆

which is the existential diagram of an e-atomic model.

The diagram ∆ is defined by finite approximations. Assume that at stage i we have

a finite set ∆i of existential N–sentences that is consistent with T0. Then we define

∆i+1 as follows:

If i is even, let b a tuple that enumerates all paramenters in ∆i. Let α be such that

dg�1(α, b) is isolated in Db, say by the type ∃y [p�L(b, y) ∧ ϕ(b, y)] where ϕ(b, y) is

quantifier-free. Let a be such that p�L(b, a)∧ϕ(b, a) and define ∆i+1 := ∆i+ϕ(b, a).

If i is odd consider the least type of the form p�L(x)+ϕ(x), where ϕ(x) is quantifier-

free, that is consistent with T0 + ∆i and has not been considered yet. Let c be such

that T0 + p�L(c) + ϕ(c) holds for some expansion and define ∆i+1 := ∆i + ϕ(c).

Let (N,α) be the model with diagram ∆. It is clear the even stages ensure that every

type realized in (N,α) is e-isolated while the odd stages guarantee simultaneously

smoothness and existential closure. �

8 Examples

We work under the assumptions and with the notation stated at the beginning of

Section 7.

8.1 Example. Truss-generic automorphisms of the random graph. Let L be the lan-

guage of graphs and let T be the theory of the random graph. Let L0 and T0 be

as in Example 6.9. It is not difficult to verify that the class K axiomatized by T0

has the amalgamation property and is in fact an inductive amalgamation class. It

is known [Kik] that T0 has no model companion, hence rich models are not sat-

urated. The existence of Truss-generic automorphisms of the random graph has

been first proved in [Tru1] and extended to generic tuples in [HHLS], essentially

using [Hru2]. These proofs use amalgamation properties of finite structures.

The proof of the proposition below contains a description of the isolated tuples in a

well understood case. The existence of Truss-generic automorphisms of the random

graph follows by the proposition below and Theorem 7.10. This proof is by no means

shorter than the one in [HHLS], and it still uses [Hru2].
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Proposition. Let T be the theory of the random graph and let N be a countable

random graph. Let L0 and T0 be as above (i.e. as in Example 6.9). Then for every

finite tuple b in N , the e-isolated points in Db are dense.

By the main result in [Hru2], for every finite set B of a random graph N there is a

finite set A such that B ⊆ A ⊆ N and every partial isomorphism g : N → N with

dom g, rng g ⊆ B has an extension to an automorphism of A.

Let ψ(b) be any existential formula consistent with T0. Let (N,α) be a model that

realizes ψ(b). We shall show that [ψ(b)]D contains an isolated point. By the result

in [Hru2] mentioned above, there is a model (N, σ) which has a finite substructure

(A, σ�A) that models ψ(b). We may assume that σ is rich. Let ϕ(a, b) be the

quantifier-free diagram of A in (N, σ). We claim that ∃z ϕ(z, b) isolates a point of

Db, namely dg�1(σ, b).

To prove the claim, let τ ∈ Y model ∃z ϕ(z, b) and prove that (N, τ) ≡1,b (N, σ).

As ϕ(a, b) is a diagram of a substructure we can assume (N, τ) and (N, σ) overlap

on A so, as they both are existentially closed and can be amalgamated over A, they

are 1-elementarily equivalent. �

8.2 Example. Cycle-free automorphisms of the random graph. Let L, T , N , and L0

be as in Example 8.1. The theory T0 says that f is an automorphism with inverse

f−1, and moreover for every positive integer n it contains the axiom ∀x fnx 6= x.

These axioms claim that f has no finite cycles. It is not difficult to verify that

the class K axiomatized by T0 has the amalgamation property and is an inductive

amalgamation class if morphisms are partial isomorphisms between models. It is

known [KuMac] that T0 has a model-companion, hence rich models are saturated.

Now we prove that there is no Truss-generic expansion in Exp(N, T0).

Suppose for a contradiction that there exists a Truss-generic expansion (N, τ). Let b

be an element of N . As T is ω-categorical, existential quasifinite types are equivalent

to existential formulas. So, by Theorem 7.10, there is an existential formula ϕ(b)

that isolates dg�1(τ, b) in Db. As the symbol f−1 can be eliminated at the cost of a

few extra existential quantifiers, we can assume that it does not occur in ϕ(b). Let

n be a positive integer which is larger than the number of occurrences of the symbol

f in ϕ(b). Denote by fτ the interpretation of f in (N, τ). Let A ⊆ N be a finite

set containing b and such that the sets {c, fτc, . . . , fn−1
τ c}, for c ∈ A, are pairwise

disjoint and let B be the union of all these sets. Clearly we can choose A such that B

contains witnesses of all the existential quantifiers in ϕ(b). The latter requirement

guarantees that if α is an expansion such that α�B = τ�B, then (N,α) � ϕ(b).

Define d := fnτ b and e := fτd. Let e′ ∈ N realize the type tp�L(e/fτ [B]) and be

such that r(b, e) = r(b, e′). As b /∈ fτ [B], the theory of random graph ensures the

existence of such an e′. Let g := fτ�B ∪ {〈d, e′〉}. We claim that g : N → N is a
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partial isomorphism. To prove the claim it suffices to check that r(a, d)↔ r(ga, e′)

for every a ∈ B. We know that r(a, d)↔ r(ga, e). As ga ∈ fτ [B], by the choice of e′

we have r(ga, e) ↔ r(ga, e′). Then r(a, d) ↔ r(ga, e′) follows. Finally, it is easy to

see that the homogeneity of N yields an extension of g to a cycle-free automorphism

of N , hence an expansion α. By construction, α�B = τ�B so, as observed above,

(N,α) � ϕ(b). But (N, τ) and (N,α) disagree on the truth of r(b, fn+1b). This

contradicts that ϕ(b) isolates dg�1(τ, b). �

Example 8.2 shows that the saturation of rich models is not sufficient to guarantee

the existence of Truss-generic expansions. The following corollary of Theorem 7.10

gives a sufficient condition.

8.3 Corollary. If a saturated countable rich model exists, then N has a Truss-generic

expansion.

Proof. If a saturated rich model exists, then Trich is model-complete by Theo-

rem 5.1. So Trich is the theory of the existentially closed models and every formula

is equivalent to an existential (or, equivalently, to a universal) one. Then Sx is the

set of all complete parameter-free types consistent with Trich. Though the topology

on Sx is not the standard one, the usual argument (e.g. Theorem 4.2.11 of [Mark])

suffices to prove that the isolated types are dense. �

8.4 Example. Poizat’s black fields, uncollapsed version. This is a paradigmatic exam-

ple among many possible versions of Hrushovski’s amalgamation constructions. We

refer to [Poiz] for all unproved claims. Let L be the language of rings and T the

theory of algebracally closed fields of a given characteristic. Let L0 contain a unary

predicate r. Define

δ(A) = 2 · deg(A)− |r(A)|,

where deg(A) is the trascendence degree of A. Define a universal theory T0 trans-

lating into first-order sentences the requirement that 0 ≤ δ(A) holds for every finite

set A.

Fix (M,σ) � T0 and let A ⊆ M . We write A v M , if for every finite B ⊆ M we

have that δ(A ∩ B) ≤ δ(B). Let acl(A) denote the algebraic closure of A in the

signature L. Observe that, as T is a complete theory, this does not depend on M

nor on σ. We say that A is a self-sufficient in M if acl(A) = A v M . We write

sscl(A) for the intersection of all self-sufficient subsets of M containing A. This is

called the self-sufficient closure of A; it clearly depends on σ though we shall not

display it in the notation. It is not difficult to prove that sscl(A) is self-sufficient.

The morphisms of K are the maps f : (N, τ) → (M,σ) that have an extension to

a partial isomorphim h : (N, τ) → (M,σ) with domH and rngH self-sufficient in

(N, τ) and (M,σ) respectively. It is easy to show that if (N, τ) �1 (M,σ) � T0, then

N is self-sufficient in (M,σ). So axiom K2 holds. Axiom AP is easily verified by
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free amalgamation and all the other axioms are clear.

This definition of morphism implies that (N, τ) ≤ (M,σ) if and only if N is self-

sufficient in (M,σ). From the definability of Morley rank in algebraically closed

fields, it follows that for any (M,σ), (N, τ) � Trich such that (M,σ) ⊆ (N, τ), we

have (M,σ) ≤ (N, τ). So assumption # of Section 5 holds.

Finally, no element of acl(Ø) satisfies r(x) so the class is connected. Rich models are

saturated (this uses the definability of Morley rank in algebraically closed fields).

Then by 5.3 above Trich is the companion of T0. Also, Trich is ω–stable with Morley

rank ω+ω. Therefore, in these examples Trich is small and e-atomic models exist by

Corollary 8.3. �
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