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Abstract. We study the obstacle problem for the fractional Laplacian with drift,
min {(−∆)su+ b · ∇u, u− ϕ} = 0 in Rn, in the critical regime s = 1

2 .

Our main result establishes the C1,α regularity of the free boundary around
any regular point x0, with an expansion of the form

u(x)− ϕ(x) = c0
(
(x− x0) · e

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
,

γ̃(x0) =
1

2
+

1

π
arctan(b · e),

where e ∈ Sn−1 is the normal vector to the free boundary, σ > 0, and c0 > 0.
We also establish an analogous result for more general nonlocal operators of

order 1. In this case, the exponent γ̃(x0) also depends on the operator.

1. Introduction

We consider the obstacle problem for the fractional Laplacian with drift,

min
{

(−∆)su+ b · ∇u, u− ϕ
}

= 0 in Rn, (1.1)

where b ∈ Rn, and ϕ : Rn → R is a smooth obstacle.
Problem (1.1) appears when considering optimal stopping problems for Lévy pro-

cesses with jumps. In particular, this kind of obstacle problems are used to model
prices of (perpetual) American options; see for example [CF11, BFR15] and refer-
ences therein for more details. See also [Sal12] and [KKP16] for further references
and motivation on the fractional obstacle problem.

We study the regularity of solutions and the corresponding free boundaries for
problem (1.1). Note that the value of s ∈ (0, 1) plays an essential role. Indeed, if
s > 1

2
, then the gradient term is of lower order with respect to (−∆)s, and thus

one expects solutions to behave as in the case b ≡ 0. When s < 1
2

the leading term
is b · ∇u and thus one does not expect regularity results for (1.1). Finally, in the
borderline case s = 1

2
there is an interplay between b · ∇u and (−∆)1/2, and one

may still expect some regularity, but it becomes a delicate issue.
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In this work we study this critical regime, s = 1
2
. As explained in detail below,

we establish the C1,α regularity of the free boundary near regular points, with a fine
description of the solution at such points.

It is important to remark that, when s = 1
2
, problem (1.1) is equivalent to the thin

obstacle problem in Rn+1
+ with an oblique derivative condition on {xn+1 = 0}. Thus,

our results yield in particular the regularity of the free boundary for such problem,
too.

1.1. Known results. The regularity of solutions and free boundaries for (1.1) was
first studied in [Sil07, CSS08] when b = 0. In [CSS08], Caffarelli, Salsa, and Silvestre
established the optimal C1,s regularity for the solutions and C1,α regularity of the
free boundary around regular points. More precisely, they proved that given any
free boundary point x0 ∈ ∂{u = ϕ}, then

(i) either

0 < cr1+s ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+s

(ii) or

0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cr2.

The set of points satisfying (i) is called the set of regular points, and it was proved
in [CSS08] that this set is open and C1,α.

Later, the singular set — those points at which the contact set has zero density —
was studied in [GP09] in the case s = 1

2
. More recently, the regular set was proved

to be C∞ in [JN16, KRS16]; see also [KPS15, DS16]. The complete structure of the
free boundary was described in [BFR15] under the assumption ∆ϕ ≤ 0. Finally, the
results of [CSS08] have been extended to a wide class of nonlocal elliptic operators
in [CRS16].

All the previous results are for the case b = 0. For the obstacle problem with drift
(1.1), Petrosyan and Pop proved in [PP15] the optimal C1,s regularity of solutions in
the case s > 1

2
. This result was obtained by means of an Almgren-type monotonicity

formula, treating the drift as a lower order term. In [GPPS16], the same authors
together with Garofalo and Smit Vega Garćıa establish C1,α regularity for the free
boundary around regular points, again in the case s > 1

2
. They do so by means of a

Weiss-type monotonicity formula and an epiperimetric inequality. The assumption
s > 1

2
is essential in both works in order to treat the gradient as a lower order term.

1.2. Main result. We study the obstacle problem with critical drift

min
{

(−∆)1/2u+ b · ∇u, u− ϕ
}

= 0 in Rn,
lim|x|→∞ u(x) = 0.

(1.2)

Here b is a fixed vector in Rn, and the obstacle ϕ is assumed to satisfy

ϕ is bounded, ϕ ∈ C2,1(Rn), and {ϕ > 0} b Rn. (1.3)
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The solution to (1.2) can be constructed as the smallest supersolution above the
obstacle and vanishing at infinity.

Our main result reads as follows.

Theorem 1.1. Let u be the solution to (1.2), with ϕ satisfying (1.3), and b ∈ Rn.
Let x0 ∈ ∂{u = ϕ} be any free boundary point. Then we have the following

dichotomy:

(i) either

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+γ̃(x0), γ̃(x0) ∈ (0, 1),

for all r ∈ (0, 1),
(ii) or

0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cεr
2−ε for all ε > 0, r ∈ (0, 1).

Moreover, the subset of the free boundary satisfying (i) is relatively open and is
locally C1,α for some α > 0.

Furthermore, γ̃(x0) is given by

γ̃(x0) =
1

2
+

1

π
arctan

(
b · ν(x0)

)
, (1.4)

where ν(x0) denotes the unit normal vector to the free boundary at x0 pointing to-
wards {u > ϕ}. Finally, for every point x0 satisfying (i) we have the expansion

u(x)− ϕ(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
(1.5)

for some σ > 0, and c0 > 0. The constants σ and α depend only on n and ‖b‖.
We think it is quite interesting that the growth around free boundary points (and

thus, the regularity of the solution) depends on the orientation of the normal vector
with respect to the free boundary. To our knowledge, this is the first example of an
obstacle-type problem in which this happens.

The previous theorem implies that the solution is C1,γb at every free boundary
point x0, with

γb :=
1

2
− 1

π
arctan(‖b‖). (1.6)

Nonetheless, the constants may depend on the point x0 considered, so that if we
want a uniform regularity estimate for u we actually have the following corollary. It
establishes almost optimal regularity of solutions.

Corollary 1.2. Let u be the solution to (1.2) for a given obstacle ϕ of the form
(1.3), and a given b ∈ Rn. Let γb given by (1.6). Then, for any ε > 0 we have

‖u‖C1,γb−ε(Rn) ≤ Cε,

where Cε is a constant depending only on n, ‖b‖, ε, and ‖ϕ‖C2,1(Rn).
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In order to prove Theorem 1.1 we proceed as follows. First, we classify convex
global solutions to the obstacle problem by following the ideas in [CRS16]. Then, we
show the Lipschitz regularity of the free boundary at regular points, and using the
results in [RS16b] we find that the free boundary is actually C1,α. Finally, to prove
(1.5)-(1.4) we need to establish fine regularity estimates up to the boundary in C1,α

domains. This is done by constructing appropriate barriers and a blow-up argument
in the spirit of [RS16]. Notice that, since we do not have any monotonicity formula
for problem (1.2), our proofs are completely different from those in [PP15, GPPS16].

1.3. More general nonlocal operators of order 1 with drift. We will show an
analogous result for more general nonlocal operators of the form

Lu(x) =

∫
Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
µ(y/|y|)
|y|n+1

dy, (1.7)

with

µ ∈ L∞(Sn−1) satisfying µ(θ) = µ(−θ) and 0 < λ ≤ µ ≤ Λ. (1.8)

The constants λ and Λ are the ellipticity constants. Notice that the operators L we
are considering are of order 1.

The obstacle problem in this case is, then,

min
{
− Lu+ b · ∇u, u− ϕ

}
= 0 in Rn,

lim|x|→∞ u(x) = 0.
(1.9)

Our main result reads as follows.

Theorem 1.3. Let L be an operator of the form (1.7)-(1.8). Let u be the solution
to (1.9), with ϕ satisfying (1.3), and b ∈ Rn.

Let x0 be any free boundary point, x0 ∈ ∂{u = ϕ}. Then we have the following
dichotomy:

(i) either

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+γ̃(x0), γ̃(x0) ∈ (0, 1),

for all r ∈ (0, 1).
(ii) or

0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cεr
2−ε for all ε > 0, r ∈ (0, 1).

Moreover, the subset of the free boundary satisfying (i) is relatively open and is
locally C1,α for some α > 0.

Furthermore, the value of γ̃(x0) is given by

γ̃(x0) =
1

2
+

1

π
arctan

(
b · ν(x0)

χ(ν(x0))

)
, (1.10)
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where ν(x0) denotes the unit normal vector to the free boundary at x0 pointing to-
wards {u > ϕ}, and

χ(e) =
π

2

∫
Sn−1

|θ · e|µ(θ)dθ for e ∈ Sn−1. (1.11)

Finally, for any point x0 satisfying (i) we have the expansion

u(x)− ϕ(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
for some σ > 0, and c0 > 0. The constants σ and α depend only on n, the ellipticity
constants, and ‖b‖.

This result extends Theorem 1.1, and the dependence on the operator L is reflected
in (1.10). For the fractional Laplacian we have χ ≡ 1, and thus (1.10) becomes (1.4).

We will also prove an analogous result to Corollary 1.2 regarding the almost
optimal regularity of solutions; see Corollary 8.4.

1.4. Structure of the work. We will focus on the proof of Theorem 1.3, from
which in particular will follow Theorem 1.1. The paper is organised as follows.

In Section 2 we introduce the notation and give some preliminary results regarding
nonlocal elliptic problems with drift. In Section 3 we establish C1,τ estimates for
solutions to the obstacle problem with critical drift. In Section 4 we classify convex
global solutions to the problem. In Section 5 we introduce the notion of regular
points and we prove that blow-ups of solutions around such points converge to
convex global solutions. In Section 6 we prove C1,α regularity of the free boundary
around regular points. In Section 7 we establish estimates up to the boundary for
the Dirichlet problem with drift in C1,α domains, in particular, finding an expansion
of solutions around points of the boundary. In Section 8 we combine the results from
Sections 6 and 7 to prove Theorems 1.1 and 1.3. Finally, in Section 9, we establish
a non-degeneracy property at all points of the free boundary when the obstacle is
concave near the coincidence set.

2. Notation and preliminaries

We begin our work with a section of notation and preliminaries. Here, we recall
some known results regarding nonlocal operators with drift, and we also find a 1-
dimensional solution.

Throughout the work we will use the following function in order to avoid a heavy
reading, γ : R→ (0, 1), given by

γ(t) :=
1

2
+

1

π
arctan (t) . (2.1)

We next introduce some known results regarding the elliptic problem with drift
that will be used. The first one is the following interior estimate.
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Proposition 2.1. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u solve

(−L+ b · ∇)u = f, in B1,

for some f . Then, if f ∈ L∞(B1), and for any ε > 0,

[u]C1−ε(B1/2) ≤ C

(
‖f‖L∞(B1) + ‖u‖L∞(B1) +

∫
Rn

|u(y)|
1 + |y|n+1

dy

)
,

where C depends only on n, ε, the ellipticity constants, and ‖b‖.
The proof of Proposition (2.1) is given in [Ser15] in case b = 0 (in the much more

general context of fully nonlinear equations). The proof of [Ser15] uses the main
result in [CL14]. The proof of Proposition 2.1 follows simply by replacing the use
of the result [CL14] in [Ser15] by [SS16, Theorem 7.2] or [CD16, Corollary 7.1].

We also need the following boundary Harnack inequality from [RS16b].

Theorem 2.2 ([RS16b]). Let U ⊂ Rn be an open set, let L be an operator of the
form (1.7)-(1.8), and let b ∈ Rn.

Let u1, u2 ∈ C(B1) be viscosity solutions to{
(−L+ b · ∇)ui = 0 in U ∩B1

ui = 0 in B1 \ U, , i = 1, 2,

and such that

ui ≥ 0 in Rn,

∫
Rn

ui(y)

1 + |y|n+1
dy = 1, i = 1, 2.

Then,
0 < cu2 ≤ u1 ≤ Cu2 in U ∩B1/2,

for some constants c and C depending only on n, ‖b‖, U , and the ellipticity con-
stants.

We will also need the following result.

Theorem 2.3 ([RS16b]). Let U ⊂ Rn be a Lipschitz set, let L be an operator of the
form (1.7)-(1.8), and let b ∈ Rn.

Let u1, u2 ∈ C(B1) be viscosity solutions to{
(−L+ b · ∇)ui = gi in U ∩B1

ui = 0 in B1 \ U, , i = 1, 2,

for some functions gi ∈ L∞(U ∩B1), i = 1, 2. Assume also that

ui ≥ 0 in Rn,

∫
Rn

ui(y)

1 + |y|n+1
dy = 1, i = 1, 2.

Then, there exists δ > 0 depending only on n, U , the ellipticity constants, and
‖b‖ such that, if

‖gi‖L∞(U∩B1) ≤ δ in U ∩B1, i = 1, 2,
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then ∥∥∥∥u1

u2

∥∥∥∥
Cσ(U∩B1/2)

≤ C,

for some constants σ and C depending only on n, U , the ellipticity constants, and
‖b‖.

Finally, to conclude this section we study how 1-dimensional powers behave with
respect to the operator, and in particular, we find a 1-dimensional solution to the
problem. This solution is the same as the one that appears as a travelling wave
solution in the parabolic fractional obstacle problem for s = 1

2
; see [CF11, Remark

3.7].

Proposition 2.4. Let b ∈ R, and let u ∈ C(R) be defined by

u(x) := (x+)β,

for β ∈ (0, 1). Then u satisfies

(−∆)1/2u+ bu′ = β
(
b sin(βπ) + cos(βπ)

)
(x+)β−1 in R+,

u ≡ 0 in R−.

In particular, let us define

u0(x) := C(x+)γ(b),

where

γ(t) :=
1

2
+

1

π
arctan (t) ∈ (0, 1).

Then, u0 satisfies

(−∆)1/2u0 + bu′0 = 0 in R+,

u0 ≡ 0 in R−,

i.e., u0 is a solution to the 1-dimensional non-local elliptic problem with critical drift
and with zero Dirichlet conditions in R−.

Proof. Define the harmonic extension to R2
+, ū = ū(x, y), via the Poisson kernel, so

that ū(x, 0) = u(x), and −∂yū(x, 0) = (−∆)1/2u(x). We have that ū solves,{
∆ū = 0 in R2 ∩ {y > 0}
ū = 0 in {x ≤ 0} ∩ {y = 0}. (2.2)

For simplicity, define the reflected function w(x, y) = ū(−x, y), and let us consider
that, by separation of variables in polar coordinates, w(r, θ) = g(r)h(θ), for r ≥ 0,
θ ∈ [0, π] (we use the standard variables, x = r cos θ, y = r sin θ). Notice that we
are considering homogeneous solutions, so that g(r) = rβ. Then, from (2.2) we get{

g′′h+ r−1g′h+ r−2gh′′ = 0 in {r > 0} ∩ {θ ∈ (0, π)}
h(0) = 0

(2.3)
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from which arise that w can be expressed as

w(r, θ) = rβ sin(βθ).

Now notice that, for r > 0,

((−∆)1/2u+ bu′)(r) = (r−1∂θ + b∂r)w(r, θ)
∣∣
θ=π

= β (b sin(βπ) + cos(βπ)) rβ−1.

Solving for β we obtain that it is a solution for β = γ(b). Moreover, notice that
for β < γ(b) it is a supersolution, and for β > γ(b) a subsolution. �

3. C1,τ regularity of solutions

In this section we prove C1,τ regularity of solutions to the obstacle problem with
critical drift. For this, we use the method in [CRS16, Section 2].

Throughout this section we can consider the wider class of nonlocal operators

Lu(x) =

∫
Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
a(y)

|y|n+1
dy, (3.1)

with

a ∈ L∞(Rn) satisfying a(y) = a(−y) and λ ≤ a ≤ Λ, (3.2)

so that we are dropping the homogeneity condition of the kernel.

Lemma 3.1. Let L be an operator of the form (3.1)-(3.2) and let b ∈ Rn. Let ϕ be
any obstacle satisfying (1.3), and let u be a solution to (1.9). Then,

(a) u is semiconvex, with

∂eeu ≥ −‖ϕ‖C1,1(Rn) for all e ∈ Sn−1.

(b) u is bounded, with

‖u‖L∞(Rn) ≤ ‖ϕ‖L∞(Rn).

(c) u is Lipschitz, with

‖u‖Lip(Rn) ≤ ‖ϕ‖Lip(Rn).

Proof. The proof is exactly the same as in [CRS16, Lemma 2.1], since the operator
−L+ b · ∇ still has maximum principle and is translation invariant. �

We next prove the lemma that will yield the C1,τ regularity of solutions.

Lemma 3.2. There exist constants τ > 0 and δ > 0 such that the following state-
ment holds true.

Let L be and operator of the form (3.1)-(3.2), let b ∈ Rn, and let u ∈ Lip(Rn) be
a solution to

u ≥ 0 in Rn

∂eeu ≥ −δ in B2 for all e ∈ Sn−1

(−L+ b · ∇)(u− u(· − h)) ≤ δ|h| in {u > 0} ∩B2 for all h ∈ Rn,
in the viscosity sense.
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satisfying the growth condition

sup
BR

|∇u| ≤ Rτ for R ≥ 1.

Assume that u(0) = 0. Then,

|∇u(x)| ≤ 2|x|τ .
The constants τ and δ depend only on n, the ellipticity constants and ‖b‖.

Proof. The proof is very similar to that of [CRS16, Lemma 2.3].
Define

θ(r) := sup
r̄≥r

{
(r̄)−τ sup

Br̄

|∇u|
}

Note that, by the growth control on the gradient, θ(r) ≤ 1 for r ≥ 1. Note also
that θ is nonincreasing by definition.

To get the desired result, it is enough to prove θ(r) ≤ 2 for all r ∈ (0, 1). Assume
by contradiction that θ(r) > 2 for some r ∈ (0, 1), so that from the definition of θ,
there will be some r̄ ∈ (r, 1) such that

(r̄)−τ sup
Br̄

|∇u| ≥ (1− ε)θ(r) ≥ (1− ε)θ(r̄) ≥ 3

2
,

for some small ε > 0 to be chosen later.
We now define

ū(x) :=
u(r̄x)

θ(r̄)(r̄)1+τ
,

and

Lr̄w(x) :=

∫
Rn

(
w(x+ y) + w(x− y)

2
− w(x)

)
a(r̄y)

|y|n+1
dy

Notice that Lr̄ is still of the form (3.1)-(3.2).
The rescaled function satisfies

ū ≥ 0 in Rn

D2ū ≥ −(r̄)2−1−τδId ≥ −δId in B2/r̄ ⊃ B2

(−Lr̄ + b · ∇)(ū− ū(· − h̄)) ≤ (r̄)−τδ|r̄h̄| ≤ δ|h̄| in {ū > 0} ∩B2

for all h ∈ Rn,

Moreover, by definition of θ and r̄, the rescaled function ū also satisfies

1− ε ≤ sup
|h̄|≤1/4

sup
B1

ū− ū(· − h̄)

|h̄| and sup
|h̄|≤1/4

sup
BR

ū− ū(· − h̄)

|h̄| ≤ (R + 1/4)τ (3.3)

for all R ≥ 1.
Let η ∈ C2

c (B3/2) with η ≡ 1 in B1, η ≤ 1 in B3/2. Then,

sup
|h̄|≤1/4

sup
B3/2

(
ū− ū(· − h̄)

|h̄| + 3εη

)
≥ 1 + 2ε.
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Fix h0 ∈ B1/4 such that

t0 := max
B3/2

(
ū− ū(· − h0)

|h0|
+ 3εη

)
≥ 1 + ε.

and let x0 ∈ B3/2 be such that

ū(x0)− ū(x0 − h0)

|h0|
+ 3εη(x0) = t0. (3.4)

Let us denote

v(x) :=
ū(x)− ū(x− h0)

|h0|
.

Then, we have

v + 3εη ≤ v(x0) + 3εη(x0) = t0 in B3/2.

Moreover, if τ is taken small enough then

sup
B4

v ≤ (4 + 1/4)τ < 1 + ε ≤ t0,

so that in particular x0 is in the interior of B3/2, and

v + 3εη ≤ t0 in B3. (3.5)

Note also that x0 ∈ {ū > 0} since otherwise ū(x0)−ū(x0−h0) would be a nonpositive
number.

We now evaluate the equation for v at x0 to obtain a contradiction. To do so,
recall that D2ū ≥ −δId in B2, ū ≥ 0 in Rn, and ū(0) = 0. It follows that, for z ∈ B2

and t′ ∈ (0, 1),

ū(t′z) ≤ t′ū(z) + (1− t′)ū(0) +
δ|z|2

2
t′(1− t′) ≤ ū(z) +

δ|z|2
2

t′(1− t′)

and thus, for t ∈ (0, 1), setting z = x(1 + t/|x|) and t′ = 1/(1 + t/|x|) we obtain, for
x ∈ B1,

ū(x)− ū
(
x+ t

x

|x|

)
≤ δ

2
(|x|+ t)2 t/|x|

(1 + t/|x|)2
=
δ|x|t

2
≤ δt.

Therefore, denoting e = h0/|h0|, t = |h0| ≤ 1 and using that by (3.3), if τ small
enough,

‖ū‖Lip(B1) ≤
4

3
,
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we obtain

v(x) =
ū(x)− ū(x− te)

t
≤ ū(x)− ū(x− te)

t
+
ū
(
x+ t x|x|

)
− ū(x)

t
+ δ

≤
ū
(
x+ t x|x|

)
− ū(x− te)
t

+ δ

≤ 4

3

∣∣∣∣e+
x

|x|

∣∣∣∣+ δ ≤ 1

4

(3.6)

in Ce ∩B1 provided δ is taken smaller than 1/12; where Ce is the cone,

Ce :=

{
x :

∣∣∣∣e+
x

|x|

∣∣∣∣ ≤ 1

8

}
.

On the other hand, we know that

v(x0 + y)− v(x0) ≤ 3ε
(
η(x0)− η(x0 + y)

)
in B3. (3.7)

This allows us to define

φ(x0 + y) =

{
v(x0) + 3ε

(
η(x0)− η(x0 + y)

)
in B1/8

v(x0 + y) otherwise.

Notice that φ is regular around x0 and that φ ≥ v everywhere, and recall that
(−Lr̄ + b · ∇)v(x0) ≤ δ in the viscosity sense. Therefore, we have

− Lr̄φ(x0)− C‖b‖ε ≤ (−Lr̄ + b · ∇)φ(x0) ≤ δ. (3.8)

Now, using
1− 2ε ≤ v(x0) ≤ 1 + ε,

and defining

δφ(x, y) :=
φ(x+ y) + φ(x− y)

2
− φ(x),

we can bound δφ(x0, y) as

δφ(x0, y) ≤


Cε|y|2 in B2

(|y|+ 2)τ − 1 + 2ε in Rn \B1

−3/8 + Cε in (−x0 + Ce ∩B1) \B1/4.

The first inequality follows because around x0 and from (3.7) we have the bound
δφ(x0, y) ≤ 3

2
ε (2η(x0)− η(x0 + y)− η(x0 − y)) and η is a C2 function. The second

inequality follows from (3.3), and using that 1
2

(
|x0 + y|+ 1

4

)τ
+ 1

2

(
|x0 − y|+ 1

4

)τ ≤
(|y|+ 2)τ . For the third inequality, notice that

δφ(x0, y) =
v(x0 + y)− v(x0)

2
+
v(x0 − y)− v(x0)

2

≤ 1

8
− 1

2
+ ε+ Cε ≤ −3

8
+ Cε in (− x0 + Ce ∩B1) \B1/4,
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where we have used (3.6) to bound the first term and (3.7) to bound the second one.
The constant C depends only on the η, so it is independent of everything else.

We then find

Lr̄φ(x0) ≤ Λ

∫
B1

Cε|y|2|y|−n−1dy + Λ

∫
Rn\B1

{
(|y|+ 2)τ − 1 + 2ε

}
|y|−n−1dy

+ λ

∫
(−x0+Ce∩B1)\B1/4

(
−3

8
+ Cε

)
|y|−n−1dy

≤ Cε+ C

∫
Rn\B1/2

{
(|y|+ 2)τ − 1

}
|y|−n−1dy − c,

with c > 0 independent of δ and τ (for ε small).
Thus, combining with (3.8) we get

c− C
(

(‖b‖+ 1)ε+

∫
Rn\B1/2

(|y|+ 2)τ − 1

|y|n+1
dy

)
≤ −C‖b‖ε− L̃r̄φ(x0) ≤ δ. (3.9)

If ε and τ are taken small enough so that the left-hand side in (3.9) is greater than
c/2, we get a contradiction for δ ≤ c/4. �

The following proposition implies that the solution to the obstacle problem (1.9)
is C1,τ for some τ > 0.

Proposition 3.3. Let L be any operator of the form (3.1)-(3.2), let b ∈ Rn, and let
u ∈ Lip(Rn) with u(0) = 0 be any function satisfying, for all h ∈ Rn and e ∈ Sn−1,
and for some ε > 0,

u ≥ 0 in Rn

∂eeu ≥ −K in B2

(−L+ b · ∇)(u− u(· − h)) ≤ K|h| in {u > 0} ∩B2

|∇u| ≤ K(1 + |x|1−ε) in Rn.

Then, there exists a small constant τ > 0 such that

‖u‖C1,τ (B1/2) ≤ CK.

The constants τ and C depend only on n, ‖b‖, ε, and the ellipticity constants.

Proof. The proof is standard and it is exactly the same as the proof of [CRS16,
Proposition 2.4] by means of Lemma 3.2. �

4. Classification of convex global solutions

In this section we prove the following theorem, that classifies all convex global
solutions to the obstacle problem with critical drift.
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Theorem 4.1. Let L be an operator of the form (1.7)-(1.8). Let Ω ⊂ Rn be a closed
convex set, with 0 ∈ Ω. Let u ∈ C1(Rn) a function satisfying, for all h ∈ Rn,

(−L+ b · ∇)(∇u) = 0 in Rn \ Ω
(−L+ b · ∇)(u− u(· − h)) ≤ 0 in Rn \ Ω

D2u ≥ 0 in Rn

u = 0 in Ω
u ≥ 0 in Rn.

(4.1)

Assume also the following growth control satisfied by u,

‖∇u‖L∞(BR) ≤ R1−ε for all R ≥ 1, (4.2)

for some ε > 0. Then, either u ≡ 0, or

Ω = {e · x ≤ 0} and u(x) = C(e · x)
1+γ(b·e/χ(e))
+ , (4.3)

for some e ∈ Sn−1 and C > 0. The value of χ(e) is given by (1.11) with the kernel
µ of L, and γ is given by (2.1).

We start by proving the following proposition.

Proposition 4.2. Let Σ be a non-empty closed convex cone, and let L be an operator
of the form (1.7)-(1.8). Let u1 and u2 be two non-negative continuous functions
satisfying ∫

Rn

ui(y)

1 + |y|n+1
dy <∞, i = 1, 2.

Assume, also, that they are viscosity solutions to (−L+ b · ∇)ui = 0 in Rn \ Σ
ui = 0 in Σ
ui > 0 in Rn \ Σ.

Then,
u1 ≡ Ku2 in Rn,

for some constant K.

Proof. The proof is the same as the proof of [CRS16, Theorem 3.1], using the bound-
ary Harnack inequality in Theorem 2.2.

Suppose, without loss of generality, that Σ ( Rn. Take P a point with |P | = 1
and Br(P ) ⊂ Rn \Σ for some r > 0, and assume that ui(P ) = 1. We want to prove
u1 ≡ u2.

Define, given R ≥ 1,

ūi(x) =
ui(Rx)

Ci
,

with Ci such that
∫
Rn ūi(y)(1 + |y|)−n−1dy = 1. Thus, by Theorem 2.2 there exists

some c > 0 such that

ū1 ≥ cū2 and ū2 ≥ cū1 in B1/2. (4.4)
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In particular, ū1(P/R) and ū2(P/R) are comparable, so that C1 and C2 are com-
parable. Thus, from (4.4),

u1 ≥ cu2 and u2 ≥ cu1 in BR/2,

for any R ≥ 1, so that the previous inequalities are true in Rn.
Now take

c̄ := sup{c > 0 : u1 ≥ cu2 in Rn} <∞.
Define

v = u1 − c̄u2 ≥ 0.

Either v ≡ 0 in Rn or v > 0 in Rn \ Σ by the strong maximum principle. If v ≡ 0
we are done, because in this case c̄ = 1 due to the fact that u1(P ) = u2(P ) = 1.

Let us assume then that v > 0 in Rn \ Σ. Apply the first part of the proof to
v/v(P ) and u2 to deduce that, for some δ > 0, v > δu2. This contradicts the
definition of c̄, so v ≡ 0 as we wanted. �

We can now prove the classification of convex global solutions in Theorem 4.1

Proof of Theorem 4.1. First, by the same blow-down argument in [CRS16, Theorem
4.1], we can restrict ourselves to the case in which Ω = Σ for Σ a closed convex cone
in Rn with vertex at 0.

We now split the proof into two cases:
Case 1: When Σ has non empty interior there are n linearly independent unitary

vectors ei such that −ei ∈ Σ. Define

vi := ∂eiu,

and note that, since D2u ≥ 0 and −ei ∈ Σ = {u = 0}, we have (−L+ b · ∇)vi = 0 in Rn \ Σ
vi = 0 in Σ
vi ≥ 0 in Rn.

(4.5)

From Proposition 4.2, we must have vi = aivk for some 1 ≤ k ≤ n, ai ∈ R, and
for all i = 1, . . . , n, so that ∂ei−aieku ≡ 0 in Rn for all i 6= k. Thus, there exists a
non-negative function φ : R→ R, φ ∈ C1, such that u = φ(e · x) for some e ∈ Sn−1;
so that, since 0 ∈ ∂Σ, Σ = {e · x ≤ 0}.

Notice that φ′ ≥ 0 solves (−L + (b · e)∂)(φ′) = 0 in R+ and φ′ ≡ 0 in R−, with
the growth φ′(t) ≤ C(1 + t1−ε). From [RS14, Lemma 2.1], we have

(χ(e)(−∆)1/2 + (b · e)∂)(φ′) = 0 in R+,

where χ(e) is given by (1.11). Now, a non-negative solution to the previous equation
is given by Proposition 2.4. Such solution is unique up to a multiplicative constant
thanks to Proposition 4.2. Indeed, notice that the hypotheses of the lemma are
fulfilled due to the growth control of φ′ and the fact that φ′ ≥ 0. Thus, we obtain

φ(t) = (t+)1+γ(b·e)/χ(e) for t ∈ R,
where γ and χ are given by (2.1) and (1.11) respectively.
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Case 2: If Σ has empty interior then by convexity it must be contained in some
hyperplane H = {x · e = 0}. From Proposition 3.3, rescaling,

[∇u]Cτ (BR) ≤ C(R),

for some constant C(R) depending on R; and for any R ≥ 1. In particular, for any
h ∈ Rn, if we define

v(x) = u(x)− u(x− h) for x ∈ Rn,

then v ∈ C1,τ
loc (Rn). This implies that (−L+ b ·∇)v ∈ Cτ

loc(Rn), but we already knew
that (−L+ b · ∇)v = 0 in Rn \H, so we must have

(−L+ b · ∇)v = 0 in Rn.

Now, from the interior estimates in Proposition 2.1 rescaled on balls BR we have

R1−ε/2[v]C1−ε/2(BR/2) ≤ C

(
‖v‖L∞(BR) +

∫
Rn

|v(Ry)|
1 + |y|n+1

dy

)
.

On the other hand, from the growth control on the gradient, we have

‖v‖L∞(BR) ≤ |h|R1−ε.

Putting the last two expressions together we reach

[v]C1−ε/2(BR/2) ≤
C|h|
Rε/2

.

Now let R→∞ to obtain that v must be constant for all h. That means that u
is affine, but u(0) = 0 and u ≥ 0 in Rn, so u ≡ 0. �

5. Blow-ups at regular points

By subtracting the obstacle if necessary and dividing by C‖ϕ‖C2,1(Rn), we can
assume that we are dealing with the following problem,

u ≥ 0 in Rn

(−L+ b · ∇)u ≤ f in Rn

(−L+ b · ∇)u = f in {u > 0}
D2u ≥ −Id in Rn.

(5.1)

Moreover, dividing by a bigger constant if necessary, we can also assume that

‖f‖C1(Rn) ≤ 1, (5.2)

and that

‖u‖C1,τ (Rn) ≤ 1. (5.3)

The validity of the last expression and the constant τ come from Proposition 3.3
and Lemma 3.1.

Let us now introduce the notion of regular free boundary point.
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Definition 5.1. We say that x0 ∈ ∂{u > 0} is a regular free boundary point with
exponent ε if

lim sup
r↓0

‖u‖L∞(Br(x0))

r2−ε =∞

for some ε > 0.

The following proposition states that an appropriate blow up sequence of the
solution around a regular free boundary point converges in C1 norm to a convex
global solution.

Proposition 5.2. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3). Assume that 0 is a regular free boundary point
with exponent ε.

Then, given δ > 0, R0 ≥ 1, there exists r > 0 such that the rescaled function

v(x) :=
u(rx)

r‖∇u‖L∞(Br)

satisfies
‖∇v‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,∣∣(−L+ b · ∇)(∇v)

∣∣ ≤ δ in {v > 0},
and

|v − u0|+ |∇v −∇u0| ≤ δ in BR0 ,

for some u0 of the form (4.3) and with ‖∇u0‖L∞(B1) = 1.

Before proving the previous proposition, let us prove the following lemma.

Lemma 5.3. Assume u ∈ C1(B1) satisfies ‖∇u‖L∞(Rn) = 1, u(0) = 0, and

sup
ρ≤r

‖u‖L∞(Br)

r2−ε →∞ as ρ ↓ 0.

Then, there exists a sequence rk ↓ 0 such that ‖∇u‖L∞(Brk ) ≥ 1
2
r1−ε
k , and for which

the rescaled functions

uk(x) =
u(rkx)

rk‖∇u‖L∞(Brk )

satisfy
|∇uk(x)| ≤ 2(1 + |x|1−ε) in Rn.

Proof. Define

θ(ρ) := sup
r≥ρ

‖∇u‖L∞(Br)

r1−ε .

Notice that, since u(0) = 0, we have

‖u‖L∞(Br)

r2−ε ≤ ‖∇u‖L∞(Br)

r1−ε .

Therefore, θ(ρ)→∞ as ρ ↓ 0, and notice also that θ is non-increasing.
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Now, for every k ∈ N, there is some rk ≥ 1
k

such that

rε−1
k ‖∇u‖L∞(Brk ) ≥

1

2
θ (1/k) ≥ 1

2
θ(rk). (5.4)

Since ‖∇u‖L∞(Rn) = 1, then

rε−1
k ≥ 1

2
θ(1/k)→∞ as k →∞,

so that rk → 0 as k → ∞. We also have θ(rk) ≥ 1, and therefore ‖∇u‖L∞(Brk ) ≥
1
2
r1−ε
k .
Finally, from the definition of θ and (5.4), and for any R ≥ 1, we have

‖∇uk‖L∞(BR) =
‖∇u‖L∞(BrkR)

‖∇u‖L∞(Brk )

≤ θ(rkR)(rkR)1−ε

1
2
(rk)1−εθ(rk)

≤ 2R1−ε,

which follows from the monotonicity of θ. �

We can now prove Proposition 5.2, which follows taking the sequence of rescalings
given by Lemma 5.3 together with a compactness argument.

Proof of Proposition 5.2. Let rk ↓ 0 be the sequence given by Lemma 5.3. Therefore,
the functions

vk(x) =
u(rkx)

rk‖∇u‖L∞(Brk )

satisfy
‖∇vk‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,

and
‖∇vk‖L∞(B1) = 1, vk(0) = 0.

Moreover,

D2vk =
rk

‖∇u‖L∞(Brk )

D2u ≥ − rk
‖∇u‖L∞(Brk )

Id,

and, in {vk > 0},∣∣(−L+ b · ∇)(∇vk)
∣∣ =

rk
‖∇u‖L∞(Brk )

∣∣(−L+ b · ∇)(∇u)
∣∣

≤ rk
‖∇u‖L∞(Brk )

‖∇f‖L∞ ≤
rk

‖∇u‖L∞(Brk )

.

Notice that, from (5.4) and with the notation from the proof of Lemma 5.3,

1

ηk
:=
‖∇u‖L∞(Brk )

rk
≥ θ(rk)

2rεk
→∞, as rk ↓ 0.

Thus, in all we have a sequence vk such that vk ∈ C1, vk(0) = 0, and

‖∇vk‖L∞(BR) ≤ 2R1−ε for all R ≥ 1,∣∣(−L+ b · ∇)(∇vk)
∣∣ ≤ ηk in {vk > 0},
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D2vk ≥ −ηkId,
with ηk ↓ 0. From the estimates in Proposition 3.3,

‖∇vk‖Cτ (BR) ≤ C(R) for all R ≥ 1,

for some constant depending on R, C(R). Thus, up to taking a subsequence, vk
converges in C1

loc(Rn) to some v∞ which by stability of viscosity solutions is a convex
global solution to the obstacle problem (4.1) fulfilling (4.2).

By the classification theorem, Theorem 4.1, v∞ must be of the form (4.3). Taking
limits

‖∇v∞‖L∞(B1) = 1

and v∞(0) = 0. Now the result follows because ηk ↓ 0 and vk converge in C1
loc(Rn)

to v∞. �

6. C1,α regularity of the free boundary around regular points

In this section we prove C1,α regularity of the free boundary around regular points.
We begin by proving the Lipschitz regularity of the free boundary, as stated in

the following proposition.

Proposition 6.1. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3). Assume that 0 is a regular free boundary point.

Then, there exists a vector e ∈ Sn−1 such that for any ` > 0, there exists an r > 0
and a Lipschitz function g : Rn−1 → R such that

{u > 0} ∩Br =
{
yn > g(y1, . . . , yn−1)

}
∩Br,

where y = Rx is a change of coordinates given by a rotation R with Re = en, and g
fulfils

‖g‖Lip(Br) ≤ `.

Moreover, ∂e′u ≥ 0 in Br for all e′ · e ≥ `√
1+`2

.

The following lemma will be needed in the proof, and it is analogous to [CRS16,
Lemma 6.2].

Lemma 6.2. There exists η = η(n,Λ, λ, ‖b‖) such that the following statement
holds.

Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let E ⊂ B1 be
relatively closed, and assume that, in the viscosity sense, w ∈ C(B1) satisfies (−L+ b · ∇)w ≥ −η in B1 \ E

w = 0 in E ∪ (Rn \B2)
w ≥ −η in B2 \ E,

(6.1)

and ∫
B1

w+ ≥ 1.
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Then, w is non-negative in B1/2, i.e.,

w ≥ 0 in B1/2.

Proof. Let us argue by contradiction, and suppose that the statement does not hold
for any η > 0. Define ψ ∈ C2

c (B3/4) be a radial function with ψ ≥ 0, ψ ≡ 1 in B1/2

and with |∇ψ| ≤ C(n). Let

ψt(x) := −η − t+ ηψ(x).

If w attains negative values on B1/2, then there exists some t0 > 0 and z ∈ B3/4

such that ψt0 touches w from below at z, i.e. ψt0 ≤ w everywhere and ψt0(z) =
w(z) < 0. Let δ > 0 be such that w < 0 in Bδ(z) (recall w continuous). Let us now
define

w̄(x) :=

{
w(x) if x ∈ Rn \Bδ(z)
ψt0(x) if x ∈ Bδ(z).

(6.2)

Notice that w̄ is C2 around z, and is such that w̄ ≤ w. By definition of viscosity
supersolution, we have

(−L+ b · ∇)w̄(z) ≥ −η.
On the one hand, this implies

(−L+ b · ∇)(w̄ − ψt0)(z) ≥ −Cη,
for some C depending on n, the ellipticity constants, and ‖b‖. On the other hand,
we can evaluate w̄ − ψt0 classically at z,

(−L+b · ∇)(w̄ − ψt0)(z) = −L(w̄ − ψt0)(z)

≤ −λ
∫
Rn

(w̄ − ψt0)(z + y)|y|−n−1dy ≤ −c(n)λ

∫
B1\Bδ(z)

(w̄ − ψt0)dy

≤ −c(n)λ

∫
B1

w+dy ≤ −c(n)λ.

We used here that (w̄ − ψt0)χB1\Bδ(z) ≥ w+ in B1.
In all, for η small enough depending only on n, the ellipticity constants, and ‖b‖,

we reach a contradiction. �

With the previous lemma and the results from the previous section, we can now
prove Proposition 6.1.

Proof of Proposition 6.1. Let δ > 0 and R0 to be chosen, and consider the rescaled
function from Proposition 5.2,

v(x) =
u(rx)

r‖∇u‖L∞(Br)

.

Thanks to Proposition 5.2, there exists some e ∈ Sn−1 such that∣∣∣∇v − (x · e)γ(b·e/χ(e))
+ e

∣∣∣ ≤ δ in BR0 .

Recall γ and χ are given by (2.1)-(1.11).
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Now let e′ ∈ Sn−1 be such that (assuming ` ≤ 1)

e′ · e ≥ `√
1 + `2

≥ `

2
.

Notice that

∇v · e′ ≥ `

2
(x · e)γ(b·e/χ(e))

+ − δ in BR0 ,

and ∣∣(−L+ b · ∇)(∇v · e′)
∣∣ ≤ δ in {v > 0}.

Define

w =
C1

`
(∇v · e′)χB2 ,

for some C1 such that ∫
B1

w+ ≥ 1.

Notice that, if δ is small enough, then C1 depends only on n, `, ‖b‖, and the
ellipticity constants.

Let us call E = {v = 0}. If R0 is large enough, depending only on n, `, ε, ‖b‖, δ,
and the ellipticity constants, then w satisfies (−L+ b · ∇)w ≥ −CC1

`
δ ≥ −η in B1 \ E

w = 0 in E ∪ (Rn \B2)
w ≥ −C1

`
δ ≥ −η in B2 \ E.

(6.3)

We are using here that, for x ∈ B1 \ E,

(−L+ b · ∇)w(x) ≥ −C1

`
δ − (−L+ b · ∇)

(
C1

`
(∇v · e′)χBc2

)
(x)

≥ −C1

`
δ +

C1

`
L(∇v · e′)χBc2(x)

≥ −C1

`
δ + λ

C1

`

∫
BR0−1

(∇v · e′)χBc2(x+ y) + (∇v · e′)χBc2(x− y)

2|y|n+1

+ λ
C1

`

∫
BcR0−1

(∇v · e′)χBc2(x+ y) + (∇v · e′)χBc2(x− y)

2|y|n+1

≥ −C1

`
δ − λC1

`
Ĉδ − ĉ ≥ −CC1

`
δ,

where R0 is chosen large enough so that ĉ can be comparable to the other terms
(which can be done, thanks to the fact that ∇v grows as R1−ε). Notice that C
depends only on λ and n.

In all, we can choose δ small enough so that

CC1

`
δ ≤ η

for the constant η given in Lemma 6.2.
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Therefore, applying Lemma 6.2 to the function w we get that

w ≥ 0 in B1/2,

or equivalently,

∂e′u ≥ 0 in Br/2,

for all e′ ∈ Sn−1 such that e′ · e ≥ `√
1+`2

. This implies that ∂{u > 0} is Lipschitz in

Br, with Lipschitz constant smaller than `. �

Finally, combining Proposition 6.1 with the boundary regularity result in Theo-
rem 2.3 we show that the free boundary is C1,α around regular points.

Proposition 6.3. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3). Assume that x0 is a regular free boundary point.

Then, there exists r > 0 such that the free boundary is C1,α in Br(x0) for some
α > 0 depending only on n, ‖b‖, and the ellipticity constants.

Proof. Without loss of generality assume x0 = 0 and that ν(0) = en, where ν(0)
denotes the normal vector to the free boundary at 0 pointing towards {u > 0}.

By Proposition 6.1, we already know the free boundary is Lipschitz around 0,
with Lipschitz constant 1 in a ball Bρ. Let v1 = 1√

2
(∂iu+ ∂nu) for any fixed

i ∈ {1, . . . , n− 1}, and let v2 = ∂nu. We first show that for some r > 0 and α > 0,∥∥∥∥v1

v2

∥∥∥∥
Cα({u>0}∩Br)

=
1√
2

∥∥∥∥1 +
∂iu

∂nu

∥∥∥∥
Cα({u>0}∩Br)

≤ C. (6.4)

Define w as in the proof of Proposition 6.1, i.e., w = C1(∇v · e′)χB2 , where v is
the rescaling given by Proposition 5.2, and e′ is such that e′ · e ≥ `

2
(choose ` = 1

for example).
From the proof of Proposition 6.1 we know that w ≥ 0 in B1/2 (if, using the same

notation, R0 is large enough and δ is small enough; i.e., the rescaling defining v is
appropriately chosen). Now define

w̃ = C1(∇v · e′)+

and notice that ∣∣(−L+ b · ∇)w̃
∣∣ ≤ η in B1/4 \ {v = 0}

for some η > 0 that can be made arbitrarily small by choosing the appropriate
(small) δ > 0 and (large) R0 in the rescaling given by Proposition 5.2. The previous
inequality follows from the fact that (∇v ·e′)− ≤ δ in BR0 , (∇v ·e′)− ≤ 2 (1 + |x|1−ε)
in BRc0

, and (∇v · e′)− ≡ 0 in B1/2.

Let ein := 1√
2

(ei + en), and define w1 = C (∇v · ein)+ and w2 = C(∇v · en)+

(taking e′ = ein and e′ = en). Now notice that w1 and w2 fulfil the hypotheses of the
boundary regularity result in Theorem 2.3, and w1 = C(∇v ·ein) and w2 = C(∇v ·en)
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in B1/2. Thus, applying Theorem 2.3 to w1 and w2 we obtain that there exists some
α > 0 such that ∥∥∥∥w1

w2

∥∥∥∥
Cα({v>0}∩B1/8)

≤ C.

Going back to the rescalings defining w̃ we reach that for some r > 0, (6.4) holds.
Once we have (6.4) the procedure is standard. Notice that the components of the

normal vector to the level sets {u = t} for t > 0 can be written as

νi(x) =
∂iu

|∇u|(x) =
∂iu/∂nu(∑n−1

j=1 (∂ju/∂nu)2 + 1
)1/2

,

νn(x) =
∂nu

|∇u|(x) =
1(∑n−1

j=1 (∂ju/∂nu)2 + 1
)1/2

,

for u(x) = t > 0. In particular, from the regularity of ∂iu/∂nu given by (6.4), we
obtain ν is Cα on these level sets; that is, |ν(x) − ν(y)| ≤ C|x − y|α whenever
x, y ∈ {u = t} ∩Br. Now let t ↓ 0 and we are done. �

7. Estimates in C1,α domains

Once we know that the free boundary is C1,α around regular points, we need to
find the expansion of the solution (1.5) around such points. To do so, we establish
fine boundary regularity estimates for solutions to elliptic problem with critical drift
in arbitrary C1,α domains. That is the aim of this section.

The main result of this section is the following, for the Dirichlet problem with
the operator −L + b · ∇ in C1,α domains. We will use it on the derivatives of the
solution to the obstacle problem.

Theorem 7.1. Let L be an operator of the form (1.7)-(1.8), let b ∈ Rn and let Ω
be a C1,α domain.

Let f ∈ L∞(Ω ∩B1), and suppose u ∈ L∞(Rn) satisfies{
(−L+ b · ∇)u = f in Ω ∩B1

u = 0 in B1 \ Ω.
(7.1)

Then, for each boundary point x0 ∈ B1/2 ∩ ∂Ω, there exists a constant Q with

|Q| ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(Ω∩B1)

)
such that for all x ∈ B1∣∣∣u(x)−Q

(
(x− x0) · ν(x0)

)γ̃(x0)

+

∣∣∣ ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(Ω∩B1)

)
|x− x0|γ̃(x0)+σ,

where σ > 0 and ν(x0) is the normal unit vector to ∂Ω at x0 pointing towards the
interior of Ω, and γ̃(x0) is defined in (1.10). The constant C depends only on n, α,
Ω, the ellipticity constants, and ‖b‖; and the constant σ depends only on n, α, the
ellipticity constants, and ‖b‖.

To prove Theorem 7.1 we will need several ingredients.
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7.1. A supersolution and a subsolution. In this section we denote

d(x) := dist(x,Rn \ Ω).

We will also use the following.

Definition 7.2. Given a C1,α domain Ω, we consider % a regularised distance func-
tion to C1,α; i.e., a function that satisfies

K̃−1d ≤ % ≤ K̃d,

‖%‖C1,α(Ω) ≤ K̃ and |D2%| ≤ K̃dα−1,

where the constant K̃ depends only on α and the domain Ω.

The existence of such regularised distance was discussed, for example, in [RS15,
Remark 2.2].

We next construct a supersolution, needed in our proof of Theorem 7.1.

Proposition 7.3 (Supersolution). Let L be an operator of the form (1.7)-(1.8), and
let b ∈ Rn. Let Ω be a C1,α domain for some α > 0, and suppose 0 ∈ ∂Ω.

Let ν : ∂Ω→ Sn−1 be the outer normal vector at the points of the boundary of Ω,
let γ be defined by (2.1), and χ by (1.11). Let us also define

γ0 := γ

(
b · ν(0)

χ(ν(0))

)
,

and

ην := inf

{
η ≥ 0 : γ

(
b · ν(x)

χ(ν(x))

)
≥ γ0 − η ∀x ∈ ∂Ω ∩B1

}
. (7.2)

Let φ := %κ for a fixed 0 < κ < γ0 − 2ην, and where % is the regularised distance
given by Definition 7.2. Then, there exist δ > 0 and Ĉ > 0 such that{

Ĉ(−L+ b · ∇)φ ≥ 1 in B1/2 ∩ {x : 0 < d(x) ≤ δ}
Ĉφ ≥ 1 in B1/2 ∩ {x : d(x) ≥ δ}. (7.3)

The constants δ and Ĉ depend only on n, Ω, κ, the ellipticity constants, and ‖b‖.
Proof. Pick any x0 ∈ B1/2 ∩ {x : d(x) ≤ δ}, and define

l0(x) =
(
%(x0) +∇%(x0) · (x− x0)

)
+
.

Notice that, whenever l0 > 0, if we define %̂0 := ∇%(x0)
|∇%(x0)| and z = %̂0 · x then

(−L+ b · ∇)lκ0 (x) =
(
χ(%̂0)(−∆)1/2 + (b · %̂0) ∂

) (
|∇%(x0)|z + c0

)κ
+

= |%(x0)|χ(%̂0)c
(
κ, b · %̂0/χ(%̂0)

)(
|∇%(x0)|z + c0

)κ−1

+
,
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where c0 = %(x0) − ∇%(x0) · x0, and c(κ, b · %̂0/χ(%̂0)) is the constant arising from
Proposition 2.4. We want to check that this constant is positive, which is equivalent
to saying (again, from Proposition 2.4) that

κ < γ

(
b · %̂0

χ(%̂0)

)
.

To see this, it is enough to check that

γ0 − 2ην ≤ γ

(
b · %̂0

χ(%̂0)

)
,

which will be true for some small δ > 0 and for any x0 ∈ B1/2 ∩ {x : d(x) ≤ δ} if

lim
δ↓0

inf
y∈B1/2

0<d(y)≤δ

sup
x∈∂Ω∩B3/4

∇%(y)

|∇%(y)| · ν(x) = 1,

i.e., ∇% normalised is close to some unit normal vector to the boundary as δ goes to
zero (notice that γ and χ are continuous). But this is true since % is a C1,α function,
so in particular, its gradient is continuous, and the boundary is a level set of %; i.e.,
∇%(y) = |∇%(y)|ν(y) for any y on the boundary. It is important to remark that the
modulus of continuity of ∇% depends only on Ω.

Now notice that

l0(x0) = %(x0) ∇l0(x0) = ∇%(x0). (7.4)

Let %̃ be a C1,α(Rn) extension of % to the whole Rn with % ≤ 0 in Rn \ Ω. Then we
have ∣∣%(x0) +∇%(x0) · y − %̃(x0 + y)

∣∣ ≤ C|y|1+α.

By using that |a+ − b+| ≤ |a− b| we find∣∣l0(x0 + y)− %(x0 + y)
∣∣ ≤ C|y|1+α.

Now, also using that |at−bt| ≤ |a−b|(at−1 +bt−1) for a, b ≥ 0, |at−bt| ≤ C|a−b|t,
and saying d0 = d(x0) we get

|φ− lκ0 |(x0 + y) ≤


Cdκ−1

0 |y|1+α for y ∈ Bd0/(K̃+1)

C|y|(1+α)κ for y ∈ B1 \Bd0/(K̃+1)

C|y|κ for y ∈ Rn \B1.

(7.5)
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We have used here that, in Bd0/(K̃+1), l
κ−1
0 ≤ Cdκ−1

0 and %κ−1 ≤ Cdκ−1
0 . Here, K̃

denotes the constant given in Definition 7.2. Putting all together

(−L+b · ∇)φ(x0) =

= (−L+ b · ∇)(φ− lκ0 )(x0) + (−L+ b · ∇)lκ0 (x0)

≥ L(lκ0 − φ)(x0) + c(κ)dκ−1
0

=

∫
Sn−1

∫ ∞
0

((lκ0 − φ)(x0 + rθ) + (lκ0 − φ)(x0 − rθ))
dr

r2
dµ(θ) + c(κ)dκ−1

0

≥ −C
(∫ d0/(K̃+1)

0

dκ−1
0 r1+α

r2
dr +

∫ 1

d0/(K̃+1)

r(1+α)κ

r2
dr +

∫ ∞
1

rκ

r2
dr

)
+ c(κ)ρκ−1

≥ −Cdκ−1+α
0 − Cd(1+α)κ−1

0 + c(κ)dκ−1
0 .

Notice that the right-hand side tends to +∞ as δ ↓ 0 independently of the x0

chosen. Thus, we can choose δ small enough so that the right-hand side is greater
than 1. Then, by choosing Ĉ ≥ 1 such that Ĉφ ≥ 1 in B1/2 ∩ {x : d(x) > δ} we are
done. �

We can similarly find a subsolution for the problem. It will be used in the next
section.

Lemma 7.4 (Subsolution). Let L be an operator of the form (1.7)-(1.8), and let
b ∈ Rn. Let Ω be a C1,α domain for some α > 0, and suppose 0 ∈ ∂Ω.

Let ν : ∂Ω→ Sn−1 be the outer normal vector at the points of the boundary of Ω,
let γ be defined by (2.1), and χ by (1.11). Let us also define

γ0 := γ

(
b · ν(0)

χ(ν(0))

)
,

and

η(2)
ν := inf

{
η ≥ 0 : γ

(
b · ν(x)

χ(ν(x))

)
≤ γ0 + η ∀x ∈ ∂Ω ∩B1

}
. (7.6)

Let φ := %κ2 for any fixed 1 > κ2 > γ0 + 2η
(2)
ν . Then, there exist δ > 0 and Ĉ > 0

such that {
(−L+ b · ∇)φ ≤ −1 in B1/2 ∩ {x : 0 < d(x) ≤ δ}

φ ≤ Ĉ in B1/2 ∩ {x : d(x) > δ}. (7.7)

The constants δ and Ĉ depend only on n, Ω, κ2, the ellipticity constants, and ‖b‖.
Proof. The proof follows by the same steps as the proof of Proposition 7.3. Using
the same notation, one just needs to notice that when evaluating

(−L+ b · ∇)lκ2
0 (x) = c

(
κ2, b · %̂0/χ(%̂0)

)(
|∇%(x0)|z + c0

)κ2−1

+
,

now the constant c(κ2) is negative (independently of the κ2 chosen, as before). Thus,

(−L+ b · ∇)φ(x0) ≤ Cdκ2−1+α
0 + Cd

(1+α)κ2−1
0 + c(κ)dκ2−1

0 ,
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for negative c(κ2), so that if d0 is small enough we obtain the desired result. �

7.2. Hölder continuity up to the boundary in C1,α domains. The aim of this
subsection is to prove Proposition 7.6 below. Before doing that, let us introduce a
definition.

Definition 7.5. We say that Γ ⊂ Rn is a C1,α graph splitting B1 into U+ and U−

if there exists some fΓ ∈ C1,α(Rn−1) such that

• Γ := {(x′, fγ(x′)) ∩B1 for x′ ∈ Rn−1};
• U+ := {(x′, xn) ∈ B1 : xn > fΓ(x′)};
• U− := {(x′, xn) ∈ B1 : xn < fΓ(x′)}.
Under these circumstances, we refer to the C1,α norm of Γ as ‖fΓ‖C1,α(D′), where
D′ := {x′ ∈ Rn : (x′, fΓ(x′)) ∈ B1}.
Proposition 7.6. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
Γ be a C1,α graph splitting B1 into U+ and U−, according to Definition 7.5, and
suppose 0 ∈ Γ.

Let f ∈ L∞(U+), let g ∈ Cβ(U−), and suppose u ∈ C(B1) satisfying the growth
condition |u(x)| ≤M(1 + |x|)Υ in Rn for some Υ < 1. Assume also that u satisfies
in the viscosity sense {

(−L+ b · ∇)u = f in U+

u = g in U−.
(7.8)

Then there exists some σ > 0 such that u ∈ Cσ(B1/2) with

‖u‖Cσ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g‖Cβ(U−) + ‖f‖L∞(U+) +M

)
.

The constants C and σ depend only on n, α, the C1,α norm of Γ, Υ, the ellipticity
constants, and ‖b‖.
Proof. Let ũ = uχB1 so that (−L + b · ∇)ũ = f + L(uχBc1) =: f̃ in U+ ∩ B3/4,

and ũ = g in U−. Note that ‖f̃‖L∞(U+∩B3/4) ≤ C(‖f‖L∞(U+) + M) =: C0 for some
constant C depending only on n, Υ, and the ellipticity constants.

We begin by proving that for some small ε > 0, and for some C, we have

‖ũ− g(z)‖L∞(Br(z)) ≤ Crε for all r ∈ (0, 1), and for all z ∈ Γ ∩B1/2, (7.9)

where ε > 0 and C depend only on n, C0, ‖u‖L∞(B1), ‖g‖Cβ(U−), the ellipticity
constants, and ‖b‖.

Let us define a C1,α domain that will be used in this proof, analogous to a fixed
ball if the surface Γ was C1,1.

Thus, we define P as a fixed C1,α bounded convex domain with diameter 1 that
coincides with {x = (x1, . . . , xn) ∈ Rn : xn ≥ |(x1, . . . , xn−1)|1+α} in B1/2. Let yP
be a fixed point inside the domain, which will be treated as the center. Let us call
PR the rescaled version of such domain with diameter R and center yPR , and let us
define

P
(δ)
R := {x ∈ Rn : dist(x, PR) ≤ δ}.
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B1/2

Γ

U+

U−

P
(Rδ)
R

O
z

yPR

PRu = g

(−L + b · ∇)u = f

Figure 7.1.

As an abuse of notation we will also call PR any rotated and translated version that
will be given by the context.

Note that, since Γ is C1,α, there exists some ρ0 ∈ (0, 1) depending on the C1,α

norm of Γ such that any point z ∈ Γ∩B1/2 can be touched by some Pρ0 rotated and
translated correspondingly and contained completely in U−.

Let us now consider the supersolution given by Proposition 7.3 with respect to
the domain Rn \ P .

That is, there is some function φP such that, for some constants δ > 0 and C
fixed, 

(−L+ b · ∇)φP ≥ 1 in P (δ) \ P
φP ≥ 1 in Rn \ P (δ)

φP = 0 in P
φP ≤ Cdκ in Rn,

(7.10)

where d = dist(x, P ) and 0 < κ < min
{
γ
(
b′·e
χ(e)

)
: ‖b′‖ = ‖b‖, e ∈ Sn−1

}
can also be

fixed — recall that γ and χ are given by (2.1)-(1.11).
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Let P ′ be a rotated version of P , and let φP ′ be the corresponding rotated super-
solution. Notice that we can assume that φP ′ also fulfils (7.10) (with P ′ instead of
P ), since while the operator (−L + b · ∇) is not rotation invariant, only an extra
positive constant arises depending on the ellipticity constants and ‖b‖.

Given a rotated, scaled and translated version of the domain P , PR, we will denote
the corresponding supersolution (the rotated, scaled and translated version of φP )
by φPR .

Let now z ∈ Γ∩B1/2. For any R ∈ (0, ρ0) there exists some rescaled, rotated and
translated domain PR ⊂ U− touching Γ at z. Recall that yPR is the center of the
domain PR, so that in particular |z − yPR | = CPR for some constant CP that only
depends on the domain P chosen (CP ∈ (0, 1) because the domain PR has diameter
R). See Figure 7.1 for a representation of this situation.

Recall that φPR is the supersolution corresponding to the domain PR, with the δ
given by Proposition 7.3 (now, when rescaling, δ becomes Rδ). Define the function

ψ(x) = g(yPR) + ‖g‖Cβ(U−)

(
(1 + δ)R

)β
+
(
C0 + ‖u‖L∞(B1)

)
φPR .

Note that ψ is above ũ in U− ∩ P (Rδ)
R , since ũ = g there and the distance from

yPR to any other point in P
(Rδ)
R is at most (1 + δ)R.

On the other hand, in P
(Rδ)
R \PR we have (−L+ b ·∇)ψ ≥ (C0 +‖u‖L∞(B1))R

−1 ≥
C0 ≥ (−L + b · ∇)ũ since R ≤ ρ0 < 1; and outside P

(Rδ)
R we have ũ ≤ ψ. In all,

ũ ≤ ψ everywhere by the maximum principle, and thus for any R ∈ (0, ρ0)

ũ(x)− g(z) ≤ C
(
Rβ + (r/R)κ

)
for all x ∈ Br(z) and for all r ∈ (0, Rδ),

for some constant C that depends only on n, C0, ‖u‖L∞(B1), ‖g‖Cβ(U−), the ellipticity
constants, and ‖b‖. If R is small enough we can take r = R2, and repeat this
reasoning upside down to get that

‖ũ− g(z)‖L∞(Br(z)) ≤ C
(
rβ/2 + rκ/2

)
≤ Crε for all r ∈ (0, δ2),

for ε = min
{
β
2
, κ

2

}
. This yields the result (7.9) by taking a larger C if necessary.

Now let x, y ∈ B1/2, and let r = |x− y|. We will show

|u(x)− u(y)| ≤ Crσ,

for some σ > 0. If x, y ∈ U− we are done by the regularity of g. If x ∈ U+, y ∈ U−,
we can take z in the segment between x and y, on the boundary Γ, and compare x
and y to z, so that it is enough to consider x, y ∈ U+.

Let R = dist(x,Γ) ≥ dist(y,Γ), and suppose x0, y0 ∈ Γ are such that dist(x,Γ) =
dist(x, x0) and dist(y,Γ) = dist(y, y0). By interior estimates for the problem (see
Proposition 2.1),

[u]Cε(BR/2(x)) ≤ CR−ε. (7.11)

Let r < 1, and let us separate two different cases
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• Suppose r ≥ R2/2. Then, using (7.9) and the regularity of g we obtain

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(x0)− u(y0)|+ |u(y0)− u(y)|
≤ CRε + C(2R + r)β

≤ C(rε/2 + rβ/2) ≤ Crε/2.

• Assume r ≤ R2/2, so that y ∈ BR/2(x). Thus, using (7.11),

|u(x)− u(y)| ≤ CR−εrε ≤ Crε/2.

In all, we have found u ∈ Cσ(B1/2) for σ = ε/2. �

Remark 7.7. When U is C∞, the above Hölder estimate follows from the results in
[S94], [CD01]. We thank G. Grubb for pointing this out to us.

7.3. A Liouville theorem. We next prove a Liouville-type theorem in the half-
space for non-local operators with critical drift, that will be used to prove Theo-
rem 7.1.

Theorem 7.8. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let u
be any weak solution to{

(−L+ b · ∇)u = 0 in Rn
+

u = 0 in Rn
−.

(7.12)

Assume also that for some ε > 0 and some constant C, u satisfies

‖u‖L∞(BR) ≤ CR1−ε for all R ≥ 1.

Then,

u(x) = C(xn)
γ(bn/χ)
+ , (7.13)

for some C > 0, and where bn is the n-th component of b. The constant χ is defined
by χ = χ(en) where χ(e) is given by (1.11), and γ is given by (2.1).

Before proving the Liouville theorem, let us prove it in the 1-dimensional case.
Notice that from Proposition 4.2 it already follows that any non-negative solution

must be either u ≡ 0 or the one found in Proposition 2.4. Here, however, we need
the same result for solutions that may change sign.

Proposition 7.9. Let b ∈ R, and let u ∈ C(R) be a function satisfying

(−∆)1/2u+ bu′ = 0 in R+, u ≡ 0 in R−,

and |u(x)| ≤ C(1 + |x|1−ε) for some ε > 0. Then,

u(x) = C0(x+)γ(b),

where γ is given by (2.1).
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Proof. We first claim that ∥∥u/(x+)γ(b)
∥∥
Cσ([0,1])

≤ C (7.14)

for some σ > 0.
Indeed, let

w = χ[0,2]u+ κχ[3/2,2],

and recall that, for some Ĉ,

‖u‖L∞([0,R]) ≤ ĈR1−ε.

Notice that w(0) = 0, and that w ≤ C0(x)
γ(b)
+ for x ≥ 1, if C0 is big enough

depending only on κ and Ĉ. Choose κ so that (−∆)1/2w ≤ 0 in [0, 1] so that by the

maximum principle u = w ≤ C0(x)
γ(b)
+ in [0, 1]. Doing the same for −u we reach

that
|u| ≤ C0(x)

γ(b)
+ for x ∈ [0, 1].

Define now ũ = uχ(0,m) + M(x+)γ(b), where M = M(m) is such that ũ ≥ 0 in

(0,m). Notice that ũ solves an equation of the form (−∆)1/2ũ + bũ′ = fm(x) in
(0, 1) for some bounded fm with ‖fm‖L∞(0,1) ↓ 0 as m → ∞. We can now apply

Theorem 2.3 with ũ and (x+)γ(b) to get that for some large enough m,∥∥ũ/(x+)γ(b)
∥∥
Cσ([0,1])

≤ C,

for some σ > 0. Thus, we get (7.14).

Define v = u− k(x+)γ(b), where k = limx↓0
u(x)

(x+)γ(b) . Then we have

|v(x)| ≤ C|x|1−ε for x ≥ 1, (7.15)

|v(x)| ≤ C|x|γ(b)+σ for x ∈ [0, 2], (7.16)

and we can assume, without loss of generality, that 1 − ε > γ(b) + σ. Combining
this with the interior estimates from Proposition 2.1 we obtain v ∈ Cγ(b)+σ([0, 1]).
Indeed, take x, y ∈ [0, 1], x < y. Let r = y−x and R = |y|. Now separate two cases

• If 2r ≥ R, by (7.16)

|v(x)− v(y)| ≤ |v(x)|+ |v(y)| ≤ C(|x|γ(b)+σ + |y|γ(b)+σ)

≤ C
(
(R− r)γ(b)+σ +Rγ(b)+σ

)
≤ Crγ(b)+σ.

• If 2r < R, then x, y ∈ (y − R/2, y + R/2). By rescaling the estimates from
Proposition 2.1 and using (7.15)

Rγ(b)+σ[v]Cγ(b)+σ(y−R2 ,y+R
2 ) ≤ C

(
‖v‖L∞(y−R,y+R) +R1−ε) .

Now, from (7.16)

‖v‖L∞(y−R,y+R) ≤ CRγ(b)+σ,

so that
[v]Cγ(b)+σ(y−R2 ,y+R

2 ) ≤ C.
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This implies
‖v‖Cγ(b)+σ([0,1]) ≤ C,

as desired.
Now, we claim that using the interior estimates from Proposition 2.1 we obtain

|v′(x)| ≤ C|x|−ε for x ≥ 1, (7.17)

and
|v′(x)| ≤ C|x|γ(b)+σ−1 for x ∈ [0, 1]. (7.18)

Let us show that these last inequalities hold. The first one, (7.17), follows using
that |v(x)| ≤ C(1+|x|1−ε), and that (7.15)-(7.16) combined with the rescaled interior
estimates in Proposition 2.1 yield

[v]Cγ(b)+σ(R,2R) ≤ CR1−ε−γ(b)−σ for R ≥ 1. (7.19)

Indeed, take 0 < α < γ(b) + σ, and any h ∈ R with |h| ≤ R/2. Then by interior
estimates applied to the incremental quotients,[

v(x+ h)− v(x)

|h|γ(b)+σ

]
C1−α(R,2R)

≤ CRα−ε−γ(b)−σ for R ≥ 1,

with C independent of the h chosen. In particular, this yields

[v′]Cγ(b)+σ−α(R,2R) ≤ CRα−ε−γ(b)−σ for R ≥ 1.

The inequality in (7.17) now follows comparing the value of v′(2k) for any k ∈ N
with v′(1) dyadically.

For the second inequality, (7.18), we proceed similarly. Take 0 < α < γ(b) + σ,
and for any R > 0 fixed take |h| ≤ R/2 and notice that[

v(x+ h)− v(x)

|h|γ(b)+σ

]
C1−α(R,2R)

≤ CRα−1 for 0 < R < 1, (7.20)

with C independent of h. This follows from the interior estimates in Proposition 2.1

and the growth of v(x+h)−v(x)

|h|γ(b)+σ given by (7.19). As before, this implies

[v′]Cγ(b)+σ−α(R,2R) ≤ CRα−1 for 0 < R < 1.

Finally, the inequality (7.18) follows comparing the value of v′(2−k) with v′(1) dyad-
ically. Thus, (7.17) and (7.18) are proved.

Define now the function

ψA(x) = A
(
(x+)γ(b) + (x+)γ(b)−1

)
,

and notice that ψA and v′ solve

(−∆)1/2ψA + bψ′A = 0 in x > 0, (7.21)

(−∆)1/2v′ + b(v′)′ = 0 in x > 0. (7.22)

We have that ψA > v′ in {x > 0} for some large enough A, thanks to the growth
of v′ in (7.17)-(7.18). Choose the smallest nonnegative A such that ψA ≥ v′. Then,
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by the growth at zero and infinity of both v′ and ψA they touch at some point in
(0,∞). Moreover, if A > 0, then we must have ψA 6≡ v′.

Let x0 > 0 be a point where ψA(x0) = v′(x0). Notice that ψA−v′ is a non-negative
(and non-zero) function with a minimum at x0. Thus,(

(−∆)1/2(ψA − v′) + b(ψA − v′)′
)
(x0) = (−∆)1/2(ψA − v′)(x0) < 0,

which contradicts the fact that both ψA and v′ are solutions to the problem, (7.21)-
(7.22). Thus, there is no positive A such that ψA and v′ touch at at least one point,
so we must have v′ ≤ 0. Doing the same from below we reach v′ ≥ 0, and therefore
v′ ≡ 0. Hence, since u(0) = 0 we find v ≡ 0. In particular, this means that

u = k(x+)γ(b),

as desired. �

We can now prove the Liouville theorem.

Proof of Theorem 7.8. Let us first see that the solution is 1-dimensional in the di-
rection en.

Given ρ ≥ 1, define

vρ(x) = ρ−ε+1u(ρx).

Notice that

‖vρ‖L∞(BR) = ρ−ε+1‖u(ρ·)‖L∞(BR) = ρ−ε+1‖u‖L∞(BρR) ≤ CR1−ε.

Moreover, by the homogeneity of (−L+ b · ∇),{
(−L+ b · ∇)vρ = 0 in Rn

+

vρ = 0 in Rn
−.

(7.23)

Define now ṽρ = vρχB2 , so that ṽρ ∈ L∞(Rn). We now have{
(−L+ b · ∇)ṽρ = gρ in B+

1

ṽρ = 0 in B−1 ,
(7.24)

for some gρ with ‖gρ‖L∞(B+
1 ) ≤ C0 with C0 independent of ρ. Indeed,

(−L+ b · ∇)ṽρ = (−L+ b · ∇)(vρ − vρχBc2) = L(vρχBc2) ≤ C0 in B+
1 ,

where the last inequality follows thanks to the uniform growth control on vρ.
Now, by Proposition 7.6,

‖vρ‖Cσ(B1/2) = ‖ṽρ‖Cσ(B1/2) ≤ C,

from which

[u]Cσ(Bρ/2) = ρ−σ[u(ρ·)]Cσ(B1/2) = ρ−σ+1−ε[vρ]Cσ(B1/2) ≤ Cρ−σ+1−ε. (7.25)

Now, given e ∈ Sn−1 with en = 0, and for any h > 0, define

w(x) =
u(x+ eh)− u(x)

hσ
.
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By (7.25),

‖w‖L∞(BR) ≤ CR−σ+1−ε for all R ≥ 1.

We also have {
(−L+ b · ∇)w = 0 in Rn

+

w = 0 in Rn
−,

(7.26)

thanks to the fact that e does not have component in the n-th direction, en = 0.
Repeat the previous argument applied to w instead of u, to get

[w]Cσ(BR) ≤ CR−2σ+1−ε for all R ≥ 1.

Repeating iteratively we get that, for m = b1−ε
σ

+ 1c, then

[wm]Cσ(BR) ≤ CR−mσ+1−ε for all R ≥ 1,

where wm is an incremental quotient of order m of u. Letting R → ∞ we observe
that wm ≡ 0.

Since wm is any incremental quotient of order m, this means that for any fixed
x, qx(y

′) := u(x + (y′, 0)) for y′ ∈ Rn−1 is a polynomial of order m − 1 in the y′

variables. However, from the growth condition on u the polynomial must grow less
than linearly at infinity, and therefore it is constant. This means that for any x,
u(x + eh) = u(x) for all h ∈ R and for all e ∈ Sn−1 with en = 0; i.e., u(x) = u(xn),
as we wanted to see.

Now we can proceed as in the proof of the classification theorem, Theorem 4.1,
and use the classification of 1-dimensional solutions from Proposition 7.9. �

7.4. Proof of Theorem 7.1. We now prove the following result, which will directly
yield Theorem 7.1. For this, we combine the ideas in [RS16] with Propositions 7.6
and 7.9.

Proposition 7.10. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn.
Let Γ be a C1,α graph splitting B1 into U+ and U− (see Definition 7.5), and suppose
0 ∈ Γ and that ν(0) = en, where ν(0) is the normal vector to Γ at 0 pointing towards
U+.

Let f ∈ L∞(U+), and suppose u ∈ L∞(Rn) satisfies{
(−L+ b · ∇)u = f in U+

u = 0 in U−.
(7.27)

Let us denote γ := γ
(

b·ν(0)
χ(ν(0))

)
= γ(bn/χ(en)) and χ = χ(en) as defined in

(2.1)-(1.11), and suppose that γ ∈
[
γ0, γ0

(
1 + α

8

)]
for some γ0 ∈ (0, 1) such that

γ0

(
1 + α

4

)
< 1. Suppose also that ην as defined in (7.2) satisfies ην ≤ αγ0

64
, and let

Υ = γ0

(
1 + α

4

)
.

Then, there exists Q with |Q| ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(U+)

)
such that∣∣u(x)−Q(xn)γ+

∣∣ ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(U+)

)
|x|Υ for all x ∈ B1,
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where the constant C depends only on n, α, the C1,α norm of Γ, γ0, the ellipticity
constants, and ‖b‖.

Before proving the previous result let us state a useful lemma. It can be found in
[RS16, Lemma 5.3].

Lemma 7.11 ([RS16]). Let 1 > Υ > β0 ≥ β and ν ∈ Sn−1 some unit vector. Let
u ∈ C(B1) and define

φr(x) := Q∗(r)(x · ν)β+,

where

Q∗(r) := arg minQ∈R

∫
Br

(
u(x)−Q(x · ν)β+

)2
dx =

∫
Br
u(x)(x · ν)β+dx∫
Br

(x · ν)2β
+ dx

.

Assume that for all r ∈ (0, 1) we have

‖u− φr‖L∞(Br) ≤ C0r
Υ.

Then, there is Q ∈ R with |Q| ≤ C(C0 + ‖u‖L∞(B1)) such that

‖u−Q(x · ν)β+‖L∞(Br) ≤ CC0r
Υ

for some constant C depending only on Υ and β0.

We can now prove Proposition 7.10.

Proof of Proposition 7.10. Let us argue by contradiction. Suppose that there are
sequences Γi, U

+
i , U−i , Li, bi, ui, and fi that satisfy the assumptions

• Γi is a C1,α graph with bounded C1,α norm independently of i, splitting
B1 into U+

i and U−i with 0 ∈ Γi and with en being the normal vector at 0
pointing towards U+

i .
• Li are of the form (1.7)-(1.8), and ‖bi‖ = ‖b‖;
• For each Γi, the corresponding ην as defined in (7.2) fulfils ην ≤ (αγ0)/64;
• ‖ui‖L∞(Rn) + ‖fi‖L∞(U+) = 1;
• ui solves (−Li + bi · ∇)ui = fi in U+

i , ui = 0 in U−i ;
• If we define γi := γ(bi ·en/χi) with γ as in (2.1) and χi = χi(en) as in (1.11)

with the operator Li, then γi ∈ [γ0, γ0(1 + α/8)];

but they are such that for all C > 0 there exists some i such that there is no constant
Q satisfying ∣∣ui(x)−Q(xn)γi+

∣∣ ≤ C|x|Υ for all x ∈ B1.

Step 1: Construction and properties of the blow up sequence.
Let us denote

φi,r := Qi(r)(xn)γi+ ,

where

Qi(r) := arg minQ∈R

∫
Br

(ui(x)−Q(xn)γi+ )2dx =

∫
Br
ui(x)(xn)γi+dx∫
Br

(xn)2γi
+ dx

.
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From Lemma 7.11 with β = γi and β0 = γ0(1 + α/8) we have that

sup
i

sup
r>0

{
r−Υ‖ui − φi,r‖L∞(Br)

}
=∞.

Define the monotone function

θ(r) := sup
i

sup
r′>r

{
(r′)−Υ‖ui − φi,r′‖L∞(Br′ )

}
.

Note that for r > 0, θ(r) < ∞, and θ(r) → ∞ as r ↓ 0. Now take a sequences
rm ↓ 0 and im such that

(rm)−Υ‖uim − φim,rm‖L∞(Brm ) ≥
θ(rm)

2
,

and denote φm = φim,rm .
Consider now

vm(x) =
uim(rmx)− φm(rmx)

rΥ
mθ(rm)

.

By definition of φm we have the orthogonality condition for all m ≥ 1,∫
B1

vm(x)(xn)γi+dx = 0. (7.28)

Note that also from the choice of rm we have a nondegeneracy condition for vm,

‖vm‖L∞(B1) ≥
1

2
. (7.29)

From the definition of φi,r, φi,2r − φi,r =
(
Qi(2r)−Qi(r)

)
(xn)γi+ so that

|Qi(2r)−Qi(r)|rγi = ‖φi,2r − φi,r‖L∞(Br)

≤ ‖φi,2r − u‖L∞(B2r) + ‖φi,r − u‖L∞(Br) ≤ CrΥθ(r).

Proceeding inductively, if R = 2N , then

rγi−Υ|Qi(Rr)−Qi(r)|
θ(r)

≤
N−1∑
j=0

2j(Υ−γi)
(2jr)

γi−Υ|Qi(2
j+1r)−Qi(2

jr)|
θ(r)

≤ C

N−1∑
j=0

2j(Υ−γi)
θ(2jr)

θ(r)
≤ C2N(Υ−γi) = CRΥ−γi .

(7.30)

Thus, we obtain a bound on the growth control of vm given by

‖vm‖L∞(BR) ≤ CRΥ for all R ≥ 1. (7.31)
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Indeed,

‖vm‖L∞(BR) =
1

θ(rm)rΥ
m

‖ui −Qim(rm)(xn)γi+‖L∞(Rrm)

≤ 1

θ(rm)rΥ
m

‖ui −Qim(Rrm)(xn)γi+‖L∞(Rrm)+

+
1

θ(rm)rΥ
m

|Qim(Rrm)−Qim(rm)|(Rrm)γi

≤ RΥθ(Rrm)

θ(rm)
+ CRΥ,

and the result follows from the monotonicity of θ.
Notice also that the previous computation in (7.30) also gives a bound for Qi(r)

given by

|Qi(r)| ≤ Cθ(r), (7.32)

which follows by putting R = r−1.
Step 2: Convergence of the blow up sequence.
In this second step we show that vm converges locally uniformly in Rn to some

function v satisfying {
(−L̃+ b̃ · ∇)v = 0 in Rn

+

v = 0 in Rn
−,

(7.33)

for some operator L̃ of the form (1.7)-(1.8), ‖b̃‖ = ‖b‖.
To do so, define

U+
R,m := BR ∩

(
r−1
m U+

im

)
∩ {xn > 0},

and suppose that it is well defined by assuming m is large enough so that Rrm < 1/2.
Notice that in U+

R,m, vm satisfies an elliptic equation with drift,

(−Lim + bim · ∇)vm(x) =
rm

rΥ
mθ(rm)

fim(rmx) in U+
R,m,

since we know that (−Li + bi · ∇)φm = 0 in {xn > 0}. In particular, since Υ < 1,
the right-hand side converges uniformly to 0 as rm ↓ 0.

We will now show that

‖uim − φm‖L∞(Br∩(U−im∪R
n
−) ≤ Cθ(rm)r(1+α)κ for all r < 1/4, (7.34)

and where the constant C is independent of m, and κ := γ0

(
1− α

16

)
. Notice that

κ < γ0 − 2ην , so that we can use the supersolution from Proposition 7.3 to get

|uim| ≤ C
(
dist(x, U−)

)κ
,

with C depending only on n, the C1,α norm of Γ, α, the ellipticity constants, and
‖b‖. On the other hand, by definition of φm,

|φm(x)| ≤ CQim(rm)
(
dist(x,Rn

−)
)γi ≤ Cθ(rm)

(
dist(x,Rn

−)
)κ

for all x ∈ B1,



THE FRACTIONAL OBSTACLE PROBLEM WITH CRITICAL DRIFT 37

where we used (7.32). Finally, since the domain is C1,α, we have that

dist(x, U−im) ≤ Cr1+α, dist(x,Rn
−) ≤ Cr1+α in Br ∩ (U−im ∪ Rn

−),

where the constant C depends only on the C1,α norm of the domain U+
im

, and
therefore, it is independent of m. Thus, combining the last two expressions we get
(7.34).

Now, from Proposition 7.6 we have

‖uim‖Cσ(B1/8) ≤ C,

uniformly in m, for some σ ∈ (0, γ0).
From the regularity of φm this yields, in particular,

‖uim − φm‖Cσ(Br∩(U−∪Rn−)) ≤ Cθ(rm), (7.35)

where we have used again the bound (7.32).
Thus, interpolating (7.34) and (7.35) there exists some σ0 < σ (depending on σ,

γ0, and α) such that

‖uim − φm‖Cσ0 (Br∩(U−im∪R
n
−)) ≤ Cθ(rm)rΥ.

Notice that we can do so because Υ < κ(1 +α). Scaling the previous expression we
obtain

‖vm‖Cσ0 (BR\U+
R,m) ≤ C(R) for all m with Rrm < 1/4, (7.36)

for some constant C(R) that depends on R, but is independent of m.
We now want to apply Proposition 7.6 to vm, rescaled to balls BR. Recall that

(−Lim + bim · ∇)vm(x) =
rm

rΥ
mθ(rm)

fim(rmx) in U+
R,m,

and vm is Cσ0 outside U+
R,m by (7.36). Notice also that the boundary ∂U+

R,m has C1,α

norm smaller than the C1,α norm of Γ thanks to the fact that we are rescaling with
smaller rm and Rrm < 1/4. Thus, Proposition 7.6 can be applied and we obtain
that there exists some σ′ > 0 small such that

‖vm‖Cσ′ (BR/2) ≤ C(R) for m with Rrm < 1/4.

we have again that the constant C(R) depends on R, but is independent of m; i.e,
we have reached a uniform Cσ′ bound on vm over compact subsets.

Thus, up to taking a subsequence, vm converge locally uniformly to some v.

Step 3: Contradiction. Up to taking a subsequence if necessary, Lim converges
weakly to some operator L̃ of the form (1.7)-(1.8), and bim converges to some b̃

with ‖b̃‖ = ‖b‖. Notice that, in particular, this means that γi converges to some

γ∗ ∈ [γ0, γ0(1 + α/8)], and γ∗ = γ(b̃ · en/χ̃), where χ̃ = χ̃(en) is the associated
constant defined as in (1.11) with the operator L̃.
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On the other hand, the domains U+
im

converge uniformly to Rn
+ over compact

subsets by construction. Thus, passing all this to the limit, we reach that v satisfies
(7.33).

Now, passing the growth control (7.31) to the limit, we reach

‖v‖L∞(BR) ≤ CRΥ for all R ≥ 1,

so that we can apply the Liouville theorem in the half space, Theorem 7.8, to get

v(x) = C(xn)γ∗+ .

Passing to the limit (7.28) and using this last expression, we obtain v ≡ 0. How-
ever, by passing (7.29) to the limit we get

‖v‖L∞(B1) ≥
1

2
,

a contradiction. �

Proof of Theorem 7.1. The result follows from Proposition 7.10 applied to small
enough balls so that the condition on ην is fulfilled. Notice that the constant σ
cannot go to 0, because γ̃(x0) cannot be made arbitrarily small for a given L and
b. �

8. Proof of Theorems 1.1 and 1.3

In this section, we will prove Theorems 1.1 and 1.3. We already know that if x0

is a regular free boundary point, then the free boundary is C1,α in a neighbourhood.
Next, using the results of the previous section, we show that the regular set is open,
and that at any regular free boundary point we have (8.1) below.

Proposition 8.1. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3).

Then the set of regular free boundary points is relatively open. Moreover, around
each regular point x0

0 < cr1+γ̃(x0) ≤ sup
Br(x0)

u ≤ Cr1+γ̃(x0) for all r ≤ 1, (8.1)

for some positive constants c and C depending only on n, ‖b‖, and the ellipticity
constants. Here, γ̃(x0) is given by (1.10) with ν(x0) being the normal vector to the
free boundary at x0 pointing towards {u > 0}.
Proof. Suppose without loss of generality that x0 = 0 and ν(x0) = en. The free
boundary, Γ, is C1,α in Br0 for some α, r0 > 0 by Proposition 6.3. Apply now
Theorem 7.1 to the partial derivative ∂nu around points z ∈ Br0/2 ∩ Γ. We obtain∣∣∣∂nu(x)−Q(z)

(
(x− z) · ν(z)

)γ̃(z)

+

∣∣∣ ≤ C|x− z|γ̃(z)+σ, (8.2)

for some σ > 0, and some constant C independent of z.
Step 1: Q is continuous and positive at the origin. Let us first check that Q is
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a continuous function on the free boundary at 0. Indeed, suppose it is not con-
tinuous, so that there exists a sequence zk → 0 on the free boundary such that
limk→∞Q(zk) = Q̄ 6= Q(0). Then, we have∣∣∣∂nu(x)−Q(zk)

(
(x− zk) · ν(zk)

)γ̃(zk)

+

∣∣∣ ≤ C|x− zk|γ̃(zk)+σ.

Thus, taking limits as k →∞, for any fixed x, we obtain∣∣∣∂nu(x)− Q̄(xn)
γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ.

We have used here that ν and γ̃ are continuous. On the other hand, we had∣∣∣∂nu(x)−Q(0)(xn)
γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ,

so that
|Q̄−Q(0)|(xn)

γ̃(0)
+ ≤ C|x|γ̃(0)+σ.

Now take x = (0, t) ∈ Rn−1 × R for t ∈ R+ and let t → 0. It follows Q̄ = Q(0), a
contradiction; i.e., Q is continuous at 0.

We now prove that Q(0) > 0 (notice that we already know that Q(0) ≥ 0 be-
cause u ≥ 0). To do so, we proceed by creating an appropriate subsolution using
Lemma 7.4.

First of all, consider a fixed bounded strictly convex C1,α domain P ⊂ {u > 0}
touching the free boundary at 0, similar to the domains considered in the proof of
Proposition 7.6. Suppose that P has diameter less than 1, and take an h > 0 such
that, if we denote νP (z) the normal vector to ∂P pointing towards the interior of P
at z ∈ ∂P , then

γ̃h := max

{
γ

(
b · νP (z)

χ(νP (z))

)
for z ∈ ∂P ∩ {xn < h}

}
≤ γ̃(0) +

σ

4
,

where σ is the small constant following from Theorem 7.1 that appears in (8.2). Let
us call

η(h)
ν := γ̃h − γ̃(0) ≥ 0

Such h > 0 exists because P is C1,α, and γ and χ are continuous. Take now

κ = γ̃(0) + 3η
(h)
ν , and let % be a regularised distance to Rn \ P as in Definition 7.2.

In particular, % ≡ 0 in Rn\P . We will see that φ := %κ ≤ C∂nu for an appropriate C.
By Lemma 7.4 used in Bh we get that for some constant δ0 < h/2,

(−L+ b · ∇)φ ≤ −1 in Bh/2 ∩ {x : 0 < d(x,Rn \ P ) ≤ δ0}.
Now, since P is strictly convex, we have that there exists some δP with 0 < δP ≤ δ0

such that
(−L+ b · ∇)φ ≤ −1 in {0 < xn < δP} ∩ P.

Now consider vr as the one defined in Proposition 5.2 (there it is called v),

vr(x) =
u(rx)

r‖∇u‖L∞(Br)

.
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By the same reasoning as in the proof of Proposition 6.1 rescaling to a larger ball
we have that

w̃r = C1(∂nvr)χB2 ≥ 0

for r small enough.
From Proposition 5.2 we can choose r small enough so that for some positive

constant c,

w̃r > c > 0 in P ∩ {xn ≥ δP}.
Moreover, also proceeding as in the proof of Proposition 6.1, (−L+ b ·∇)w̃r > −η

in B1 ∩ {vr > 0} for some arbitrarily small constant η, making r even smaller if
necessary. Thus, we can assume

(−L+ b · ∇)w̃r > −
c̃

2
in B1 ∩ {vr > 0},

for some 0 < c̃ < c to be chosen later.
Now compare the functions φ and c̃−1w̃r. Notice that in Rn \ P , w̃r ≥ φ ≡ 0.

In P ∩ {xn ≥ δP}, c̃ can be chosen small enough depending on δP and P so that
c̃−1w̃r ≥ φ there, because w̃r > c > 0 in P ∩ {xn ≥ δP}. Finally,

(−L+ b · ∇)φ ≤ (−L+ b · ∇)w̃r in {0 < xn < δP} ∩ P.
Thus, by the maximum principle, for this particular r fixed we have that w̃r ≥

c̃φ. Going back to the definition of w̃r, this means that for some ρ and c positive
constants

∂nu(ten) ≥ c%(ten) for 0 < t < ρ.

For ρ small enough, % is comparable to (xn)κ+ along the segment ten, so that we
actually have

∂nu(ten) ≥ ctκ for 0 < t < ρ. (8.3)

Now, if Q(0) = 0 then

|∂nu(x)| ≤ C|x|γ̃(0)+σ.

Since κ < γ̃(0) + σ we get a contradiction with (8.3). Thus, Q(0) > 0.

Step 2: Conclusion of the proof. For z ∈ Γ ∩ Br for r small enough we have that
Q(z) > 0, because Q is continuous and Q(0) > 0. In particular,∣∣∣∂nu(x)−Q(z)

(
(x− z) · ν(z)

)γ̃(z)

+

∣∣∣ ≤ C|x− z|γ̃(z)+σ.

By taking x = z + ten for t > 0 we get∣∣∣∂nu(z + ten)−Q(z)
(
νn(z)t

)γ̃(z)

+

∣∣∣ ≤ Ctγ̃(z)+σ.

Integrating with respect to t from 0 to t′ < 1, using that ∂nu(z) = 0 and νn(z) >
1/2 for r small enough and recalling that Q(z) > 0, we get

u(z + t′en) ≥ ct′1+γ̃(z) > 0,
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so that in particular, z is a regular point; i.e., the set of regular points is relatively
open. Doing the same for z = 0 we get one of the inequalities from (8.1),

sup
Br

u ≥ cr1+γ̃(0) > 0 for all r ≤ 1. (8.4)

On the other hand, we can also find the expansion at 0 for ∂iu for any i ∈
{1, . . . , n}, ∣∣∣∂iu(x)−Qi(xn)

γ̃(0)
+

∣∣∣ ≤ C|x|γ̃(0)+σ.

Therefore,

|∇u(x)| ≤ C
(
|x|γ̃(0) + |x|γ̃(0)+σ

)
.

Integrating, and using ∇u(0) = 0

u(x) ≤ C
(
|x|1+γ̃(0) + |x|1+γ̃(0)+σ

)
,

i.e.,

sup
Br

u ≤ Cr1+γ̃(0) for all r ≤ 1.

Thus, combined with (8.4), this proves (8.1). �

Proposition 8.2. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3) and let x0 be a free boundary regular point. Then

u(x) = c0

(
(x− x0) · ν(x0)

)1+γ̃(x0)

+
+ o

(
|x− x0|1+γ̃(x0)+σ

)
(8.5)

with c0 > 0 and for some σ > 0. Here γ̃(x0) is given by (1.10), with ν(x0) being the
normal vector to the free boundary at 0 pointing towards {u > 0}; and σ depends
only on n, the ellipticity constants, and ‖b‖.
Proof. Assume that x0 = 0 and ν(x0) = en. From the expansions in the proof of
Proposition 8.1 we have

∂iu(x) = Qi(xn)
γ̃(0)
+ + o

(
|x|γ̃(0)+σ

)
, (8.6)

for some Qi, with Qn > 0, and σ > 0. Now, let x = (x′, xn), with x′ ∈ Rn−1 and
xn ∈ R. Integrating the expression (8.6) in the segment with endpoints 0 and (x′, 0)
we get

u(x′, 0) = o
(
|x|1+γ̃(0)+σ

)
.

Then, integrating in the segment with endpoints (x′, 0) and (x′, xn) we find

u(x′, xn) =
Qn

1 + γ̃(0)
(xn)

1+γ̃(0)
+ + o

(
|x|1+γ̃(0)+σ

)
.

Thus, (8.4) is proved. �

We finally can put all elements together to prove our main results, Theorems 1.1
and 1.3.
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Proof of Theorem 1.3. After subtracting the obstacle and dividing by a constant,
we can assume u is a solution to (5.1)-(5.2)-(5.3). Then the result we want is a
combination of Propositions 6.3, 8.1, and 8.2. �

Proof of Theorem 1.1. It is a particular case of Theorem 1.3; we only need to check
that χ ≡ 1. For this, notice that the kernel is constant and given by µ(θ) = cn,1/2,
where the constant cn,s is the one appearing in the definition of fractional Laplacian,

cn,s :=

(∫
Rn

1− cos(x1)

|x|n+2s
dx

)−1

;

see for example [DPV12]. Thus, the value of χ for (−∆)1/2 is

χ(e) =
πcn,1/2

2

∫
Sn−1

|θ · e|dθ.

Notice that, by changing variables to polar coordinates,

c−1
n,1/2 =

∫
Rn

1− cos(x1)

|x|n+1
dx =

∫
Sn−1

∫ ∞
0

1− cos(rθ1)

r2
drdθ =

π

2

∫
Sn−1

|θ1|dθ,

where we have used that
∫∞

0
(1− cos(t))t−2dt = π/2. This immediately yields that

χ ≡ 1 for (−∆)1/2, as desired. �

We next prove the almost optimal regularity of solutions. Given an operator L of
the form (1.7)-(1.8), the associated χ defined as in (1.11), and b ∈ Rn, we define

γ−L,b := inf
e∈Sn−1

γ

(
b · e
χ(e)

)
, (8.7)

where γ is given by (2.1). Notice that γ−L,b ∈ (0, 1/2].

Proposition 8.3. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be a solution to (5.1)-(5.2)-(5.3). Then, for any ε > 0,

‖u‖
C

1,γ−
L,b
−ε

(Rn)
≤ Cε,

where the constant Cε depends only on n, L, b, and ε. The constant γ−L,b is given by
(8.7).

Proof. In order to prove the bound we first check the growth of the solution at the
free boundary, and then we combine it with interior estimates.

For simplicity, we will denote γε = γ−L,b − ε.
Step 1: Growth at the free boundary. We first prove that, if 0 is a free boundary

point, then

sup
r>0

‖∇u‖L∞(Br)

rγε
≤ C, (8.8)

for some constant C depending only on n, L, b, and ε.
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We proceed by contradiction, using a compactness argument. Suppose that it is
not true, so that there exists a sequence of functions uk, fk, with ‖uk‖C1,τ ≤ 1 for
some τ > 0 fixed and ‖fk‖C1(Rn) ≤ 1, such that

uk ≥ 0 in Rn

(−L+ b · ∇)uk ≤ fk in Rn

(−L+ b · ∇)uk = fk in {uk > 0}
D2uk ≥ −1 in Rn,

(8.9)

but uk are such that

θ(r) := sup
i

sup
r′>r

(r′)−γε‖∇uk‖L∞(Br′ )
→∞ as r ↓ 0.

Notice that for r > 0, θ(r) <∞ and that θ is a monotone function, with θ(r)→∞
as r ↓ 0. Now take sequences rm ↓ 0 and im such that

r−γεm ‖∇uim‖ ≥
θ(rm)

2
,

and define the functions

vm(x) :=
uim(rmx)

r1+γε
m θ(rm)

.

Notice that

‖∇vm‖L∞(B1) ≥
1

2
, (8.10)

and

D2vm ≥ −
r1−γε
m

θ(rm)
in Rn, |(L+ b∇)(∇vm)| ≤ r1−γε

m

θ(rm)
in {vm > 0}. (8.11)

On the other hand,

‖∇vm‖L∞(BR) =
‖∇uim‖L∞(BRrm )

rγεm θ(rm)
≤ Rγε

θ(Rrm)

θ(rm)
≤ Rγε for R ≥ 1. (8.12)

Therefore, noticing that r1−γε
m /θ(rm)→ 0 asm→∞, we can apply Proposition 3.3

to deduce that, for some τ > 0 independent of m,

‖vm‖C1,τ (BR) ≤ C(R),

for some constant depending on R, C(R). Let us take limits as m→∞. By Arzelà-
Ascoli, vm converges, up to taking a subsequence, in C1

loc(Rn) to some v∞. By taking
to the limit the properties (8.11)-(8.12) we reach that v∞ should be a convex global
solution. By the classification theorem, Theorem 4.1, we have that either v ≡ 0

v∞(x) = C(e · x)
1+γ(b·e/χ(e))
+ for some e ∈ Sn−1,

where γ and χ are given by (2.1)-(1.11). Notice, however, that taking (8.12) to the
limit, v∞ grows at most like γε, and by definition γ(b · e/χ(e)) > γε. Therefore, we
must have v∞ ≡ 0. But this is a contradiction with (8.10) in the limit. Therefore,
we have proved (8.8).
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Step 2: Conclusion. Let us combine the previous growth with interior estimates
to obtain the desired result.

Let x, y ∈ Rn, let r = |x − y| and R = dist(x, {u = 0}). We want to prove that
for some constant Cε then

|∇u(x)−∇u(y)| ≤ Crγε .

Without loss of generality and by the growth found in the first step we can assume
that x, y ∈ {u > 0}. Let x̄ ∈ ∂{u = 0} be such that dist(x̄, x) = R. We separate
two cases:

• If 4r > R,

|∇u(x)−∇u(y)| ≤ |∇u(x)−∇u(x̄)|+ |∇u(x̄)−∇u(y)|
≤ C

(
Rγε + (R + r)γε

)
≤ Crγε ,

where we have used the growth found in Step 1.
• If 4r ≤ R, then x, y ∈ BR/2(x), and BR(x) ⊂ {u > 0}. Notice that we have

(−L+ b · ∇)(∇u) = ∇f in BR(x).

From the interior estimates in Proposition 2.1 rescaled, we have

Rγε [∇u]Cγε (BR/2(x)) ≤ C

(
R‖∇f‖L∞(BR(x)) + ‖∇u‖L∞(BR(x)) +

∫
Rn

|∇u(Rx)|
1 + |x|n+1

)
.

Now notice that thanks to the growth found in Step 1 we have, on the one
hand,

‖∇u‖L∞(BR(x)) ≤ CRγε ,

and on the other hand,∫
Rn

|∇u(Rx)|
1 + |x|n+1

≤ Rγε

∫
Rn

|x|γε
1 + |x|n+1

= CRγε ,

so that putting all together and using ‖∇f‖L∞(Rn) ≤ 1, it yields,

[∇u]Cγε (BR/2(x)) ≤ C
(
1 +R1−γε

)
.

Thus, if R ≤ 4 we are done. Now suppose R > 4. If r < 1, by applying
interior estimates to B1(x) we are done. If r ≥ 1, we are also done, because
|∇u(x)−∇u(y)| ≤ 2‖∇u‖L∞(Rn) ≤ C.

Thus, we have reached the desired result. �

As a consequence, we have the following immediate corollary.

Corollary 8.4. Let L be an operator of the form (1.7)-(1.8), and let b ∈ Rn. Let
u be the solution to (1.9) for a given obstacle ϕ of the form (1.3). Then, for any
ε > 0,

‖u‖
C

1,γ−
L,b
−ε

(Rn)
≤ Cε,

where Cε depends only on n, L, b, ε, and ‖ϕ‖C2,1(Rn). The constant γ−L,b is given by
(8.7).
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Proof. After subtracting the obstacle and dividing by an appropriate constant, we
can apply Proposition 8.3 and the result follows. �

Finally, we prove Corollary 1.2.

Proof of Corollary 1.2. After subtracting the obstacle and dividing by a constant,
we get that this result is a particular case of Proposition 8.3, but the constant Cε
depends on b and not only on ‖b‖.

To prove that Cε actually depends on ‖b‖, the proof of Proposition 8.3 can be
rewritten by taking also sequences of vectors bk ∈ Rn with ‖bk‖ = ‖b‖; by compact-

ness, up to a subsequence they converge to some b̃ with ‖b̃‖ = ‖b‖ and the rest of
the proof is the same. �

9. A nondegeneracy property

In the obstacle problem for the fractional Laplacian (without drift), in [BFR15],
Barrios, Figalli and the second author proved a non-degeneracy condition at all free
boundary points for obstacles satisfying ∆ϕ ≤ 0. From this, and by means of a
Monneau-type monotonicity formula, they establish a global regularity result for
the free boundary.

In the obstacle problem with critical drift for the fractional Laplacian we can
actually find a non-degeneracy result analogous to the one found in [BFR15]. In
this case, however, we cannot establish regularity of the singular set, since we do
not have (and do not expect) any monotonicity formula for this problem.

Proposition 9.1. Let b ∈ Rn, and suppose that ϕ ∈ C1,1(Rn). Assume that ϕ is
concave in {ϕ > 0} or, more generally, that

(∆ + ∂2
bb)ϕ ≤ 0 in {ϕ > 0}, ∅ 6= {ϕ > 0} b Rn.

Let u be a solution to the obstacle problem (1.2). Then, there exist constants c, r0 > 0
such that for any x0 a free boundary point then

sup
Br(x0)

(u− ϕ) ≥ cr2 for all 0 < r < r0.

Proof. Let w :=
(
(−∆)1/2 + b · ∇

)
u, so that w ≥ 0. If w ≡ 0, by the interior

estimates rescaled, and using that u is globally bounded, we reach u is constant.
From lim|x|→∞ u(x) = 0 we would get u ≡ 0, but this is a contradiction with
∅ 6= {ϕ > 0}. Thus, w 6≡ 0.

Notice, however, that w ≡ 0 in {u > ϕ}. In particular, given x̄ ∈ {u > ϕ}, then
∇w(x̄) = 0 and w has a global minimum at x̄, so that(

(−∆)1/2 − b · ∇
)
w(x̄) = (−∆)1/2w(x̄) < 0.

Now, noticing that {ϕ > 0} b Rn, we get that by compactness there are some
c̄, r̄ > 0 such that for any x̄ ∈ {u > ϕ} with dist(x̄, {u = ϕ}) ≤ r̄ then(

(−∆)1/2 − b · ∇
)
w(x̄) ≤ −c̄ < 0.
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Now, since
(
(−∆)1/2 + b ·∇

)
u = w in Rn and from the semigroup property of the

fractional Laplacian,

−∆u− bibj∂iju =
(
(−∆)1/2 − b · ∇

)
w ≤ −c̄ in Ū ,

where Ū := {u > ϕ} ∩ {dist(·, {u = ϕ}) ≤ r̄}. Note that the operator ∆ + bibj∂ij is
uniformly elliptic, with ellipticity constants 1 and 1 + ‖b‖2.

Since u > 0 on the contact set, by compactness there exists some h > 0 such that
ϕ ≥ h in {u = ϕ}. By continuity, there exists some 0 < r0 < r̄/2 such that

ϕ > 0 in U0 := {u > ϕ} ∩ {dist(·, {u = ϕ}) ≤ 2r0}.
Now let x̄ ∈ U0 with dist(x̄, {u = ϕ}) ≤ r0, and consider r ∈ (0, r0). From the

condition on ϕ, (∆ + ∂2
bb)ϕ ≤ 0 in {ϕ > 0}, we get that if ū := u− ϕ then

(∆ + ∂2
bb) ū ≥ c̄ > 0 in {ū > 0} ∩Br(x̄) ⊂ U0.

Therefore, if we define

v := ū− c̄

2(n+ ‖b‖2)
|x− x̄|2 in {ū > 0} ∩Br(x̄),

then
(∆ + ∂2

bb)v ≥ 0.

By the maximum principle, if Ωr := {ū > 0} ∩Br(x̄) then

0 < ū(x1) ≤ sup
Ωr

v = sup
∂Ωr

v.

Since v < 0 in ∂{ū > 0} ∩Br(x̄),

0 < sup
{ū>0}∩∂Br(x̄)

v ≤ sup
∂Br(x̄)

ū− cr2,

where c = c̄
2(n+‖b‖2)

. Therefore, c is independent of x̄, and we can let x̄ → x0, to

obtain the desired result. �
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land

E-mail address: xavierfe@math.ethz.ch

University of Texas at Austin, Department of Mathematics, 2515 Speedway, TX
78712 Austin, USA

E-mail address: ros.oton@math.utexas.edu


	1. Introduction
	1.1. Known results
	1.2. Main result
	1.3. More general nonlocal operators of order 1 with drift
	1.4. Structure of the work

	2. Notation and preliminaries
	3. C1, regularity of solutions
	4. Classification of convex global solutions
	5. Blow-ups at regular points
	6. C1, regularity of the free boundary around regular points
	7. Estimates in C1, domains
	7.1. A supersolution and a subsolution
	7.2. Hölder continuity up to the boundary in C1, domains
	7.3. A Liouville theorem
	7.4. Proof of Theorem 7.1

	8. Proof of Theorems 1.1 and 1.3
	9. A nondegeneracy property
	References

