Our aim is to compare two different notions of

generic models:

- genericity defined in terms of the topology on the space of expansions of a structure (à la Truss-Ivanov);
- genericity related to the existentially closed models of a theory (à la Lascar/Chatzidakis & Pillay).

The motivation comes from the similarity of two notions of generic automorphisms.

1 Generic automorphisms

1.1 Truss-generic automorphisms

Let M be a countable structure.

 $\operatorname{Aut}(M)$ is a Baire space (with the standard topology, generated by basic open sets of the form

 $\operatorname{Aut}(M)_{ab} := \{g \in \operatorname{Aut}(M) : a^g = b\},\$

where a, b are finite tuples from M)

Definition. $\alpha \in Aut(M)$ is **Truss-generic** if

$$\alpha^{\operatorname{Aut}(M)} := \{ \alpha^g : g \in \operatorname{Aut}(M) \}$$

is comeagre, i.e. it contains a countable intersection of dense open sets.

The intuition is that α exhibits any finite behaviour consistent in Aut(M).

The existence of Truss generic automorphisms in Aut(M) has several applications, among which:

- definability of subgroups;
- the existence of generic *tuples* yields the small index property for the random graph and for ω -categorical ω stable structures [Hodkinson, Hodges, Lascar & Shelah];
- group theoretic properties of Aut(M) [Macpherson & Thomas];
- topological properties of Polish groups [Kechris & Rosendal.

1.2 Lascar-generic automorphisms

The setting: T a complete theory with q.e. in a countable language L;

 $L_0 = L \cup \{F\}$ an expansion of L by a unary function symbol;

 $T_0 = T \cup \{ F \text{ is an automorphism'} \}.$

Definition. Let $(M, \sigma) \models T_0$. Then σ is **Lascar-generic** if for every partial isomorphism

 $f:(N,\tau) \to (M,\sigma)$ partial

such that $(N, \tau) \models T_0$ is countable and dom $(f) \subseteq N$ is algebraically closed, there is an embedding

 $\hat{f}: (N, \tau) \to (M, \sigma)$ total

extending f.

Let $T_{rich} := \text{Th}\{(M, \sigma) : M \models T, \sigma \text{ Lascar-generic}\}.$

Fact (Lascar; Chatzidakis & Pillay). If T is stable:

- Lascar-generic automorphisms exist;
- T_0 has a model companion $T_A \Rightarrow T_A = T_{rich}$;
- T_{rich} is model-complete \Rightarrow T_{rich} is the model companion of T_0 .

1.3 An example

Generic automorphisms on the two definitions are similar in a pure countable set: let $L = \emptyset$, Ω a countable set, $T = \text{Th}(\Omega)$. Then:

Truss-generic automorphisms	Lascar-generic automorphisms
ω fixed points	ω fixed points
ω cycles of length 2	ω cycles of length 2
ω cycles of length 3	ω cycles of length 3
	÷
ω cycles of length n	ω cycles of length n
	:
(no infinite cycles)	ω cycles of length ω

Remark. The model companion T_{rich} of T_0 exists.

If $f \in \operatorname{Aut}(\Omega)$ is Truss-generic, $(\Omega, f) \models T_{\operatorname{rich}}$.

This example is a very special case: Truss-generic automorphisms exists, and T_{rich} has a model companion. In general, one of these two conditions fail:

2 Genericity generalised

2.1 Lascar genericity: richness

We seek a common framework to compare the two notions of generic automorphisms, and we shall look more generally at expansions of a given model via a tuple of relations and functions, rather than a single automorphism. This is especially relevant to the question of whether *generic tuples* of automorphisms exist, and thus to the reconstruction of ω -categorical structures from their automorphism group.

Throughout this section we shall work in the following setting:

T is a complete L-theory $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols T_0 is an expansion of T to L_0 .

Definition (Inductive amalgamation class). Let κ be a class containing models and morphisms, where

- models: infinite models of T_0 . They shall be denoted in the form (M, σ) , where $M \models T$ and σ is an interpretation of R;
- morphisms are partial embeddings between models

We say that κ is an inductive amalgamation class if:

- 1. every morphism is a partial isomorphism;
- 2. every partial elementary map is a morphism;
- 3. (AP) every morphism $f: (M, \sigma) \rightarrow (N, \tau)$ (partial) extends to a total morphism $\hat{f}: (M, \sigma) \rightarrow (N', \tau')$ (total)
- 4. (JEP) for every $(M_1, \sigma_1), (M_2, \sigma_2) \in \kappa$ there are a model (N, τ) and total morphisms $f_i : (M_i, \sigma_i) \to (N, \tau);$
- 5. the class of morphisms is closed under inverse and composition;
- 6. the class of morphisms is closed under restrictions;
- 7. κ is closed under unions of chains.

A *rich* model is a more general version of an expansion of a structure via a Lascargeneric automorphism: **Definition.** $(M, \sigma) \in \kappa$ is **rich**¹ if every morphism

$$f: (N, \tau) \to (M, \sigma)$$
 (partial)

such that $|f| < |N| \le |M|$ extends to a total morphism

$$\hat{f}: (N, \tau) \to (M, \sigma)$$
 (total).

Fact. All rich models have the same theory.

Proof. JEP is essential!

Definition. Let κ be an inductive amalgamation class. Then

$$T_{\rm rich} := {\rm Th}(\{U \in \kappa : U \text{ is } rich\}).$$

The following result is due to Chatzidakis & Pillay in the case where σ is a single automorphism (see the next section). It holds in the context of inductive amalgamation classes.

Notation: $M \leq N$ if $id_M : M \to N$ is a morphism.

Theorem. Let κ be an inductive amalgamation class, and suppose further that:

if $M, N \models T_{\text{rich}}$, then $M \subseteq N \iff M \leq N$.

Tfae:

- T_{rich} is model complete;
- all rich models are saturated;
- T_{rich} is the model companion of T_0 .

Viceversa, if T_0 has a model companion, then $T_{\rm rich}$ is this model companion.

These results hold even when:

- the models in κ are not necessarily the models of a theory (although we need models to be structures in a given language and κ be closed under elementary equivalence);
- JEP does not hold (then κ can be partitioned into 'connected components', within each of which JEP holds).

¹if σ, τ are automorphisms and $|f| = \aleph_0, \sigma$ is Lascar-generic in our previous definition

2.2 Examples

1. Let:

- T be a complete L-theory with q.e. and with the PAPA (cf. Lascar; e.g. T stable);
- $L_0 = L \cup \{f\}$, with f a unary function symbol;
- $T_0 := T \cup \{ \sigma \text{ is an automorphism'} \};$
- $(M, \sigma) \models T_0;$
- models in κ : $\{(N,\tau): N \models T, \ \tau \in \operatorname{Aut}(N), \ (N,\tau) \equiv_{\operatorname{acl}(\emptyset)} (M,\sigma)\};$
- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

Then (M, σ) is rich iff σ is Lascar-generic.

JEP does not hold if we take $\kappa := \{(N, \tau) : (N, \tau) \models T_0\}$.

2. Let:

- T be a complete L-theory with q.e.;
- $L_0 = L \cup \{R\}$, with R a unary predicate;
- $T_0 = T;$
- (M, R) a model of T_0 ;
- models in κ : $\{(N,Q): N \models T, (\operatorname{acl}_T(\emptyset), Q \cap \operatorname{acl}_T(\emptyset)) \simeq (\operatorname{acl}_T(\emptyset), R \cap \operatorname{acl}_T(\emptyset))\};$
- morphisms in κ : partial isomorphisms between models s.t. their domain is a.c.

If T eliminates the quantifier \exists^{∞} , T_{rich} is the model companion of T_0 .

2.3 Truss/Ivanov genericity

The setting: T a complete L-theory N a countable model of T $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable expansion of T to L_0 .

Definition. The space of expansions of N is

 $\operatorname{Exp}(N, T_0) := \{ \sigma : (N, \sigma) \models T_0 \}.$

We can topologise $Exp(N, T_0)$ by taking as basic open sets those of the form

 $[\phi]_N := \{ \sigma : (N, \sigma) \models T_0 \cup \{\phi\} \},\$

where ϕ is a quantifier–free N–sentence.

Fact. With this topology $Exp(N, T_0)$ is a Baire space. **Definition.** An expansion $\sigma \in Exp(N, T_0)$ is **Truss-generic** if

 $\{\tau^g : g \in \operatorname{Aut}(N)\}$

is comeagre in $Exp(N, T_0)$.

3 Comparing generic expansions

The setting:

T a complete L-theory with q.e. T is small, $N \models T$ is (the) countable saturated model $L_0 = L \cup \{R\}$, where R is a finite tuple of function and relation symbols T_0 an \forall -axiomatizable (modulo T) expansion of T to L_0 κ is an inductive amalgamation class whose models are the models of T_0

Is there a relationship between models of $T_{\rm rich}$ and Truss–generic expansions of N?

3.1 A special case

The relationship between models of T_{rich} and Truss-generic expansions is clear in the special case where:

- T is ω -categorical;
- $T_{\rm rich}$ is model complete.

Let N be the countable model of T. Then:

Definition. An expansion $\sigma \in \text{Exp}(N, T_0)$ is **atomic** if it is an atomic model of T_{rich} . **Fact.** 1. The set of countable models of T_{rich} is comeagre in $\text{Exp}(N, T_0)$;

2. if (M, σ) is atomic, then $(M, \sigma) \models T_{\text{rich}}$;

3. if an atomic expansion exists, then the set of atomic expansions is comeagre in $Exp(N, T_0)$.

Fact. Let $\alpha \in \text{Exp}(N, T_0)$, *i.e.* $(N, \alpha) \in \kappa$. Tfae:

- α is atomic;
- α is Truss-generic.

Proof. (\Rightarrow) : let α be an atomic expansion. Then the set of atomic expansions is of the form $Y := \{\alpha^g : g \in \operatorname{Aut}(N)\}$. By the previous fact, Y is comeagre. But two comeagre sets of this form coincide. Hence Y is exactly the set of Truss-generic expansions.

 (\Leftarrow) : longer!

3.2 How to generalize the comparison

Idea: get rid of the assumptions

- $T \omega$ -categorical;
- T_{rich} model complete.

We shall get that: 1. If $N \models T$ is countable and saturated, T_{rich} model-complete, then

Truss-generic expansions of N = 'smooth' prime models of T_{rich} .

2. If $N \models T$ is countable and saturated, then

Truss-generic expansions of N = 'smooth', 'e-atomic' models of T_{rich} .

- **Definition.** A partial T_0 -type is **quasifinite** if it contains only finitely many formulae not in L.
 - (M, σ) is a **smooth** model (or σ is a smooth expansion) if it realizes every quantifier free quasifinite type which:
 - 1. has finitely many parameters;
 - 2. is finitely consistent in (M, σ) .

Let X be the set of existentially closed smooth expansions of N.

Fact. X is a comeagre subset of $Exp(N, T_0)$.

Definition. Let $p(x) \in S(\emptyset)$ be realized in some $(N, \sigma) \in X$, and let $p_{\uparrow_1}(x)$ be the set of universal and existential formulae in p. Then p is **e-isolated** if there is a quasifinite type $\pi(x)$ such that the set

 $\{q_{\uparrow_1}(x): q \text{ is realized in some } (N,\sigma) \in X \text{ and } \pi(x) \subseteq q(x)\}$

is the singleton $\{p_{\uparrow_1}(x)\}$.

A tuple is e-isolated if its type is.

Definition. An expansion $\alpha \in X$ is *e-atomic* if every finite tuple in N is *e-isolated*.

Remark. If T is ω -categorical, any expansion is smooth.

If T_{rich} is model-complete, every model of T_{rich} is e.c. and any formula is equivalent to an existential one.

Hence, when both hypotheses hold a model is e-atomic if and only if it is atomic.

Theorem. Let T be small, $N \models T$ the countable saturated model, $\alpha \in Exp(N, T_0)$.

Tfae:

- 1. α is e-atomic;
- 2. α is Truss-generic.

Theorem. Let S_x be the set of types of the form $p_{\uparrow_1}(x)$, where p(x) is some complete parameter free type realized in some e.c. smooth expansion of N. Then S_x can be equipped with a topology so that the following are equivalent:

- Truss-generic expansions exist;
- for every finite x, the isolated points are dense in S_x .