OBSTACLE PROBLEMS FOR INTEGRO-DIFFERENTIAL OPERATORS:
HIGHER REGULARITY OF FREE BOUNDARIES

NICOLA ABATANGELO AND XAVIER ROS-OTON

ABSTRACT. We study the higher regularity of free boundaries in obstacle problems for integro-
differential operators. Our main result establishes that, once free boundaries are C*®, then
they are C°°. This completes the study of regular points, initiated in [5].

In order to achieve this, we need to establish optimal boundary regularity estimates for
solutions to linear nonlocal equations in C** domains. These new estimates are the core of our
paper, and extend previously known results by Grubb (for £ = co) and by the second author
and Serra (for k = 1).

1. INTRODUCTION

Obstacle problems for integro-differential operators appear naturally in Probability and Fi-
nance. Namely, they arise when considering optimal stopping problems for Lévy processes with
jumps, which have been used in pricing models for American options since the 1970s; see [9,26].
More recently, such kind of obstacle problems have found applications in interacting particle
systems and other related models in statistical mechanics; see [8,29,34] and references therein.

Because of their connections to Probability, Finance, and Physics, in the last fifteen years
there have been considerable efforts to understand obstacle problems for such kind of nonlocal
operators. Usually, one considers the obstacle problem

min{Lv, v — ¢} =0 in R",
(1) lim v(x) =0,
|z| =00
for a nonlocal operator L, where ¢ is a given smooth obstacle with compact support.

The most basic and canonical example of integro-differential operator L is the fractional
Laplacian (—A)®, s € (0,1). The mathematical study of the obstacle problem for the fractional
Laplacian was initiated by Silvestre [35] and Caffarelli, Salsa, and Silvestre [6], and it is nowadays
pretty well understood; see the survey paper [10].

The main regularity result for the free boundary d{v > ¢} in the obstacle problem for the
fractional Laplacian establishes that the free boundary is C*° outside a certain set of degenerate
—or singular— points. To show this, one takes the following steps:

(a) The free boundary splits into regular points and degenerate points.
(b) Near regular points, the free boundary is C1©.
(c) Once the free boundary is C1'® near regular points, then it is actually C°.

Parts (a) and (b) were established in [6] (see also Athanasopoulos, Caffarelli, and Salsa [1]),
while part (c) was established first for s = 3 by Koch, Petrosyan, and Shi [24] and by De
Silva and Savin [12] (independently and with different proofs), and later for all s € (0,1) by
Koch, Rilland, and Shi [25] and by Jhaveri and Neumayer [23] (independently and with different
proofs).
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After the results in [6], many more results have been obtained concerning the set of degener-
ate/singular points [2,14,16,17,19], the case of the fractional Laplacian with a drift [15,18,27],
and also the parabolic version of the problem [3,4].

For more general integro-differential operators, however, much less is known. One of the few
works in this direction is the one by Caffarelli, the second author, and Serra [5], which extended
the results of [6] to a whole family of integro-differential operators of the form

Lu(x) = p.v./]Rn (u(z) —u(z+y))K(y) dy
(2)
— 5 | (ul) ~ e +9) — ule - ) K dy

with the kernel K satisfying
K is even, homogeneous, and

3) A

WSK(y)SW7 forannyRn, Wlth0<)\SA,S€(071)

The main result in [5] establishes that, if ¢ € C*!(R") and

(4) {¢ > 0} is bounded,
then the free boundary splits into regular points xg, at which
(5) sup (v — ) ~r'™* for r > 0 small,

By (zo)

and a set of degenerate points, at which supg, (,)(v — @) <71+, with a > 0. Moreover, the

set of regular points is an open subset of the free boundary, and it is C'h.

The aim of this paper is to continue the study of regular points initiated in [5], and to show
that, once the free boundary is C*® near regular points, then it is actually C* (as long as ¢
is C*°). This is stated next.

Theorem 1.1. Let L be an operator as in (2)-(3), with K € C°°(S"™1), and v be any solution
to (1) with ¢ € C*°(R™) satisfying (4). Let xo € 0{v > ¢} be any regular free boundary point.
Then, the free boundary is C* in a neighbourhood of x.

This is the analogue of step (c) explained above, and extends the results of [23,25] to a much
more general setting.

Furthermore, for less regular obstacles ¢ € C? we establish sharp regularity estimates for
the free boundary, too. Here, and throughout the paper, when 5 ¢ N we denote by C? the
space C** with k € Z, o € (0,1), and § = k + o

Theorem 1.2. Let L be an operator as in (2)-(3), and v be any solution to (1) with ¢ sat-
isfying (4). Let 0 > 2 be such that @ ¢ N and 0 £ s ¢ N. Assume that ¢ € C/T5(R"™),
that K € C?9=1(S™™1), and let 2o € {v > @} be any reqular free boundary point.

Then, the free boundary is C? in a neighbourhood of xq.

This sharp estimate for non-C'> obstacles seems to be new even for the fractional Lapla-
cian (—A)®: it was only known for s = 3, see [24].
1.1. Strategy of the proof. To establish Theorems 1.1 and 1.2, we need a very fine under-
standing of solutions to nonlocal equations in C*® domains. It was first observed by De Silva
and Savin [11] (in the context of the classical obstacle problem) that the higher regularity of free
boundaries can be proved by “simply” having sharp estimates for harmonic functions in C*
domains. More precisely, they showed a higher order boundary Harnack estimate of the type:

u1, ug harmonic in QN By

up = ug = 0in 90 N By ui 86
(6) up > 0in QN By =, €O N Bp).

NeCt, B¢z



Notice that this is better than what Schauder estimates give. Indeed, by boundary Schauder
estimates, we have that u;, us € C? (Qn Bl/Q) and this yields that the quotient u; /us is CP~1up
to the boundary'. The result summarized in (6) shows that the regularity of the quotient u; /ug
can be improved to C®. We refer to [11] for more details about this proof in the case of the
classical obstacle problem.

Once one has (6), then the idea is to take uy,us to be two derivatives of a solution v to the
obstacle problem, with 02 being the free boundary, and then deduce that

MeC — Ll = el = e =eC™ —=..— el
2 2

—this is because the normal vector to 92 can be expressed in terms of derivatives of v, see (62).
Such strategy was later extended in [23] in order to show the higher regularity of free boundaries
in the obstacle problem for the fractional Laplacian, and it is the same strategy that we use
here in order to prove Theorems 1.1 and 1.2.

The main difficulty thus is to establish fine estimates for solutions in C*® domains. This
is a highly nontrivial task in the context of nonlocal operators, and even the sharp bound-
ary Schauder-type estimates in C*® domains was a completely open problem for operators of
the type (2)-(3). The only known results in this direction are due to the second author and
Serra [30-33] for k = 1, or to Grubb [21,22] for k = oo, and are actually very delicate to
establish.

In case of the fractional Laplacian (—A)® there is an extra tool that one can use: the extension
problem of Caffarelli and Silvestre [7]. Thanks to this, [23] established the necessary Schauder-
type and higher order boundary Harnack estimates for the fractional Laplacian in C*® domains.
Unfortunately, such extension technique is not available for more general nonlocal operators (2)-
(3), and thus our proofs must be completely independent from those in [23].

1.2. Fine estimates for nonlocal operators in C*® domains. We show the following
generalization of (6) to nonlocal elliptic operators of the type (2)-(3). We remark that this is
the first higher order boundary Harnack estimate for general nonlocal operators, and it even
refines the estimates from [23] for the fractional Laplacian.

Theorem 1.3. Let § > 1 be such that 8 ¢ N, B+ s & N. Let L be an operator as in (2)-(3),
with K € C?PH(S"1). Let Q@ C R™ be any bounded CP domain and ui,us € L®(R™) be
solutions of

Lu;, = f; inQNB;
{ UZZO inBl\Q,

with fi, fo € CP~3(Q), us > c¢1d® in By for some ¢; > 0, and ||f2Hchs(§) + [Jua| oo (mry < Ca.
Then,
U1

Hu?”oﬂ(ﬁmgl) < C(||f1||cﬁ—s(§) + HUIHLOO(]R"))

for some C > 0 depending only onn, s, B, c1, Co, Q, A\, A, and ”KH026+1(S7171).

Here, and throughout the paper, d denotes a regularized version of the distance to the bound-
ary function, see Definition 2.1.

An important step towards the proof of Theorem 1.3 is the following boundary Schauder-type
estimate for solutions to nonlocal elliptic equations in C*“ domains.

Theorem 1.4. Let § > s be such that 8 ¢ N, B+ s & N. Let L be an operator as in (2)-(3),
with K € C?P3(SP~1). Let Q C R™ be any bounded CP! domain, and u € L>®(R™) be any

1By the Hopf Lemma, u2 is comparable to the distance to the boundary, therefore the division by w2 roughly
corresponds to taking one derivative on w.
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solution of
Lu=f imQNB
{ u=0 inB\Q
with f € CP=5(Q). Then
u
I#
for some C > 0 depending only onn, s, B, Q, A\, A, and HKH02B+3(Sn71).

cr@inEy = CIfllgs-» @y + Nl oo @m)

This extends for the first time to all k& € N the results for £k = oo [21, 22], and those
for k = 1 [30-33]. Thus, our result completely settles the open question of establishing boundary
Schauder estimates for nonlocal operators of the form (2)-(3) in C*® domains.

1.3. On the proofs of Theorems 1.3 and 1.4. In order to establish our new fine estimates
for nonlocal equations in C*® domains, we develop a new, higher order version of the blow-up
and compactness technique from [31]. This remained as an open problem after the results of [31]
mainly because of two reasons.

First, because the functions would grow too much at infinity whenever we want a higher
order estimate, and thus one must be very careful when taking limits and giving a meaning to
the limiting equation.

Second, because of a technical problem involving the function d®: one needs to show a result
of the type

(7) MNec’ — L) e’ 13Q).

This was one of the results that had to be proved in [31]; however the proof given therein only
gave that L(d®) € C*(Q) (and actually under a non-sharp assumption of the domain). To show
that L(d*) is more regular than C* (in C** domains) remained as an open problem after the
results of [31].

We solve the first technical difficulty here by using some ideas by Dipierro, Savin, and
Valdinoci [13]; notice however that our proofs are completely independent from those in [13], and
we moreover show some new results concerning nonlocal operators for functions with polyno-
mial growth. We think that some of these results (proved in Section 3) could be of independent
interest.

Concerning the second key difficulty, we provide here a complete understanding of the regu-
larity of L(d®) in terms of the regularity of 92, proving (7) for the first time. This answers the
open question left in [31] and it allows us to proceed with the higher order blow-up and com-
pactness technique to show Theorem 1.4. The proof of (7) is extremely technical. Moreover, it
is not simply a tedious computation but it requires several new ideas concerning nonlocal oper-
ators with homogeneous kernels (2)-(3). On top of that, there are various essential cancellations
without which (7) would not hold.

Additionally, in order to prove Theorem 1.3, we need to establish a result in the spirit of (7)
but for L(nd®), n € C°°, with an extra cancellation taking place in case that 7 vanishes at a
boundary point. All this is done in Section 2, and we believe this to be an important contribution
of this paper.

Finally, it is important to notice that the development of the new techniques in this paper
(i.e., the higher order version of the blow-up technique from [31], and the proof of (7)) open
the road to the study of the higher regularity of free boundaries in other obstacle problems that
until now seemed out of reach, such as nonlocal operators with drift [15,18,27], or even the
parabolic obstacle problem for the fractional Laplacian [3,4].

1.4. Organization of the paper. The paper is organized as follows. Section 2 is devoted

to proving (7) and related estimates. Section 3 deals with an extension of the definition of L

to include its evaluation on functions growing polynomially at infinity: beside the definition

itself, we are going to provide with interior and boundary regularity estimates, Liouville-type
4



theorems, and some other technical details. Section 4 contains the proofs of Theorems 1.4 and
1.3. Section 5 proves Theorems 1.1 and 1.2, and it concludes the paper. We also attach in an
appendix some small details and remarks that we need in the proofs, to lighten these up.

1.5. Notations. As already mentioned above, when § ¢ N we use the single index notation
C# for the Holder spaces: this corresponds to C'8#=18) where |-| denotes the integer part of
a positive real number.

Throughout the paper, we will denote (w) = w/|w|, w € R™. Also, we will make extensive
use of multi-indices @ € N* oo = («v1,..., ), || = a1 + ...+ ay: these will be mainly used to
shorten higher order derivatives in the following way

0% = (8(21>a1 0...0 ((‘fxn)an

As to other notations for derivatives, V will denote the gradient as customary. Instead, D¥,
k € N, will be the full k-linear operator entailed by all possible derivatives of order k: in this
spirit, we also have
D" = (aa)m\:k'
By P we mean the space of polynomials of order k: mind that we allow ourselves to avoid
specifying the number of variables, as there will be never confusion to this regard. The coeffi-
cients of the polynomials will be identified as

Qe Py = Qx) = Z q(a)xa, x € R™.
aeN? |a|<k

Finally, as it often happens, C' will indicate an unspecified constant not depending on any
of the relevant quantities, and whose value will be allowed to change from line to line. We will
make use of sub-indices whenever we will want to underline the hidden dependencies of the
constant.

2. NONLOCAL OPERATORS AND THE DISTANCE FUNCTION
The goal of this section is to prove (7) and other related estimates for the distance function d®.

2.1. A regularized distance. Actually, we need d to be more regular in the interior of €2 than
just the distance function. For this reason, we need the following.

Definition 2.1. Let Q C R™ be an open set with C# boundary. We denote by d € C*>°(Q) N
CP(Q) a function satisfying
%dist( -, Q%) <d < Cdist( -, Q°), |DYd| < C;dP, for all j > B and some C,C; > 0.
The construction of such d is provided in Lemma A.2.
We aim at proving the following.

Theorem 2.2. Let K be a kernel as in (3). Let Q@ C R™ be a domain such that 0 € 09
and QN By € CB, for some B > 1+ s, B—s & N, and assume K € C*PT1(S"71). Let
Y € CPY(B1)NC=(QN By) be given, and let d be given by Definition 2.1. Assume

190l (qaist(- aeysrnBy) < Cur® 1 forall  j>p—1.
Then the function defined by

Ly(d*)(z) = p.v. : V(d)(y) K(y — ) ¢(y) - (y —x) dy

1

is of class CP~17% in By o with

| DI Ly (d%) ()] < C; (1p(0)] + |2) d(z)?~'7*7  in By, foranyj €N, B—1—5<j<p,

for some C; depending only on j, n, s, B, Cy, Q, X\, A, and ”KH026+1(S7171).
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Before turning to its proof, we first give the following consequence, which implies (7).

Corollary 2.3. Let K be a kernel as in (3). Let Q@ C R™ be a domain such that 0 € 092 and
NN By € CP, for some f>14+s, B—s &N, and assume K € C?PH1(S"™1), Let n € C®(R")
be given, and let d be given by Definition 2.1.

Then, L(nd®) € CP~1=5(Q N By)3), with

1L s oy < C-
Moreover, for every j €N, f—1—s < j < [, we have
| D/ L(nd®*)(z)] < C; (In(0)| + |=]) d(2)”"' =7 in QN By,
with C and C; depending only on j, n, s, 5, Q, A\, A, and HK||CQ[3+1(Sn—1).
We start by proving some preliminary lemmas.

Lemma 2.4. Let L be an operator as in (2)-(3) and u € VVIEC1 (R™) be such that
\%
[T
R

1l + ’y‘n—‘rQs—l
Then,
1
Lu(x) = ~9s p.v. A Vu(z +vy) -y K(y) dy
®) .
=5, bV Vu(y) - (y —x) K(y — z) dy xz € R"™.
S Rn

Proof. Since K is homogeneous, it follows from

div(yK (y)) = nK(y) +y- VK(y) = nK(y) — (n +25)K(y) = —2s K(y)
and an integration by parts:

5 [ (2u@) —ule )~ e~ ) K(w) dy =

_ 7£ (2u(z) — u(z +y) — u(z —y))div(y K(y)) dy
-
N 4i Vy (2u(x) —u(@ +y) —u(z —y)) -y K(y) dy
S Jrn
: (= Vulz+y)+ Vu(z —y)) -y K(y) dy = o v Vule+y) -y K@) dy

- g Rn 2s R™
We next show how Corollary 2.3 follows from Theorem 2.2.

Proof of Corollary 2.3. If, starting from Lemma 2.4, we take another step in the representation
of L(nd®) by means of the product rule, we obtain

L) (a) = = 5opav- | T@)0) - (v =) Kly =) n(s) dy

1
~ o0 [ AWV - (- 0 Ky o) dy
— b ) K- ) v (v - 2) dy
where we have denoted
1 1
= —=nVd— —d Vn, in R".
2 2s

Notice that the regularity of 1 is inherited by that of d and 7.
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Since the function of x
b )T R (- ) ) (- o) dy
Rn\B1

is 2+l in B /2 (notice that the dependence on z is only on the kernel K, which is loRian
outside the origin and it is integrated in a region that does not contain the origin), then the
result follows from Theorem 2.2. O

The rest of this section is devoted to the proof of Theorem 2.2. For this, we need several
tools.

2.2. Flattening of the boundary. The first step is to flatten the boundary 92 around 0 € 9€.
Without loss of generality we can suppose the following facts:
e There exists a C8-diffeomorphism ¢ : By — By such that ¢(0) = 0, ¢(B; N {z, = 0}) =
B; N 0Q, and (z,)+ = d(¢(2)), i.e. we do not need to rescale Q2 for 9Q N By to be
flattened via a single diffeomorphism; note that relation z, = d(¢(z)) in turn implies

djn = Vd(¢(2))0j¢(2) and therefore Vd(¢(z)) = Ono(2);

e 90 is flat outside Bj, so that ¢ can be extended to a global C#-diffeomorphism ¢ :
R™ — R"™ which coincides with the identity outside Bj.
o ¢ € C°(B; N{z, > 0}) with

(9) |Dig| < C;dP3,  in Byn{z, >0}, forjEN, j> 3.
The construction of ¢ is provided in Lemma A.3.

Remark 2.5. As seen in the proof of Corollary 2.3, by splitting

L(nd®)(x) = pv. /B () Ky —2) ¥(y) - (y — ) dy+

i / d(y)* " K(y —2) ¥(y) - (y — 2) dy,
R7\ By

it is clear that we can limit our analysis to the first integral, as the second one is returning a
function as smooth as the kernel. For this reason, from now on we only deal with

(10) b ) Ky =) 0l (o= o) dy
1
by taking advantage of the above diffeomorphism.

2.3. Yet another representation for L. With the change of variables ¢(z) = y and ¢(2) = =
we get,

p-v-/ dy) ' Ky—az)vy) - (y—=)dy =
B1

Let us define
and

in order to write
b ) Ky 2) 6(0) - (- o) dy = pv- [ ()T I6) - 0(@) - p(2) ds
B By
and let us define

(11) 1) = pv- [ ()71 (6) — 9(0) - p(o) d



Remark 2.6. For further reference, let us state here the regularity of the functions involved
here. The kernel J is still homogeneous and it inherits the regularity of K far from the origin.
Moreover, J is odd (since K is even) and

K({(w)){w J({w
J(w) = ’,uE|<n+>2)s<l> = ‘w|EL<+2Z)1’ w € R"\ {0}

On the other hand, p € C5~1(B1)NC>({z, > 0} N By), with the corresponding interior bounds
inherited from v and ¢.

2.4. A supplementary variable. In order to continue with the argument, we decouple the
dependence on Z, a trick that will be functional in the rest of the analysis. Fix r € (0,1) and
p € By such that d(p) = 2r. We set,

(12) 1(2) = (&) + L, (&, &)

where

Notice that in B,(p) the function ¢ is C*, while in By \ B,.(p) it is only C~1.

The reader should be warned that, despite the splitting described above, each of the two
integrals separately does not satisfy the bounds we want to prove, but they need to be combined
again to prove the regularity of (11): one key step is the cancellation taking place in (28).

2.5. Expansion of the kernel. We are now going to Taylor-expand the function J(¢(§ + z —
z) — ¢(§)) around the point & € By, using z — & as an increment: according to the order of the
expansion we need, the size of z — & will be suitably chosen?. In view of the regularity of ¢, for
any j € {1,...,|8]}, we can write

(13) HE+z—2)—d)= Y 07(&)(z—2)* + ({2 — &)
1<]e| <y

for some e; : By x By — R which is uniformly CP~7 in the first variable and uniformly C# in
the second one, which moreover satisfies (as a consequence of (9))

|Z_§:|j+1 lf‘z_‘%|<17]§L/BJ_1,
lej(6,2—3)] < (|3 it |2 - <1, j = 8],
PPI= Ny — Pt i |z — g <, j> |8+ 1
Using (13), we deduce
J((&+2—2) - ¢(€)) =J< > rz—x|'a8a¢<£><z—a:~>“+ej<f,z—az~>>

1<]a|<g
= |z — g 2H! J< > e —alfTo%g(€) (2 — ) + |z — & (6,2 — @))
1<]al<)

where we have used the homogeneity of kernel K. We further expand the last obtained quantity,
this time by taking advantage of the regularity of K. In particular, we expand around the point

3" 0%6(6) (= — )% = DY(E) (= — &),

laf=1

2Namely, when we will expand to some order less than 8 then z — & will be allowed to be arbitrarily large
(because we have global ch regularity); instead, when we will expand to order larger than 8, we will restrict
z — & to a small ball of radius r in order to have &, + 2z, — Z, > 0.
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deducing (using again the multi-index notation)

J< > lz =@ ov(€) (2 — ) + |2 — 2] e (6 2 - 9?:)) =

1<l <5
(14) = J(Do(&)(z — 7)) + E(§, 2 — &) +
¥
+ Y o (Dae ( > Iz - all o) (= — 1) + |z—fc1ej<s,z—fc>>
1<]y|<j—1 2<]a|<y

and, after having grouped together the terms with the same homogeneity in |z — |,

) N bz —8)  Ry(&2—4)
(15) J(@(E+2—2) — 6(6)) = Z; L T e
with
2 — &) if |z -2 <1, j<|B] -1,
|Rj(&,z—2)| <CQ |z— 2" if |2 — 2] < 1, j = 8],

PPI Ny — P iz —d <, §> |8+ 1.
Remark also that
bi(&,—0) = (1) bi(¢,0), HesSmL
As an example, one has
bo(€,0) = J(Dg(€)0)  and  bi(€,0) = DJ(D¢(§)0) [Dg(€) 6]
Inside B, (p), we have the following bounds for b;.

Lemma 2.7. Let o € N*, § € S* ! and & € B.(p). There exists C > 0 (independent of v and
p) such that

o if lal +i4+1< 8,
9€i(6,0)] < orfmiT=lel g <ol +i+1 <28 +2.

Proof. By (14) and (15), each b;(-,6) contains derivatives and of the kernel J of order i and of
the diffeomorphism ¢ of order i+ 1 at most. From (9) it follows then the claim of the lemma. O
Lemma 2.8. Let o,y € N", v < a, w € B,, and £ € B,(p). There exists C > 0 such that
}8;7]8 TRy a6 )] < {C!w| if o +2 <8
’ CrP=101=2|w| if o] +2 > B, |a] + |y| < 28.

Proof. Equation (15) can be rewritten, using the homogeneity of J, as

O Zb )l + Ry€w),  we Bya& € Bilp).

Fixing o,y € N*, w # 0, and choosmg j =17+ 1 in the last formula, one can show that

(et w) — il . .
g (MDA >0 7 (bi(e. w))hl) + 00 Ry (6w,

with?
00,08 Ry 16, w) | < () |w].

3This can be performed by writing w = t6, t > 0, § € S"~!, decomposing the derivatives in w into derivatives
in ¢t and 0, and noticing that (16) is a Taylor expansion in the ¢ variable.
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Since R|,|4; contains derivatives of J of order |y| + 1 and of ¢ of order || +2 (cf. (14)), then
. C if o| +2 < B,
c < « <
(@) < Clellcrimon <4 gpo-lat-2 i o] +2> B, |a| + || < 28.

O
The following is an important regularity result in which we use crucially the fact that (zn)i_1
solves L[(2,)57'] = 0 in {2, > 0}.
Lemma 2.9. Let ¢ € CP~Y(By) and, for j € N, a; € CITA(S"1) be such that 3 — s ¢ N and
(17) aj(—0) = (—1)7a;(8), 6csS i
Then the function defined by

L) = p.v./B ()" ‘z“_j(:;;?}l b(z) dz

is of class CItB=1=5 4n By o with
1l g1y ) < lasllossigsny [l gns z,-
Proof. Fix some point xg € By, and write
Y()= > Walwo)(z—20)* + Plwo,2) = > Walwe,2)(z — ) + Plao, 2)
lal<[8]-1 laf<[B]-1
where U, Uo(-,z) € C’B_l_|°‘|(Bl/2) for any & € By, U(z0,-) € C®(By) for every xq € By s,
and P € CP~1(By ), x By) with
| P(20,2)] < [$llos-1(m)lz — 20"

We plug such expansion for ¢ in the integral defining I;: mind that the coefficients \Tla exit the
integral. For any a as above, we have

s—1 aj(<z—x>) @ _ sflaj(<z_x>) <Z_x>a
(18) p.v./Bl(zn)Jr P (z —2)* dz = p.v. s (zn)% - x|”+28*j7|0‘|*1 ;
where we underline that a;((z — x))(z — x)® satisfies (17) by replacing j with j + |a|. We
differentiate j + || + 1 times (remark that, by assumption, j + |a| < j + 8 — 1) by exploiting
the homogeneity of the kernel as follows: take v € N™ with |y| = j + 1 and

o po. [t O E I e[ )

|Z B x‘n+237jf\a|fl |Z - x‘n+25

_ 185 ((z — @)
B /RN\Bl(Z")+ s o

|2 — 2|

|2 — x|

where we have used that a; are homogeneous of degree 0, even on S"~1 and [31, Lemma 9.6].
The expression obtained for the derivatives is smooth and a fortiori the original function will
be.

Now, we deal with the regularity of the remainder

(19) /B (zn)3 ! ,Z“"“i;?}l P(z,z0) d-.

—$|

The idea is to show that we can take |3] — 1 derivatives in a fixed direction exactly at the
point xo (which has been fixed before, but it is arbitrary) via appropriate limits of higher order
difference quotients. To this end, let us denote by

(20) Abf(z) = izf;(—l)f (k) f<:v v (o) h)
10



the centred finite difference of order k£ and recall that

tim Bk f (@) = 2T ()
[h|10 h Ohk 7"

Consider Lemma A.4 with N = |3] —1,y=n+2s—j — 1, and
K(l‘) _ a](<x>)

T a2z
Since, for any |h| < %, by Lemma A.4 it follows

z—xo| + |h (=N

ol Pz, )
[Tilo |2 — 20+ (5 — i)
(|2 — @o| + |)) DN

1

W|AhN“(Z —x9) P(z,20)| < C

< C|l9llgs-1(5 —— |2 — o,
BTN [z — 2o + (5 —i)n[
then, for any € > 0,

1
N/ |AN k(2 — o) P(2, z0)| dz
BN Jg

(|2 — @] + [ VN .
< Clllesr s / -

B e TNy |2 — 2o + (X —)n|
Ny ftim (J¢| + )OI _

< Ol oot gy ||V A / ¢ de

i Y
o) [ ¢ + (5 = i) |

< CHwHCB*l(Bl)|h|_N_7+B_1+n /1 (¢l + 1)_N_W+B_1 d¢
W(E—x())

< Cllllos sy [ (12 = al + DN b < e

provided that |E| is small enough, regardless the value of |h|. This means that |h|"V ANk (2 —
x0)P(z,x0) is uniformly integrable in B; (as a family indexed on |h|). As it is also pointwisely
converging, we conclude by the Vitali convergence theorem (¢f. for example [36, Theorem
1.5.13]) that every N-th order derivative of (19) is of type

/B (Zn)iil E aj(<z _$0>) P(z,20) dz

n+2s—j—1+N
_ 370’ J

which, in turn, is of magnitude

lajllensn-llvllos-1(m,) /B (zn) 5 |z — 20| TN dz < Cllajlon g1y 1]l cs-1 ()
1

it N <j+ (8] -2, 0r

H“J'HCWS”1>W”Cﬁ—1(31>/3 ()3 Yz — @ "EHTIN g <
1

= CHajHCN(Sn_l)HwHCﬁ—l(Bl)(l’o)gimes
if N=j+|8] —1land 8—|8] <s,or

— —n—2s+j+B—N
HajHCN(Sn—l)||1/’||CB—1(Bl)/B (2)3 Mz —ao| BN g <
1

< Clagllew nnyllllos-1 sy @) ="

if N=j+[5] and 8 — | 3] > s. We therefore have that

“Ij“cj-"-ﬁ—s—l(ﬁl) < HajHCN(Snfl)Hlechl(Bl)-
11



O

The following is the interior regularity counterpart of Lemma 2.9, which was instead studying
some global regularity.

Lemma 2.10. Let p € {z € R" : x, > 0} and r > 0 be such that B,(p) C By. For k € N,
B>1,k>pB—s,lety € CFYBy) NCFB,(p). Forj €N, let aj € CITR=L(Sn=1) satisfy
(17). Then the function defined by

g@)::pyé(%ﬁ*

is of class C*I=1 in B, 5(p) with

aj(<z — x>)

Iz — x|n+2s—j—1 ¥(z) dz

(21) |DFHTL ()] <
< Cllagllgitr-1(sn-1) (rwﬂ_k_s e lox @'+ ||¢||cﬁ71(§1)7ﬁ_k_s> ;&€ By pa(p)-

Proof. The p.v. specification only matters when j = 0, so we allow ourselves to drop it from
now on.
Fix some point xg € B, /2(p) and write

W(z)= > 0"P(0)(z — x0)* + Pr(0,2)

ja|<k—1

= Z \Ila(xo,x)(z—x)a—i-Pk(xo,Z), ZeBr(p)
|| <k—1

P(z)= D 0"Y(wo)(z — x0)™ + Pa(xo, 2)
la|<[B]-1
= D Valzo,2)(z — 2)" + Ps(wo, 2), z € Bi\ B;(p)
le|<[B]-1
where U, (-, x) € C’k_|°‘|(Br/2(p)) for any = € B,(p), Ya(zo,:) € C®(B,(p)) for every xzy €
B, /5(p), and P € C*(B, ja(p) x By (p)) with

|P(@0,2)] < IWll e |7 — 20l*.

for any o € B, 5(p) and || < |3] — 1. We plug these expansions into the definition of I; so
that

I(x) = /B PRC ,Z“”'«"Z;f_?_l (2) d= + /B ! ’Z“J’“'ﬁ;ﬁ}_l W(z) dz

(22)
= > \I/a(xo,x)/ (z0)57" aj(<z_fz)fz.__l_$|>l dz
NEr By [z — T
(23)
. _ _ «
+ Z ‘I/a(wo,m)/ (2n)5" 4 nfilfz_l_xli dz +
18] <|al<k—1 By (p) |z — x| I
(24)
Loai((z— ) o ai({z—2))
(2)57 1 —2 P Pk(azo,z)dz+/ (zn)5 —s— Ps(xo, 2) dz.
/w) R BB, |z—atTE

We study now the regularity of (22), (23), and (24). The one of (22) is proved in an analogous
way to that of (18), so we skip this.
12



Let us look at (23). Again we use some ideas from the study of (18). For any v € N™ with
=3+ lel

1 a((z =) (z — z)° 1 a;((z—a))
87/ Zn s—17J - dZ :/ Zn S 1—] dZ =
T T B e

|z |z —z
s—1 Zij(<z - 33>) / s—1 aj(<z - x>)
= — Zn — " dz — Zn — " dz.
/R"\Bl( & |z — a2t Bl\BT@)( & |z — |

This means that, when we take n € N™ such that |[n++| = j+k—1 (and therefore [n| = k—1—|«|),
it holds

(au z o1 %2 = @)t — ) z=g(x) — 0" z Sﬂw 2
0 /r<p>( W ‘ =gz -0 /Bl\BAp)( ) !

|Z _ $|n+25—j—1—|a| ‘Z . x’n-i-?s—l

_ E((z—x))
:gw»—/ ()it — 2,
BOB.p) |z — |t 2ERlel

for some g € C°°(B, /2(p)), and therefore

DkJrjfl / (Zn)i_l (Ij(<Z B l’>) <Z B $>Oé dz
(p)

|Z _ x‘n+25—j—l—\a|

< Cllajllgrrs—1(gn-ryrlt=F=s,

As to (24), we proceed as in the proof of Lemma 2.9. In this case

Dk+j_1’xo/3()(zn)il aj(<z_m>)~ Pi(z0,2) dz| <
r(P

|Z _ m|n+28—]—1

(zn)sfl
scmwﬂwwww@mémvﬂ@Hwé
r(p -

1-s

< Cllajller+i-v -1 191l or By

where we have used Lemma A.9. Similarly,

pk+i—1 / 5 )51 aj(<z_$>) Pa(zo,2) dz| <
‘xo B1\Bx( )< W |z — z[*T2eI1 p(0,2) -
(Zn)j-_l
< Cllalorsim@nlvllon, [ &z <
Jliektr=sn=H) I CA=1(By) BB (p) |7 — a| T2 TR P
< CH%’HC’CH*l(S”*l)|W”cﬁ—1(§1)rﬁ_k_s
again in view of Lemma A.9. O

Using the previous results, we can finally give the:

Proof of Theorem 2.2. We are interested in proving the C#~5~! regularity of I defined as in (11)
and remodulated as in (12). In order to do so, we are going to take the derivatives of I; and I,
in the & variable evaluated at the point p. For this reason, we can think of & € B,(p).

We fix a € N” such that

(25) q:=|al > p.

For simplicity, throughout the rest of the proof we drop the hat script and we recast z to
simply x. We also drop the p.v. specification in (some of) the integrals.
Let us consider first I,. By Lemma A.5, we have

o2, = 3 (7 )oul, 287 o)

<«
13



Moreover, we take advantage of the expansion of the kernel J in (15). In particular, we proceed
as follows

o) = 3 (T)oror )

<«
e} il ¥ qa—y s—1 bz (éa <Z - .’L‘>)
= Z Zaxag (2n)3 i P(z) dz
y<a v i=0 By (p) |'Z - ZE|
(e} - - R| [+1 €z —x)
+ 070 7/ 2p)S7 1 -0(2) dz.

Notice that, to use (15), we implicitly use |y| 4+ 1 derivatives on the kernel J. Then, we want to
compute |a| more, so we need |a| + |y| +1 < 25 + 1: since v < a, this gives |a| < S.
First of all, let us deal with the integral borne by the error term: using Lemma 2.8,

a— s— R\ H‘l(éaz_x)
a:;cyag ’Y/B(p)(zn)—&—l |;_$’n+23_1 -p(z) dz

0207 Ry 41 (&, 2 — )
[ T )

<

<

< C(p(0) + pl)"”ﬁ_o"_g/ (20)5 |2 = 27" dz < C(p(0) + [p|)rP o1
B:(p)
where, in the last estimate, we have applied Lemma A.9 and the fact that |p(2)| < |p(0)|+ C|p|
in B, (p) (recall to this end that d(p) = 2r by assumption). This takes care of the remainder
term.
If |y > i+ B —1—s, we write

8a_7bi (67 (Z - $>)
0 [t R (e ds -
By (p) |z — |

aa_,ybi (éa <Z - l’))
= [t T ) de 4 )
B1\B,(p) |z — 2
for
L 08Ti(&, (2 — )
Do) =3 [ ()i 5 ) e

B |z — x|

to which we can apply Lemma 2.10 to say
‘F(:{:)‘ < CHa?_Wbi (57 ) HC\'vl(gnfl) X
> (TL/BJ*\’YHFS + HpHCM—i-H(m)Tlis + HPHC,B—l(El)T’BiMJrFlfs) : re Br/2(p)~
Note that
9 bi (&, (2 — )
|Z - $|n+287i71

is still homogeneous in z — x and, in view of this and of Lemma 2.7,

(26)

% <a?%i - @)) ‘ < {C'z — g if [a] =y +i+1 <5,
‘ nt2s—inl N C’rﬁ_i_l_|a|+h‘|z — m|_"_28+i+1_h‘ if la| = |y|+i+1> 5.

|z — |
This yields, cf. (21),

14



‘F(x)‘ <C (TLBJ_"YH-Z'—S + Tﬁ—|’y|+i—1—s + TB—|’y|+7L—1—s) %
1 if o] — |y +i+1<B,
X
pimi-lalthl i jo| — y| + i+ 1> 6.
Now, when |y| <i+ 3 —1— s write

s—1 bl(é, <Z — ;1;)) . -
/T(p)(zn)+ ‘Z . w’”"‘QS_i—l p(z) dz =

. s—1 bz(§7 (Z—$>) . . s—1 bZ(fv <Z—33>) .
= /Bl(zn)+ ‘Z_x’nJrZsfifl p(z) dz /Bl\BT()(Z”)JF |Z_x|n+2sfifl p(z) dz.

The analysis of the first addend on the right-hand side is covered by Lemma 2.9, in view of the
relation |y| < i+ —1—s. So we only deal with the integrals in the “annular” region B; \ B, (p).
For g — |a| + |y] =1 < i < |y| we have (cf. (26))

_ _1 bi(& (z—x))
ay0¢ " / (z0) o p(2) dz
3 B\ B, (p) + ‘Z . x|n+25 i—1

< phi-1-lalth] (20)57 |z — 2| 2N p(2)] dz
B1\Br(p)

<

using now that |p(2)| < [p(0)| 4+ C|z| for z € B;, and applying Lemma A.9, we deduce

I
a— s bz §,<2—$> o1l
> A%, gt PO ) ) e < o) + i) r2 1l
i=8]—|al+v]| g Bi\By p) | — m|

So we are left with

LB]=lal+lvI-1
o _ _ bl(§,<Z—ZL‘>)
oY In(z,x) = 9707 7/ 2n)5 < - p(z) dz + O4(r,
e =X (2) 2 e [ o R o ey

v<o 1=0

where |04(r,p)| < C(|p(0)| + Ip|) rP~=7179, g = |a].
We now claim that

e
L8] =lal+|vI-1
o — — bl(ga <Z*fL’>)
0*I — o ot~ W)5t . dz| <
e - (5) X wma, [ e et et e <

v<a
< C(lp(0)] + [p|) P17,
To this end, we are going to prove that, for z € By \ B, (p),

o Plrlelhi=t s rB-lal
(28) 8§{pj(¢(z) - ng(x)) - Z <’y> Z 87\ 8a V‘ (5 ’<n+25—z>21 <O

v<a i=0 |Z - P\

and we postpone the proof to further below.
If (28) holds then, recalling the definition of I; in (12) and using (28), we entail

L8] —lal+|v|-1
o o o— i bi (&, (z — )
E*h)E) - §<: <’Y> Z% 2% B1\By( ) W 1Iz —g[rrET ) d =
TS« 1=

82| 7(6() — 6(x))

< / (o)
B1\B:(p)

15



LB]=lal+]v-1
a a— bl(£7 <Z —CL‘))
X0 X o g | ol

v<a v 1=0

< kel (225 = =PI T2 (p(0)] + |2]) d= < C(1p(0)] + [pl) 7~ 7571
Bi\B:(p)

where we have used Lemma A.9 in the last passage, proving (27).
Remark that
(29)

37‘ 9o~ bi (57 (z — x>) _ bilp,{z—p))

1,0 s iy d i p|n+28*i*1*|7|’ z € By, for some b; suitably chosen,

Plz =zl
ZE{Oa’LBJ_|O[‘+|7|_]‘}7 WSO‘

and therefore

L8] =l +]v]-1 8]-1
o aeyy bi(& (z— 1)) Bj(p, (z—p))
(30> < ) 8;{ 9, ’Y| n+2s—i— = ’ n+2s—j—1+|al
Z W) Wb e o le—pmrrT

la|<q

Proof of (28). Let us first remark that an inequality of the type of (28) holds for z € B,(p)
as a result of (15) and Lemma 2.8; namely,

(31)
L8] =lal+1v=1 “lal—
fed « o bz(f, (Z — $>) rB—lal—1
8$ ‘pJ(¢(Z) o ¢($)) B ’; (7) ; afz|pa§ ! P |Z _ $‘n+237i71 < C|Z o p‘n+25—1 :

This is because ¢ is smooth in B,(p), although the estimates on its a-derivatives are getting
worse upon approaching the boundary.
We use Lemma A.6 to write

1pd (#(2) — 8(x)) =
qg—1
=Y Y )T gk, DI (6(2) — 6() [PV (), ., DR ()]

=0 k1t kg =]

If j > 8] > B —1 then

<

> (—D)TIDTIT((2) — é(p)) [D’%(p),---,D’“q*w(p)}
ok 50

< C|DTII(6() - 60) [D7H6(0), DS -, D) |
¢(z>—¢(p>) rfo

’Z _p’ p|n+23—1+q—j

IN

C DH‘J(

|z -

by the homogeneity of J and (9). In particular, whenever |z — p| > r

q—1
S D kb, DTII(0:) — 6() [DM6(), .. DRo(p)]| | <
j=18] k1t...4kq_j=j
rB—4a
n+2s

16



Let usset 2z =p+1t0, 6 € S 1 t = |z —p| > 0. In view of the last computations and of (30),
we can rewrite (28) as

8)-1 ‘ 1A1-1 4 rB-a
Z tfn723+1fq+j(pq7j(t’ 9,])) _ Z tfn725+3+1Bj(p’9> < CW’ t>r,
§=0 Jj=0
q J —j
©q,5(t,0.p) := () Z (k; k ’>(_1)q &
A b

" Dq_jJ(¢(P+ t9t) - ¢(p)) [Dklgb(p)’ .. Dk g(p)

which we write again as

1B8]—1 1B8]—1
(32) > P, ;(t,0,p) Z t'Bj(p,0)| < CrP7a97t t >
=0
Notice that ®,;(-,0,p) € C#~1(]0,1]) thanks to Lemma A.8 and the regularity of J. Moreover,

1@q,i (-, 0, 2)lcs-1(j0,1)) < C el csmyy-
Also, (31) translates to

Bl-t 1B-1
>t (t0,p) = Y /Bi(p,0)| < Crfil <ot <y
: =

Therefore, these two last observations plus Lemma A.7 allow us to conclude that (32) holds and
in turn (28) holds as well. This also completes the proof of (27). O
3. NONLOCAL EQUATIONS FOR FUNCTIONS WITH POLYNOMIAL GROWTH AT INFINITY

We introduce now some tools that will be needed in the following section, where we develop
a new higher order version of the blow-up and compactness argument from [31].
First, we need the following.

Definition 3.1. Let k£ € N, Q C R™ a bounded domain, u € L] _(R™), and f € L>°(£2). Assume

that u satisfies
w)
RN 1 + |y‘n+23+k

(33) iy o

We say that

if there exist a family of polynomials (pr) p~o € Pr—1 and a family of functions (fr : 2 — R)p.
such that

L(uxpg) = fr + PR in Q, for any R > diam(Q)
d li — () = 0.
and - lim 1fr = fllLe@ =0

In the case of an unbounded €2, we say that (33) holds if it does in any bounded subdomain.
The equations are to be understood in the distributional sense.

Remark 3.2. This definition is very similar to [13, Definition 1.1] but with one important differ-
ence: in [13] the authors require the convergence fr — f to be merely pointwise a.e., whereas
we strengthen this by asking it to be uniform. This simplifies some proofs and it allows us to
prove Proposition 3.8, which is an essential tool in our blow-up arguments in Section 4.
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3.1. An associated extension problem. The above definition enjoys, in the particular case
when L is the fractional Laplacian, an extension property of Caffarelli-Silvestre type.

Lemma 3.3. Let Q C R" be any domain, and ¢ € C(R™) N C?(Y) be such that
(34) lp(z)| < Co(1+ |x|)k+8+a, for some k € N, a < s and for any x € R",

Then, there exists an extension 5: R™ x [0,00) — R, with polynomial growth in R™ x [0, c0),
such that
div(yl_QSng) =0 in R"™ x (0, 400),
$=0 on R" x {0},
—Qp,s y1_258ng Ld (—A)*¢  on Q x {0}.
Proof. Cut off ¢ on a ball of radius R > 0 and define
®R = PXBg in R™.

Recall that (see [7])

~ 2s
¢R(x7y) = (P(7y) * QSR)(:U)’ with P(l‘,y) = Cn,s Y ) S an Yy > O)

solves
{div(yl_%vgg) =0 inR" x (0,+00)
ér=¢r onR"x {0}.
Remark that, for any j € N,

(35) DI (s> dn(e,v)| =

Cn,s DJ/ ¢(Z) n/2+s dz
Bpg (|:L‘ — 22+ y2)

[9(2)]
< C/ — dz
Br (|lz — 22 + yz)n/2+S+J/2
and, if j = k (where k is the one in (34)), then

DAy . 62) -
D4 (v dn) | < / (I = 22+ 52) T2 (2 - 22 4 42)

)k+s+a

n+s—a)/2

(1+]]
R (| — 22 + 12)

CCo (14 |z +y¢|) o
— y28+k "

dz
r—z]2+y?

< CCy

(k+s+a)/2 (| )(n+s—a)/2

dC —2s—k k+s+a a—s
(14 [¢2) Bt (1 4 g p)lrteme)/? < CCo (y (1 + [z]) +y )

where the constant C is independent of R. Let us also denote by Qg the Taylor polynomial of
degree k — 1 of y=2¢pr(z,y) centred at (z,y) = (0,1). The difference y=2¢r(z,y) — Qr(z,v)
of course satisfies the same estimate as above and moreover

(36) Dj‘(m)(yﬂsa}%(x, y) — Qr(z,y)) =0 whenever 0 < j <k —1
ly 2 ¢r(z,y) — Qrlz,y)| < CCo(y~ 2 (1 + [a])?Fots 4 |y|kta=s) 2 e R, y >0,

where again the value of C' is independent of R.
We now claim to have

(37) {div [yl_QSV(JSR(:L‘,y) — y*Qr(z, y))] =0 in R™ x (0, 00),

Or(2,y) — y*Qr(z,y) = ¢r(z) on R" x {0}.
18



In order to justify (37) we only need to verify
div [?Jl_QSV(QZSQR(«'Ua y))] =0 in R" x (0,00), for any R > 0.

Let us first notice that this equality at the point (0,1) because Qr is a Taylor polynomial
based at that point (¢f. (36)). In a small neighbourhood of (0,1) the same must be true,
because the remainder term in the Taylor expansion is always lower order with respect to Qg,
so no cancellation is in order. Then, the equality extends to the full R™ x (0,00) by unique
continuation of harmonic polynomials.

We send R 1 oo and, using the uniform bounds above and the elliptic estimates entailed by
the equation, deduce the existence of some ¢ : R" x [0, 00) satisfying

div(yl_QSV&E(:c,y)) =0 in R" x (0, 00)
d(x,y) = ¢(x) on R" x {0}
|6(2,y)| < CCo((1+ [a|)2+ets 4 |y[Frats) in R x (0, 00).
Moreover,
(—A)or = —ans(y' "> 0yr) |y:0
= —an,s (¥ >0, (ér — ¥**QR)) \yzo — ans(y' >0, (y**Qr)) \yzo

where y' =240, (y**Qr) is a polynomial of degree at most k — 1 and

(ylfQSBy(qu o) |y:0 N (ylf%ay%) {y:[) in L2 (), as R 1 oo.
O

Remark 3.4. Clearly, gg might be suitably modified by adding harmonic polynomials with trivial
trace on R™ x {0}, so that the notion of harmonic extension is not unambiguously determined.

3.2. Limiting problems. In the following result we will denote by £ = £(\, A, s, k) the set of
all operators L of the form (2)-(3) such that K € C*(S"~1).

Lemma 3.5. Let (unm),,cy € C(R™) be such that
Lmum:fm+Pm7 mn Blu meLOO(Bl)’ PmEPk—la Lm€£7

[ lml o
[ |

nl+ |y‘n+2s+k
Suppose that there exist w € C(R™), f € L*(By), and L € £ such that, as m 1 oo,
Uy — w in LE(R™),  frn — f in L®(By), K, — K in C*(S"1),

loc

|um (y) — u(y)|

Then
LuZ f in B
in the sense of Definition 3.1.
Proof. This result is the counterpart of [13, Theorem 1.6].

By definition, we have Lu Ld f in By if there exists a family of polynomials (pr)p.o € Pr—1
and a family of functions (gr) . € L*°(B1) such that

L(uxBg) = 9r + PR in By, for any R > 1
and  lim lgr — fllL=(o)
For R > 2, by the convergence u,, — u in L>(Bg) and K,, — K in C¥(S"™1) as m 1 oo, we
have

Ly (umXBgr) = L(uxsg) in B, asmtoo
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in the distributional sense. Therefore,

L(UXBR,) = 7}:& (fm + Pm - Lm(umXR"\BR)) = f + lim (Pm - Lm(umXR"\BR))

mtoo
and let us notice that, since P, € Py_1 for any m € N, then for any v € N, |v| =k, for z € B

we have

o (Pm - Lm(umXRn\BR))(m) =-07 /]R”\B U (y) K (7 —y) dy =

S / U (y) OV Koz — ) dy — — u(y) YK (x — y) dy,
R™\Br R™"\Br

uniformly as m 1 oo. Integrating the above relation k times, we deduce that there exists
pr € Pr_1 such that, for x € By,

I (P~ L e ,)) (2) = pr(e) — O(2)
with
70(z) = / u(y) YK (z —y)dy for x € By, and 0%°©(0) =0 for any a <~
R™\Br

For this reason, for x € By,

lim | lim (P, — Lm(umXRn\BR))(:L‘) —pR(:n)‘ <

Rtoo | mToo
< C lim (|a:|k sup / ‘u(y)DkK(J: - y)‘ dy)
Rfoo 2€B1 JR"\Bg
. |u(y)|
< C||K||ak(gn—1y lim sup/
H HC S )RToo 2eBy Jr\ B |:L‘ _ y|n+2$+k
: |u(y)
< C||K||grign—1y lim —————dy =0
( )RTOO R™\Br (’y| _ 1)n+28+k
by dominated convergence. O

3.3. Regularity estimates. We next establish some regularity estimates for functions with
polynomial growth. They will essentially follow from the following.

Lemma 3.6. Let L be an operator as in (2)-(3). Assume that U C By C R™ is a CP domain,
B> 1. Consider f € L*°(U), and assume to have a solution of

LuZ ¢ inU
5 lpFtora Jfaj\il‘ﬁa € L®°(R") a<s.
Then
U = UXB,
satisfies
(38) Li=f in U
with

~ u
1y < € (Wlimeor + |1 s

for some C > 0 depending only on n,s, U, X\, and A.
20
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Proof. By definition we have that there exist (fr)pyq C L>°(U) and (pr)p~; € Pr—1 such that
(39) L(uxp,) = frR+pr in U for any R > 1,
(40) Rl%gonR fllpee@y =0
Let us define u := uxp,. Then
Lu = —L(uxpy\B,) + frR + PR in U.

Let us remark that, for every multi-index ~, || = k,

O [L(uxpy\p,)] () = —6’7/3 . u(z) K(z —x) dz = —/B s u(2) K (z —x)dz, zeU,

and therefore

(11) [ DH[Luxpg )] ()] < €

, z e U
Loo(Rn)

u(z)] H u

n+2s+k — 1+ ’w‘k—&-s—&-a

Rn\B, |2 — 2

From this and (39) we deduce, for z € U and |h| < 2dist(z, 0U) /k, *

|atan@)|, ., < [|Ahizexeae@)], ., + 18k a0 +18Eprl )

(42) u . L
< H B2 e S ( )
Lo (Rn) J

1 + ‘x|k+s+a =

at least for R > 0 large enough (in such a way that || fr||ec @) < 2| f||Lee(r)). Mind that, here,

we have also used that A]prR = 0 as pgr has degree at most k — 1 by assumption.
From (42) we deduce that there exist g € L*°(U), and a polynomial p € P;_; such that

Li=g+p inU
{azo in R™\ By.
We split u = u1 + us by setting
L?jlzg inU L’ljgzﬁ in U
. and ~ . n
{ up=u inR"\U { uz =0 inR"\U.

Remark that we have

il < € <||f||Loo<U> o FeareEs LM(RH))
by construction. This entails also
ey < € <||f||Loo<U> ¥ Hw% )
Loo(R™)

by standard elliptic estimates. Therefore

@2l ooy < Nl Loo oy + l[Unll ooy < C <||f||L°°(U) + HH!;\L’“*W‘ Lm(ﬂ{ﬂ)) :
Thanks to Lemma 3.7 below, this implies that
~ u
1PNl ooy < C <”f”L°°(U) + Hmwé - 7>
and the result follows. (]

“4Recall the finite difference operator as defined in (20).
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Lemma 3.7. Let D C R™ be a bounded C? domain, 8 > 1, and Q € Py, £ € N. Let u be the
only bounded solution of

u=0 inR"\D.
Then there exists C = C(n,t, D, X\, A) > 0 such that

{Lu:Q mn D

[ullzoe(py = ClIQI L (D)-

Proof. Suppose that there are sequences (Lp)yeny € £ (k)peny € L2(D), (Qk)peny € P,
satisfying
Lyvp,=Qr in D

=0 inR"\D

leI;lo llvkll (D)

|Qkllze(py =1  and

We can now extract subsequences (Ly,, ) ens (Vkm)mens (@kim)men i such a way that, as
m T oo,
Ly, — L weakly
Vg, — U in L*(D)
Qk,, = Q in L*(D)
In particular, for the convergence of Ly, we can use [32, Lemma 3.1], whereas for that of vy, we

need [33, Theorem 1.2] plus the Ascoli-Arzela Theorem; the convergence of Q) simply follows
from its boundedness in a finite-dimensional space. We now apply [32, Lemma 3.1] and we have

. 4 Lv=@Q inQ
Qlmipy =1 and {70 g
but at the same time ||v||z~(p) = 0, a contradiction. O

As a consequence of Lemma 3.6, we deduce the following.

Proposition 3.8 (Boundary regularity). Let L be an operator as in (2)-(3). Assume that § is
a domain of class C17, v > 0. Consider f € L°(Q) and assume to have a solution of

Luéf in QN By
u=20 in Bp\ Q
|u(z)| 00 (1
WGL (R) o < S.

Then there exists C > 0 depending only on N, s,a, k, and ), such that

L°°(]R")> '

Furthermore, the same result holds if || f|| Lo (np,) is replaced by ||d*=° f|| o (npy), with € > 0.

u
HuHcs(El/z) <C <”f”L°°(QﬂB1) + HH‘VC’HS’LO‘

Proof. Remark that u = u := uxp, in By, so that it is sufficient to estimate u. Applying the
C* regularity estimates to problem (38), see [33, Theorem 1.2], we deduce

[allcs (B, ) < C(Ifllzoe@nmy) + 1wl oo (my))-

Now, by Lemma 3.6, we know that

iy u
1oy + Nl < C (Ml + | 15 s

)

Lo (R™)

and thus the result follows.
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The case in which |f| < Cd®™° is analogous, using [33, Proposition 3.1] instead of [33,
Theorem 1.2]. O

Finally, we also interior estimates.

Proposition 3.9 (Interior regularity). Let L be an operator as in (2)-(3). Let f € C"%(By),
n>s,n+s¢N, and k € N. Let u € L*(R") be a solution of

Then, for some C = C(n,s,n) >0

u
lellonss(, ) SC(HH,xms Loy T Heran):

Proof. Remark that u = u := uxp, in By, so that it is sufficient to estimate u. As we have
done in (41), we can show that

~ u
(L] sy < [Llwxens,)lone@,) + [lens@,) < CH1+ ||+ [ Loo (rr) +ons@

It suffices now to apply the interior Schauder estimates to w, see [32, Theorem 1.1]. O

3.4. The Liouville theorem in a half-space. In our higher order blow-up and compactness
argument we also need the following classification result.

Theorem 3.10. Let e € S* ! be fized. Let u satisfy
Luxo in {x-e>0}
u=20 in {x-e <0}
lu(z)] < Co(1+ ]x\)kﬂ%a inR", a<s.
Then, u is of the form
(43) u(z) = p(z)(z - e)}
for some polynomial p € Py.
First, we need the following one-dimensional version of the result.
Proposition 3.11. Let u: R — R satisfy
(—AYuZo in {x > 0}
u=0 in {x <0}
lu(z)| < Co(1+ |:c\)k+s+a inR, a<s.
Then there exists a polynomial p : R — R of degree at most k such that
u(z) = p(x)a.
Proof. Let U : Rx[0,00) — R be a harmonic extension of  in the sense of Lemma 3.3 satisfying
div(yl_QSVU(fL‘,y)) =0 in R x (0,00)
U(z,y) = u(x) on R x {0}
U(z,y)| < CCo(1+ || 2R Fats 4 |y\k+0‘+s) in R x (0, 00).

We now exploit [31, Lemma 6.1 and (the proof of) Lemma 6.2] to write U as
U(z,y) =U(rcosf,rsinf) = Za]@j(ﬁ) it a; €R, z €R, y € [0,00),
§=0
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where (6;)

Uz, y)?y' ™ do = a? R,
/<933r1{y>0} jz_;) !

The known polynomial bound on U yields

/ Uz, y)?y' =2 do < O RY+2a+2
O0BrN{y>0}
from which we deduce that a; = 0 for any j > 2k + 1. This entails
2k
Ulz,y) = Za]@j(G) EARS x € R,y €10,00)
§=0
and, in particular,

2k 2k
Za]@j (0) 27T = 28 Zaj@j(O)xj for z > 0,
=0 =0

u(z) =

2k
Za]@j(ﬂ) 27T =0 for x < 0.
=0

is a complete orthogonal system in L?((0, ), (sin#)'~**df) and therefore

Similarly as above, the polynomial bound on w gives that a; = 0 also for j € {k +1,...,2k},

and this induces the claimed representation on u, concluding the proof.
We can now give the proof of the Lioville-type theorem.
Proof of Theorem 3.10. Define
vp(r) = R™F*"%y(Rx), zreR" R>1.

Then

vR()

)k+s+a

< Oy
(1+ x|

Lo (R™)

and

Log £ 0 in {z-e>0}
vp=0 in{z e <0}

O

Applying Proposition 3.8 to vg yields that ||URHCs(Bl/2) < ¢p, with ¢g > 0 independent of R,

which in turn implies that [u]cs(py ,) = Rk+e [vRlcs (B, y) < coRF*®. From now on we suppose

e =ep.
Pick now any 7 € S*~! such that 7,, = 0 and h € (0, R/2). Consider
u(x + h1) — u(z
wy(z) = ( hs) ( ), x e R".

The above analysis gives
w1l Loe(By) < coRF, for any R > 1
and, since 7 is orthogonal to e,

Lw, £0 in {zy, > 0},
wy =0 in {z, <0}.

Repeating the same argument as in the first part of the proof, we deduce that [w1]cs(pp)

Cle+a_8.
24
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Iterating the above scheme a finite number of times, we will eventually end up with some w;
satisfying
Lw; 20 in {zy, > 0},
w; =0 in {z, <0}.
and [wj]cs(By) < cjRF+te=7% with k + o < js. Letting R — oo, this entails that w; = 0 in R”,
regardless the choice of 7, as long as 7, = 0. This means that
wj—1(z) = V[Nfl(xn)
for some Wl : R — R. In turn, this gives that
wj—o(x + hr) — wj_a(x) = Wi(z,) h*,  x€R"™, h>0, 7, =0,
which implies®
wj—2(z) = Wg(wn) x4 Wg(mn)
for some Wg ‘R =R, Wg : R — R. Iterating the process, what we deduce on w is that
u(x) = > () W (2).
aeNn—1 |a|<j-1

Now, notice that for every o € N*~! with |a| < j — 1 we have
1
a 8§/U(I) = Wa(ﬁn),

and a similar identity can be written in terms of incremental quotients of w. Then, since Lu LA
in {z,, > 0}, it is not difficult to see that LW, £0in {z, > 0}. Since W, is a one-dimensional
function, [31, Lemma 2.1] yields that (—A)*W, 20in (0,00).

Finally, by Proposition 3.11 each of the W, must be of the form W, (z,) = pa(2n)(z,)5 for
some polynomial p, : R — R, and therefore v must be of the form u(z) = p(x)(x,)3 , for some
polynomial p. By the growth condition on u, p must be of degree at most k, and the theorem
is proved. O

4. HIGHER ORDER BOUNDARY SCHAUDER AND BOUNDARY HARNACK ESTIMATES

The goal of this section is to prove Theorems 1.4 and 1.3. For this, we develop a higher order
blow-up and compactness argument that allows us for the first time to show sharp boundary
regularity results for nonlocal equations in C*# domains.

The key step towards the proof of Theorems 1.4 is the following.

Proposition 4.1. Let 8 > s be such that § € N and §+ s € N. Let Q C R" be a bounded
domain of class CPTl, z € 99, and v € L>®(R™) any solution of

Lu=f in QN Bi(z)
u=0 in Bi(z)\Q
with [f]cg,s@) <1 and ||lu| oo (rny < 1. Suppose that 92N By(z) is the graph of a function with

CPH norm less than 1.
Then, for any z € 9N By, there exists a Q(-, 2) € P|g) such that

lu(z) — Q(a,2)d*(z)| < Clz — 275, for any x € By(2),

where C' > 0 depends only on n, s, 3, and HKHOQ[‘LHS(Snfl).
Moreover, if xg € QN Bi(z), d(zg) = 2r = |z — xg| > 0, then

(44) [u—Q(, 2)d"] Cots(B(m)) S C-

%In general, if f € C(R) satisfies f(z +h) — f(z) = ¢, for every z € R and h > 0, then f is an affine function.
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Remark 4.2. The case € (0,s) in Theorem 1.4 is covered by [33, Theorem 1.2].

Proof of Proposition 4.1. We assume without loss of generality that 0 € 92 and z = 0.
We argue by contradiction: suppose that, for any j € N, there exists €; C R",u; €
L®(R"), f; € C#=(Q;),r; >0, and L; € £ such that

Lju; = fj in Qj N B,
{ u; = 0 in B1 \Qj,
with 13l + 5l ey + 16l onsaonsy < Co and 0 € 09 € OF1: moreover,

sup sup T_B_SHU,]' = Qd}| o (B,) = 0, for any @ € P g|.
JEN >0

Let us consider Q;, € P|g) as the polynomial obtained upon taking the L?(B,)-projection of
uj over dP|g): in particular,

luj = Qjrdillz2(m,) < lluj — Qdjllr2(B,) for any @ € P ),
/B (uj — Qj,rdj) Qd; =0 for any Q) € Pg).
Define the monotone quantity

0(r) == supsup p_ P ~*|u; — Qi Nl (B,)-
JEN p>r

We have that 6(r) 1 oo as r | 0 —the proof of which we defer to Lemma 4.3— and therefore
there are sequences (7 )men and (Jm)men such that

(45> Hu]m - QjmvrmdijLOO(Brm) > 1
rf{’_s 0(rm) -2
Define now

Ujp (T ) = Qi rm (me)d}?m (rm®)
m " 0(rm)
and notice that |[vy, | fe(p,) > 1/2 and

reR” meN.

U () =

(46) / V() Q(rme) d (rmzx) dz =0, meN, Q € Pz
B1
Write now
Qirl@)= > aifa",  aeN, ) cRr
o< 8]

Using a rescaled version of Lemma A.10 and that dj > cr® in B, N {d; > r/2}, we estimate for
any « such that |a| < |f]

el =) <

< cp]|Qjrd; QJ,WZSHLOO (B,N{d;>r/2}) < cgllu; — ij’“d;HLOO(BT) +cgllu; — ij%d;HLoo(Bgr)
< cgb(r)r 5“ +cs 0(2r)(2r)P*s < 2¢cg 0(r)(2r)P+s
so that it holds
‘q](-f;i) - qj(oé)r‘ < cz0(r) pPled for any |o| < [B], r >0, j €N.
Iterating the inequality above we get, for any k € N,

S
—_

‘qu B 321@ Z‘ ip ]21+1r‘ <c IIB 9(2i7')(2i7-)5*|a\ <
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= 6(2%r)
< ¢ B=lal N 722 T gi(B—lal) « ok \B—lal
cgl(r)r i:EO o) < cgf(r) (2°r)

It follows from this that, for any R > 1,

142 — ¢\, < eab(r) (Rr)P1e

and thus
HQ] Rrd Qj TdSHLoo < 650( )(RT)BJFS'
Hence,
ol = e [~ Qi
[[vm] L>=(Br) — T?ﬂ—&—s 0(r.) Hqu T ImsTm ijLOO(BRTm)
1
< ) (H“J = Qi Brn || oo gy )+ (@i R, = Qi HLOO(BRTm)>
1

= W()(O(er)(RTm)ﬁJrS + Cﬂe(rm)(RTm)BJrs) <@+ C,B)RB+S

where we recall that, by definition, 6 is monotone decreasing.
Moreover, for each r > 0 we have

e () k iy
|qu ]21@ 9 2k 2k’ i )B |O¢|
— 0
and choosing k € N such that 2¢r € [1,2), we deduce
142 — 4% | ATCSONS
i 5,2°r < 9t B—lal
e _szg o0 (27 —0 as r | 0.
In particular,
|q](.f;i)| —0 asT ] 0
0(r) '
Let us now consider the identity
Tory <
s—f
Tm S _
= m [fjm (rmx) — ij(Qjm,rmdjm)(rmx)] for z € Tjn}Qjm ={y 7,y € Q,.}.

As 7, | 0, up to extracting a further subsequence, r,,'2; is converging to a half-space Il =
{x e R": z-e > 0, for some e € S""1}. Moreover, as we have both f; ., Lj, (Qj.rnd5 ) €

Tm = Jm
cP- $(€2j,.) —by Theorem 2.2, there exists a polynomial P, € P s

r’f‘n—ﬁ‘fjm (rmx) - L]m (Q]my""mdjm)(rmx) - Pm('r'ml')‘ S 00|x|6_5([f]m]0375 + ||Q]mmiHBl)7

and therefore |L;, vy — Pp| 1 0 as m 1 oo in LS (IT).

By Proposition 3.8 and the Ascoli-Arzela Theorem we deduce that® v,, is converging in
L (R") to some v € C(R") (recall that v, = 0 in R™ \ ;. for every m € N). Also, as
| K5, [ ¢25+3(gn-1y is uniformly bounded by assumption, then (up to passing to a subsequence)

6Up to extracting a subsequence; with an abuse of notation we keep vy, .
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Kj,, is converging to K, in C Lﬂ_‘(”JJrl(S”_l), since 8 > 1. In conclusion, as an application of
Lemma 3.5 we have that

Lo inIl, k>|[8—s|+1,
v=0 in R™\ I,
vl oo (Br) < (1 +cg) RO,

and moreover it follows from (45) that

N | =

(47) ol L (1) >

We are now in the assumptions of Proposition 3.10 (note in particular that §+s < | — s] +
1+ 2s <k + 2s) and therefore

v(z) =plx-e)(z-e)i, r €R", pePy.

Actually, the control on ||v||pe(p,) yields p € P g and

d
pt) =Y mt',  teR, deg(p) < |[B).
=0

Let ip € {0,...,deg(p)} be the minimum value for which 7; # 0. Notice at this point that, by
(46), we have in particular that

[ om0 Qo) 8, (1) de =0, m N, Q€ Py
By

Choose in particular

Passing to the limit as m 1 oo (ry, | 0), we get

0= lim rms/ V() Qi (rm) d5 (rm) dr = lim rms/ o () p(z - €) dj (rmx) dv =
Bl Bl

mToo mToo
= / p(z-e)?(z-e)% du.
By

This yields that p = 0 and in turn v = 0, too. This is in contradiction with (47), and hence the
first part of the Proposition is proved.
We finally show (44). Let

vp(x) = r P Su(wg + rx) — rPQ (o + s, 2)dE (20 + ) xz € R™
The first part of the proof is telling us that
o llz=ay < C.
By Proposition 3.9 we have that

S — ’UT
4= Q) cova(B, p(woy) = (] e, ) S C <H1+x\5+s

Loo(®™) + |:L/U’l":| C,Bs(Bl)>
C (HUHLOO(R") + [LU] CB—=3(Br(z0)) + [L(Q(, Z)ds)] CB*S(ET(IEO))>
<C (HUHLOO(R") + [f] CB-s(Q) + [L<Q("z)ds)]0ﬁ_s(§1/2)>

which is finite by Corollary 2.3 —recall that 9Q € CP+1, O
28

IN



Lemma 4.3. Let 8 > 0, 3 € N, Q C R" such that 0 € 9Q, and u € C(B1). If, for any
€ (0,1), Qr € P satisfies
|u—Qrd®||r2(B,) < llu—Qd°|r2(B,y,  for any Q € P,
and

lu — Qrd®|| poo(p,) < cor™**

then there exists Qo € P ) such that
lu — Qod® || Lo (,) < CeorPts, r€(0,1),
where C' > 0 only depends on n, s, and [.
Proof. 1t holds
1Qrd® = Qard® || Loe(B,) < Ilu— Qrd®|[Loe(B,) + lu — Q2rd®|| oo (By,) < (142°7%)cor?**.
In particular,
Qr(2)d* (x) = Qor(2)d* ()| < (1 +27F)eor™*, 2 € 0B,
which yields, by a rescaled version of Lemma A.10,
(48) 0 — o) < Ceor™l, a €N, Jo < |8).
Also, by a similar reasoning,
Q1A% oo (By) < co + [[ullLo(m))
implies
(49) 0] < Cleo + lull=(sr). @ €N, |a] < |B].

Since 8 € N, then 8 — |a| > f — |f] > 0, and this, together with (48) and (49), yields the
existence of limits

%" = lﬁﬂ}q?(«”), ae N, |of < [f].

Moreover, using a telescopic series and (48),

a8 = | <3 [, — a0 ] < Cao Y@l < CoprP el a e N, Jal < (4],
§=0 §=0
HQOds . QrdSHLW(BT) <C Z ‘q(()a) . qga)‘HaHs < Ccp 7.5+s'
| < 8]
and therefore

lu — Qod®|| oo (B,) < U — Qrd®|| oo, + |Qrd® — Qod®|| oo (p,) < Ceor”T™.

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. Let v € N, |y| = |3]. Let us compute
o7 (d*u) = (0%u) (07 “d ")
a<ly
Let 7 > 0 be fixed and zg € Q,z € 992 be such that d(zg) = 2r = |zg — z|. Consider
71,72 € By(z0) C Q. Then, for Q = Q(-, 2) € P3| as constructed in Proposition 4.1,
O (d™*u) (z1) — 0V (d™"u) (w2) = Z [0%u(z1) 07 *d ™% (w1) — 0%u(x2) 7 d™*(x2)]
aly

= > [0%u(wr) — 0%u(w2)] O (1) + Y 0%ulws) [07d 5 (w1) — OV Vd " (w2)]
a<y a<y
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= > [0%(u—Qd*)(z1) — 0 (u — Qd®) (x2)] 9" ~“d*(x1)

a:; [0%(Qd®) (x1) — 0 (Qd®) ()] O *d™>(a1)
+ azjaa (u— Qd®) (z2) [07~*d™*(z1) — 0"~ *d"*(x2)]
+ ga‘” (Q) (w2) [07~d ™% (w1) — 07~ d*(w2)]
= ; [:9‘1 (v — Qd%) (1) — 0% (u — Qd”) (w2)] 0" *d ™" (1)
jg 0% (u— Qd®) (w2) [070d5(x1) — 87 d ()]
+ (g [0°(Qd®) (1) OV~ d™*(21) — 0%(Qd®) (w2) O™ *d™*(22)]
= g [f;:“ (u—Qd°)(z1) — 0%(u — Qd®) (2)] D"~ *d™*(a1)
a:Z 0% (u — Qd®) (x2) [077%d ™" (21) — 0"~ *d™*(22)] + 0Q(21) — 0" Q(x2)
a<y

where we notice that, as |y| = |3] > deg @,
Q1) — 07Q(x2) = ¢ — ¢ = 0.
Now we have that, by (44), that

0% (u — Qd*) (z1) — 0° (u — Qd) (x2)| < [ — Q] o 41a1-15) (B, (ay)) |71 — 72/
< Opfrs—(lal+8-18D) |4 4, 1818,

also, by Lemma A.2,
\(’Wﬂd_s(xl)\ < CT.—S—MJrIaI’
so that
) > [0%(u— Q%) (1) — 0% (u— Qd®) (w2)] mwd_s(iﬁ)‘ < Clay — o)7L
a<y
In a similar way we can also estimate the term
D0 (u— Qd®)(x2) [0 (1) — 7 d(w2)]
a<y
and we conclude that
[y

CP(Br(wo)) = ©

with C' independent of r and x. O

The key step towards the proof of Theorem 1.3 is the following.

Proposition 4.4. Let 8 > 1 be such that 5 ¢ N and §+ s € N. Let Q C R" be a bounded
domain of class CP, z € 09, and ui,us € L¥(R™) solutions of

Lu;, = f; QN Bl(z)
u; =0 in Bi(z)\Q
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with f; € CP=3(Q), i = 1,2. Suppose that O N By(z) is the graph of a function with C® norm
less than 1. Assume that, for some ¢; > 0,

(50) ug(z) > c1d’(x), for any x € By(z).
Then, for any z € 90N By, there exists a Q(-, 2) € P|g) such that
(51) |u(z) — Q(z, 2)uz(z)| < Clz — 2P, for any x € By(z),

where C' > 0 depends only on n, s, 3, c1, and the C*PTL(S"1) norm of K.
Moreover, if g € QN Bi(z), d(zo) = 2r = |z — xo| > 0,

(52) [ul -Q(, Z)u2]0ﬁ+s(§r(xo)) <C.

Proof. The argument starts along the same lines of the proof of Proposition 4.1. Let us set,
without loss of generality, z = 0.
If we write

Q)= Y ¢2* =9+ Y ¢ =40+ QW(z), Q.QW Py, [Qi(x)] < Clal,
la]< 8] 1<|e< 18]
and, in view of’ Proposition 4.1,
(53) ug(x) = Qa(z) d*(x) + va(x), r € By, Q2 € Pig|, lva ()] < C\x|ﬁfl+s,
then (51) is equivalent to
[ua(2) = ¢Vua(2) = QW (2) Q2(2) d°(x) — QW (w) va(x)| < Cla — 27+
so that the claim of the theorem is equivalent to saying that there exists @ € P|3) such that
1 (2) — 30 ws(x) — QU (@)d*(2)| < Clal™**,  for any z € By.

We argue by contradiction: suppose that, for any i = 1,2 and j € N, there exists {2; C R", u; ; €
L>®(Qy), fi; € CP=5(Q;),7; >0, and L; € £ such that

{Ljui,j =fi; mQ |fijlleeri-s@ < Co,
ui; =0  inR"\ Qy,

and 0 € 99, € C?; moreover,

(54) ug j(x) > c1d’(z), x € Bi(z),

with ¢ > 0 independent of j, and

= 00, for any @ € P g).

supsupr#* Ul,]_q UQ,J Q(l

JEN r>0

Moo,

Let us consider Q;, € P|g)41 as the polynomlal obtained via minimization

Hul,j — g ua; - QSds LB = H“Lj Dug; — QWds 2(B,) for any Q € P g,
/B (ULJ‘ - q](»f?uz7j - Qgr)dj) ( ©) U2 5 + Q(l)dj) =0 for any Q € Ptm
Define the monotone quantity
0(r) := supsup p?%||u1 i — ¢ Qug ; — QWds .
) jeg pzr:p L~ Gty = @ L>(B,)

Note that 6(r) T oo as r | 0, as we prove in Lemma 4.5 below, therefore there are sequences
(Tm)meN and (jm)mEN such that

(55) Hulvjm - q§n3,7‘m 7]’"1 - Qgin,’/‘m ]mHLOC BT ) > 1
rots 0(rm) -2

"Proposition 4.1 justifies (53) when 8 > 1+ s; if 8 < 1+ s, then (53) is covered by [33, Theorem 1.2)].
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Define now

U1 i, (T T) — q](m) o W2,5m (rmx) — Q;B,rm (rmx)d;fm (Tm)

o 0(r )
and notice that |[vy, | fe(p,) > 1/2 and

vm(x) = ze€R", meN.

(56) /B U () (q(o)ugyjm (rmax) + Q(l)(rmx) d; (rmx)) dx =0, meN, QeP.
1

Using Lemma A.10, we estimate for any o € N” with |o| < [5]

|a|+s|q§i) qj,2r‘ —
< e[|S0 d5 = QN33 e (5,

|Loo y CBHULj - qJ(?Q)ruij - Q] 2rg HL""(Bzr) *

< C,B”“l,j — qj(',r)uz er i

+ CBHCJJ(?QUZJ‘ - qj(~,2ru2,j HLOO(BT)

< cgO(r)rP e 4 cp0(2r)(2r)P TS 4 Cﬁqu(?r)'LLQJ‘ - q](-f)z)ruz,j

< cgf(r)rPTe 4 ¢ qj(»?)

L>(By)

0
r _qj(',2)7‘ Hu27j||L°°(Br)

which means
0
(57) rlol gl — gl | < 2¢50(r) 1 +csldlY) — %], 1< ol < [B).
Also, by the definition of 8, we have
O, ) B+
HULJ q;,u2,; — Q; . d; L (5,) < O(r)r’Te
from which we deduce by the triangle inequality that

-
i -2 - a0t
J

< 0(r)r’.
L (Brn{d>r/2})

Recalling assumption (54) and using Lemma A.11 we deduce

‘qj,r - q](OQ)T‘ < H(T)Tﬁ

which yields, thanks to (57),
145 — ¢i5| < cb(ryr®lel al < 4],

From the last inequality, in a similar way to what we have done in Proposition 4.1, it is now
possible to prove that

[Vm | oo (B < g RPT,
while we remark that
0 1 S
Pl rm) = 03 Fojo (rm) — Ly, (QW) . d2 ) ()

L vnm(x) = JmaTm _19 s e N.
J ( ) Trﬁn_se(T’m) J
By the regularity of fi ;. and fs;,., and by Lemma A.12 applied to ij(Q§1) @5 ) —which

satisfies the assumption in view of® Corollary 2.3—, there exists P, € P |s_s) for which

P Frg (rn) = 4§ P () = L (@5, 1 5,) () = P (rm)]| <
< Corsy Pdj, (rma)? =71 (d,, (rma) + [rma]).
Denoting 2, := 7,18, this gives
|Lj,vm| < Colz|’~*  in Qyn, it B>1+s,

8Again7 Corollary 2.3 applies when 8 > 1 + s, otherwise we refer to [33, Proposition 2.3].
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while
’ijvm’ < Colz|d?7*71 in Q,, it B<1+s,

where we denoted d,,(x) = dist(x,Q,). In any case, we get }ijvm| < Cod;; % in Qpy, € >
0, with Cp independent of m, and therefore by Proposition 3.8 we get a uniform bound on
lvmllcs k), for any compact set K C R™.

We now proceed as in the proof of Proposition 4.1, and using an Ascoli-Arzela argument and
the Liouville result in Theorem 3.10, we conclude that the sequence (vy,),,cy is converging in
L (R™) to

loc
v(z) =plx-e)(x-e), pE Py, ecS" zeR™

We underline how this is made possible by the fine estimate in Corollary 2.3 which improves of

(1)

one order the decay at 0 when 7(0) = 0 (and we are applying the corollary with n = Q@ i 1L

our case). Call now
ly = lim U2 (')
mtoo (T - )
the limit exists by Proposition 4.1 and is different from zero by (50). Choose
(0)
QW (@) =V (a/rm). a® =T,

2

and deduce

0= lim r;f/ U () (q(O)UQJ‘m (rmz) + Q%)(rma}) dj (rma:)) dx
B

mToo
= / v(x) (q(o)ﬁg (x-e) + pV () (x - e)) do = / p(z-e)? (z-e) da,
B B

which means that p = 0 and then also v = 0. But this is in contradiction with [|v||fe(p,) > 1/2
—which follows from (55)—, and thus (51) is proved.
We now move on to the proof of (52). Let

vp(x) == Sug (zg + r2) — r P 5Q(x0 + T, 2)us (20 + TX) r e R™
The first part of the proof is telling us that
|vr]| oo (By) < C.
By Proposition 3.9 we have that

Ur
[u] CO+3(B, n(z0)) [or] Crte(Bym) = C <H1+x|ﬁ+s

Lo (R + [Lvr] 05_5(31))

<C (HUHLOO(]R{") + [Lul]cﬁ—s(ﬁr(%)) + [L(Q(, Z)u2)]cl3—s(*?«(x0)))

< C (HuHL‘X’(R") + [fl}oﬁfs(ﬁ) + [fQ] Cﬁfs(ﬁ) + [L(Q(l)('aZ)QQ('az)dsﬂcﬁ*S(El/g))
which is finite by Corollary 2.3 —to this end, recall that Q(-,2) = ¢© + QW(.,z) with
QW (z,2) = 0. O
Lemma 4.5. Let 3 > 0, 3 € N, Q C R" such that 0 € 9Q, and uy,us € C(By). If, for any

€ (0,1), Q, € P satisfies
Ju— q1(~0)u2 - le)dSHLZ(Br) < lu-— q(O)UZ - Q(l)dSHLQ(B,»)v for any Q € P,

and

1
—d® <wug < cod® in By, lu — ¢us — Q|| oo,y < cor? T,
co

then there exists Qo € P|g) such thal

lu — q(()o)ug — Q(()l)dSHLoo(Br) < CeorPts, r € (0,1),
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where C' > 0 only depends on n, s, and (3.
Proof. 1t holds

HQS})ds _ (1 ds <

lioes,) =

< o= a2 = QU oy + = a2 = Q| y + 1@ = ) Ynl|

< 1+ 270 4+ g0 — 68 | uall Los,)-

In particular

s s 0
‘Q ) Q2'r' ( ) ( )‘ < (1 + 25+ )607’5Jr + !q,(no) - qér)} HUQHLOO(BT), T € 8B7n,
which ylelds, by a rescaled version of Lemma A.10,
58) [ — g8 < CoprPll o) q@ — g7l aeN, 1< o] < (8],
Also,

<C’cor

1
(@9 = a) 22+ Q- Q)
Using Lemma A.11 and the assumptions on us we deduce

}q(o) 2)‘ < Ceq B

Loo(Byn{d>r/2})

which, along with (58), gives
14 — ¢ < CeprPlel, aeN", 1< al < |8).
Also, by a similar reasoning,
i w2 + Q| o ) < 0+ Nt o= s
implies
(59) [0 < Cleo + lullz=(sr). @ €N, |a] <[],
Since 8 € N, then § — |a| > 5 — |B] > 0, and this, together with (48) and (59), yields the

existence of limits

q(()a) - Ll\%lq( a) = Nn, |CY| < LBJ

Moreover, using a telescopic series and (48),

0§ — a1 <Y1, —dl | < Ceo Yo (@7l < Ol e N, ol < 8],

=0
la” w2 + Q6Vd* = ¢ Ous = QM| oy <C D7 gl — @@ rltte < Ceort
la]< 8]
and therefore
[Jur — q(()O)W - Q(()l)dSHLOO(BT.) S
< flua - 6\ uz — Qg“l)dSHL‘X’(Br) + Hq(()O)UQ + Qol)ds Q(l)dSHLOO(BT) < Ceor™

O
We have now all the ingredients to prove Theorem 1.3.

Proof of Theorem 1.3. Let r > 0 be fixed and zg € Q, z € 9Q be such that d(zg) = 2r = |xg—2z|.
Consider z1, 72 € By(z9) C Q2. Then, for Q@ = Q(-,2) € P |5 as constructed in Proposition 4.4,
We closely follow the proof of Theorem 1.4. Let us first notice that, as therein, it is possible to
write

a7 (u;lul)(m) -7 (u;lul)(xg) = Z [80‘ (u1 - Quz)(azl) —0° (u1 — QUQ)(:/UQ)] 87_au51(m1)

a<y
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+ Z 0% (w1 — Qua) (z2) [877au2_1(x1) - 877°‘u2_1(x2)].

a<y
We first estimate
‘mfauz—l(xl)‘ < Op—s~Bltlel
which follows after explicit differentiation and the regularity properties of us. By (52), we have
’3(1 (ul _ Qu2)(x1) _ o~ (Ul _ Qu2)(azg)| < CTB+S—(\O¢|+B—LBJ)‘331 _ x2|ﬂ—L5J
which the implies
‘ Z [8a(u1 — ng)(arl) —0° (u1 — ng)(xg)] 8“’*O‘u2_1(:c1)‘ < Clz; — x2|B*L5J.
a<ly

The estimate for

> 0% (ur — Qua) (22) [07ug (21) — 07wy ()]

asy

is analogous. So we conclude that

[w1/2] o, o)) < C
with C independent of r and xg. O

5. SMOOTHNESS OF FREE BOUNDARIES IN OBSTACLE PROBLEMS

Using the results from the previous sections, we can now show our main results on the higher
regularity of free boundaries for obstacle problems of type (1).

Proof of Theorem 1.2. Notice first that, by [5], we have v € C*(R"). Let xo € {v > ¢} be any
regular point. By [5, Theorem 1.1], there exists r > 0 such that 0{v > ¢} N B,(x¢) € C? for
any 8 < 1+s.
Let us define
w="v-—g,

which solves

(60) {Lw =f in{w >0}

w>0 inR",

where f = —Lyp € C?~%(R"). Note that w € C*(R") so that, for any i € {1,...,n}, we can
differentiate (60) to get

(61) {L(@'w) = f; in {w >0} N B (20)

Jiw =0 in B.(zg) \ {w > 0}

with f; := 0;f € C?~175(R™). Suppose now, without loss of generality, that e,, is normal to
0{v > ¢} at xg. Since at 29 we have (5) and the free boundary is C? in B,.(x), with 8 > 1, it
follows from [33] that

Opw > c1d® in {w > 0} N By(x0)

for some ¢; > 0.
We are therefore in the assumptions of Theorem 1.3 and, as long as < 6 — 1 (recall that
f; € C971=%), we deduce that

O;w

Opw

€ CP({w > 0} N Br(x0)),

for any ¢ € {1,...,n —1}.
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Now, notice that the normal vector v(x) to the level set {w =t} for t > 0 and w(z) =t is
given by

O (2) = Oiw /Opw

CVw| n—1q. 2 1
>j—1 (Ojw/Ohw)? + 1

Therefore, denoting 2 = {w > 0} we deduce that in B,(xg) we have

O;w

Opw

(62) v (x)

1=1,..,n.

(63) Ned’ = e = rved’ = 90eC,

as long as 8 <6 — 1.
Bootstrapping this argument and recalling that Q@ = {v > ¢}, in a finite number of steps we
find that O{v > ¢} N B,(xg) € CY, as wanted. O

Remark 5.1. The statement of [5, Theorem 1.1] requires ¢ € C*1(R™). Nevertheless, a quick
inspection of the proofs therein reveals that this is inessential and that the assumption on the
regularity of the obstacle can be weakened to ¢ € C7, with v > max{2,1 + 2s}. In particular,
if p € C%*% with § > 2, then [5, Theorem 1.1] holds.

To conclude, we give the proof of the C*° regularity.

Proof of Theorem 1.1. It follows immediately from Theorem 1.2. O

APPENDIX A. TECHNICAL LEMMAS AND TOOLS

Notation A.1. We define the binomial of two multi-indices o = (o, ..., ap) and v = (71,...,7n)

Lemma A.2. Let U C R" be an open bounded domain with OU & CP,3>1, B &N. Then there
exists d € C°(U) N CP(U) such that for every j € N, j > f3, there exists C = C(n,j,U) >0
such that

1 . )
(64) e dist(-,0U) < d < C dist(-, 0U), |D7d| < C;d°~7 in UL
Proof. We define d as the only solution of
—Ad=1 inU,
{ d=0 on JU.

The existence and uniqueness of d is classical so let us directly go for (64). Let us consider
v €N, |y| = [8]. Then

—A(8d) =0 in U
ad e cP-BLD).

Let 9 € U be arbitrary and r = dist(z,0U)/3. Using the interior estimates for harmonic
functions (cf. [20, Theorem 2.10]) we get, for any j € N

. 1 ‘7 . .
sup [DIgnd(x)| < (7”> sup |07d(z) — O7d(zo)| < (m) ("] os ) P,
zE€B(z0) r xE€Bar(x0)

O

Lemma A.3. Let U C R” be an open bounded domain with U € C?, 3 >1, B¢ N, 0 € oU.
Suppose that —v(z) - e, > 1/2 and every z € OU N By, where v(z) denotes the outward unit
normal vector to OU at z. There exists a diffeomorphism ¢ : By N{z, > 0} — B1NU such that
$(Bi N {w, = 0}) = U, $(By N {a, > 0}) = BN U, ¢ € C7(B) N C=(By N {z, > 0}), and
satisfying (9).

36



Proof. Recall the construction of d given by Lemma A.2. Define
®:B,NU— ByN{x, >0}

T — (931, . ,xn,l,d(x)).
Then | det D®(x)| = |Vd(z) - e,| # 0 for any x € By NU. Moreover, the derivatives of ® inherit
the boundary estimates from d (see (64)). Then consider ¢ = ®~1. O

Lemma A.4. Let k : R"\ {0} — R be homogeneous of degree —y,~y € R. Then there exists
C > 0 such that for any N € N and x,h € R™\ {0}

N (Jz| + [p))N O
sl (>’§Cnﬁowx+<g—i>h\”'

Proof. Write

[ [z + (5 —4)h| [0 =+ (5 —5)n|

N
N |AN k(2)| = N ;(_1)1<]j> m<x+ (Z—z)h)
_ Mol (520f g(_lym (w4 (5 -i)m)|e+ (5 -]
o XN g
Sl (-] e (o
N _ v
S (5 e (2

Assume first that v > 0. Suppose now that |z| < 2|h|, then
N N . Y
Lo =+ (3 —4)h|

i) < BEES (i (G )T (vn (5 ) )

7=0
[ Al (y—1)N
< OO <1+H> < C|h|-DN,
If, instead, 2|h| < |x| then
Lol + (5 -0 n ol AR N, ALY
N [Ans@)] < O Z‘ ( )m’ ]1;[0<1+<2+j>2>
( 71)N|$‘ N 1)N
< O|z|0 WNZ‘ ( Z)H‘ < O)z|0-

where the last inequality is justified by the regularity of the function = — |z|~7 at points of 9B .
The proof for v < 0 follows by adapting the technical details of the above computations and
we omit them here. O

Lemma A.5. Let U CR"” be open and f: U x U — R be a function of class C1, g € N. Then,
for any multi-indez o € N", |a| < g, and 9 € U,

10 = 3 (5)020, 57 0
r<a

Proof. If |a] = 1, then this follows by the chain rule applied to the composition = — (z,z) —
f(z,x). If the claim holds for some multi-index «, then, for any multi-index e € N” with |e| =1,

05, floa) = 05, 3 ()11, 05, o

<«
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=2 <a> (057,057, Flwsy) + 02, 0577, Fl))

Y<a v
@ @ a+e
N + 03]y 05 () = < )6’; 90| f(x,
(2 Qs (7
where we have used identity (76_“ 6) + (:) _ (a’Jyre)‘ -

Lemma A.6. Let U,V C R™ be open and g : U -V, f : V — R"™ be two functions of class
cki+ . 4 kg = j} for

wookg—j

which it holds

q—1
DUfog)=" D Cojkrnks(DTTf)(g) Dy, .. D hamig
J=0 k1+...4+kq—;=7

Proof. For ¢ = 1 the claim simply follows by the chain rule. For ¢ = 2 and ¢ = 3 we respectively
have

D*(f o g) = D(Df(g) Dg) = (D*f)(g) [Dg, Dg] + (Df)(9) D,
D*(f og) = D(Df(g) Dg) = (D*f)(9) [Dg, Dg, Dg] + 3(D*f)(g) [D?g, Dg] + (Df)(g) D*g.
The general formula follows by iteratively applying the chain and the product rules. O

Lemma A.7. Let a > 0, f € C%([0,1]), p a polynomial of degree at most ||, and r € (0,1).
Suppose that there exists ¢ > 0 such that

(65) | f(t) = p(t)| < cor®, fort e [0,r].
Then
|f(t) = p(t)| < C (co+ Ifllcoqoap) t7*"%  forter1], ¢>a.

Proof. Let us write

Lo
F) = ait' +e(t), e <flcagopt®  te€0,1].
=0

Then by (65) it follows, by reverse triangle inequality,

Lo

p(t) =Y ait'| < (co + | flloaqop) s for t €[0,7],
1=0

which implies
p% — a;| < C (co+ || fllcaqoay) v i=0,...,|al,
see Lemma A.10. Therefore
L]

L]
|£(t) = p(®)] < |p(t) =D ait’| +|e(t)] < C (co + I fllcaqop) D r* "t + 1 fllcago,mt®
=0 =0

<C (C() + Hf”C’%[O,l])) (AR S for t € [7’, 1].

Lemma A.8. Let f € C%([0,1]), a > 1. Then, for g defined as
t €[0,1],
it holds

gl ca—1(0,17) < 1 llee(o,1))-
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Proof. Write
o0 = [ Fonan e,
and for any k € {1,..., |a] — 1}
90 = [ 74000 an, re o)
Then Hg(k)HLoo([m]) < Hf(kH)HLOO([o,l]) for any k € {1,..., |a] — 1} and

</1 FleD(nty) — el (nty)
—Jo

t1 — 12
Lemma A.9. Let a,b,r > 0 and xy € By be such that B,(x¢) C By and (xg)n > 2r. Then
there exists ¢ > 0 such that, for every x € B, j5(wo), it holds

gLed=D () — glled=D(ty)
t1 —t2

dT], t1,t2 € [O, 1].

O

/ (yn)i_l‘y — x‘fn*ady < ertTlTe and
(

/ (yn)> |y — 2| " Pdy < ersTIH,
By (z0)

Proof. We proceed by applying the change of variable y = 7 in order to deduce

—n—a

- dn <

/ (yn)i_l‘y — :L"*n*ady = rs_l_a/ (Un)i_l ‘77 - =
B1\B, (o) By, \Bi(zo/r) r

et [ )yl
R™\ By /9

and

/ (yn)i_lly - $‘_n+bdy < C’r51/ ly — a:|_n+bdy < OpsTIHb,
Br(z0) B

(o)

Lemma A.10. For some £ € N, let Q € Py with
Qz) = Z Qo .
laf<e
Let U CR™ be a bounded domain. Then there exists a constant ¢ = c¢(¢,U) > 0 such that
1
(66) QM) < D 1gal < €llQllwy.
o<t

Proof. As both the expressions in (66) are norms on Py, then the claim follows by the equivalence
of all norms in finite dimensional vector spaces. O

Lemma A.11. Let U C R" be a bounded domain such that 0 € OU. Let a € R, f € L>*(U)
with f > ¢ in U for some ca > 0, Q € Py, such that Q(0) =0, 6,7 > 0 such that

laf + Qll Los (faist(-.00)>ry < -
Then
lal + QLo @y < C(A+ (| fllzo1))0,

with C' = C(n, k,U,ca).
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Proof. By the triangle inequality
Q1| o (gaist(-.00)>r) < 0+ lalll f]] Lo 0y

and therefore, by Lemma A.10, we can also say
1Q(x)| < Clz| (9 + |a|||f||Loo(U)), z € U, dist(z,dU) > r.
In particular, if we pick and fix xg € {x € U : dist(x,0U) > r} N By, r < 1 small,
lalf(z0) = Cr(0 + lalllfl| L)) < laf(@o) + Q(xo)| < 6

and therefore the claimed estimate holds for |a| and, in turn, also for [|Q|| e (.- O

Lemma A.12. Let U C R" be an open bounded domain with 0 € OU € CP,B>1,0>0, and
d defined as in Lemma A.2. Let f € C/(UNB)NC(U), j < |o]+1, such that

\DY f(z)| < Cla|d(x)" for any x € By.
Then there is Q) € P;_1 such that
[f(z) = Qx)| < Clz|d(z)”  for any x € Bi.

Proof. We provide a proof for j = 1, the general statement follows by iterating this case. Write

1
f(x) = £(0) + /0 Vf(ta) - dt

and using the assumptions
1 ||
|f(z) = F(0)| < C|x|2/ td(tr) 1t dt = c/ td(t(z)) tdt <
0 0

||
< cm/ d(tz))7L dt < Clald(z)°,
0
where we recall that (z) = z/|z| for x # 0. O
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