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Abstract. We establish sharp interior and boundary regularity estimates for
solutions to ∂tu− Lu = f(t, x) in I × Ω, with I ⊂ R and Ω ⊂ Rn. The operators
L we consider are infinitessimal generators of stable Lévy processes. These are
linear nonlocal operators with kernels that may be very singular.

On the one hand, we establish interior estimates, obtaining that u is C2s+α in
x and C1+ α

2s in t, whenever f is Cα in x and C
α
2s in t. In the case f ∈ L∞, we

prove that u is C2s−ε in x and C1−ε in t, for any ε > 0.
On the other hand, we study the boundary regularity of solutions in C1,1 do-

mains. We prove that for solutions u to the Dirichlet problem the quotient u/ds

is Hölder continuous in space and time up to the boundary ∂Ω, where d is the
distance to ∂Ω. This is new even when L is the fractional Laplacian.

Contents

1. Introduction and results 1
2. A Liouville-type theorem 6
3. Interior regularity 8
4. Cs regularity up to the boundary 25
5. Regularity up to the boundary for u/ds 33
6. The Dirichlet problem 45
7. Sharpness of the estimates 47
References 49

1. Introduction and results

The aim of this paper is to study the regularity of solutions to nonlocal parabolic
equations

∂tu− Lu = f(t, x), (1.1)

where L is a nonlocal operator of the form

Lu(t, x) =

∫
Rn

(
u(t, x+ y) + u(t, x− y)− 2u(t, x)

)a(y/|y|)
|y|n+2s

dy, (1.2)

Key words and phrases. Regularity, nonlocal parabolic equations, stable operators.
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with s ∈ (0, 1). Here, a ∈ L1(Sn−1) is any nonnegative even function.
In fact, in order to allow the kernel of L to be a singular measure we will be

dealing with operators of the form

Lu(t, x) =

∫
Sn−1

∫ ∞
−∞

(
u(t, x+ θr) + u(t, x− θr)− 2u(t, x)

) dr

|r|1+2s
dµ(θ), (1.3)

with the ellipticity conditions given by

0 < λ ≤ inf
ν∈Sn−1

∫
Sn−1

|ν · θ|2sdµ(θ),

∫
Sn−1

dµ ≤ Λ <∞ (1.4)

for some constants 0 < λ ≤ Λ < ∞. That is, we only require that the measure µ,
called the spectral measure, is finite and cannot be supported in any proper subspace
of Rn. When µ is absolutely continuous, then dµ(θ) = a(θ)dθ for a ∈ L1(Sn−1), and
we recover the expression (1.2).

General operators of the form (1.3) arise as the infinitessimal generators of stable
Lévy processes. These processes have been widely studied in both Probability and
Analysis, and appear naturally in Mathematical Finance, Biology and Physics; see
the introduction of [RS14b] and references therein.

Important examples of stable operators to have in mind are the fractional Lapla-
cian, L = −(−∆)s,

Lv(x) = cn,s

∫
Rn

(
v(x+ y) + v(x− y)− 2v(x)

) dy

|y|n+2s
,

and the generator of n independent 1-dimensional symmetric stable Lévy processes,

− L = (−∂x1x1)s + · · ·+ (−∂xnxn)s. (1.5)

In this case, the measure µ is a sum of 2n delta functions on the sphere. These two
examples show the different degrees of regularity considered, from the very regular
kernel in the fractional Laplacian (µ ≡ 1), to the singular kernel given by the Dirac
delta functions.

We will use parabolic Hölder seminorms. Given Ω ⊂ Rn, I ⊂ R and α, β ∈ (0, 1),

the parabolic seminorm Cβ,α
t,x (I × Ω) is defined by

[u]Cβ,αt,x (I×Ω) := sup
t,t′∈I
x,x′∈Ω

|u(t, x)− u(t′, x′)|
|t− t′|β + |x− x′|α

. (1.6)

We will also denote

[u]Cαx (I×Ω) := sup
t′∈I

[u(t′, ·)]Cα(Ω), [u]Cβt (I×Ω) := sup
x′∈Ω

[u(·, x′)]Cβ(I).

1.1. Interior regularity. We present here the main result regarding the interior
regularity of solutions to nonlocal parabolic equations (1.1).

When the kernels in (1.2) are regular, interior regularity is fairly well understood;
see for example [JX15, CD14, CKS10]. An important problem, however, is to un-
derstand what happens for singular kernels of the type (1.3)-(1.4).
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Important results in that direction have been recently obtained by Schwab-Silvestre
[SS14] and by Kassmann-Schwab [KS14]. The results in [SS14, KS14] allow kernels
with no homogeneity and, more importantly, with x-dependence (with no regularity
in x). For operators (1.3), these results yield the Hölder continuity of solutions for
wide classes of measures µ. More precisely, the results in [SS14] yield the Hölder
continuity of solutions to (1.1) whenever the spectral measure µ is strictly positive
on a set of positive measure; while the results of [KS14] do not assume the measure
µ to be absolutely continuous, and apply also to the operator (1.5). Still, even in
the case of translation invariant equations, the interior regularity for general stable
operators was open.

In case of elliptic equations, this problem was recently solved in [RS14b], where the
second author and Serra obtained sharp regularity estimates in Holder spaces for all
translation invariant stable operators (1.3)-(1.4). Here, we extend these estimates
to the more general context of parabolic equations.

Our first main result is the following interior regularity estimate. It essentially

states that if ut − Lu = f ∈ C
α
2s
,α

t,x then u is C
1+ α

2s
t and Cα+2s

x . Notice that, even in
the case f = 0, the Hölder continuity of solutions is new.

Theorem 1.1. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4). Let
u be any weak solution to

∂tu− Lu = f in (−1, 0)×B1. (1.7)

Let α ∈ (0, 1) be such that α
2s
∈ (0, 1) and that α + 2s is not an integer. Let

Cα := ‖u‖
C
α
2s ,α

t,x ((−1,0)×Rn)
+ ‖f‖

C
α
2s ,α

t,x ((−1,0)×B1)
.

Then,

‖u‖
C

1+ α
2s

t ((− 1
2
,0)×B1/2)

+ ‖u‖C2s+α
x ((− 1

2
,0)×B1/2) ≤ CCα, (1.8)

for some constant C depending only on n, s, α and the ellipticity constants (1.4).

Remark 1.2. The previous expression (1.8) can equivalently be written as

‖ut‖
C
α
2s ,α

t,x ((− 1
2
,0)×B1/2)

+ ‖Lu‖
C
α
2s ,α

t,x ((− 1
2
,0)×B1/2)

≤ CCα.

This follows from (1.8) and the equation (1.7).

Notice that it is required that u ∈ C
α
2s
,α

t,x in all of Rn in order to have a C
1+ α

2s
,2s+α

t,x

estimate in B1/2. We show in Section 7 that this is in fact necessary: we con-
struct a solution u to the homogeneous fractional heat equation, which satisfies

u ∈ C
α
2s
−ε,α

t,x ((−1, 0)× Rn) but u /∈ C1+ α
2s

t

((
−1

2
, 0
)
×B1/2

)
.

The spatial regularity requirements, u ∈ Cα
x in (−1, 0)×Rn, can be relaxed if the

kernel of the operator is regular; see Corollary 3.7.
When the right hand side in (1.7) is f ∈ L∞, we establish the following.
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Theorem 1.3. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4). Let
u be any weak solution to (1.7). Let ε > 0 and

C0 := ‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×B1).

Then,

‖u‖
C

1− ε
2s

t ((− 1
2
,0)×B1/2)

+ ‖u‖C2s−ε
x ((− 1

2
,0)×B1/2) ≤ CC0,

for some constant C depending only on n, s, ε and the ellipticity constants (1.4).

See also Corollaries 3.4, 3.6, 3.8 for more consequences of Theorems 1.1 and 1.3.

1.2. Boundary regularity. We next present our boundary regularity results.
In the case of elliptic equations, the boundary regularity is quite well understood:

see [RS14b] for general stable operators in C1,1 domains, and the results of Grubb
[Gru14, Gru15] for higher order estimates in case that Ω is C∞ and a ∈ C∞(Sn−1)
in (1.2).

Nonetheless, there are no similar boundary regularity results for nonlocal para-
bolic equations, not even when the operator L is the fractional Laplacian.

Here, we extend the boundary regularity estimates of [RS14, RS14b] to the context
of parabolic equations. We state our results as local estimates for the following
problem {

∂tu− Lu = f in (−1, 0)× (Ω ∩B1)
u = 0 in (−1, 0)×B1 \ Ω.

(1.9)

First, we prove a Cs
x regularity estimate up to the boundary. For the fractional

Laplacian this could be deduced combining the heat kernel estimates from [CKS10]
with known interior estimates. However, such precise heat kernel estimates are not
known for more general stable operators.

Proposition 1.4. Let s ∈ (0, 1), let Ω be a C1,1 domain, and let L be an operator
of the form (1.3)-(1.4). Let u be a weak solution to (1.9). Then,

‖u‖
C

1
2 ,s

t,x ((− 1
2
,0)×B1/2)

≤ C
(
‖f‖L∞((−1,0)×(Ω∩B1)) + ‖u‖L∞((−1,0)×Rn)

)
, (1.10)

where C depends only on n, s,Ω and the ellipticity constants (1.4).

In the next result, and throughout the rest of the paper, we denote

d(x) := dist(x,Rn \ Ω).

Our second and main boundary regularity estimate is the following. This is new
even when the operator L is the fractional Laplacian.

Theorem 1.5. Let s ∈ (0, 1), let Ω be a C1,1 domain and let L be an operator of
the form (1.3)-(1.4). Let u be a weak solution to (1.9) and

C0 = ‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×(Ω∩B1)).
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Then, for any ε > 0,

‖u‖C1−ε
t ((− 1

2
,0)×B1/2) + ‖u/ds‖

C
1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω∩B1/2))

≤ CC0. (1.11)

The constant C depends only on ε, n, s, Ω and the ellipticity constants (1.4).

1.3. The Dirichlet problem. Finally, we state the results from the previous sub-
section as a corollary regarding the Dirichlet problem. It is an immediate conse-
quence of a combination of Theorem 1.1, Proposition 1.4, and Theorem 1.5.

The Dirichlet problem for the nonlocal parabolic equations is ∂tu− Lu = f in Ω, T > t > 0
u = 0 in Rn \ Ω, T > t ≥ 0,

u(0, ·) = u0 in Ω, t = 0,
(1.12)

where we consider again a domain Ω, but now we also have to deal with an initial
condition u0, exterior conditions fixed in Rn \ Ω, and a time T > 0.

The result reads as follows.

Corollary 1.6. Let s ∈ (0, 1), let L be any operator of the form (1.3)-(1.4) and let
Ω be a bounded C1,1 domain. Suppose that u is the weak solution to (1.12). Then,

‖u‖C1−ε,s
t,x ((t0,T )×Ω) + ‖u/ds‖

C
1
2−

ε
2s ,s−ε

t,x ((t0,T )×Ω)
≤ C

(
‖u0‖L2(Ω) + ‖f‖L∞((0,T )×Ω)

)
,

(1.13)
for any 0 < t0 < T and for all ε > 0. The constant C depends only on ε, n, s,Ω, t0, T
and the ellipticity constants (1.4).

Moreover, if f ∈ C
α
2s
,α

t,x , with α ∈ (0, s] such that α+ 2s is not an integer, then for
any K b Ω compact,

‖u‖
C

1+ α
2s

t ((t0,T )×K)
+ ‖u‖C2s+α

x ((t0,T )×K) ≤ C

(
‖u0‖L2(Ω) + ‖f‖

C
α
2s ,α

t,x ((0,T )×Ω)

)
. (1.14)

The constant C depends only on α, n, s,Ω, K, t0, T and the ellipticity constants (1.4)

Notice that we require α ≤ s in (1.14). It turns out that, for general stable
operators, solutions are not better than C3s

x inside Ω; see [RV15, Theorem 1.2] for
a counterexample. Still, we prove here that this is not the case for time regularity,
and show

f ∈ C∞t (Ω) ⇒ u ∈ C∞t (Ω);

see Corollary 6.3.

1.4. Ideas of the proofs. To prove the interior and boundary regularity estimates
we use blow-up arguments combined with Liouville-type theorems for parabolic non-
local operators.

More precisely, in order to establish the interior regularity estimates we adapt the
scaling method of Simon in [Sim97] to the context of nonlocal parabolic equations.
We are then lead to a Liouville-type theorem in (−∞, 0) × Rn, which we prove by
using the heat kernel of the operator, as in [RS14b].
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On the other hand, to obtain the regularity up to the boundary for u we adapt the
methods of the second author and Serra in [RS14] to parabolic equations. For this,
we need to construct barriers with the appropriate behaviour near the boundary,
which is done by combining the barriers of [RS14b] with an eigenfunctions’ decom-
position of the solution to the parabolic Dirichlet problem in a bounded domain.
Furthermore, to obtain the regularity up to the boundary for u/ds we first adapt
the blow-up methods of [RS14b] (based on the ideas in [Ser15]), and then combine
them with the estimates for u up to the boundary.

The paper is organised as follows. In Section 2 we prove Liouville-type theorem in
the entire space, Theorem 2.1. In Section 3 the interior regularity results are proved,
Theorems 1.1 and 1.3. In Section 4 we prove the Cs

x regularity up to the boundary,
Proposition 1.4, and deduce from it a Liouville-type theorem in the half space. Then,
in Section 5 the main boundary regularity result is established, Theorem 1.5; and
in Section 6 the Dirichlet problem is treated, thus proving Corollary 1.6. We end
with some remarks on the sharpness of the estimates in Section 7.

2. A Liouville-type theorem

In this section we prove the following result, a Liouville-type theorem for nonlocal
parabolic equations.

Theorem 2.1. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4). Let
u be any weak solution of

∂tu− Lu = 0 in (−∞, 0)× Rn

such that
‖u(t, ·)‖L∞(BR) ≤ C (Rγ + 1) for R ≥ |t|

1
2s ,

for some γ < 2s. Then u is a polynomial in the x variable of degree at most bγc.

To prove the above theorem we follow the ideas of [RS14b] for the elliptic problem.
We denote p(t, x) the heat kernel associated to the operator L. Note that, by the

scaling property of operators, we have

p(t, x) = t−
n
2sp(1, xt−

1
2s ).

The following proposition is an immediate consequence of [RS14b, Proposition 2.2].

Proposition 2.2 ([RS14b]). Let s ∈ (0, 1) and let L be any operator of the form
(1.3)-(1.4). Let p(t, x) be the heat kernel associated to L. Then,

(a) For all δ ∈ (0, 2s), t > 0,∫
Rn

(
1 + |x|2s−δ

)
p(t, x)dx ≤ C

(
1 + t

2s−δ
2s

)
. (2.1)

(b) Moreover, for t > 0,

[p(t, x)]C0,1
x (Rn) ≤ Ct−

n+1
2s (2.2)

The constant C depends only on n, s, δ, and the ellipticity constants (1.4).
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We can now prove the Liouville-type theorem.

Proof of Theorem 2.1. The proof is parallel to the one done in [RS14b, Proposition
2.2] for the elliptic problem.

For every ρ ≥ 1 define

v(t, x) = ρ−γu(ρ2st, ρx).

It is easy to check ∂tv − Lv = 0 in (−∞, 0)× Rn, and moreover, for R ≥ |t| 12s ,

‖v(t, ·)‖L∞(BR) = ρ−γ‖u(ρ2st, ·)‖L∞(BρR) ≤ ρ−γC (1 + (ρR)γ) ≤ C (1 +Rγ) for ρ ≥ 1.
(2.3)

Now, we can use that, for t ∈ (−1, 0)

v(t, x) ≡ v(−2, x) ∗ p(2 + t, x), (2.4)

where the convolution is only in the x variable. Notice that when t ∈ (−1, 0),
then p(2 + t, x) fulfils the same bounds as p(1, x) in [RS14b] with maybe different
constants, thanks to (2.1)-(2.2). Therefore, the rigorous proof of the equality (2.4)
is the same as in [RS14b].

We now consider the function v(t, x) for t ∈ (−1, 0). We know that v(t, x) ≤
C(|x|γ + 1), and we want to show

[v]Cξx((−1,0)×B1) ≤ C

for some ξ > 0 and C depending only on n, λ, Λ and γ. To do so, let x, x′ ∈ B1,
with x 6= x′, and let t ∈ (−1, 0). Then, using (2.4),

|v(t, x)− v(t, x′)| =
∣∣∣∣∫

Rn
(p(2 + t, x− y)− p(2 + t, x′ − y))v(−2, y)dy

∣∣∣∣
≤
∣∣∣∣∫
|y|≤M

(p(2 + t, x− y)− p(2 + t, x′ − y))v(−2, y)dy

∣∣∣∣+
+ 2 sup

x∈B1

∣∣∣∣∫
|y|≥M

(p(2 + t, x− y)v(−2, y)dy

∣∣∣∣ .
The first term in the sum can be bounded by∫

|y|≤M
(p(2 + t, x− y)− p(2 + t, x′ − y))v(−2, y)dy ≤ CMn+γ|x− x′|,

using (2.2) and the bound on v(t, x). The second term is bounded again using the
bound on v(t, x) and (2.1) with δ = 1

2
(2s− γ) > 0,∣∣∣∣∫

|y|≥M
p(2 + t, x− y)v(−2, y)dy

∣∣∣∣ ≤ CM−δ.

Thus, we have

|v(t, x)− v(t, x′)| ≤ CMn+γ|x− x′|+ CM−δ, for any t ∈ (−1, 0).
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Choosing

M = |x− x′|−ξ/δ, with 1− (n+ γ)ξ

δ
= ξ ⇒ ξ =

2s− γ
2s+ 2n+ γ

> 0,

we obtain
[v]Cξx((−1,0)×B1) ≤ C.

Equivalently, for any ρ ≥ 1,

[u]Cξx((−ρ2s,0)×Bρ) ≤ Cργ−ξ.

Let us now define the following incremental quotient function, for h ∈ Rn fixed,

uξh(t, x) :=
u(t, x+ h)− u(t, x)

|h|ξ
,

which, for any t ∈ (−1, 0), satisfies

uξh(t, x) ≤ C|x|γ−ξ, for |x| ≥ 1.

Now repeating the previous argument replacing u by uξh, and γ by γ − ξ, one gets
[u]C2ξ

x ((−R2s,0)×BR) ≤ CRγ−2ξ. We are using that after the previous step, the new

ξ′ = 2s−γ+ξ
2s+2n+γ−ξ > ξ, so that we can take ξ instead of ξ′. Iterating this procedure,

after N steps,
[u]CNξx ((−R2s,0)×BR) ≤ CRγ−Nξ.

Taking N as the least integer such that Nξ > γ and letting R → ∞, we finally
obtain

[u]CNξx ((−∞,0)×Rn) = 0,

which implies that for each t ∈ (−∞, 0), u(t, x) is a polynomial on x of degree at
most bγc ≤ b2sc.

Finally, Lu = 0 for all (t, x) ∈ (−∞, 0) × Rn, and thus ∂tu = 0, so that u is
constant with respect to t. �

3. Interior regularity

In this section we prove the main results regarding the interior regularity of the
solutions, Theorems 1.1 and 1.3. We first present a short subsection introducing the
seminorms that we are going to use in the proofs.

3.1. Parabolic Hölder seminorms. Many times we will implicitly use that

[u]Cβ,αt,x (I×Ω) ∼ [u]Cβt (I×Ω) + [u]Cαx (I×Ω), (3.1)

in the sense that these two seminorms are equivalent.
The definition in (1.6) is not enough for the cases considered in this paper; we

need to introduce higher order parabolic Hölder seminorms. For s ∈ (0, 1), and for
given α ∈ (0, 1), we define

β =
α

2s
.
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Moreover, throughout the section we assume that α is such that β ∈ (0, 1) (α <
2s), and that α+2s not an integer. Let ν = b2s+αc and I×Ω be a bounded domain
with I ⊂ (−∞, 0], Ω ⊂ Rn. We define the following parabolic Hölder seminorm

[u]
(1+β,2s+α)
I×Ω =



[∂tu]Cβ,αt,x (I×Ω) + [u]C2s+α
x (I×Ω) if ν = 0,

[∂tu]Cβ,αt,x (I×Ω) + [∇xu]
C

2s+α−1
2s ,2s+α−1

t,x (I×Ω)
if ν = 1,

[∂tu]Cβ,αt,x (I×Ω) + [∇xu]
C

2s+α−1
2s

t (I×Ω)
+ [D2

xu]
C

2s+α−2
2s ,2s+α−2

t,x (I×Ω)
if ν = 2.

(3.2)
Notice that with this choice of norms we always have a good rescaling. That is,

if uρ(t, x) = u(ρ2st, ρx) then

[uρ]
(1+β,2s+α)
I×Ω = ρ2s+α[u]

(1+β,2s+α)

(ρ−2sI)×(ρ−1Ω). (3.3)

The previous definition will be useful to prove Theorem 1.1, but for Theorem 1.3
we need a definition for different indices. Namely, we will denote ν := d2se − 1,
ε > 0 such that 2s− ε > ν, and

[u]
(1− ε

2s
,2s−ε)

I×Ω =


[u]

C
1− ε

2s ,2s−ε
t,x (I×Ω)

if ν = 0,

[u]
C

1− ε
2s

t (I×Ω)
+ [∇xu]

C
2s−ε−1

2s ,2s−ε−1

t,x (I×Ω)
if ν = 1.

(3.4)

Note that we still have a good rescaling, i.e., for uρ(t, x) = u(ρ2st, ρx) then

[uρ]
(1− ε

2s
,2s−ε)

I×Ω = ρ2s−ε[u]
(1− ε

2s
,2s−ε)

(ρ−2sI)×(ρ−1Ω). (3.5)

The full norm is defined by

‖u‖1+β,2s+α
(I×Ω) = ‖u‖C1,ν

t,x (I×Ω) + [u]
(1+β,2s+α)
I×Ω

:= ‖∂tu‖L∞(I×Ω) +
∑
|ψ|≤ν

‖Dψ
xu‖L∞(I×Ω) + [u]

(1+β,2s+α)
I×Ω ,

where we have also defined the ‖u‖C1,ν
t,x (I×Ω) norm. The definition of ‖u‖1− ε

2s
,2s−ε

(I×Ω) is

analogous.
An interpolation inequality can be proved for these norms: for any κ > 0 we have

‖u‖C1,ν
t,x (I×Ω) ≤ κ[u]

(1+β,2s+α)
I×Ω + C‖u‖L∞(I×Ω), (3.6)

for some constant C depending only on κ, n, s, α and β. Analogously,

‖u‖C0,ν
t,x ((−1,0)×B1) ≤ κ[u]

(1− ε
2s
,2s−ε)

((−1,0)×B1) + C‖u‖L∞((−1,0)×B1), (3.7)

for C constant now depending only on κ, n, s and ε.
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To show (3.6)-(3.7), it is enough to use the equivalence of seminorms (3.1) and
classical interpolation inequalities in Hölder spaces.

Finally, another result we will need is the following inequality in bounded domains:
for any given η ∈ C∞(Rn), and u = u(t, x), then

[ηu]
(1+β,2s+α)
I×Ω ≤ C

(
‖η‖C2s+α

x (Ω)‖u‖C1,ν
t,x (I×Ω) + [u]

(1+β,2s+α)
I×Ω ‖η‖Cνx (Ω)

)
, (3.8)

for some constant C depending only on n, s, α, β, I and Ω. To see it, use the analo-
gous inequality for Hölder spaces and the equivalence of seminorms (3.1). Similarly,
one finds

[ηu]
(β,α)
I×Ω ≤ C

(
‖η‖Cαx (Ω)‖u‖L∞(I×Ω) + [u]

(β,α)
I×Ω ‖η‖L∞(Ω)

)
, (3.9)

for some constant C depending only on n, s, α, β, I and Ω.

3.2. Proof of Theorem 1.1. Now that we have introduced the notation, let us
proceed to prove the results regarding the interior regularity of solutions to nonlocal
parabolic equations.

To begin with, the following lemma will give us a tool to study the convergence
of functions in the proofs of Proposition 3.2 and Proposition 3.3 below.

Lemma 3.1. Let s ∈ (0, 1), λ,Λ > 0 fixed constants, and let (Lk)k∈N be a sequence of
operators of the form (1.3)-(1.4). Let (uk)k∈N and (fk)k∈N be sequences of functions
satisfying in the weak sense

∂tuk − Lkuk = fk in I ×K

for a given bounded interval I ⊂ (−∞, 0] and a bounded domain K ⊂ Rn.
Assume that Lk have spectral measures µk converging to a spectral measure µ. Let

L be the operator associated to µ (weak limit of Lk), and suppose that, for some
functions u and f the following hypotheses hold:

(1) uk → u uniformly in compact sets of (−∞, 0]× Rn,
(2) fk → f uniformly in I ×K,
(3) supt∈I |uk(t, x)| ≤ C (1 + |x|2s−ε) for some ε > 0, and for all x ∈ Rn.

Then, u satisfies

∂tu− Lu = f in I ×K
in the weak sense.

Proof. We have that∫
I×Rn

uk(−∂tη − Lkη) =

∫
I×K

fkη, for all η ∈ C∞c (I ×K).

On the other hand, since |η(x + y) + η(x − y) − 2η(x)| ≤ C min{1, |y|2}, by the
dominated convergence theorem we obtain that Lkη → Lη uniformly over compact
subsets of I × Rn.
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Moreover, η has support in K, which yields |Lkη(x)| ≤ C(1+ |x|n+2s)−1. Combin-
ing this with the growth of uk (see hypothesis (3)) we get that |uk(−∂tη − Lkη)| ≤
C(1 + |x|n+ε)−1, and therefore, by the dominated convergence theorem∫

I×Rn
uk(−∂tη − Lkη)→

∫
I×Rn

u(−∂tη − Lη), for all η ∈ C∞c (I ×K).

Since it is clear that ∫
I×K

fkη →
∫
I×K

fη,

then we have that the limit u is a weak solution to the equation

∂tu− Lu = f in I ×K,
as desired. �

Before proceeding to prove Theorem 1.1, let us first show the following.

Proposition 3.2. Let s ∈ (0, 1), and let L be an operator of the form (1.3)-(1.4).
Let α ∈ (0, 1), such that β = α

2s
∈ (0, 1) and α + 2s is not and integer, and let

ν = b2s+ αc. Assume that u ∈ C∞c ((−∞, 0]× Rn) satisfies

∂tu− Lu = f in (−1, 0)×B1

with f ∈ Cβ,α
t,x ((−1, 0)×B1). Then, for any δ > 0 we have

[u]
(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ δ[u]
(1+β,2s+α)
((−1,0)×Rn) + C

(
‖u‖C1,ν

t,x ((−1,0)×B1) + [f ]Cβ,αt,x ((−1,0)×B1)

)
,

(3.10)
where the constant C depends only on δ, n, s, α and the ellipticity constants (1.4).

Proof. Let us argue by contradiction. Suppose that for a given δ > 0 the estimate
does not hold for any constant C, so that for each k ∈ N we have that there exist
functions wk ∈ C∞c ((−∞, 0]×Rn), fk ∈ Cβ,α

t,x ((−1, 0)×B1), and operators Lk of the
form (1.3)-(1.4) such that ∂twk − Lkwk = fk in (−1, 0)×B1 and

[wk]
(1+β,2s+α)

((−2−2s,0)×B1/2) > δ[wk]
(1+β,2s+α)
((−1,0)×Rn) + k

(
‖wk‖C1,ν

t,x ((−1,0)×B1) + [fk]Cβ,αt,x ((−1,0)×B1)

)
.

(3.11)
In order to find the contradiction we will follow four steps.

Step 1: The blow-up parameter, ρk. We will need to separate three different
cases, according to the value of ν.
• Case ν = 0. The seminorm in this case is

[wk]
(1+β,2s+α)

(−2−2s,0)×B1/2
= [∂twk]Cβ,αt,x ((−2−2s,0)×B1/2) + [wk]C2s+α

x ((−2−2s,0)×B1/2),

and by definition, we can choose xk, yk ∈ B1/2, tk, sk ∈ (−2−2s, 0) such that

1

4
[wk]

(1+β,2s+α)

((−2−2s,0)×B1/2) <
|∂twk(tk, xk)− ∂twk(sk, yk)|
|sk − tk|β + |xk − yk|α

+
|wk(tk, xk)− wk(tk, yk)|

|xk − yk|2s+α
.

(3.12)
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Define,

ρk := |tk − sk|
1
2s + |xk − yk|,

and now we claim that, up to possibly a new choice of sk, we have

χ(n)[wk]
(1+β,2s+α)

((−2−2s,0)×B1/2) <
|∂twk(tk, xk)− ∂twk(sk, yk)|

ραk
+
|wk(tk, xk)− wk(tk, yk)|

ρ2s+α
k

,

(3.13)
for some small constant χ > 0 depending only on n. Indeed, if in the equation (3.12)
the first term of the sum is greater than the second one, we are done. Otherwise,
we can fix sk = tk and obtain the desired result.

Therefore, we have

χ(n)[wk]
(1+β,2s+α)

((−2−2s,0)×B1/2) <

<
2‖∂twk‖L∞((−2−2s,0)×B1/2)

ραk
+

2‖wk‖L∞((−2−2s,0)×B1/2)

ρ2s+α
k

≤
(

1

ραk
+

1

ρ2s+α
k

) [wk]
(1+β,2s+α)

((−2−2s,0)×B1/2)

k
,

where in the last inequality we are using (3.11). We finally obtain that ρk → 0 as
k →∞, since

χ(n)k ≤ 1

ραk
+

1

ρ2s+α
k

.

• Case ν = 1. Proceed as before, by choosing xk, yk ∈ B1/2, tk, sk ∈ (−2−2s, 0)
such that
1

2
[wk]

(1+β,2s+α)

((−2−2s,0)×B1/2) <
|∂twk(tk, xk)− ∂twk(sk, yk)|
|sk − tk|β + |xk − yk|α

+
|∇xwk(tk, xk)−∇xwk(sk, yk)|
|tk − sk|

2s+α−1
2s + |xk − yk|2s+α−1

.

(3.14)
Define ρk as before. Now, it immediately follows that

χ(n)[wk]
(1+β,2s+α)

((−2−2s,0)×B1/2) <
|∂twk(tk, xk)− ∂twk(sk, yk)|

ραk
+
|∇xwk(tk, xk)−∇xwk(sk, yk)|

ρ2s+α−1
k

,

(3.15)
where we keep the same constant χ(n) > 0 as in the previous case, by making it
smaller if necessary. The same reasoning as before yields ρk → 0 as k →∞.
• Case ν = 2. A similar reasoning as in the case ν = 0 yields that, for some

constant χ(n) > 0, there are xk, yk ∈ B1/2, tk, sk ∈ (−2−2s, 0) and ρk defined as
before such that

χ(n)[wk]
(1+β,2s+α)

((−2−2s,0)×B1/2) <
|∂twk(tk, xk)− ∂twk(sk, yk)|

ραk
(3.16)

+
|D2

xwk(tk, xk)−D2
xwk(sk, yk)|

ρ2s+α−2
k

+
|∇xwk(tk, xk)−∇xwk(sk, xk)|

ρ2s+α−1
k

.

Therefore, by the previous argument, ρk → 0 as k →∞.
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Step 2: The blow up sequence. We will proceed with a blow-up method.
We begin by defining the following functions, where we will assume that tk ≥ sk
(otherwise, we can swap them),

vk(t, x) :=
wk(tk + ρ2s

k t, xk + ρkx)− pk(t, x)

ρ2s+α
k [wk]

(1+β,2s+α)
((−1,0)×Rn)

.

Here, pk(t, x) is a polynomial in t of degree at most 1 plus a polynomial in x of
degree at most ν, such that

vk(0, 0) = · · · = Dν
xvk(0, 0) = ∂tvk(0, 0) = 0. (3.17)

First, notice that this function has a bounded (1 + β, 2s+ α)-seminorm,

[vk]
(1+β,2s+α)

((− 1
2
ρ−2s
k ,0]×Rn)

≤ 1. (3.18)

Indeed, this follows simply by considering the scaling of the seminorm (see (3.3)),
and noticing that the seminorm of the polynomial pk is zero.

Secondly, we have uniform convergence towards 0 of the following quantity for
fixed τ ∈ (−1, 0) and h ∈ B1,

|(∂t − Lk)(vk(t+ τ, x+ h)− vk(t, x))| ≤ C(n)

k
→ 0 (3.19)

uniformly in
(
−1

2
ρ−2s
k , 0

)
×B( 1

2
ρ−1
k −h)

. Indeed,

|(∂t − Lk)(vk(t+ τ, x+ h)− vk(t, x))| =

=
|ρ2s
k τ |β + |ρkh|α

ραk [wk]
(1+β,2s+α)
((−1,0)×Rn)

· |fk(tk + ρ2s
k (t+ τ), xk + ρk(x+ h))− fk(tk + ρ2s

k t, xk + ρkx)|
|ρ2s
k τ |β + |ρkh|α

≤ C(n)
[fk]Cβ,αt,x ((−1,0)×B1)

[wk]
(1+β,2s+α)
((−1,0)×Rn)

≤ C(n)

k
→ 0,

where in the last inequality we used (3.11).
We now define the following points in the set [−1, 0]×B1,

ξk =

(
sk − tk
ρ2s
k

,
yk − xk
ρk

)
, ξ

(1)
k =

(
sk − tk
ρ2s
k

, 0

)
, ξ

(2)
k =

(
0,
yk − xk
ρk

)
,
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and notice that

∂tvk(ξk) =
∂twk(sk, yk)− ∂twk(tk, xk)

ραk [wk]
(1+β,2s+α)
((−1,0)×Rn)

for ν = 0, 1, 2,

vk(ξ
(2)
k ) =

wk(tk, yk)− wk(tk, xk)
ρ2s+α
k [wk]

(1+β,2s+α)
((−1,0)×Rn)

for ν = 0,

Dν
xvk(ξk) =

Dν
xwk(sk, yk)−Dν

xwk(tk, xk)

ρ2s+α−ν
k [wk]

(1+β,2s+α)
((−1,0)×Rn)

for ν = 1, 2,

∇xvk(ξ
(1)
k ) =

∇xwk(sk, xk)−∇xwk(tk, xk)

ρ2s+α−1
k [wk]

(1+β,2s+α)
((−1,0)×Rn)

for ν = 2,

Thus, combining (3.13)-(3.15)-(3.16) with (3.11) we obtain

|∂tvk(ξk)|+ |vk(ξ(2)
k )| >χ(n)δ if ν = 0,

|∂tvk(ξk)|+ |∇xvk(ξk)| >χ(n)δ if ν = 1, (3.20)

|∂tvk(ξk)|+ |D2
xvk(ξk)|+ |∇xvk(ξ

(1)
k )| >χ(n)δ if ν = 2.

Notice that, up to a subsequence, ξk converge to some ξ ∈ [0, 1]× B1 (and so do

ξ
(1)
k and ξ

(2)
k ). From now on we restrict ourselves to this subsequence.

Step 3. Convergence properties of the blow-up sequence. Recall that
we have a uniform bound on the seminorms of vk, (3.18). Thus, we deduce that,
up to subsequences, vk converges in C1

t and in Cν
x to some function v over com-

pact subsets of (−∞, 0] × Rn. Indeed, this follows since the Hölder seminorms
[vk]C1+β

t ((− 1
2
ρ−2s
k ,0]×Rn), [vk]C2s+α

x ((− 1
2
ρ−2s
k ,0]×Rn) are uniformly bounded with respect

to k ∈ N, and the domains are expanding to (−∞, 0]× Rn.
We restrict ourselves to this subsequence, and obtain a limit function v defined

in (−∞, 0]× Rn such that

v(0, 0) = · · · = Dν
xv(0, 0) = ∂tv(0, 0) = 0, and [v]

(1+β,2s+α)
(−∞,0)×Rn) ≤ 1. (3.21)

By (3.20) and the nice convergence in C1,ν
t,x , we get that v cannot be constant.

From now on we want to consider the functions vk(t+τ, x+h)−vk(t, x) for fixed τ ∈
(−1, 0), h ∈ B1. We want to compute an upper bound for |vk(t+ τ, x+h)−vk(t, x)|,
for t ∈

(
−1

2
ρ−2s
k − τ, 0

]
and x ∈ Rn. To do so we separate three cases again:
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• Case ν = 0,

|vk(t+ τ, x+ h)− vk(t, x)| ≤ τ sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∂tvk(t′, x′)|

+ h2s+α sup
t′∈(t+τ,0)

[vk(t
′, ·)]C2s+α(B|x|+|h|)

≤ C(|x|α + |t|β + 1)

using the bounds on the seminorms of vk and (3.17). The constant C can depend
on τ and h.
• Case ν = 1,

|vk(t+ τ, x+ h)− vk(t, x)| ≤τ sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∂tvk(t′, x′)|+ h sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∇xvk(t
′, x′)|

≤C(|x|α + |x|2s+α−1 + |t|β + |t|
2s+α−1

2s ).

• Case ν = 2,

|vk(t+ τ, x+ h)− vk(t, x)| ≤τ sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∂tvk(t′, x′)|+ h sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∇xvk(t
′, x′)|

Now, we use that

sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∇xvk(t
′, x′)| ≤ sup

t′∈(t+τ,0)
x′∈B|x|+|h|

|∇xvk(t
′, x′)−∇xvk(0, x

′)|+ sup
t′∈(t+τ,0)
x′∈B|x|+|h|

|∇xvk(0, x
′)|

≤|t|
2s+α−1

2s + h sup
x′∈B|x|+|h|

(
|x′|

[
sup

x′′∈B|x′|
|D2

xvk(0, x
′′)|

])
≤C

(
|t|

2s+α−1
2s + |x|2s+α−1

)
,

so that in all we have

|vk(t+ τ, x+ h)− vk(t, x)| ≤ C(|x|α + |x|2s+α−1 + |t|β + |t|
2s+α−1

2s ).

In all three cases we deduce that, since α < 2s and α < 1,

|vk(t+ τ, x+ h)− vk(t, x)| ≤ C
(
|x|2s−ε + |t|

2s−ε
2s

)
, (3.22)

where ε = min{2s − α, 1 − α} > 0 and C is independent of k. We recall that the
previous bound is found for t ∈

(
−1

2
ρ−2s
k − τ, 0

]
and x ∈ Rn.

On the other hand, from the compactness of probability measures on the sphere
we can find a subsequence of {Lk} converging weakly to an operator L̃, that is, a
subsequence of spectral measures {µk} converging to a spectral measure µ of an
operator L̃ of the form (1.3)-(1.4). Therefore, we have the ingredients to apply
Lemma 3.1 to the sequence vk(t+ τ, x+ h)− vk(t, x).

Fixed any bounded sets I ⊂ (−∞, 0], K ⊂ Rn we have
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• vk(t+ τ, x+ h)− vk(t, x) converges to v(t+ τ, x+ h)− v(t, x) uniformly over
compact sets,
• (∂t−Lk)(vk(t+τ, x+h)−vk(t, x)) converges uniformly on K to the constant

function 0,
• |vk(t + τ, x + h) − vk(t, x)| ≤ C (1 + |x|2s−ε) for all x ∈ Rn, where C now

depends on I, which is fixed, and for k large enough.

Therefore, by Lemma 3.1 we deduce that

(∂t − L̃)(v(t+ τ, x+ h)− v(t, x)) = 0 in I ×K.
Since this can be done for any I ⊂ (−∞, 0] and any K ⊂ Rn, then

(∂t − L̃)(v(t+ τ, x+ h)− v(t, x)) = 0 in (−∞, 0)× Rn.

Step 4: Contradiction. Now, from the expression (3.22) and using the Liouville-
type theorem in the entire space, Theorem 2.1, we obtain that v(t+τ, x+h)−v(t, x)
must be a polynomial in x of degree at most bmax{α, 2s+α− 1}c = max{0, ν− 1}.

This means that v(t, x) is a polynomial in x plus a polynomial in t, satisfying
(3.21). Therefore, v ≡ 0, which is a contradiction with the expression (3.20) in the
limit. �

With the previous result we have the key ingredients to prove our main interior
regularity estimate.

Proof of Theorem 1.1. Let β = α
2s
∈ (0, 1) as before.

Pick η ∈ C∞c (B2) a cutoff function depending only on x such that η ≡ 1 in
B3/2, and consider w ∈ C∞c ((−∞, 0] × Rn), satisfying ∂tw − Lw = f in B1. Ap-
plying Proposition 3.2 to the function ηw we obtain that, for any δ, there is a
C = C(δ, n, s, α, λ,Λ) such that

[w]
(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ δ[ηw]
(1+β,2s+α)
((−1,0)×B2)+

+ C
(
‖w‖C1,ν

t,x ((−1,0)×B1) + [f ]Cβ,αt,x ((−1,0)×B1) + [(∂t − L)(ηw − w)]Cβ,αt,x ((−1,0)×B1)

)
.

Now, since ηw − w vanishes in B3/2 we have that

[(∂t − L)(ηw − w)]Cβ,αt,x ((−1,0)×B1) = [L(ηw − w)]Cβ,αt,x ((−1,0)×B1) ≤ C‖w‖Cβ,αt,x ((−1,0)×Rn).

(3.23)
Indeed, if we denote φ := ηw − w, we clearly have

[φ]Cβ,αt,x ((−1,0)×Rn) ≤ C‖w‖Cβ,αt,x ((−1,0)×Rn)

(for example using (3.9) inside B2 and noticing that |φ| = |w| outside B2). Thus,

|Lφ(t, x)− Lφ(t′, x′)| ≤ C

∫
Sn−1

∫ ∞
1/2

| − φ(t, x+ rθ) + φ(t′, x′ + rθ)| dr

|r|1+2s
dµ(θ)

≤ C[φ]Cβ,αt,x ((−1,0)×Rn)

(
|t− t′|β + |x− x′|α

) ∫
Sn−1

∫ ∞
1/2

dr

|r|1+2s
dµ(θ),
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so that we reach our conclusion, since∫
Sn−1

∫ ∞
1/2

dr

|r|1+2s
dµ(θ) ≤

(∫
Sn−1

dµ(θ)

)∫ ∞
1/2

r−1−2sdr ≤ CΛ.

The previous inequality, (3.23), combined with an inequality of the form (3.8) for

[ηw]
(1+β,2s+α)
((−1,0)×B2), yields that for any δ > 0, there exists a C = C(δ, n, s, α, λ,Λ) such

that

[w]
(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ δ[w]
(1+β,2s+α)
((−1,0)×B2)+ (3.24)

+ C
(
‖w‖C1,ν

t,x ((−1,0)×B1) + [f ]Cβ,αt,x ((−1,0)×B1) + ‖w‖Cβ,αt,x ((−1,0)×Rn)

)
.

Now, using interpolation (3.6), for any κ > 0, there exists C = C(κ, n, α, β, s)
such that

‖w‖C1,ν
t,x ((−1,0)×B1) ≤ κ[w]

(1+β,2s+α)
((−1,0)×B1) + C‖w‖L∞((−1,0)×B1).

Fixing κ = δ/C with C as in (3.24), we get

[w]
(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ 2δ[w]
(1+β,2s+α)
((−1,0)×B2) + C

(
[f ]Cβ,αt,x ((−1,0)×B1) + ‖w‖Cβ,αt,x ((−1,0)×Rn)

)
.

By a standard argument (see for example the Lemma after [Sim97, Theorem 2]
or the proof of [RS14b, Theorem 1.1 (b)]) we obtain that there exists a constant
C = C(n, s, α, λ,Λ) such that

[w]
(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ C
(

[f ]Cβ,αt,x ((−1,0)×B1) + ‖w‖Cβ,αt,x ((−1,0)×Rn)

)
.

Using interpolation again, it follows

‖w‖(1+β,2s+α)

((−2−2s,0)×B1/2) ≤ C
(

[f ]Cβ,αt,x ((−1,0)×B1) + ‖w‖Cβ,αt,x ((−1,0)×Rn)

)
.

In particular, we obtain, for w ∈ C∞c ((−∞, 0]× Rn)

sup
x∈B1/2

‖w‖C1+β
t (−2−2s,0) + sup

t∈(−2−2s,0)

‖w‖C2s+α
x (B1/2) ≤

≤ C
(

[f ]Cβ,αt,x ((−1,0)×B1) + ‖w‖Cβ,αt,x ((−1,0)×Rn)

)
.

By a covering argument, the domain of t on the left hand side can be easily replaced
by (−1/2, 0).

To get the result for general u ∈ C
α
2s
,α

t,x ((−1, 0) × Rn) we can use a standard

approximation argument. Indeed, if u ∈ C
α
2s
,α

t,x , and ηε is a standard mollifier, then
we regularise u and notice that (∂t−L)(u∗ηε) = f ∗ηε. We now apply the result for
smooth functions to u ∗ ηε and f ∗ ηε, and take the limit as ε ↓ 0, to get the desired
result. �
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3.3. Proof of Theorem 1.3. We next prove the interior regularity for f ∈ L∞,
Theorem 1.3. To do so, we begin as in the previous case, with the following propo-
sition, analogous to Proposition 3.2.

Proposition 3.3. Let s ∈ (0, 1), ν = d2se − 1, and let L be an operator of the
form (1.3)-(1.4). Let ε > 0 be such that 2s− ε > ν Assume u ∈ C∞c ((−∞, 0]× Rn)
satisfies

∂tu− Lu = f in (−1, 0)×B1

with f ∈ L∞((−1, 0)×B1). Then, for any δ > 0 we have

[u]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) ≤ δ[u]
(1− ε

2s
,2s−ε)

((−1,0)×Rn) + C
(
‖u‖C0,ν

t,x ((−1,0)×B1) + ‖f‖L∞((−1,0)×B1)

)
,

(3.25)
where the constant C depends only on δ, n, s, ε and the ellipticity constants (1.4).

Proof. We follow the steps of Proposition 3.2.
Suppose that for a given δ > 0 the estimate does not hold for any constant C: for

each k ∈ N there exist functions wk ∈ C∞c ((−∞, 0] × Rn), fk ∈ L∞((−1, 0) × B1),
and operators Lk of the form (1.3)-(1.4) such that ∂twk−Lkwk = fk in (−1, 0)×B1

and

[wk]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) > δ[wk]
(1− ε

2s
,2s−ε)

((−1,0)×Rn) + k
(
‖wk‖C0,ν

t,x ((−1,0)×B1) + ‖fk‖L∞((−1,0)×B1)

)
.

(3.26)
Step 1: The blow-up parameter, ρk. We only need to separate two cases

according to the value of ν now.
• Case ν = 0. By definition, we can choose xk, yk ∈ B1/2, tk, sk ∈ (−2−2s, 0) such

that
1

4
[wk]

(1− ε
2s
,2s−ε)

((−2−2s,0)×B1/2) <
|wk(tk, xk)− wk(sk, yk)|
|sk − tk|1−

ε
2s + |xk − yk|2s−ε

. (3.27)

Define,

ρk := |tk − sk|
1
2s + |xk − yk|.

As in the proof of Proposition 3.2 there exists some small constant χ > 0 depending
only on n such that

χ(n)[wk]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) <
|wk(tk, xk)− wk(sk, yk)|

ρ2s−ε
k

. (3.28)

Therefore, we have

χ(n)[wk]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) <
2‖wk‖L∞((−2−2s,0)×B1/2)

ρ2s−ε
k

≤
[wk]

(1− ε
2s
,2s−ε)

((−2−2s,0)×B1/2)

ρ2s−ε
k k

,

where in the last inequality we are using (3.26). Thus, we finally obtain that ρk → 0
as k →∞.
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• Case ν = 1. Proceed as before, by choosing xk, yk ∈ B1/2, tk, sk ∈ (−2−2s, 0)
such that

1

2
[wk]

(1− ε
2s
,2s−ε)

((−2−2s,0)×B1/2) <
|wk(tk, xk)− wk(sk, xk)|

|tk − sk|1−
ε
2s

+
|∇xwk(tk, xk)−∇xwk(sk, yk)|
|tk − sk|

2s−ε−1
2s + |xk − yk|2s−ε−1

.

(3.29)
Define ρk as before, and up to a possible new choice of yk (as in the proof of the

case ν = 0 in the first step of Proposition 3.2), we obtain that

χ(n)[wk]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) <
|wk(tk, xk)− wk(sk, xk)|

ρ2s−ε
k

+
|∇xwk(tk, xk)−∇xwk(sk, yk)|

ρ2s−ε−1
k

.

(3.30)
A reasoning similar to the one before yields ρk → 0 as k →∞ again.

Step 2: The blow up sequence. We begin by defining the following functions,
where we will assume that tk ≥ sk (otherwise, we can swap them),

vk(t, x) :=
wk(tk + ρ2s

k t, xk + ρkx)− pk(x)

ρ2s−ε
k [wk]

(1− ε
2s
,2s−ε)

((−1,0)×Rn)

.

Here pk(x) is a polynomial in x of degree at most ν, such that

vk(0, 0) = Dν
xvk(0, 0) = 0. (3.31)

Thanks to the scaling of the seminorm (see (3.5)), vk satisfies

[vk]
(1− ε

2s
,2s−ε)

((− 1
2
ρ−2s
k ,0]×Rn)

≤ 1. (3.32)

We also have uniform convergence towards 0 of the following quantity for fixed
τ ∈ (−1, 0) and h ∈ B1,

|(∂t − Lk)(vk(t+ τ, x+ h)− vk(t, x))| ≤ 2ρεk
k
→ 0 (3.33)

uniformly in
(
−1

2
ρ−2s
k , 0

)
×B( 1

2
ρ−1
k −h)

. Indeed,

|(∂t−Lk)(vk(t+ τ, x+ h)− vk(t, x))| =

=
ρεk

[wk]
(1− ε

2s
,2s−ε)

((−1,0)×Rn)

· |fk(tk + ρ2s
k (t+ τ), xk + ρk(x+ h))− fk(tk + ρ2s

k t, xk + ρkx)|

≤ 2
ρεk‖fk‖L∞((−1,0)×B1)

[wk]
(1− ε

2s
,2s−ε)

((−1,0)×Rn)

≤ 2ρεk
k
→ 0,

where in the last inequality we have used (3.26).
We now define the following points in the set [−1, 0]×B1,

ξk =

(
sk − tk
ρ2s
k

,
yk − xk
ρk

)
, ξ

(1)
k =

(
sk − tk
ρ2s
k

, 0

)
,



20 XAVIER FERNÁNDEZ-REAL AND XAVIER ROS-OTON

and notice that we have

vk(ξk) =
wk(sk, yk)− wk(tk, xk)
ρ2s−ε
k [wk]

(1− ε
2s
,2s−ε)

((−1,0)×Rn)

for ν = 0

vk(ξ
(1)
k ) =

wk(sk, xk)− wk(tk, xk)
ρ2s−ε
k [wk]

(1− ε
2s
,2s−ε)

((−1,0)×Rn)

for ν = 1,

∇xvk(ξk) =
∇xwk(sk, yk)−∇xwk(tk, xk)

ρ2s−ε−1
k [wk]

(1− ε
2s
,2s−ε)

((−1,0)×Rn)

for ν = 1.

Hence, combining (3.28)-(3.30) with (3.26) we obtain

|vk(ξk)| >χ(n)δ if ν = 0,

|vk(ξ(1)
k )|+ |∇xvk(ξk)| >χ(n)δ if ν = 1. (3.34)

Notice that, up to a subsequence, ξk converge to some ξ ∈ [0, 1]× B1 (and so do

ξ
(1)
k ) so that from now on we will restrict ourselves to this subsequence.

Step 3. Convergence properties of the blow-up sequence . Recall that we
have uniform bound on the seminorms of vk, (3.32), we deduce that, up to subse-
quences, vk converges in Cε

t and in Cν+ε
x to some function v over compact subsets

of (−∞, 0] × Rn. This follows since the Hölder seminorms [vk]
C

1− ε
2s

t ((− 1
2
ρ−2s
k ,0]×Rn)

,

[vk]C2s−ε
x ((− 1

2
ρ−2s
k ,0]×Rn) are uniformly bounded with respect to k ∈ N, and the do-

mains are expanding to (−∞, 0]× Rn.
We restrict ourselves to this subsequence, and obtain a limit function v defined

in (−∞, 0]× Rn such that

v(0, 0) = Dν
xv(0, 0) = 0 and [v]

(1− ε
2s
,2s−ε)

((−∞,0]×Rn) ≤ 1. (3.35)

By (3.34) and the nice convergence, we get that v cannot be constant.
Now consider the functions vk(t+ τ, x+h)− vk(t, x) for fixed τ ∈ (−1, 0), h ∈ B1.

We want to compute an upper bound for |vk(t+ τ, x+ h)− vk(t, x)| depending on t
and x, such that t ∈

(
−1

2
ρ−2s
k − τ, 0

]
, x ∈ Rn, and we separate two cases:

• Case ν = 0,

|vk(t+ τ, x+ h)− vk(t, x)| ≤ C

using the bounds on the seminorm of vk and (3.31), and where C can depend on τ
and h.
• Case ν = 1,

|vk(t+ τ, x+ h)− vk(t, x)| ≤ C
(
|x|2s−ε−1 + |t|

2s−ε−1
2s + 1

)
.
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As before we can assume that Lk converges to L̃ and then, using Lemma 3.1, we
find

(∂t − L̃)(v(t+ τ, x+ h)− v(t, x)) = 0 in (−∞, 0)× Rn.

Step 4: Contradiction. From the Liouville-type theorem in the entire space,
Theorem 2.1, we obtain that v(t+ τ, x+h)−v(t, x) must be constant, and therefore
v(t, x) is a polynomial of degree at most 1 in x plus a polynomial of degree at most 1
in t. Therefore, by (3.35) we get v ≡ 0, which is a contradiction with the expression
(3.34) in the limit. �

Using the previous proposition we can prove Theorem 1.3.

Proof of Theorem 1.3. Pick η ∈ C∞c (B2) a cutoff function depending only on x such
that η ≡ 1 in B3/2 and 0 ≤ φ ≤ 1 in B2, and consider w ∈ C∞c (−∞, 0] × Rn,
satisfying ∂tw − Lw = f in B1. Applying Proposition 3.3 to the function ηw we
obtain that, for any δ, there is a C = C(δ, n, s, ε, λ,Λ) such that

[w]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) ≤ δ[ηw]
(1− ε

2s
,2s−ε)

((−1,0)×B2)+

+ C
(
‖w‖C0,ν

t,x ((−1,0)×B1) + ‖f‖L∞((−1,0)×B1) + ‖(∂t − L)(ηw − w)‖L∞((−1,0)×B1)

)
.

(3.36)

Now, since ηw − w vanishes in B3/2 we have that

‖(∂t − L)(ηw − w)‖L∞((−1,0)×B1) = ‖L(ηw − w)‖L∞((−1,0)×B1) ≤ C‖w‖L∞((−1,0)×Rn).
(3.37)

Indeed, if we denote φ := ηw − w, we clearly have

‖φ‖L∞((−1,0)×Rn) ≤ ‖w‖L∞((−1,0)×Rn),

and now

|Lφ(t, x)| ≤ C

∫
Sn−1

∫ ∞
1/2

| − φ(t, x+ rθ)| dr

|r|1+2s
dµ(θ)

≤ C‖φ‖L∞((−1,0)×Rn)

∫
Sn−1

∫ ∞
1/2

dr

|r|1+2s
dµ(θ) ≤ CΛ‖φ‖L∞((−1,0)×Rn),

where C depends only on n and s.
The previous inequality, (3.37), together with ‖ηw‖C0,ν

t,x (−1,0)×B2
≤ C‖w‖C0,ν

t,x (−1,0)×B2

(for C depending on η fixed) yields that for any δ > 0, there exists a constant
C = C(δ, n, s, ε, λ,Λ) such that

[w]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) ≤ (3.38)

≤ δ[w]
(1− ε

2s
,2s−ε)

((−1,0)×B2) + C
(
‖w‖C0,ν

t,x ((−1,0)×B1) + ‖f‖L∞((−1,0)×B1) + ‖w‖L∞((−1,0)×Rn)

)
.
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Using interpolation (3.7), for any κ > 0, there exists C = C(κ, n, s, ε) such that

‖w‖C0,ν
t,x ((−1,0)×B1) ≤ κ[w]

(1− ε
2s
,2s−ε)

((−1,0)×B1) + C‖w‖L∞((−1,0)×B1).

Fixing κ = δ/C with C as in (3.38), we get

[w]
(1− ε

2s
,2s−ε)

((−2−2s,0)×B1/2) ≤ 2δ[w]
(1− ε

2s
,2s−ε)

((−1,0)×B2) + C
(
‖f‖L∞((−1,0)×B1) + ‖w‖L∞((−1,0)×Rn)

)
.

From which, as in the proof of Theorem 1.1, there exists a constant C = C(n, s, ε, λ,Λ)
such that

‖w‖(1− ε
2s
,2s−ε)

((−2−2s,0)×B1/2) ≤ C
(
‖f‖L∞t,x((−1,0)×B1) + ‖w‖L∞((−1,0)×Rn)

)
,

and this implies the bound we wanted.
To get the result for general u ∈ L∞((−1, 0)×Rn) we use a standard approxima-

tion argument, and we are done. �

Let us now give a corollary on the regularity of solutions without any constrain
in the relation between α and β.

Corollary 3.4. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4).
Let u be any bounded weak solution to (1.7). Let

C0 = ‖u‖Cβ,αt,x ((−1,0)×Rn) + ‖f‖Cβ,αt,x ((−1,0)×B1).

Then,

‖u‖C1+β−ε
t ((− 1

2
,0)×B1/2) + ‖u‖C2s+α−ε

x ((− 1
2
,0)×B1/2) ≤ CC0, (3.39)

for any ε > 0, where the constant C depends only on ε, n, s and the ellipticity
constants (1.4).

Proof. Define the following incremental quotients in x,

uhα(t, x) :=
u(t, x+ h)− u(t, x)

|h|α
, fhα(t, x) :=

f(t, x+ h)− f(t, x)

|h|α

for some h ∈ Rn fixed. Notice that

∂tu
h
α − Luhα = fhα in (−1, 0)×B1−|h|.

We apply Theorem 1.3 to the previous functions, reaching

sup
x∈B1/2

‖uhα‖C1−ε
t (−2−2s,0) + sup

t∈(−2−2s,0)

‖uhα‖C2s−ε
x (B1/2) ≤

≤ C
(
‖fhα‖L∞((−1,0)×B1−|h|) + ‖uhα‖L∞((−1,0)×Rn)

)
.

Now, since

‖fhα‖L∞((−1,0)×B1−|h|) ≤ C
(
[f ]Cαx ((−1,0)×B1)

)
,

‖uhα‖L∞((−1,0)×Rn) ≤ C
(
[u]Cαx ((−1,0)×Rn)

)
,
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and

sup
h∈B1/4

sup
t∈(−2−2s,0)

‖uhα‖C2s−ε
x (B1/2) ≥ sup

t∈(−2−2s,0)

‖u‖C2s−ε+α
x (B1/2),

(see for example [CC95, Lemma 5.6]) we obtain

sup
t∈(−2−2s,0)

‖u‖C2s−ε+α
x (B1/2) ≤ C

(
[f ]Cαx ((−1,0)×B1) + [u]Cαx ((−1,0)×Rn)

)
.

The same can be done taking incremental quotients in t, and adding up both
inequalities we reach the desired result. �

Remark 3.5. The previous corollary is still true if we only subtract an arbitrarily
small ε to one of the terms in the left hand side of (3.39). For example, if 2sβ < α
then we apply Theorem 1.1 with indices β and α′ = 2sβ and combine it with the
argument from Corollary 3.4.

When the nonlocal parabolic equation for the operator L is fulfilled in the entire
space Rn we have a nice result where we no longer require a priori spatial regularity
of the solution.

Corollary 3.6. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4).
Let u be any bounded weak solution to

∂tu− Lu = f in (−1, 0)× Rn. (3.40)

Let α ∈ (0, 1) be such that α
2s
∈ (0, 1), and

C0 = ‖u‖L∞((−1,0)×Rn) + ‖f‖
C
α
2s ,α

t,x ((−1,0)×Rn)
.

Then, if α + 2s is not an integer

‖u‖
C

1+ α
2s

t ((− 1
2
,0)×Rn)

+ ‖u‖C2s+α
x ((− 1

2
,0)×Rn) ≤ CC0.

The constant C depends only on n, s, α and the ellipticity constants (1.4).

Proof. Simply apply Theorem 1.1 to balls covering Rn to get

‖u‖
C

1+ α
2s

t ((− 1
2
,0)×Rn)

+ ‖u‖C2s+α
x ((− 1

2
,0)×Rn) ≤

≤ C

(
‖u‖

C
α
2s
t ((− 3

4
,0)×Rn)

+ ‖f‖
C
α
2s ,α

t,x ((− 3
4
,0)×Rn)

)
.

On the other hand, from Theorem 1.3 applied again to balls covering Rn we have

‖u‖
C
α
2s
t ((− 3

4
,0)×Rn)

≤ C
(
‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×Rn)

)
,

where we took ε = 2s − α > 0. Combining both expressions we obtain the desired
result. �

We next prove a result when the kernels have some regularity.



24 XAVIER FERNÁNDEZ-REAL AND XAVIER ROS-OTON

Corollary 3.7. Let s ∈ (0, 1), and let L be any operator of the form (1.2) with
bounds (1.4). Assume that

a ∈ Cα(Sn−1),

for some α ∈ (0, 1) such that α < 2s.
Let u be any bounded weak solution to (1.7), and

C0 = ‖u‖
C
α
2s
t ((−1,0)×Rn)

+ ‖f‖
C
α
2s ,α

t,x ((−1,0)×B1)
.

Then, if 2s+ α is not an integer,

‖u‖
C

1+ α
2s

t ((− 1
2
,0)×B1/2)

+ ‖u‖C2s+α
x ((− 1

2
,0)×B1/2) ≤ CC0, (3.41)

for some constant C depending only on α, n, s, ‖a‖Cα(Sn−1) and the ellipticity con-
stanst (1.4).

Notice that now on the right hand side of the estimate the term depending on u
no longer requires a Cα regularity in the x variable. Instead, only uniform regularity
in Rn in t is required.

Proof. The proof reduces to see that, in the proof of Theorem 1.1, we can replace
the bound (3.23) (recall φ = ηw − w for a cutoff function η) by

[Lφ]
C
α
2s ,α

t,x ((−1,0)×B1)
≤ C‖w‖

C
α
2s
t ((−1,0)×Rn)

.

Indeed,

|Lφ(t, x)− Lφ(t′, x′)| =

=

∣∣∣∣∣
∫
Rn\B1/2(x)

φ(t, z)K(z − x)dz −
∫
Rn\B1/2(x′)

φ(t′, z)K(z − x)dz

∣∣∣∣∣
≤ C|t− t′|

α
2s [φ]

C
α
2s
t ((−1,0)×Rn)

+

+

∫
Rn\B1/4(x)

|φ(t′, z)| · |K(z − x)−K(z − x′)| dz,

where we have assumed without loss of generality that B1/8(x′) ⊂ B1/4(x) ⊂
B1/2(x′), by considering |x− x′| < 1

8
, and where

K (y) =
a(y/|y|)
|y|n+2s

.

Notice that K is Cα(B2 \B1/8) by being quotient of Cα functions, and therefore

|K(z − x)−K(z − x′)| ≤ C|x− x′| for z − x, z − x′ ∈ B2 \B1/8,
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where C depends only on n and ‖a‖Cα(Sn−1). By homogeneity of K, for z ∈ Rn\B1/4,

|K(z − x)−K(z − x′)| = 1

|z − x|n+2s

∣∣∣∣K ( z − x
|z − x|

)
−K

(
z − x′

|z − x|

)∣∣∣∣
≤ C

1

|z − x|n+2s+α
|x− x′|α,

where we used that z−x′
|z−x| ∈ B2 \B1/8.

In all we have that

|Lφ(t, x)− Lφ(t′, x′)| ≤ C‖φ‖
C
α
2s ((−1,0)×Rn)

(
|t− t′|

α
2s + |x− x′|α

)
,

as desired. �

Finally, let us combine some of the results that have been obtained here to show
the following result: when the kernel of the operator is regular enough, we gain
2s− ε spatial interior regularity. That is

Corollary 3.8. Let s ∈ (0, 1), and let L be any operator of the form (1.2) with
bounds (1.4). Assume that

a ∈ Ck+α(Sn−1),

for α ∈ (0, 1), k ∈ N.
Let u be any bounded weak solution to (1.7). Then, if 2s+ α is not an integer,

‖u‖C2s+k+α−ε
x ((− 1

2
,0)×B1/2) ≤ C

(
‖u‖L∞((−1,0)×Rn) + ‖f‖Ck+αx ((−1,0)×B1)

)
, (3.42)

for all ε > 0 and for some constant C depending only on ε, α, n, s, ‖a‖Ck+α(Sn−1) and
the ellipticity constants (1.4).

Proof. Let η = η(x) be a cutoff function supported in B2 and such that η ≡ 1 in
B3/2. In the expression (3.36) from the proof of Theorem 1.3 we can take incremental
quotients of order k + α as in the proof of Corollary 3.4 to find

[u]C2s−ε+k+α
x ((−2−2s,0)×B1/2) ≤ δ[ηu]C2s−ε+k+α

x ((−1,0)×B2)+

+ C
(
‖u‖Cν+k+αx ((−1,0)×B1) + ‖f‖Ck+αx ((−1,0)×B1) + ‖(∂t − L)(ηu− u)‖Ck+αx ((−1,0)×B1)

)
.

Notice that, as in Corollary 3.7, we obtain

‖(∂t − L)(ηu− u)‖Ck+αx ((−1,0)×B1) = ‖L(ηu− u)‖Ck+αx ((−1,0)×B1) ≤ ‖u‖L∞((−1,0)×Rn),

and now the desired result follows as in the proof of Theorem 1.3. �

4. Cs regularity up to the boundary

In this section we start the study of the regularity up to the boundary. We will
first construct a supersolution with appropriate behaviour near the boundary, and
then we establish the Cs

x regularity up to the boundary, Proposition 1.4.
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4.1. A supersolution. Let us begin with the following general result, which gives
a fractional Sobolev inequality for operators L of the form (1.3)-(1.4).

Lemma 4.1 (A fractional Sobolev inequality). Let s ∈ (0, 1), 2s < n, and L any
operator of the form (1.3)-(1.4), with spectral measure µ. Then,

‖f‖2

L
2n
n−2s (Rn)

≤ C

∫
Rn

∫
Sn−1

∫ ∞
−∞
|f(x+ θr)− f(x)|2 dr

|r|1+2s
dµ(θ)dx (4.1)

for some constant C depending only on n, s and the ellipticity constants (1.4).

Proof. This fractional Sobolev inequality is already known when the operator L is
the fractional Laplacian. In this case the right hand side is the Gagliardo seminorm
[f ]Hs(Rn).

Let us call [f ]Hs
L(Rn) the right hand side of (4.1). Using the classical fractional

Sobolev inequality and Plancherel’s theorem, it is enough to prove that [f ]Hs
L(Rn)

and [f ]Hs(Rn) are equivalent seminorms in the Fourier side. This follows by noticing
that the Fourier symbol A(ξ) of L can be explicitly written as

A(ξ) =

∫
Sn−1

|ξ · θ|2sdµ(θ),

(see for example [ST94]), so that

[f ]Hs
L(Rn) =

∫
Rn
A(ξ)|f̂(ξ)|2dξ.

Now, by definition of λ,Λ, the ellipticity constants in (1.4), we have

0 < λ|ξ|2s ≤ A(ξ) ≤ Λ|ξ|2s.
Using that the Fourier symbol of the fractional Laplacian is |ξ|2s we are done. �

We now give a result regarding the eigenfunctions associated to an operator L in
a domain Ω. This will be used later to construct a supersolution.

Lemma 4.2. Let L be an operator of the form (1.3)-(1.4), and let Ω ⊂ Rn be a
bounded Lipschitz domain. Then the eigenfunctions of the Dirichlet elliptic problem
are bounded in Ω. That is, if φk ∈ L2(Ω) is the eigenfunction associated to the k-th
eigenvalue λk, {

Lφk = −λkφk in Ω,
u = 0 in Rn \ Ω,

(4.2)

then,

‖φk‖L∞(Ω) ≤ C1λ
1
2( n

2s)
2

k ‖φk‖L2(Ω)

where C1 is a constant depending only on n and s. Moreover,

lim
k→∞

λkk
− 2s
n = C2,

for some constant C2 depending only on n, s,Ω and the ellipticity constants (1.4).
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Proof. Let us begin with the first inequality. If n = 1, then L is a multiple of the
fractional Laplacian and the result is already known (e.g. [SV13, Proposition 4]
or [FR15]). If n > 2s, it can be proved doing exactly the same as Servadei and
Valdinoci do in [SV13, Proposition 4] for the fractional Laplacian case. To do so,
we use the fractional Sobolev inequality for general stable operators established in
Lemma 4.1.

The second result follows from [FR15, Proposition 2.1], which is a direct conse-
quence of a result from [Gei14]. �

In this section and what follows we will use the following notation

d(x) := dist(x,Rn \ Ω). (4.3)

Lemma 4.3 (Supersolution). Let s ∈ (0, 1) and let Ω ⊂ Rn be any bounded C1,1

domain. Let u be the solution to ∂tu− Lu = 1 in Ω, t > 0
u = 0 in Rn \ Ω, t ≥ 0

u(0, x) = 1 in Ω.
(4.4)

Then, we have
|u| ≤ C(t0)ds, for all t ≥ t0 > 0, (4.5)

where C(t0) depends only on t0, n, s,Ω and the ellipticity constants (1.4). The de-
pendence with respect to Ω is via |Ω| and the C1,1 norm of the domain.

Remark 4.4. We call the C1,1 norm of the domain to the maximum ρ such that there
are balls tangent at every point from inside and outside the domain with radius ρ.

Proof. Notice that u(t, x) = u1(x) + u2(t, x) where u1 solves{
−Lu1 = 1 in Ω, t > 0

u1 = 0 in Rn \ Ω, t ≥ 0
(4.6)

and u2 solves  ∂tu2 − Lu2 = 0 in Ω, t > 0
u2 = 0 in Rn \ Ω, t ≥ 0

u2(0, x) = 1− u1(x) in Ω.
(4.7)

By the results in [RS14b] we have a bound for u1 of the form

|u1| ≤ Cds, (4.8)

where C depends only on n, s, the C1,1 norm of Ω and the ellipticity constants (1.4).
To bound u2 we proceed as in the proof of [FR15, Theorem 1.1] by expressing u2

with respect to the eigenfunctions of the elliptic problem. Namely,

u2(t, x) =
∑
k>0

ukφke
−λkt,

where φk is the k-th eigenfunction corresponding to the k-th eigenvalue λk, and uk
are the Fourier coefficients of u2(0, x). We are assuming ‖φk‖L2(Ω) = 1 for all k ∈ N.
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By the results in [RS14b] for the elliptic problem and Lemma 4.2 we have

|φk(x)| ≤ Cλ‖φk‖L∞(Ω)d
s(x) ≤ Cλw+1

k ds(x),

where w = 1
2

(
n
2s

)2
and C depends only on n and s. Therefore,

|u2(t, x)| ≤ ds(x)
∑
k>0

ukCλ
w
k e
−λkt, for all x ∈ Ω.

Using the exact same reasoning as in [FR15], this implies

|u2(t, x)| ≤ C(t)‖u2(0, ·)‖L2(Ω)d
s(x), for all x ∈ Ω.

The constant C depends only on t, n, s, |Ω|, and the ellipticity constants (1.4). This
implies our result, since

‖u2(0, ·)‖L2(Ω) ≤ |Ω|
(
1 + ‖u1‖L∞(Ω)

)
≤ C

for C depending only on n, s, |Ω| and the ellipticity constants (1.4). �

4.2. Cs regularity up to the boundary. We begin this subsection by introducing
a definition that will be useful through this and the next section.

Definition 4.5. We say that Γ is a C1,1 surface with radius ρ0 splitting B1 into Ω+

and Ω− if the following happens:

• The two disjoint domains Ω+ and Ω− partition B1, i.e., B1 = Ω+ ∪ Ω−.
• The boundary Γ := ∂Ω+ \ ∂B1 = ∂Ω− \ ∂B1 is a C1,1 surface with 0 ∈ Γ.
• All points on Γ∩B3/4 can be touched by two balls of radii ρ0, one contained

in Ω+ and the other contained in Ω−.

Under the previous definition, we will denote

d(x) = dist(x,Ω−).

We will prove the following version of Proposition 1.4.

Proposition 4.6. Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4).
Let Γ be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−. Let u be any
weak solution to {

∂tu− Lu = f in (0, 1)× Ω+

u = 0 in (0, 1)× Ω−.
(4.9)

Then,

‖u‖
C

1
2 ,s

t,x ([ 12 ,1]×B1/2)
≤ C

(
‖f‖L∞((0,1)×Ω+) + ‖u‖L∞((0,1)×Rn)

)
, (4.10)

where C depends only on n, s, ρ0 and the ellipticity constants (1.4).

To prove the previous proposition we will follow the steps of [RS14, Proposition
1.1]. We begin with the following lemma.
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Lemma 4.7. Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4). Let u
be any weak solution to (1.7) with f ∈ L∞((−1, 0)×B1), and

K0 = sup
t∈(−1,0)

sup
R≥1

Rδ−2s‖u(t, ·)‖L∞(BR)

for some δ > 0. Then, for any ε > 0,

‖u‖
C

1− ε
2s

t ([− 1
2
,0]×B1/2)

+ ‖u‖C2s−ε
x ([− 1

2
,0]×B1/2) ≤ C(K0 + ‖f‖L∞((−1,0)×B1)), ,

where the constant C depends only on n, s, ε, δ and the ellipticity constants (1.4).

Proof. Apply Theorem 1.3 to ũ = uχB2 . Then, by an argument similar to the one
done in the proof of Theorem 1.3, it is enough to check

‖L(u(1− χB2))‖L∞((−1,0)×B1) ≤ CK0.

This is immediate from the growth imposed by the definition of K0, i.e.,

|u(t, x)| ≤ K0

(
1 + |x|2s−δ

)
.

Thus, the lemma follows. �

We next show that the solutions u satisfy |u| ≤ Cds.

Lemma 4.8. Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4). Let Γ
be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−, and let f ∈ L∞((0, 1)×
Ω+). Let u be any weak solution to (4.9). Then

|u(t, x)| ≤ C(t0)
(
‖f‖L∞((0,1)×Ω+) + ‖u‖L∞((0,1)×Rn)

)
ds(x),

for all x ∈ B1/4, t ≥ t0 > 0, and where C depends only on t0, n, s, ρ0 and the
ellipticity constants (1.3)-(1.4).

Proof. Pick any point z ∈ Γ∩B1/2, and consider the ball B(z) tangent at z and inside
Ω− with radius min{ρ0,

1
8
}. Then construct the supersolution from Lemma 4.3 in

the domain B2\B(z). This yields the desired result for points near z with a constant
C that does not depend on the z chosen. Repeating the argument for any point in
Γ ∩ B1/2 we are done: indeed, for any x ∈ B1/4 we apply this to zx ∈ Γ ∩ B1/2 such
that d(x) = dist(zx, x) and the result follows. �

As a consequence of the previous bound we find the following

Lemma 4.9. Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4). Let Γ
be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−, f ∈ L∞((0, 1) × Ω+)

and u be any weak solution to (4.9). Then, for all x0 ∈ Ω+∩B1/4, and all R ≤ d(x0)
2

,

[u]
C

1
2 ,s

t,x ((t1− 1
2
R2s,t1)×BR(x0))

≤ C
(
‖f‖L∞((0,1)×Ω+) + ‖u‖L∞((0,1)×Rn)

)
, (4.11)

where t1 is such that 1
4
≤ t1 − R2s < t1 ≤ 1 (making R smaller if necessary). The

constant C depends only on n, s, ρ0 and the ellipticity constants (1.3)-(1.4).
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Proof. Notice that BR(x0) ⊂ B2R(x0) ⊂ Ω+. Let ũ(t, y) = u(R2st+t1−R2s, x0+Ry),
so that

∂tũ− Lũ = R2sf(R2st+ t1 −R2s, x0 +Ry) (4.12)

for x ∈ B1, t ≥
R2s − t1
R2s

.

We define
C0 := ‖f‖L∞((0,1)×Ω+) + ‖u‖L∞((0,1)×Rn),

and

for TR :=
1

R2s

(
1

4
+R2s − t1

)
.

From Lemma 4.8 with t0 = 1
4

we get

‖ũ‖L∞((TR,1)×B1/4) ≤ CC0R
s. (4.13)

Now note that, by Lemma 4.8, for all y ∈ Rn,

|ũ(t, y)| ≤ CC0d
s(x0 +Ry) ≤ CC0R

s(1 + |y|s) for t ∈ (TR, 1).

Thus, we obtain
sup

t∈(TR,1)

sup
r≥1

r−3s/2‖ũ(t, ·)‖L∞(Br) ≤ CC0R
s. (4.14)

Using Lemma 4.7 with ε = s and expressions (4.12)-(4.13)-(4.14) we obtain

‖ũ‖
C

1
2
t (( 1

2
,1)×B1/4)

+ ‖ũ‖Csx(( 1
2
,1)×B1/4) ≤ C(t0)C0R

s,

where we have used that, under these hypotheses, TR ≤ 0.
Finally, use that

R−s[ũ]
C

1
2 ,s

t,x (( 1
2
,1)×B1/4)

= [u]
C

1
2 ,s

t,x ((t1− 1
2
R2s,t1)×BR/4(x0))

,

to get
[u]

C
1
2 ,s

t,x ((t1− 1
2
R2s,t1)×BR/4(x0))

≤ CC0.

By a standard covering argument, we find the desired result in BR(x0). �

We now prove Proposition 4.6.

Proof of Proposition 4.6. Since

[u]
C

1
2 ,s

t,x ([ 12 ,1]×(Ω+∩B1/2))
≤ [u]Csx([ 12 ,1]×(Ω+∩B1/2)) + [u]

C
1
2
t ([ 12 ,1]×(Ω+∩B1/2))

we can treat these two terms separately.
For the first term we need to show

|u(t, x)− u(t, x′)|
|x− x′|s

≤ CC0, (4.15)

for any t ∈
(

1
2
, 1
)
, x, x′ ∈ Ω+ ∩B1/2 and constant C independent of t1, where again

we define
C0 = ‖f‖L∞((0,1)×Ω+) + ‖u‖L∞((0,1)×Rn).
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Let rd = min{d(x), d(x′)} and R = |x− y|. We now separate two cases according to
the values of rd and R:

If 2R ≥ rd, from Lemma 4.8 with t0 = 1/2 we have

|u(t, x)− u(t, x′)| ≤ CC0 (rsd + (R + rd)
s) ≤ CC0R

s

so that (4.15) is fulfilled.
On the other hand, if 2R < rd and x ∈ B1/4, then B2R(x) ⊂ Ω and therefore,

from Lemma 4.9we would get [u]Csx(BR(x) ≤ CC0. This can be extended for x ∈ B1/2

using a covering argument. Thus, (4.15) is proved.
For the second term in the seminorm we want to show

|u(t, x0)− u(t′, x0)|
|t− t′| 12

≤ CC0, (4.16)

for any x0 ∈ Ω+ ∩ B1/4, t, t′ ∈
(

1
2
, 1
)
. Again, this can be extended to Ω+ ∩ B1/2 by

a covering argument. Notice that we can suppose that |t− t′| is small as long as it
is independent of x0. Let x̄ ∈ Ω+ to be chosen later, and observe that

|u(t, x0)− u(t′, x0)| ≤ 2 sup
t∗∈( 1

2
,1)
|u(t∗, x0)− u(t∗, x̄)|+ |u(t, x̄)− u(t′, x̄)|.

By (4.15) we have

sup
t∗∈( 1

2
,1)
|u(t∗, x0)− u(t∗, x̄)| ≤ CC0|x0 − x̄|s.

Moreover, choosing x̄ such that |t− t′| ≤ d(x̄)2s

2
, by Lemma 4.9 we have

|u(t, x̄)− u(t′, x̄)| ≤ CC0|t− t′|
1
2 .

Therefore, choosing x̄ such that

ε0|x0 − x̄| ≤ |t− t′|
1
2s ≤ 2−

1
2sd(x̄)

(4.16) follows. Notice that such x̄ and ε0 > 0 independent of x0, x̄, t and t′ always
exist if |t−t′| is small enough, depending on ε0 and the C1,1 norm of the domain. �

Proposition 4.6 directly yields Proposition 1.4.

Proof of Proposition 1.4. The result follows combining Proposition 4.6 with the in-
terior estimates of Theorem 1.3. �

We next present an immediate consequence of Proposition 4.6 analogous to Lemma
4.7 but for the case with boundary that will be useful later (and that is why we con-
sider the temporal domain to be (−1, 0) now).

Corollary 4.10. Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4).
Let Γ be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−. Suppose that
f ∈ L∞((−1, 0)× Ω+) and u is any weak solution to{

∂tu− Lu = f in (−1, 0)× Ω+

u = 0 in (−1, 0)× Ω−.
(4.17)
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Define

K0 = sup
t∈(−1,0)

sup
R≥1

Rδ−2s‖u(t, ·)‖L∞(BR),

for some δ > 0. Then,

‖u‖
C

1
2
t ([− 1

2
,0]×B1/2)

+ ‖u‖Csx([− 1
2
,0]×B1/2) ≤ C(K0 + ‖f‖L∞((−1,0)×Ω+)).

where C depends only on n, s, ρ0, δ and the ellipticity constants (1.4).

Proof. The proof is the same as the proof of Lemma 4.7, using Proposition 4.6.
Indeed, define ũ = uχB2 and notice that

‖Lũ‖L∞((−1,0)×B1) ≤ ‖Lu‖L∞((−1,0)×B1) + ‖L (u(1− χB2)) ‖L∞((−1,0)×B1)

≤ ‖f‖L∞((−1,0)×Ω+) + CK0,

which follows from the growth imposed by the definition of K0. �

4.3. Liouville-type theorem in the half space. We now prove a Liouville-type
theorem in the half space for nonlocal parabolic equations.

Theorem 4.11. Let s ∈ (0, 1), and let L be any operator of the form (1.3)-(1.4).
Let u be any weak solution of{

∂tu− Lu = 0 in (−∞, 0)× Rn
+

u = 0 in (−∞, 0)× Rn
−,

(4.18)

such that

‖u(t, ·)‖L∞(BR) ≤ C (Rγ + 1) for R ≥ |t|
1
2s ,

for some γ < 2s. Then,

u(t, x) = K(xn)s+

for some constant K ∈ R.

Proof. We proceed as in the proof of [RS14b, Theorem 4.1].
Given ρ > 0 define vρ(t, x) = ρ−γu(ρ2st, ρx). Then,{

∂tvρ − Lvρ = 0 in (−∞, 0)× Rn
+

vρ = 0 in (−∞, 0)× Rn
−,

(4.19)

and for R ≥ |t| 12s ,

‖vρ(t, ·)‖L∞(BR) = ρ−γ‖u(ρ2st, ·)‖L∞(BρR) ≤ ρ−γC(1 + (ρR)γ) ≤ C (1 +Rγ) (4.20)

for ρ ≥ 1.

Hence, denoting vρ = vρχB2(x), we have that vρ ∈ L∞((−1, 0)× Rn) satisfies{
∂tvρ − Lvρ = gρ in (−1, 0)×B+

1

vρ = 0 in (−1, 0)×B−1 ,
(4.21)
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for some gρ ∈ L∞((−1, 0)×B+
1 ), with ‖gρ‖L∞((−1,0)×B+

1 ) ≤ C0, for some constant C0

independent of ρ ≥ 1. The constant C0 depends only on the constant C in (4.20).
By Proposition 4.6 we find

‖vρ‖
C

1
2 ,s

t,x ((−2−2s,0)×B1/2)
= ‖vρ‖

C
1
2 ,s

t,x ((−2−2s,0)×B1/2)
≤ CC0.

Therefore, for ρ ≥ 1

[u]
C

1
2 ,s

t,x ((−2−2sρ2s,0)×Bρ/2)
= ρ−s[u(ρ2st, ρx)]

C
1
2 ,s

t,x ((−2−2s,0)×B1/2)

= ρs−γ[vρ]
C

1
2 ,s

t,x ((−2−2s,0)×B1/2)
≤ CC0ρ

γ−s.

Now, given h ∈ B1 with hn = 0, and τ ∈ (−1, 0) consider

wh(t, x) =
u(t+ τ, x+ h)− u(t, x)

τ
1
2 + |h|s

,

so that, by the previous result, whenever R ≥ |t| 12s we have that

‖wh(t, ·)‖L∞(BR) ≤ C(Rγ−s + 1).

By linearity ∂twh − Lwh = 0 in (−∞, 0)×Rn
+ and w = 0 in (−∞, 0)×Rn

−. We can
then apply the previous reasoning with u replaced by wh to finally reach that

[wh]C1/2,s
t,x ((−2−2sρ2s,0)×Bρ/2)

≤ CC0ρ
γ−2s, for ρ ≥ 1.

Since 2s > γ, making ρ→∞ we find that wh must be constant. But since wh = 0
in Rn

− then
wh ≡ 0 in (−∞, 0)× Rn.

This implies that for all h ∈ B1 with hn = 0 and for all τ ∈ (−1, 0), then
u(t + τ, x + h) = u(t, x). Thus, u is constant in time, and by [RS14b, Theorem
4.1] we get u(t, x) = K(xn)sx as desired. Alternatively, we could end the proof by
noticing that

u(t, x) = u(xn)

for some 1D function u, and proceeding as in the final part of the proof of [RS14b,
Theorem 4.1]. �

5. Regularity up to the boundary for u/ds

In this section we will prove Theorem 1.5. We begin by introducing a definition
that will be recurrent throughout the section.

Let s ∈ (0, 1) and let L be an operator of the form (1.3)-(1.4). Let Γ be a C1,1

surface with radius ρ0. Under the notation in Definition 4.5, and when not specified
otherwise, in the whole section we will define ū = ū(x) as any solution to Lū = 1 in Ω+

ū = 0 in Ω−,
0 ≤ ū ≤ c2 in Rn \B1,

(5.1)
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where c2 is a constant depending only on n, s and the ellipticity constants.
Notice that, under these circumstances, we have

0 < c0d
s ≤ ū ≤ c1d

s in B1/2 (5.2)

where c0 and c1 are constants depending only on n, s, ρ0 and the ellipticity constants
(1.4). The first inequality in (5.2) appears, for example, in [Ros15, Lemma 7.4], while
the second one is a consequence of the Cs regularity up to the boundary for this
elliptic problem (see for example [RS14b, Proposition 4.6] or the previous section).

The result we will need before proving Theorem 1.5 is the following.

Proposition 5.1. Let s ∈ (0, 1) and γ ∈ (s, 2s). Let L be an operator of the form
(1.3)-(1.4), let Γ be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−, and
let ū be a function satisfying (5.1).

Let u be any weak solution to{
∂tu− Lu = f in (−1, 0)× Ω+

u = 0 in (−1, 0)× Ω−.
(5.3)

and define

C0 = ‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×Ω+).

Then, there is a constant Q ∈ R with |Q| ≤ CC0 for which

|u(t, x)−Qū(x)| ≤ CC0

(
|x|γ + |t|

γ
2s

)
in (−1, 0)×B1.

The constant C depends only on n, ρ0, s, γ and the ellipticity constants (1.4).

In order to prove this proposition we will need the following lemma.

Lemma 5.2. Let s ∈ (0, 1), γ > s, and u ∈ C((−1, 0)× B1). Let L be an operator
of the form (1.3)-(1.4) and let Γ be a C1,1 surface splitting B1 into Ω+ and Ω−, with
radius ρ0. Let ū be a solution to (5.1). Define

φr(x) := Q∗(r)ū(x),

Q∗(r) := arg min
Q∈R

∫ 0

−r2s

∫
Br

(u(t, x)−Qū)2 dxdt =

∫ 0

−r2s
∫
Br
u(t, x)ūdxdt

r2s
∫
Br
ū2dx

.

Assume that for all r ∈ (0, 1) we have that

‖u− φr‖L∞((−r2s,0)×Br) ≤ C∗r
γ.

Then, there is Q ∈ R satisfying |Q| ≤ C(C∗ + ‖u‖L∞((−1,0)×B1)) such that

‖u−Qū‖L∞((−r2s,0)×Br) ≤ CC∗r
γ

for some constant C depending only on γ, n, s, ρ0 and the ellipticity constants (1.4).
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Proof. Notice that by (5.2) we have

‖ū‖L∞(Br) ≥ crs for r ∈ (0, 1), (5.4)

where c is a constant depending only on n, s, ρ0 and the ellipticity constants (1.4).
On the other hand, notice that

|Q∗(1)| ≤
‖u‖L∞((−1,0)×B1)‖ū‖L∞(B1)

‖ū‖2
L2(B1)

.

By (5.2) again ‖ū‖L∞(B1) ≤ C, and since there is some ball of radius ρ0 touching
the origin inside Ω+ where ū ≥ c1d

s, we have that ‖ū‖2
L2(B1) ≥ C ′, for some constants

C,C ′ depending only on n, s, ρ0 and the ellipticity constants (1.4). Thus

|Q∗(1)| ≤ C‖u‖L∞((−1,0)×B1), (5.5)

for some C depending only on n, s, ρ0 and the ellipticity constants (1.4).
Using (5.4) and (5.5), the proof is exactly the same as the proof of [RS14b, Lemma

5.3]. �

We now prove Proposition 5.1. The proof is by contradiction, and uses some ideas
from [RS14b, Proposition 5.2].

Proof of Proposition 5.1. Assume that there are sequences Γk, Ω+
k , Ω−k , fk, uk and

Lk satisfying the hypotheses of the proposition. That is,

• Γk is a C1,1 surface with radius ρ0 splitting B1 into Ω+
k and Ω−k , and we

assume without loss of generality that the normal vector to Γ at the origin
is en.
• Lk is of the form (1.3)-(1.4).
• ‖uk‖L∞((−1,0)×Rn) + ‖fk‖L∞((−1,0)×Ω+

k ) ≤ 1.

• uk is a solution of{
∂tuk − Lkuk = fk in (−1, 0)× Ω+

k

uk = 0 in (−1, 0)× Ω−k .
(5.6)

In order to reach a contradiction, suppose that the conclusion of the proposition
does not hold. That is, for all C > 0, there are k and ūk for which no constant
Q ∈ R satisfies

|uk(t, x)−Qūk(x)| ≤ C
(
|x|γ + |t|

γ
2s

)
in (−1, 0)×B1, (5.7)

where ūk solves  Lkūk = 1 in Ω+
k

ūk = 0 in Ω−k ,
0 ≤ ūk ≤ c2 in Rn \B1.

(5.8)

We will divide the proof by contradiction into four steps.
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Step 1: The blow-up sequence. Notice that, by Lemma 5.2, and the negation
of (5.7), we have

sup
k

sup
r>0

r−γ‖uk − φk,r‖L∞((−r2s,0)×Br) =∞, (5.9)

where

φk,r(x) = Qk(r)ūk, (5.10)

Qk(r) := arg min
Q∈R

∫ 0

−r2s

∫
Br

(uk(t, x)−Qūk)2 dxdt =

∫ 0

−r2s
∫
Br
uk(t, x)ūkdxdt

r2s
∫
Br
ū2
kdx

.

We define the following monotone decreasing function in r,

θ(r) := sup
k

sup
r′>r

(r′)−γ‖uk − φk,r′‖L∞((−(r′)2s,0)×Br′ ).

Notice that, θ(r) <∞ for r > 0 and θ(r) ↑ ∞ as r ↓ 0. Pick a sequence rm, km such
that rm ≥ 1

m
and

r−γm ‖ukm − φkm,rm‖L∞((−r2sm ,0)×Brm ) ≥
θ(1/m)

2
≥ θ(rm)

2
. (5.11)

Notice that rm ↓ 0 as m→∞. To simplify notation we will denote φm = φkm,rm .
We now consider a blow-up sequence

vm(t, x) =
ukm(r2s

m t, rmx)− φm(rmx)

rγmθ(rm)
.

In the next step we analyse some properties of this blow-up sequence.

Step 2: Properties of the blow-up sequence. By the optimality condition for
least squares we have that, for m ≥ 1,∫ 0

−1

∫
B1

vm(t, x)ūkm(rmx)dxdt = 0. (5.12)

Moreover,

‖vm‖L∞((−1,0)×B1) ≥ 1/2, (5.13)

which is an immediate consequence of the expression (5.11).
In addition, for all k we have that

|Qk(2r)−Qk(r)| ≤ Crs−γθ(r),

for some C depending only on n and s. Indeed,

|Qk(2r)−Qk(r)| =
‖φk,2r − φk,r‖L∞(Br)

‖ūk‖L∞(Br)

≤ Cr−s
(
‖φk,2r − uk‖L∞((−(2r)2s,0)×B2r) + ‖φk,r − uk‖L∞((−r2s,0)×Br)

)
≤ Cr−s ((2r)γθ(2r) + rγθ(r)) ≤ Crγ−sθ(r),
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where we have used that by (5.2) for r ≤ 1
2
,

‖ūk‖L∞(Br) ≥ c0r
s

for c0 depending only on n, s, ρ0 and the ellipticity constants (1.4).
Thus, for R = 2N we have

rs−γ|Qk(rR)−Qk(r)|
θ(r)

≤
N−1∑
j=0

2j(γ−s)
(2jr)s−γ|Qk(2

j+1r)−Qk(2
jr)|

θ(r)

≤ C
N−1∑
j=0

2j(γ−s)
θ(2jr)

θ(r)
≤ C2N(γ−s) = CRγ−s,

for some C depending only on n and s.
Using this, we bound the growth of vm,

‖vm‖L∞((−R2s,0)×BR) =
1

rγmθ(rm)
‖ukm −Qkm(rm)ūkm‖L∞((−R2sr2sm ,0)×BRrm )

≤ Rγ

(Rrm)γθ(rm)
‖ukm −Qkm(Rrm)ūkm‖L∞((−R2sr2sm ,0)×BRrm )+

+
1

rγmθ(rm)
|Qkm(Rrm)−Qkm(rm)|(Rrm)s

≤ Rγθ(Rrm)

θ(rm)
+ CRγ.

We have used here that by (5.2)

‖ūk‖L∞(Br) ≤ c2r
s

for some constant c2 depending only on n, s, ρ0 and the ellipticity constants (1.4).
Therefore, we have the following growth control on vm,

‖vm‖L∞((−R2s,0)×BR) ≤ CRγ for R ≥ 1. (5.14)

Finally, notice that vm satisfy

∂tvm(t, x)− Lkmvm(t, x) =
r2s−γ
m

θ(rm)

(
fkm(r2s

m t, rmx)−Qkm(rm)
)

(5.15)

in (−R2s, 0)× Ω+
R,m,

for all 0 ≤ R ≤ r−1
m and

Ω+
R,m := {x ∈ BR : rmx ∈ Ω+

km
}.

Step 3: Convergence properties. We next show that there is a subsequence of
vm converging to some function v.
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Notice that the right hand side of (5.15) is uniformly bounded with respect to m.
Indeed,

|Qkm(rm)| ≤

∫ 0

−r2sm

∫
Brm
|ukm(t, x)| ūkmdxdt

r2s
m

∫
Brm

ū2
km
dx

≤
Cc1

∫
Brm

Cds(x)c2d
s(x)dx

c0

∫
Brm

d2s(x)dx
≤ C

for some constant C depending only on n, s, ρ0 and the ellipticity constants (1.4).
Here we used (5.2) and also that

sup
t∈(−r2s,0)

|uk(t, x)| ≤ Cds(x),

for r small enough, which follows by the Cs regularity of Proposition 4.6.
Hence, using also that γ < 2s and θ(rm)→∞, we find

‖∂tvm(t, x)− Lkmvm(t, x)‖L∞((−R2s,0)×Ω+
R,m) ≤

r2s−γ
m

θ(rm)
→ 0 as m→∞, (5.16)

Thanks to the control (5.14) and the bound from (5.16) we can apply Corollary 4.10
with δ = 2s− γ > 0 on domains of the form (−R2s, 0)×BR, to obtain that

‖vm‖
C

1
2 ,s

t,x ((−R2s/2,0)×BR/2)
≤ C(R), (5.17)

for some constant C depending only on R, n, s, ρ0 and the ellipticity constants (1.4).
It is important to highlight that the dependence is on ρ0 independent of rm, and this
is because the domains of the form Ω+

R,m are C1,1 surfaces with radius ρ0/rm > ρ0.
Therefore, by the Arzelà-Ascoli theorem there is some subsequence of vm converg-

ing to some function v uniformly over compact sets, since (−R2s, 0) × BR can be
made arbitrarily large.

On the other hand, recall that from the compactness of probability measures on
the sphere we can find a subsequence of {Lkm} converging weakly to an operator L̃
of the form (1.3)-(1.4).

Now, consider any point x ∈ Rn
+. The normal vector to Γkm at the origin is en

and there is a ball of radius ρ0/rm contained in Ω+

r−1
m ,m

tangent to Γkm at the origin.

Therefore, for m large enough we will have that x ∈ Ω+

r−1
m ,m

eventually, and the same

will happen for any neighbourhood of x inside Rn
+. Similarly, if x ∈ Rn

−, for m large
enough we will have vm(t, x) = 0 for any t ∈ (−r2s

m , 0). By Lemma 3.1, we have that
up to a subsequence vm converges locally uniformly to some v satisfying{

∂tv − L̃v = 0 in (−∞, 0)× Rn
+

v = 0 in (−∞, 0)× Rn
−,

(5.18)

for some operator L̃ of the form (1.3)-(1.4). Furthermore, by uniform convergence
and from (5.13)-(5.14), we have

‖v‖L∞((−1,0)×B1) ≥ 1/2, (5.19)

and
‖v‖L∞((−R2s,0)×BR) ≤ CRγ for R ≥ 1. (5.20)
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Finally, observe that
ūkm (rmx)

rsm
converges uniformly in B1 up to a subsequence to

Q̄(xn)s+ for some Q̄ ∈ R+. Indeed, by [RS14b, Proposition 5.2], for each m ∈ N and
γ′ ∈ (s, 2s) there is some Q̄m such that

|ūkm(x)− Q̄m(xn)s+| ≤ C|x|γ′ , for x ∈ B1, (5.21)

where C depends only on n, s, ρ0, γ
′ and the ellipticity constants (1.4). Moreover,

thanks to (5.2),
0 < c0 ≤ Q̄m ≤ c1 for all m ∈ N, (5.22)

where the constants c0 and c1 are the same as in (5.2). To check this, write for
example

c0d
s − Q̄m(xn)s+ ≤ |ūkm(x)− Q̄m(xn)s+| ≤ |x|γ

′
.

Now dividing the expression by |(xn)+|s and taking the limit for x = hen and h ↓ 0
we would get c0 ≤ Q̄m. It similarly follows Q̄m ≤ c1.

Rescaling (5.21),

sup
x∈B1

∣∣∣∣ ūkm(rmx)

rsm
− Q̄m(xn)s+

∣∣∣∣ ≤ Crγ
′−s
m → 0 as m→∞,

and up to a subsequence we have that

ūkm(rmx)

rsm
→ Q̄(xn)s+ uniformly in B1 (5.23)

for some Q̄ fulfilling the same bounds as Q̄m, (5.22).

Step 4: Contradiction. By considering the expression (5.12) in the limit, and

using
ūkm (rmx)

rsm
→ Q̄(xn)s+ uniformly in B1, we have∫ 0

−1

∫
B1

v(t, x)(xn)s+dxdt = 0. (5.24)

On the other hand, by (5.18)-(5.20) we can apply the Liouville-type theorem in
the half space, Theorem 4.11, to v. Therefore, we have

v(t, x) = k(xn)s+, for some k ∈ R.
By (5.24), v ≡ 0. However, this is not possible by (5.19), and we have reached a
contradiction. �

Before proceeding to give the proof of Theorem 1.5, we state the following use-
ful lemma. Thanks to this lemma, we can replace ū by ds in the expression of
Proposition 5.1.

Lemma 5.3 ([RS14b]). Let Γ be a C1,1 surface with radius ρ0 splitting B1 into Ω+

and Ω−. Let ū be a solution to (5.1), and let d(x) = dist(x,Ω−). Let x0 ∈ B1/2 such
that

dist(x0,Γ) = dist(x0, z) =: 2r < ρ0.
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Then, there exists some Q̄ = Q̄(z) such that |Q̄(z)| ≤ C,

‖ū− Q̄ds‖L∞(Br(x0)) ≤ Cr2s−ε, (5.25)

and
[ū− Q̄ds]Cs−εx (Br(x0)) ≤ Crs, (5.26)

for some constant C depending only on n, s, ε, ρ0 and the ellipticity constants (1.4).
Moreover,

[d−s]Cs−ε(Br(x0)) ≤ C∗r−2s+ε (5.27)

for some constant C∗ depending only on ρ0.

Proof. The third expression (5.27) is in [RS14b, Lemma 5.5], while the first two
expressions, (5.25)-(5.26), appear in the proof [RS14b, Theorem 1.2]. �

Finally, we can proceed with the proof of Theorem 1.5. We will prove first the
following proposition, which is essentially the same but assuming 0 ∈ ∂Ω.

Proposition 5.4. Let s ∈ (0, 1), and let Γ be a C1,1 surface with radius ρ0 splitting
B1 into Ω+ and Ω−. Let u be a weak solution to{

∂tu− Lu = f in (−1, 0)× Ω+

u = 0 in (−1, 0)× Ω−.
(5.28)

where L is an operator of the form (1.3)-(1.4). Let

C0 = ‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×Ω+).

Then, for any ε > 0,

‖u‖C1−ε
t ((− 1

2
,0)×B1/2) + ‖u/ds‖

C
1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω+∩B1/2))

≤ CC0, (5.29)

where the constant C depends only on ε, n, ρ0, s and the ellipticity constants (1.4).

Proof. We may assume that

‖u‖L∞((−1,0)×Rn) + ‖f‖L∞((−1,0)×Ω+) ≤ 1.

Also, inside Ω the result follows from the interior regularity, so we only need to show
the estimates in Ω+ ∩ {x : d(x) < ρ0}.

Pick a point x0 ∈ B1/4 ∩Ω+ ∩ {x : d(x) < ρ0}, and consider z ∈ Γ minimizing the
distance to x0, i.e.,

2r := dist(x0,Γ) = dist(x0, z) < ρ0. (5.30)

During the proof we will assume that r is as small as we need (namely, 4r2s < 1), as
long as it does not depend on x0. Under these assumptions Br(x0) ⊂ B2r(x0) ⊂ Ω+

and z ∈ B1/2, since 0 ∈ Γ.
Let ū be the solution of (5.1) satisfying ū = 0 in Rn \B1. By Proposition 5.1 we

have that for each t0 ∈ (−1/2, 0) there exists some Q = Q(t0, z) with |Q| ≤ C for
which

|u(t, x)−Qū(x)| ≤ C
(
|x− z|2s−ε + |t− t0|

2s−ε
2s

)
in

(
−1

2
+ t0, t0

)
× Rn, (5.31)
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where C is a constant depending only on n, ρ0, s, ε and the ellipticity constants (1.4).
We have used here Proposition 5.1 on balls of radius 1/2 around each z ∈ Γ ∩B1/2.
Notice that, ū restricted to these balls satisfies an equation of the type (5.1) inside,
and is bounded outside by c2, so that Proposition 5.1 applies.

We will now divide the proof in two parts, concerning respectively the regularity
for u/ds and the (1− ε)-temporal regularity for u.

Step 1: Regularity for u/ds. To begin with, note that there is some K = K(t0, z)
such that |K| ≤ C and

‖u−Kds‖L∞((−r2s+t0,t0)×Br(x0)) ≤ Cr2s−ε. (5.32)

Indeed, this follows combining (5.31) and (5.25), and assuming r small enough.
On the other hand we also claim that

[u−Kds]
C

1
2−

ε
2s ,s−ε

t,x ((−r2s+t0,t0)×Br(x0))
≤ Crs, (5.33)

for any t0 ∈
(
−1

2
, 0
)
. Suppose also that it is always true that −1 < t0−r2s < t0 < 0,

making r smaller if necessary. The constant C in (5.32)-(5.33) depends only on
n, s, ε, ρ0 and the ellipticity constants (1.4).

To see (5.33) define the following function

vr(t, x) := r−su(r2st+ t0, rx+ z)− r−sQū(rx+ z). (5.34)

Notice that by (5.31) we have the following bound in (−22s, 0)×B2(x0),

‖vr‖L∞((−22s,0)×B2) ≤ Crs−ε,

and that by (5.31) we have the following growth control for R ≥ 1,

sup
t∈(−2,0)

‖vr(t, ·)‖L∞(BR) ≤ Crs−εR2s−ε. (5.35)

Moreover, vr solves

∂tvr − Lvr = rs
(
f(r2st+ t0, rx+ z)−Q

)
in (−2, 0)×B2(x̃0), (5.36)

for x̃0 = x0−z
r

, and r small enough so that the domain in t contains (−2, 0). Us-
ing the interior estimate in Lemma 4.7 and the bounds on Q, we obtain that
[vr]

C
1
2−

ε
2s ,s−ε

t,x ((−1,0)×B1(x̃0))
≤ Crs−ε. From this it follows that

rs−ε[u−Qū]
C

1
2−

ε
2s ,s−ε

t,x ((−r2s+t0,t0)×Br(x0))
= rs[vr]

C
1
2−

ε
2s ,s−ε

t,x ((−1,0)×B1(x̃0))
≤ Cr2s−ε,

(5.37)
and so we get the desired result, (5.33), by combining this expression with (5.26).

Finally, for any x1, x2 ∈ Br(x0) and any t1, t2 ∈ (−r2s + t0, t0)

u(t1, x1)

ds(x1)
− u(t2, x2)

ds(x2)
=

(u−Kds)(t1, x1)− (u−Kds)(t2, x2)

ds(x1)
+

+ (u−Kds)(t2, x2)(d−s(x1)− d−s(x2)).
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Now, by (5.33) and using that r and d are comparable in Br(x0) we have that

|(u−Kds)(t1, x1)− (u−Kds)(t2, x2)|
ds(x1)

≤ C
(
|x1 − x2|s−ε + |t1 − t2|

1
2
− ε

2s

)
.

By (5.32) and (5.27),

|u−Kds|(t2, x2)|d−s(x1)− d−s(x2)| ≤ C|x1 − x2|s−ε,
we finally get that

[u/ds]
C

1
2−

ε
2s ,s−ε

t,x ((−r2s+t0,t0)×Br(x0))
≤ C

for all such balls Br(x0). The bound

‖u/ds‖
C

1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω+∩B1/2))

≤ C

now follows the same way as in the proof of Proposition 4.6.

Step 2: C1−ε
t regularity. Let us now prove the bound for [u]C1−ε

t
.

We begin by noticing that applying Lemma 4.7 to the solution vr of (5.36) we
have [vr]

C
1− ε

2s ,2s−ε
t,x ((−1,0)×B1(x̃0))

≤ Crs−ε, where vr was defined by (5.34). Rescaling,

we find

r2s−ε[u−Qū]
C

1− ε
2s ,2s−ε

t,x ((−r2s+t0,t0)×Br(x0))
= rs[vr]

C
1− ε

2s ,2s−ε
t,x ((−1,0)×B1(x̃0))

≤ Cr2s−ε.

(5.38)
From here, we deduce

[u−Q(t0, z)ū]
C

1− ε
2s ,2s−ε

t,x ((−r2s+t0,t0)×Br(x0))
≤ C, (5.39)

where we will from now on explicitly write the dependence of Q, and we remind
that r depends on x0. Notice that from (5.31),

Q(t0, z) = lim
z∗∈Ω+

z∗→z

u(t0, z
∗)

ū(z∗)
=:

u(t0, z)

ū(z)
.

This last expression makes sense pointwise since the function u/ū is continuous up
to the boundary ∂Ω+ ∩B1/2 = Γ ∩B1/2, so we can take the limit.

Indeed, we already proved that ‖u/ds‖
C

1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω+∩B1/2))

≤ C, and from

[RS14b, Theorem 1.2] we know ‖ū/ds‖
C

1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω+∩B1/2))

≤ C: combining

both expressions we obtain

‖u/ū‖
C

1
2−

ε
2s ,s−ε

x ((− 1
2
,0)×(Ω+∩B1/2))

≤ C.

In particular, for any fixed z on the boundary,

[Q(·, z)]
C

1
2−

ε
2s

t (− 1
2
,0)
≤ C, (5.40)

where the constant C does not depend on the point z of the boundary inside B1/2.
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Now we want to show, for any point y ∈ B1/4 and t1, t2 ∈
(
−1

2
, 0
)
,

|u(t1, y)− u(t2, y)| ≤ C|t1 − t2|1−
ε
2s ,

for some constant C depending only on ε, n, s, ρ0 and the ellipticity constants (1.4).
Notice that to see this we can suppose that |t1 − t2| is as small as we need as long
as its value does not depend on y. Let us consider z such that

dist(y,Γ) = dist(y, z) < ρ0.

Notice that we can also assume that |y− z| is as small as we need, since the interior
regularity is already known.

If |t2 − t1| < 2−2s|y − z|2s, then by (5.39) we obtain the desired result. Assume
now that

|t2 − t1| ≥ 2−2s|y − z|2s. (5.41)

Let ȳ to be chosen later, satisfying

dist(ȳ,Γ) = dist(ȳ, z),

i.e., in the line passing through y and z.
Define yk = 2−kȳ + (1− 2−k)y, so that y0 = ȳ, y∞ = y. Define also

w(t, x) := u(t, x)−Q(t, z)ū(x)

which will be useful for points x in the segment between y and ȳ. With all this we
can bound the following expression,

|w(t1, y)− w(t2, y)| ≤
∑
k≥0

|w(t1, yk+1)− w(t1, yk)|+

+
∑
k≥0

|w(t2, yk+1)− w(t2, yk)|+ |w(t1, ȳ)− w(t2, ȳ)|

≤ 2
∑
k≥0

C|yk+1 − yk|2s−ε + |w(t1, ȳ)− w(t2, ȳ)|

= 2C|y − ȳ|2s−ε
∑
k≥0

2−(k+1)(2s−ε) + |w(t1, ȳ)− w(t2, ȳ)|

≤ C|y − ȳ|2s−ε + |w(t1, ȳ)− w(t2, ȳ)|,
Here, we used that

yk+1 − yk = 2−(k+1)(y − ȳ),

and therefore, in each term of the sum we can use the estimate (5.39). On the other
hand

|w(t1, ȳ)− w(t2, ȳ)| ≤ |u(t1, ȳ)−Q(t1, z)ū(ȳ)− (u(t2, ȳ)−Q(t1, z)ū(ȳ)) |+
+ |Q(t1, z)−Q(t2, z)|ū(ȳ).

We take ȳ such that

|t2 − t1| < 2−2s|ȳ − z|2s, (5.42)
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so that the estimate in (5.39) is valid. Considering (5.40), we have

|w(t1, ȳ)− w(t2, ȳ)| ≤ C|t2 − t1|1−
ε
2s + C|t2 − t1|

1
2
− ε

2s ū(ȳ)

≤ C|t2 − t1|1−
ε
2s + C|t2 − t1|

1
2
− ε

2s |ȳ − z|s;

where in the last inequality we have used (5.2). Hence, using |ȳ − z| > |ȳ − y|,

|w(t1, y)− w(t2, y)| ≤ C(|ȳ − z|2s−ε + |t2 − t1|1−
ε
2s + |t2 − t1|

1
2
− ε

2s |ȳ − z|s).

We now impose that ε2s0 |ȳ − z|2s ≤ |t2 − t1| for some ε0 independent of y, ȳ, t1 and
t2, and we get

|w(t1, y)− w(t2, y)| ≤ C|t2 − t1|1−
ε
2s .

Thus, we take ȳ such that

ε0|ȳ − z| ≤ |t2 − t1|
1
2s < 2−1|ȳ − z|.

This is always possible if ε0 and |t2 − t1| are small enough depending on s and ρ0.
Finally, from (5.40), (5.2) and (5.41)

|u(t1, y)− u(t2, y)| ≤ |w(t1, y)− w(t2, y)|+ |Q(t1, z)−Q(t2, z)|ū(y)

≤ C|t2 − t1|1−
ε
2s + C|t2 − t1|

1
2
− ε

2s |y − z|s

≤ C|t2 − t1|1−
ε
2s ,

as we wanted to see. �

We finally give the:

Proof of Theorem 1.5. As in the proof of Proposition 1.4, combine the result in
Proposition 5.4 with the interior estimates to get the desired result. �

Remark 5.5. In a future work by the second author and Serra the regularity results
for the elliptic problem will be extended to C1,α domains, for α ∈ (0, 1).

In Section 4, the only steps where it was used that the domain is C1,1 is in the
construction of supersolutions in Lemma 4.3, and in Lemma 4.8. If the solutions
to the elliptic problem with a C1,α domain were bounded by ds, namely (4.8), then
Proposition 1.4 would be true for C1,α domains, with the constant depending on α
too. On the other hand, the argument done in Lemma 4.3 can be easily adapted to
C1,α domains.

In Section 5 there are two steps where we used the C1,1 regularity of the domain.

Namely, to obtain the bounds (5.2) from [RS14b], and to say that ū(rx)
rs

converges
uniformly in B1 as r ↓ 0 to Q̄(xn)s+ in (5.23). Again, if these results were true for a
domain C1,α with α ∈ (0, 1), then the regularity up to the boundary found for u/ds

would also be true for this class of domains.
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6. The Dirichlet problem

In this section we prove Corollary 1.6. First, we give the following lemma.

Lemma 6.1. Let s ∈ (0, 1) and let Ω ⊂ Rn be a bounded C1,1 domain satisfying the
exterior ball condition. Let u be the solution to ∂tu− Lu = c0 in Ω, t > 0

u = 0 in Rn \ Ω, t ≥ 0
u(0, x) = u0 in Ω,

(6.1)

for some constant c0 > 0. Then, we have

|u| ≤ C(t0)(‖u0‖L2(Ω) + c0)ds, for all t ≥ t0 > 0, (6.2)

where C(t0) depends only on t0, n, s,Ω and the ellipticity constants (1.4). The de-
pendence with respect to Ω is via |Ω| and the C1,1 norm of the domain.

Proof. Proceed exactly as in the proof of Lemma 4.3. �

And now we can prove Corollary 1.6.

Proof of Corollary 1.6. For the first part, cover Ω by a finite number of unit balls
and apply Theorem 1.3 to the interior balls and Proposition 4.6 to balls with center
on the boundary, to get

‖u‖
C

1
2 ,s

t,x (( 1
2
,1)×Ω)

≤ C
(
‖u‖L∞(( 1

4
,1)×Ω) + ‖f‖L∞(( 1

4
,1)×Ω)

)
. (6.3)

Similarly, applying Proposition 5.4 we get

‖u‖C1−ε
t (( 1

2
,1)×Ω)+‖u/ds‖

C
1
2−

ε
2s ,s−ε

t,x (( 1
2
,1)×Ω)

≤ C
(
‖u‖L∞(( 1

4
,1)×Ω) + ‖f‖L∞(( 1

4
,1)×Ω)

)
.

(6.4)
On the other hand, by Lemma 6.1 with c0 = ‖f‖L∞((0,1)×Ω) and t = t0 = 1/4,

‖u‖L∞(( 1
4
,1)×Ω) ≤ C

(
‖u(1/4, ·)‖L∞(Ω) + ‖f‖L∞(( 1

4
,1)×Ω)

)
≤ C

(
‖u(0, ·)‖L2(Ω) + ‖f‖L∞((0,1)×Ω)

)
.

Finally, combining the previous expressions and rescaling the temporal domain
appropriately we get the desired result.

For the second part it is enough to combine the previous result with the interior

regularity estimates (1.8). This can be done as long as α ≤ s, from the C
1
2
,s

t,x

estimate. �

Let us finish by proving a corollary with sufficient conditions on f for u to have
classical derivatives with respect to time t up to the boundary.
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Corollary 6.2. Let s ∈ (0, 1), let L be any operator of the form (1.3)-(1.4) and let
Ω be a bounded C1,1 domain. Let f ∈ Cδ

t ((0, 1) × Ω) for some δ > 0, u0 ∈ L2(Ω),
and let u be the weak solution to ∂tu− Lu = f in Ω, t > 0

u = 0 in Rn \ Ω, t ≥ 0,
u(0, ·) = u0 in Ω, t = 0.

(6.5)

Then,

‖∂tu‖L∞(( 1
2
,1)×Ω) + ‖Lu‖L∞(( 1

2
,1)×Ω) ≤ C

(
‖u0‖L2(Ω) + ‖f‖Cδt ((0,1)×Ω)

)
, (6.6)

where the constant C depends only on δ, n, s,Ω and the ellipticity constants (1.4).

Proof. We proceed as in Corollary 3.4 by taking incremental quotients in t,

uτδ (t+ τ, x) :=
u(t+ τ, x)− u(t, x)

|τ |δ
, f τδ (t, x) :=

f(t+ τ, x)− f(t, x)

|τ |δ

for some τ > 0 fixed. Notice that

∂tu
τ
δ − Luτδ = f τδ in Ω, t >

1

4
.

Note also that

‖f τδ ‖L∞(( 1
4

+τ,1)×Ω) ≤ C
(

[f ]Cδt (( 1
4
,1)×Ω)

)
,

‖uτδ‖L∞(( 1
4

+τ,1)×Ω) ≤ C
(

[u]Cδt (( 1
4
,1)×Ω)

)
≤ C

(
‖u0‖L2(Ω) + ‖f‖L∞((0,1)×Ω)

)
,

where in the last inequality we have used the first part of Corollary 1.6.
On the other hand,

sup
0≤τ≤ 1

16

‖uτδ‖C1−ε
t (( 1

2
,1)×Ω) ≥ C‖u‖C1−ε+δ

t (( 1
2
,1)×Ω),

(see, for example, [CC95, Lemma 5.6]). Combining the previous results with Corol-
lary 1.6 we obtain the following bound,

‖u‖C1+δ−ε
t (( 1

2
,1)×Ω) ≤ C

(
‖u0‖L2(Ω) + ‖f‖Cδt ((0,1)×Ω)

)
. (6.7)

Using that ‖Lu‖L∞(( 1
2
,1)×Ω) ≤ ‖∂tu‖L∞(( 1

2
,1)×Ω) + ‖f‖L∞(( 1

2
,1)×Ω), we are done. �

We finally give a corollary on the higher regularity in t.

Corollary 6.3. Let s ∈ (0, 1), let L be any operator of the form (1.3)-(1.4) and let
Ω be any bounded C1,1 domain. Let f ∈ Ck

t ((0, 1)×Ω) for some k ∈ N, u0 ∈ L2(Ω),
and let u be the weak solution to (6.5). Then, for any δ > 0

‖u‖Ckt (( 1
2
,1)×Ω) ≤ C

(
‖u0‖L2(Ω) + ‖f‖Ck−1,δ

t ((0,1)×Ω)

)
, (6.8)

where the constant C depends only on δ, k, n, s,Ω and the ellipticity constants (1.4).
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Proof. If k = 1, the result is a consequence of the previous statement, Corollary 6.2.
Now we proceed by induction.

Suppose it is true for k = q, and let us check we can obtain the same for q + 1.

Notice that this means vq := ∂
(q)
t u is bounded and therefore classically defined, and

it solves {
∂tvq − Lvq = ∂

(q)
t f in Ω, t > 0

vq = 0 in Rn \ Ω, t ≥ 0.
(6.9)

Using incremental quotients, as in the proof of Corollary 6.2, we obtain

‖∂tvq‖L∞(( 1
2
,1)×Ω) ≤ C

(
‖vq(1/4, ·)‖L∞(Ω) + ‖∂(q)

t f‖Cδt ((1/4,1)×Ω)

)
. (6.10)

From the induction hypothesis

‖vq‖L∞(( 1
8
,1)×Ω) ≤ C

(
‖u0‖L2(Ω) + ‖f‖Cq−1,δ

t ((0,1)×Ω)

)
,

and combining the previous two expressions we are done. �

Remark 6.4. Thanks to the previous result, if f ∈ C∞t up to the boundary then the
solution to the Dirichlet problem is automatically C∞t inside Ω. As explained in the
introduction, this does not happen in space for general stable operators.

Still, if f ∈ C∞x and the kernel satisfies a ∈ C∞(Sn−1), then by Corollary 3.7 the
solution u is C∞x in the interior of the domain.

7. Sharpness of the estimates

In this final section we discuss the sharpness of the estimates in Theorems 1.1
and 1.5.

7.1. Sharpness for the interior estimates. Solutions to the elliptic problem are,
in particular, solutions to the parabolic problem. In [RS14b, Proposition 6.1], the
second author and Serra proved that to gain up to Cα+2s

x spatial regularity it is
necessary to assume that the solution is, at least, in Cα

x .
Indeed, they construct a function u : R2 → R such that, for α ∈ (0, s], ε > 0

small, and a certain operator of the form (1.3)-(1.4),

(i) Lu = 0 in B1

(ii) u = 0 in B2 \B1

(iii) u ∈ Cα−ε(R2)
(iv) u /∈ Cα+2s(B1/2).

This proves the sharpness of the bounds for Theorem 1.1 in the spatial part, since
the condition on the a priori regularity on u is sharp.

We next show that the temporal part is also optimal: from a function u that
is α

2s
-Hölder in t, we can gain regularity up to 1 + α

2s
and not better in general.

This follows from the following lemma, that uses a construction inspired by [CD14,
Counterexample 2.4.1].
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Lemma 7.1. Let s ∈ (0, 1), and let α ∈ (0, s]. Then, for any ε > 0 small, there
exists a function v satisfying:

(i) ∂tv + (−∆)sv = 0 in (−1, 0)×B1

(ii) v ∈ C
α
2s
−ε,α

t,x ((−1, 0)× Rn)

(iii) v /∈ C1+ α
2s

t

((
−1

2
, 0
)
×B1/2

)
for any ε > 0.

Proof. Consider the solution v to the fractional heat equation

∂tv + (−∆)sv = 0 in (−1, 0)×B1

with initial value v(−1, ·) ≡ 0 and exterior condition outside B1 equal to v̄,

v̄(t, x) =

{
0 if t < −1

4

ε0
(
t+ 1

4

)1+δ
+ (t+ 1/4)δη(x) if t ≥ −1

4
,

(7.1)

where we fix δ = α
2s
− ε > 0, and η(x) is a C∞ non-negative function supported in

B7/2 \B3/2 and equal to 1 in B3 \B2.

On the one hand, v ∈ C
α
2s
−ε,α

t,x ((−1, 0) × Rn). Indeed, for times in (−1,−1/4),
v ≡ 0 by uniqueness. For times t ≥ −1/4, this is true inside B1 by the Cs regularity
up to the boundary, Proposition 1.4; and it is also true outside the ball by the
regularity of the exterior condition.

On the other hand, for ε0 > 0 small, then v is at most C1+δ
t in (−1/2, 0)× B1/2.

To see this, notice that, for t ≥ −1/4 and in B1,

∂tv̄ + (−∆)sv̄ = (t+ 1/4)δ ((1 + δ)ε0 + (−∆)sη) .

Note also that (−∆)sη ≤ −c in B1/2 for some positive constant c, so that we can
choose ε0 > 0 small enough such that v̄ is a subsolution to the fractional heat
equation in (−1, 0) × B1. By the comparison principle, v ≥ v̄ in (−1, 0) × B1, and
also v ≡ 0 in (−1,−1/4) × B1 by uniqueness. Thus, ∂tv is at most Cδ

t inside B1/2,
and δ < α

2s
. �

7.2. Boundary estimates optimality. The Cs
x regularity up to the boundary for

the solutions to nonlocal parabolic equations is optimal (as it is optimal even for
the fractional Laplacian in the elliptic case).

Regarding the optimality of the bounds for the estimates up to the boundary for
u/ds we expect them to be optimal or almost optimal for general f ∈ L∞ (even for
the fractional Laplacian) because the regularity cannot exceed the one achieved in
the interior.

For general stable operators we expect this regularity to be optimal even if Ω is a
C∞ domain and f ∈ C∞. We refer to [RS14b, Proposition 6.2], where it is proven
that for some operator L of the form (1.3)-(1.4) and some C∞ domain Ω, one has
L(ds) /∈ L∞(Ω). Thus, we do not expect to have Cs regularity up to the boundary
for the quotient u/ds.
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