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XAVIER ROS-OTON

Abstract. We study the problem (−∆)su = λeu in a bounded domain Ω ⊂ Rn,
where λ is a positive parameter. More precisely, we study the regularity of the
extremal solution to this problem.

Our main result yields the boundedness of the extremal solution in dimensions
n ≤ 7 for all s ∈ (0, 1) whenever Ω is, for every i = 1, ..., n, convex in the xi-
direction and symmetric with respect to {xi = 0}. The same holds if n = 8 and
s & 0.28206..., or if n = 9 and s & 0.63237.... These results are new even in the
unit ball Ω = B1.

1. Introduction and results

Let s ∈ (0, 1) and Ω be a bounded smooth domain in Rn, and consider the problem{
(−∆)su = λeu in Ω

u = 0 in Rn\Ω. (1.1)

Here, λ is a positive parameter and (−∆)s is the fractional Laplacian, defined by

(−∆)su(x) = cn,sPV

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy. (1.2)

The aim of this paper is to study the regularity of the so-called extremal solution of
the problem (1.1).

For the Laplacian −∆ (which corresponds to s = 1) this problem is frequently
called the Gelfand problem [14], and the existence and regularity properties of its
solutions are by now quite well understood [18, 16, 20, 19, 7]; see also [13, 21].

Indeed, when s = 1 one can show that there exists a finite extremal parameter
λ∗ such that if 0 < λ < λ∗ then it admits a minimal classical solution uλ, while for
λ > λ∗ it has no weak solution. Moreover, the pointwise limit u∗ = limλ↑λ∗ uλ is a
weak solution of problem with λ = λ∗. It is called the extremal solution. All the
solutions uλ and u∗ are stable solutions.

On the other hand, the existence of other solutions for λ < λ∗ is a more delicate
question, which depends strongly on the regularity of the extremal solution u∗. More
precisely, it depends on the boundedness of u∗.
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It turns out that the extremal solution u∗ is bounded in dimensions n ≤ 9 for any
domain Ω [19, 7], while u∗(x) = log 1

|x|2 is the (singular) extremal solution in the

unit ball when n ≥ 10. This result strongly relies on the stability of u∗. In the case
Ω = B1, the classification of all radial solutions to this problem was done in [18] for
n = 2, and in [16, 20] for n ≥ 3.

For more general nonlinearities f(u) the regularity of extremal solutions is only
well understood when Ω = B1. As in the exponential case, all extremal solutions
are bounded in dimensions n ≤ 9, and may be singular if n ≥ 10 [4]. For general
domains Ω the problem is still not completely understood, and the best result in that
direction states that all extremal solutions are bounded in dimensions n ≤ 4 [3, 24].
In domains of double revolution, all extremal solutions are bounded in dimensions
n ≤ 7 [7]. For more information on this problem, see [2] and the monograph [12].

For the fractional Laplacian, the problem was studied by J. Serra and the author
[23] for general nonlinearities f . We showed that there exists a parameter λ∗ such
that for 0 < λ < λ∗ there is a branch of minimal solutions uλ, for λ > λ∗ there is
no bounded solutions, and for λ = λ∗ one has the extremal solution u∗, which is
a stable solution. Moreover, depending on the nonlinearity f and on n and s, we
obtained L∞ and Hs estimates for the extremal solution in general domains Ω. Note
that, as in the case s = 1, once we know that u∗ is bounded then it follows that it
is a classical solution; see for example [22].

For the exponential nonlinearity f(u) = eu, our results in [23] yield the bounded-
ness of the extremal solution in dimensions n < 10s. Although this result is optimal
as s→ 1, it is not optimal, however, for smaller values of s ∈ (0, 1). More precisely,
an argument in [23] suggested the possibility that the extremal solution u∗ could be
bounded in all dimensions n ≤ 7 and for all s ∈ (0, 1). However, our results in [23]
did not give any L∞ estimate uniform in s.

The aim of this paper is to obtain better L∞ estimates for the fractional Gelfand
problem (1.1) whenever Ω is even and convex with respect to each coordinate axis.
Our main result, stated next, establishes the boundedness of the extremal solution u∗

whenever (1.3) holds and, in particular, whenever n ≤ 7 independently of s ∈ (0, 1).
As explained in Remark 2.2, we expect this result to be optimal.

Theorem 1.1. Let Ω be a bounded smooth domain in Rn which is, for every i =
1, ..., n, convex in the xi-direction and symmetric with respect to {xi = 0}. Let
s ∈ (0, 1), and let u∗ be the extremal solution of problem (1.1). Assume that either
n ≤ 2s, or that n > 2s and

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) >
Γ2
(
n+2s

4

)
Γ2
(
n−2s

4

) . (1.3)

Then, u∗ is bounded. In particular, the extremal solution u∗ is bounded for all
s ∈ (0, 1) whenever n ≤ 7. The same holds if n = 8 and s & 0.28206..., or if n = 9
and s & 0.63237....

The result is new even in the unit ball Ω = B1.
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We point out that, for n = 10 condition (1.3) is equivalent to s > 1.
Let us next comment on some works related to problem (1.1).
On the one hand, for the power nonlinearity f(u) = (1 + u)p, p > 1, the problem

has been recently studied by Dávila-Dupaigne-Wei [11]. Their powerful methods are
based on a monotonicity formula and a blow-up argument, using the ideas introduced
in [10] to study the case of the bilaplacian, s = 2. For this case s = 2, extremal
solutions with exponential nonlinearity have been also studied; see for example [8].

On the other hand, Capella-Dávila-Dupaigne-Sire [6] studied the extremal solu-
tion in the unit ball for general nonlinearities for a related operator but different
than the fractional Laplacian (1.2). More precisely, they considered the spectral
fractional Laplacian in B1, i.e., the operator As defined via the Dirichlet eigen-
values of the Laplacian in B1. They obtained an L∞ bound for u∗ in dimensions
n < 2

(
2 + s+

√
2s+ 2

)
and, in particular, their result yields the boundedness of

the extremal solution in dimensions n ≤ 6 for all s ∈ (0, 1).
Another result in a similar direction is [9], where Dávila-Dupaigne-Montenegro

studied the extremal solution of a boundary reaction problem. Recall that problems
of the form (1.1) involving the fractional Laplacian can be seen as a local weighted
problem in Rn+1

+ by using the extension of Caffarelli-Silvestre. Similarly, the spectral
fractional Laplacian As can be written in terms of an extension in Ω×R+. Thus, the
boundary reaction problem studied in [9] is also related to a “fractional” problem on
the boundary, in which s = 1/2. Although in this paper we never use the extension
problem for the fractional Laplacian, we will use some ideas appearing in [9] to prove
our results, as explained next.

Recall that the key property of the extremal solution u∗ is that it is stable [12, 23],
in the sense that ∫

Ω

λeu
∗
η2dx ≤

∫
Rn

∣∣(−∆)s/2η
∣∣2 dx

for all η ∈ Hs(Rn) satisfying η ≡ 0 in Rn \ Ω.
In the classical case s = 1, the main idea of the proof in [7] is to take η = eαu

∗ − 1
in the stability condition to obtain a W 2,p bound for u∗. When n < 10, this W 2,p

estimate leads, by the Sobolev embeddings, to the boundedness of u∗. This is also
the approach that we followed in [23] to obtain regularity in dimensions n < 10s.

Here, instead, we assume by contradiction that u∗ is singular, and we prove a lower
bound for u∗ near its singular point. This is why we need to assume the domain Ω to
be even and convex —in this case, the singular point is necessarily the origin. Then,
in the stability condition we take an explicit function η(x) with the same expected
singular behavior as eαu

∗(x) (given by the previous lower bound). More precisely, we
take as η a power function of the form η(x) ∼ |x|−β, with β chosen appropriately.
This idea was already used in [9], where Dávila-Dupaigne-Montenegro studied the
extremal solution for a boundary reaction problem.

The paper is organized as follows. First, in Section 2 we give some remarks and
preliminary results that will be used in the proof of our main result. Then, in
Section 3 we prove Theorem 1.1.
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2. Some preliminaries and remarks

In this section we recall some facts that will be used in the proof of Theorem 1.1.
First, recall that a weak solution u of (1.1) is said to be stable when∫

Ω

λeuη2dx ≤
∫
Rn

∣∣(−∆)s/2η
∣∣2 dx (2.1)

for all η ∈ Hs(Rn) satisfying η ≡ 0 in Rn \ Ω; see [23] for more details. Note also
that, integrating by parts on the right hand side, one can write (2.1) as∫

Ω

λeuη2dx ≤
∫

Ω

η(−∆)sη dx. (2.2)

We will use this form of the stability condition in the proof of Theorem 1.1.
Next we recall a computation done in [23] in which we can see that condition (1.3)

arises naturally.

Proposition 2.1 ([23]). Let s ∈ (0, 1), n > 2s, and u0(x) = log 1
|x|2s . Then, u0 is a

solution of

(−∆)su0 = λ0e
u0 in all of Rn,

with

λ0 = 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) . (2.3)

Moreover, setting

Hn,s = 22sΓ2
(
n+2s

4

)
Γ2
(
n−2s

4

) , (2.4)

u0 is stable if and only if λ0 ≤ Hn,s.

We point out that Hn,s is the best constant in the fractional Hardy inequality,
even though we will not use such inequality in this paper.

Remark 2.2. This proposition suggests that there could exist a stable singular solu-
tion to (1.1) in the unit ball whenever λ0 ≤ Hn,s. In fact, we may consider a larger
family of problems than (1.1), by considering nonhomogeneous Dirichlet conditions
of the form u = g in Rn \ Ω. For all these problems, our result in Theorem 1.1 still
remains true; see Remark 3.3. In the particular case Ω = B1 and g(x) = log |x|−2s

in Rn \B1, the extremal solution to the new problem is exactly u∗(x) = log |x|−2s in
B1 whenever λ0 ≤ Hn,s. Thus, when λ0 ≤ Hn,s we have a singular extremal solution
for some exterior condition g.

We expect the sufficient condition (1.3) of Theorem 1.1 to be optimal since it is
equivalent to λ0 > Hn,s.

The condition λ0 > Hn,s, appeared and was discussed in Remark 3.3 in [23].

We next give a symmetry result, which is the analog of the classical result of
Berestycki-Nirenberg [1]. It does not require any smoothness of Ω. From this result
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it will follow that, under the hypotheses of Theorem 1.1, the solutions uλ(x) attain
its maxima at x = 0.

When Ω = BR, there are a number of papers proving the radial symmetry of
solutions for nonlocal equations. For domains which are symmetric with respect to
an hyperplane, the following Lemma follows from the results in [15].

Lemma 2.3 ([15]). Let Ω be a bounded domain which is convex in the x1-direction
and symmetric with respect to {x1 = 0}. Let f be a locally Lipschitz function, and
u be a bounded positive solution of{

(−∆)su = f(u) in Ω
u = 0 in Rn\Ω.

Then, u is symmetric with respect to {x1 = 0}, and it satisfies

∂x1u < 0 in Ω ∩ {x1 > 0}.

As said before, this lemma yields that solutions uλ of (1.1) satisfy

‖uλ‖L∞(Ω) = uλ(0).

This allows us to locate the (possible) singularity of the extremal solution u∗ at the
origin, something that is essential in our proofs.

Finally, to end this section, we compute the fractional Laplacian on a power
function, something needed in the proof of Theorem 1.1.

Proposition 2.4. Let (−∆)s be the fractional Laplacian in Rn, with s > 0 and
n > 2s. Let α ∈ (0, n− 2s). Then,

(−∆)s|x|−α = 22s Γ
(
α+2s

2

)
Γ
(
n−α

2

)
Γ
(
n−α−2s

2

)
Γ
(
α
2

) |x|−α−2s,

where Γ is the Gamma function.

Proof. We use Fourier transform, defined by

F [u](ξ) = (2π)−n/2
∫
Rn
u(x)e−iξ·xdx.

Then, one has that
F
[
(−∆)su

]
(ξ) = |ξ|2sF [u](ξ). (2.5)

On the other hand, the function |x|−α, with 0 < α < n, has Fourier transform

κβ F
[
| · |−β

]
(ξ) = κn−β|ξ|β−n, κβ := 2β/2Γ(β/2) (2.6)

(see for example [17, Theorem 5.9], where another convention for the Fourier trans-
form is used, however).

Hence, using (2.6) and (2.5), we find that

F
[
(−∆)s| · |−α

]
(ξ) = |ξ|2sF

[
| · |−α

]
(ξ)

=
κn−α
κα
|ξ|α+2s−n =

κn−α
κα

κα+2s

κn−α−2s

F
[
| · |−α−2s

]
(ξ).
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Thus, it follows that

(−∆)s|x|−α =
κn−α
κα

κα+2s

κn−α−2s

|x|−α−2s = 22s Γ
(
α+2s

2

)
Γ
(
n−α

2

)
Γ
(
n−α−2s

2

)
Γ
(
α
2

) |x|−α−2s,

as claimed. �

3. Proof of the main result

The aim of this section is to prove Theorem 1.1. We start with two preliminary
lemmas.

The first one gives a lower bound for the singularity of an unbounded extremal
solution. As we will see, this is an essential ingredient in our proof of Theorem 1.1.
A similar result was established in [9] in the case of the boundary reaction problem
considered there.

Lemma 3.1. Let n, s, and u∗ as in Theorem 1.1, and assume that u∗ is unbounded.
Then, for each σ ∈ (0, 1) there exists r(σ) > 0 such that

u∗(x) > (1− σ) log
1

|x|2s

for all x satisfying |x| < r(σ).

Proof. We will argue by contradiction. Assume that there exist σ ∈ (0, 1) and a
sequence {xk} → 0 for which

u∗(xk) ≤ (1− σ) log
1

|xk|2s
. (3.1)

Recall that, by Lemma 2.3, we have uλ(0) = ‖uλ‖L∞ . Thus, since u∗ is unbounded
by assumption, we have

‖uλ‖L∞(Ω) = uλ(0) −→ +∞ as λ→ λ∗.

In particular, there exists a sequence {λk} → λ∗ such that

uλk(0) = log
1

|xk|2s
.

Define now the functions

vk(x) =
uλk(|xk|x)

‖uλk‖L∞
=
uλk(|xk|x)

log 1
|xk|2s

, x ∈ Ωk =
1

|xk|
Ω.

These functions satisfy 0 ≤ vk ≤ 1, vk(0) = 1, and

(−∆)svk −→ 0 uniformly in Ωk as k →∞.
Indeed,

(−∆)svk(x) =
1

log 1
|xk|2s

|xk|2sλkeuλk (|xk|x) ≤ λk
log 1

|xk|2s
≤ λ∗

log 1
|xk|2s

−→ 0.
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Note also that the functions vk are uniformly Hölder continuous in compact sets
of Rn, since |(−∆)svk| are uniformly bounded (see for example Proposition 1.1 in
[22]). Hence, it follows from the Arzelà-Ascoli theorem that, up to a subsequence,
vk converges uniformly in compact sets of Rn to some function v satisfying

(−∆)sv ≡ 0 in Rn, 0 ≤ v ≤ 1, v(0) = 1.

Thus, it follows from the strong maximum principle that v ≡ 1.
Therefore, we have that

vk(x) −→ 1 uniformly in compact sets of Rn,

and in particular
uλk(xk)

log 1
|xk|2s

= vk (xk/|xk|) −→ 1.

This contradicts (3.1), and hence the lemma is proved. �

In the next lemma we compute the fractional Laplacian of some explicit functions
in all of Rn. The constants appearing in these computations are very important,
since they are very related to the ones in (1.3).

Lemma 3.2. Let s ∈ (0, 1), n > 2s, and ε > 0 be small enough. Then

(−∆)s|x|
2s−n+ε

2 = (Hn,s +O(ε)) |x|
−2s−n+ε

2

and

(−∆)s|x|2s−n+ε =
(
λ0

ε

2s
+O(ε2)

)
|x|−n+ε,

where Hn,s and λ0 are given by (2.4) and (2.3), respectively.

Proof. To prove the result we use Proposition 2.4 and the properties of the Γ func-
tion, as follows.

First, using Proposition 2.4 with α = 1
2
(n− 2s− ε) and with α = n− 2s− ε, we

find

(−∆)s|x|
2s−n+ε

2 = 22sΓ
(
n+2s−ε

4

)
Γ
(
n+2s+ε

4

)
Γ
(
n−2s+ε

4

)
Γ
(
n−2s−ε

4

) |x|−2s−n+ε
2

and

(−∆)s|x|2s−n+ε = 22sΓ
(
n−ε

2

)
Γ
(

2s+ε
2

)
Γ
(
ε
2

)
Γ
(
n−2s−ε

2

) |x|−n+ε,

where Γ is the Gamma function.
Since Γ(t) is smooth and positive for t > 0, then it is clear that

22sΓ
(
n+2s−ε

4

)
Γ
(
n+2s+ε

4

)
Γ
(
n−2s+ε

4

)
Γ
(
n−2s−ε

4

) = 22s

(
Γ
(
n+2s

4

)
Γ
(
n−2s

4

))2

+O(ε) = Hn,s +O(ε).

Thus, the first identity of the Lemma follows.
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To prove the second identity, we use also that Γ(1 + t) = tΓ(t). We find,

22sΓ
(
n−ε

2

)
Γ
(

2s+ε
2

)
Γ
(
ε
2

)
Γ
(
n−2s−ε

2

) = 22s Γ
(
n−ε

2

)
Γ
(

2s+ε
2

)
Γ
(
1 + ε

2

)
Γ
(
n−2s−ε

2

) ε
2

= 22s Γ
(
n
2

)
Γ(s)

Γ(1)Γ
(
n−2s

2

) (1 +O(ε))
ε

2

= 22sΓ
(
n
2

)
sΓ(s)

Γ
(
n−2s

2

) ( ε
2s

+O(ε2)
)

= 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) ( ε
2s

+O(ε2)
)

=
λ0

2s
ε+O(ε2).

Thus, the lemma is proved. �

We can now give the proof of our main result.

Proof of Theorem 1.1. First, note that when n ≤ 2s the result follows from [23],
since we proved there the result for n < 10s. Thus, from now on we assume n > 2s.

To prove the result for n > 2s we argue by contradiction, that is, we assume that
u∗ is unbounded and we show that this yields λ0 ≤ Hn,s. As we will see, Lemma 3.1
plays a very important role in this proof.

Let uλ, with λ < λ∗, be the minimal stable solution to (1.1). Using ψ in the
stability condition (2.2), we obtain∫

Ω

λeuλψ2dx ≤
∫

Ω

ψ(−∆)sψ dx.

Moreover, ψ2 as a test function for the equation (1.1), we find∫
Ω

uλ(−∆)s(ψ2)dx =

∫
Ω

λeuλψ2dx.

Thus, we have∫
Ω

uλ(−∆)s(ψ2)dx ≤
∫

Ω

ψ(−∆)sψ dx for all λ < λ∗. (3.2)

Next we choose ψ appropriately so that (3.2) combined with Lemma 3.1 yield a
contradiction. This function ψ will be essentially a power function |x|−β, as explained
in the Introduction.

Indeed, let ρ0 be small enough so that Bρ0(0) ⊂ Ω. For each small ε > 0, let us
consider a function ψ satisfying

(1) ψ(x) = |x| 2s−n+ε2 in Bρ0(0) ⊂ Ω.
(2) ψ has compact support in Ω.
(3) ψ is smooth in Rn \ {0}.
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Now, since the differences ψ(x)− |x| 2s−n+ε2 and ψ2(x)− |x|2s−n+ε are smooth and
bounded in all of Rn (by definition of ψ), then it follows from Lemma 3.2 that

(−∆)sψ(x) ≤ (Hn,s + Cε) |x|
−2s−n+ε

2 + C (3.3)

and

(−∆)s(ψ2)(x) ≥
(
λ0

ε

2s
− Cε2

)
|x|−n+ε − C, (3.4)

where C is a constant that depends on ρ0 but not on ε.
In the rest of the proof, C will denote different constants, which may depend on

ρ0, n, s, Ω, and σ, but not on ε. Here, σ is any given number in (0, 1).
Hence, we deduce from (3.2)-(3.3)-(3.4), that(

λ0
ε

2s
− Cε2

)∫
Ω

uλ|x|ε−ndx ≤ (Hn,s + Cε)

∫
Ω

|x|ε−ndx+ C. (3.5)

We have used that
∫

Ω
uλ ≤

∫
Ω
u∗ ≤ C uniformly in λ (see [23]). Since the right

hand side does not depend on λ, we can let λ −→ λ∗ to find that (3.5) holds also
for λ = λ∗.

Next, for the given σ ∈ (0, 1), we apply Lemma 3.1. Since u∗ is unbounded by
assumption, we deduce that there exists r(σ) > 0 such that

u∗(x) ≥ (1− σ) log
1

|x|2s
in Br(σ).

Thus, we find

(1− σ)
(
λ0

ε

2s
− Cε2

)∫
Br(σ)

|x|ε−n log
1

|x|2s
dx ≤ (Hn,s + Cε)

∫
Ω

|x|ε−ndx+C. (3.6)

Now, we have∫
Br(σ)

|x|ε−n log
1

|x|2s
dx = 2s|Sn−1|

∫ r(σ)

0

rε−1 log
1

r
dr

= 2s|Sn−1| (r(σ))ε
1− ε log 1

r(σ)

ε2

≥
{

2s|Sn−1| (r(σ))ε − Cε
} 1

ε2

and ∫
Ω

|x|ε−ndx ≤ |Sn−1|
∫ 1

0

rε−1dr + C = |Sn−1|1
ε

+ C.

Therefore, by (3.6),

(1− σ)
(
λ0

ε

2s
− Cε2

){
2s|Sn−1| (r(σ))ε − Cε

} 1

ε2
≤ (Hn,s + Cε) |Sn−1|1

ε
+ C.

Hence, multiplying by ε and rearranging terms,

(1− σ)λ0 (r(σ))ε ≤ Hn,s + Cε.
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Letting now ε→ 0 (recall that σ ∈ (0, 1) is an arbitrary given number), we find

(1− σ)λ0 ≤ Hn,s.

Finally, since this can be done for each σ ∈ (0, 1), we deduce that

λ0 ≤ Hn,s,

a contradiction. �

Remark 3.3. Note that in our proof of Theorem 1.1 the exterior condition u ≡ 0
in Rn \ Ω plays no role. Thus, the same result holds true for (1.1) with any other
exterior condition u = g in Rn \ Ω.

On the other hand, note that the nonlinearity f(u) = eu plays a very important
role in our proof. Indeed, to establish (3.2) we have strongly used that f ′(u) = f(u),
since we combined the stability condition (in which f ′(u) appears) with the equation
(in which only f(u) appears). It seems difficult to extend our proof to the case of
more general nonlinearities. Even for the powers f(u) = (1 +u)p, it is not clear how
to do it.
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