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ABSTRACT

The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in Rn. By
classical results of Caffarelli, the free boundary is C∞ outside a set of singular points. Explicit examples show that the
singular set could be in general (n− 1)-dimensional—that is, as large as the regular set. Our main result establishes that,
generically, the singular set has zero Hn−4 measure (in particular, it has codimension 3 inside the free boundary). Thus, for
n≤ 4, the free boundary is generically a C∞ manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the
generic regularity of free boundaries in dimensions n≤ 4.
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1. Introduction

Several fundamental problems in science (physics, biology, finance, geometry, etc.)
can be described by PDEs that exhibit a-priori unknown interfaces or boundaries. They
are called free boundary problems, and have been a major line of research in the PDE com-
munity in the last 60 years; see for instance [LS67, LS69, Kin73, BK74, KN77, Caf77,
CR77, Sak91, Caf98, W99, CKS00, Mon03, SU03, ACS08, GP09, ALS13, FS19].

The obstacle problem

(1.1)
�u= χ{u>0} in �⊂Rn

u≥ 0,
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is the most classical and among the most important elliptic free boundary problems, and
it arises in a variety of situations; see e.g. [DL76, Fri82, Rod87, PSU12, Ser15].

From the mathematical point of view, the most challenging question in this context
is to understand the regularity of free boundaries. The modern development of the regularity
theory for free boundaries started in the late 1970’s with the seminal paper of Caffarelli
[Caf77], and since then it has been a very active area of research.

The main result in [Caf77] establishes that, for any solution of (1.1), the free bound-
ary ∂{u > 0} is C∞ outside a closed set of singular points. Singular points arise for exam-
ple when the free boundary creates cusps, and they may appear in any dimension n≥ 2.
By [CR76, Caf98, Mon03], these points are locally contained in a C1 manifold of dimen-
sion n− 1. More recently, finer estimates at singular points were established in [CSV18,
FS19].

1.1. Generic regularity for the obstacle problem. — A major question in the understand-
ing of singularities in PDE theory is the development of methods to prove generic regularity

results. In the context of the obstacle problem (1.1), the key question is to understand the
generic regularity of free boundaries. Explicit examples [Sch76] show that singular points
in the obstacle problem can form a set of dimension n− 1 (thus, as large as the whole free
boundary). Still, singular points are expected to be rare [Sch74]:

Conjecture (Schaeffer, 1974). — Generically, free boundaries in the obstacle problem have no

singular points.

The conjecture is only known to hold in the plane R2 [Mon03], and up to now
nothing was known in the physical space R3 or in higher dimensions.

Notice that, in the obstacle problem, the question of generic regularity is particu-
larly relevant, since in such context the singular set can be as large as the regular set—
while in other problems the singular set has lower Hausdorff dimension [Giu84]. Also,
from the point of view of applications (see [Bai74, DL76, Rod87, Ser15]), it is particularly
important to understand the problem in the physical space R3.

A main goal of this paper is to prove Schaeffer’s conjecture in R3 and R4. To this
aim, we consider any monotone family of solutions {ut}t∈(−1,1) of (1.1) in B1 satisfying the
following “uniform monotonicity” condition:

For every t ∈ (−1,1) and any compact set Kt ⊂ ∂B1 ∩ {ut > 0} there exists cKt
> 0

such that

(1.2) inf
x∈Kt

(
ut′(x)− ut(x)

)≥ cKt

(
t′ − t

)
, for all − 1 < t < t′ < 1.

This condition rules out the existence of regions that remain stationary as we increase
the parameter t. In case that ut is continuously differentiable with respect to t, then such
condition is equivalent to saying that ∂tu

t > 0 inside {ut > 0}.
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We shall also assume that (−1,1) 	 t 
→ ut|∂B1 ∈ L∞(∂B1) is continuous with re-
spect to t. Note that, by the maximum principle, this implies that (−1,1) 	 t 
→ ut ∈
L∞(B1) is continuous. Under this assumption, we prove the following:

Theorem 1.1. — Let {ut}t∈(−1,1) be a monotone and continuous family of solutions to (1.1) in

B1 ⊂Rn satisfying (1.2), and let � t ⊂ ∂{ut > 0} ∩ B1 be the set of singular points for ut . Then

Hn−4
(
� t

)= 0 for a.e. t ∈ (−1,1).

In particular, Schaeffer’s conjecture holds for n≤ 4.

We remark that very few results are known in this direction for elliptic PDE, and
most of them deal only with simpler situations (for instance the obstacle problem in R2

[Mon03]), or when the singular set is known to be very small (as in the case of area-
minimizing hypersurfaces in R8 [Sma93]).

As a particular family of solutions to which our Theorem 1.1 applies, one can
consider the solution ut to the obstacle with boundary data ut|∂B1 = g + t (similarly to
what was done in [Mon03]), but many other choices are possible.

In particular, due to the general character of our assumption (1.2), we can apply
Theorem 1.1 (more precisely, some of the results behind its proof) to study the Hele-

Shaw flow. This is a well-known 2D model which describes a flow between two parallel
flat plates following Darcy law [HS1898, CJK07]. After a transformation of the type
u(x, t)= ´ t

0 p(x, τ )dτ—where p(x, t) is the pressure—the problem becomes

(1.3)

�u= χ{u>0} in Kc × (0,T)⊂R2 ×R

u= t in K× (0,T)⊂R2 ×R

u≥ 0,

where K⊂R2 is a given compact set, and Kc :=R2 \K. Since the singular set is closed
inside the free boundary (see for instance Lemma 6.2(a)), as a consequence of our fine
analysis of singular points, we can also show the following:

Theorem 1.2. — Let K⊂R2 be any compact set, and u(x, t) be any solution to the Hele-Shaw

flow (1.3). Let � t ⊂ Kc be the set of singular points of ∂{u( · , t) > 0}, and let S := {t ∈ (0,T) :
� t �= ∅} be the set of singular times. Then S is relatively closed inside (0,T) and

dimH(S)≤ 1
4
.

In particular, the free boundary is C∞ for a.e. time t ∈ (0,T).

Prior to our result, it was an open question to decide whether singularities in such
model could persist in time or not. Theorem 1.2 answers this question, and provides for
the first time an estimate on the set of singular times.
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1.2. Higher-order expansions at most singular points. — A key tool in the proof of The-
orem 1.1 is a very fine understanding of singular points, as explained next.

For the obstacle problem (1.1), a classical result of Caffarelli [Caf98] states that at
every singular point x◦ we have an expansion of the form

(1.4) u(x)= p2,x◦(x− x◦)+ o
(|x− x◦|2

)
,

where p2,x◦ is a nonnegative, homogeneous, quadratic polynomial satisfying �p2,x◦ ≡ 1.
In dimension n= 2 this estimate was improved in [W99] by replacing o(|x− x◦|2)

with O(|x−x◦|2+α) for some α > 0, and in arbitrary dimensions it was shown in [CSV18]
that o(|x − x◦|2) can be replaced by O(|x − x◦|2| log |x − x◦||−ε), for some ε > 0. More
recently, it was proved by the first and third authors [FS19] that, in every dimension n,
one actually has

u(x)= p2,x◦(x− x◦)+O
(|x− x◦|3

)
,

possibly outside a set of “anomalous” singular points whose Hausdorff dimension is at
most n− 3.

Here, in order to prove our main result, we need to improve substantially the un-
derstanding of singular points, establishing a new higher order expansion at most singular
points for monotone families of solutions to the obstacle problem. Here and in the sequel,
dimH will denote the Hausdorff dimension (see Section 7 for a definition).

Theorem 1.3. — Let {ut}t∈(−1,1) be a family of solutions to (1.1) in B1 ⊂Rn which is contin-

uous and nondecreasing in t (in particular, they could be independent of t). Let � t ⊂ ∂{ut > 0} ∩B1 be

the set of singular points of ut , and �̂ :=⋃
t∈(−1,1) �

t ⊂ B1.

Then there exists a set E⊂ �̂, with dimH(E)≤ n− 2, such that for every t◦ ∈ (−1,1) and

every x◦ ∈� t◦ \ E we have

(1.5) ut◦(x)= P4,x◦,t◦(x− x◦)+O
(|x− x◦|5−ζ

)

for all ζ > 0, where P4,x◦,t◦ is a fourth order polynomial satisfying �P4,x◦,t◦ ≡ 1.

An important point here is that the dimension n− 2 of the “bad” set E is sharp.
Indeed, by well known examples in R2 (see e.g. [Sak93]), one can construct solutions u

whose singular set contains a (n− 2)-dimensional subset E for which (1.5) does not hold
at any point in E.

As the reader will see from the proof, when p2,x◦,t◦(x)= 1
2(x · e)2 for some unit vector

e ∈Rn then the expansion (1.5) can be written alternatively as

u(x◦ + x)= 1
2

(
e · x+ p(x)

)2 +O
(|x|5−ζ

)
,

for a certain polynomial p of degree 3 with no linear or constant terms. Geometrically,
this expansion—together with a Lipschitz estimate that we will establish later—yields
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that, around most singular points, the contact set is contained inside a set of the form
{|e · x+ p(x)| ≤ C|x|4−ζ }. Thus, if the free boundary has a cusp, then at most points this
cusp must be very thin. It is worth noticing that the expression of p (or equivalently, of
P4,x◦,t◦ ) is related to the curvature of the free boundary near a singular point. In particular,
whenever the solution is even with respect to the hyperplane {e · x = 0}, then p≡ 0 (and
thus P4,x◦,t◦(x)≡ 1

2(e · x)2), since there are no curvature terms.
To establish Theorem 1.1 we need to introduce a variety of new ideas, combin-

ing Geometric Measure Theory tools, PDE estimates, several dimension reduction argu-
ments, and new monotonicity formulas. This is explained in more detail next.

1.3. On the proofs of the main results. — Let us give an overview of the main ideas
introduced in this paper.

1.3.1. From expansion to cleaning: a Sard-type approach. — The starting idea to prove
Theorem 1.1 is the following: denote by � t ⊂ ∂{ut > 0} ∩ B1 the set of singular points
of ut . Assume that, for some fixed t◦, we have x◦ ∈ � t◦ and ut◦ has an expansion of the
form

(1.6) ut◦(x◦ + x)= P(x)+O
(|x|λ)

for some λ ≥ 2 and some polynomial P such that �P ≡ 1. Note that, since ut◦ ≥ 0, the
expansion above implies that P(x)≥−O(|x|λ). Hence, for any r > 0, P+Crλ is a solution
to the obstacle problem in Br with an empty contact set, and ut◦(x◦ + ·) is O(rλ)-close to
it. This suggests that, thanks to the monotonicity assumption (1.2), by slightly increasing
the value of the parameter t the contact set of ut inside Br(x◦) will disappear.

To make this argument quantitative we need to introduce a series of delicate bar-
rier constructions which actually depend on the fine structure of the singular point x◦, see
Section 9. In this way we are able to prove that, for a increment of t of size δt ∼ rλ−1, the
contact set of ut+δt is Br disappears: more precisely we can show that, for some C > 0,

(1.7) � t◦+Crλ−1 ∩ Br(x◦)= ∅ for r > 0 sufficiently small.

As we will explain better below, we can prove an expansion as in (1.6) for λ belonging a
discrete set  (see (1.9) for a definition of this set).

Hence, for t◦ ∈ (−1,1) and x◦ ∈ � t◦ ⊂ ∂{ut◦ > 0}, we define λx◦,t◦ to be the max-
imal λ ∈ for which we can prove an expansion as in (1.6). Then, for each λ ∈ and
t ∈ (−1,1), we define � t,λ as the set of x◦ ∈�t for which λx◦,t = λ. In other words, � t,λ is
defined as the set of points at which we have a polynomial expansion up to order λ ∈

but not better. Then, a covering argument “à la Sard” yields

(1.8) dimH
({

t ∈ (−1,1) : � t,λ �= ∅})≤ dimH(
⋃

t∈(−1,1) �
t,λ)

λ− 1
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(see Proposition 7.7(a) for a more refined statement). In particular, if the right hand side
is strictly less than 1, then � t,λ = ∅ for a.e. t. On the other hand, if the right hand side
is larger or equal to 1, then a coarea-type argument allows us to show that � t,λ is very
small for a.e. t (see Proposition 7.7(b)).

In view of the given description of our approach, our goals are the following:

(1) given a singular point, prove an expansion up to order O(|x|λ) with λ ∈ as
large as possible;

(2) given λ ∈ , estimate the dimension of
⋃

t∈(−1,1) �
t,λ, i.e., the set of points

where the expansion stops at λ.

1.3.2. A higher-order expansion at singular points: the case of a single solution. — To under-
stand these questions in a simplified situation, one can first look at the problem without
the parameter t. So, given a solution u to the obstacle problem and a singular point x◦,
we want to obtain a Taylor expansion around x◦ at the highest possible order. This will
require several steps, described below.

(a) Second blow-up: a cubic expansion at most points. — This first part is essentially con-
tained in [FS19]. Recall first that, as proven in [Caf98], for any singular point x◦ we have
(1.4), that is, p2,x◦ is tangent up to second order to u(x◦ + · ) at 0. Equivalently

u(x◦ + r · )
r2

→ p2,x◦ as r→ 0,

and p2,x◦ is called the “first blow-up” of u at x◦.
One can then catalog singular points according to the dimension of the kernel of

p2,x◦ : given m ∈ {0, . . . , n− 1}, we say

x◦ ∈�m ⇐⇒ dim
({p2,x◦ = 0})= m.

We then consider the “second blow-ups”, namely, the possible limits of the functions

w̃2,r(x) := w2(rx)

‖w2(r · )‖L2(∂B1)

, where w2 := u(x◦ + · )− p2,x◦

as r → 0. As shown in [FS19], r 
→ ‖∇w̃2,r‖L2(B1) is monotonically increasing (equiva-
lently, the so-called Almgren frequency formula is monotone on w2). Thanks to this fact,
setting λ2 := limr→0 ‖∇w̃2,r‖L2(B1), one can characterize all the blow-ups (namely, the ac-
cumulation points of {w̃2,r} as r→ 0): they are λ2-homogeneous functions q

– either satisfying

�q= 0 in Rn , if x◦ ∈�m with m≤ n− 2,
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– or solving the Signorini problem

�q≤ 0, q�q≡ 0, �q|Rn\L = 0, q|L ≥ 0 ,

if L := {p2,x◦ = 0} is a hyperplane (i.e., x◦ ∈�n−1).

In the first case (i.e., m ≤ n − 2), since q is harmonic in Rn it must be λ2 ∈
{2,3,4, . . .}. Also, following [FS19], one can show that λ2 ≥ 3 up to an “anomalous
set” of dimension m−1 inside �m. This implies that, for x◦ outside this anomalous set, we
have u= p2,x◦(x− x◦)+O(|x− x◦|3). Note that applying this result to u= ut◦ gives an ex-
pansion as in (1.6) for λ= 3. As we will explain in Section 1.3.4(a) below, when m≤ n− 2
we are able to improve (1.7) so that this expansion suffices for proving our main theorem.

The real challenge is to understand the set �n−1. In this case, since q solves the
Signorini problem, thanks to a classification result for 2D solutions and a dimension re-
duction argument, we can show that

(1.9) λ2 ∈ := {2,3,4, . . .} ∪
{

7
2
,

11
2

,
15
2

, . . .

}

outside a set of singular points of dimension n − 3. Also it is easy to prove that, in this
case, λ2 �= 2; thus, except for a small set, the lowest possible value for λ2 is 3. The main
challenge is now to improve this cubic expansion to higher order.

(b) Third blow-up: a delicate dichotomy. — From now on, we focus on points of �n−1

where λ2 = 3, i.e., q is a 3rd-order homogeneous solution of Signorini (as one can see
from the coming argument, the other cases can be considered as a particular case of
this taking λ2 = 3 and p3,x◦ ≡ 0 in the definition of w3 below). Two possibilities arise,
depending whether some accumulation point q of {w̃2,r} as r → 0 is harmonic or not.
These two cases have to be analyzed separately.

– The third blow-up is not harmonic: a new uniqueness result. By another dimension reduc-
tion argument, we can prove that the set where q is not harmonic has dimension n− 2.
However this is not enough, and here comes one of the key arguments introduced in this
paper: as explained in Section 1.3.4(b), in order to obtain Schaeffer’s conjecture in R4 we
need to prove that the limit q of w̃2,r is unique, and that this set is (n− 2)-rectifiable. To
accomplish, in Section 5 we introduce new differential formulae, compactness and bar-
rier arguments, and a delicate ODE-type lemma, that allow us to obtain the uniqueness
of blow-ups (taking quotients of suitable qualities) even if we lack a monotonicity formula.

– The third blow-up is harmonic: a monotonicity argument at nondegenerate points. Assume
that there exists a harmonic accumulation point q. Then (thanks to a Monneau-type
monotonicity formula) we can show that the limit limr↓0 w̃2,r exists (i.e., all accumulation
points coincide) and that u(x◦ + ·)= p2,x◦ + p3,x◦ + o(|x|3) for some 3-homogeneous har-
monic polynomial p3,x◦ (p3,x◦ being a multiple of q). This suggests to iterate the previous
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blow-up procedure by defining

w̃3,r(x) := w3(rx)

‖w3(r · )‖L2(∂B1)

, where w3 := u− p2,x◦ − p3,x◦,

and try to mimicking the argument described above. Unfortunately, in this case it is not
true anymore that r 
→ ‖∇w̃3,r‖L2(B1) is monotonically increasing. Still, by a delicate boot-
strapping argument (cf. Lemma 4.3) we can prove that1

r 
→ ‖∇w̃3,r‖L2(B1) is almost increasing, provided

‖w3(r · )‖L2(∂B1) � r4−ε for some ε > 0.

Therefore, under this nondegeneracy assumption, we can consider accumulation points
of w̃3,r and prove that they are λ3-homogeneous solution of Signorini for some λ3 ∈
[3,4). Then, by a dimension reduction argument (based again on the classification of 2D
solutions), we can prove that λ3 ∈ {3,7/2} = ∩ [3,4) in a set of dimension n− 2, and
the remaining points are of codimension 3. So, to summarize:

(i) for most points in �n−1 where the limit of w̃2,r is harmonic, the assumption
‖w3(r · )‖L2(∂B1) � r4−ε fails for every ε > 0, except perhaps in a set of dimension
n− 2;

(ii) if ‖w3(r · )‖L2(∂B1) � r4−ε holds, then the blow-up is λ3-homogeneous for λ3 ∈
{3,7/2}, except for a set of dimension at most n− 3.

In order to prove Schaeffer’s conjecture in R4, it is important for us to rule out the pos-
sibility that λ3 = 3 in case (ii). This is highly nontrivial, and follows from the analysis
performed in Section 5 to understand points where w̃2,r converges to a non-harmonic
function.

(c) Fourth blow-up: monotonicity via a new ansatz and proof of (1.5). — To go further in
our analysis and prove our main theorem, we now need to investigate the set of points
where case (i) happens, namely ‖w3(r · )‖L2(∂B1) � r4−ε fails for every ε > 0. In this case
Almgren’s monotonicity formula fails on w3,r , and therefore a new approach needs to be
found.

The key idea here is to replace w3 = u(x◦ + ·) − p2,x◦ − p3,x◦ with a much more
refined Ansatz W3 := u(x◦ + ·) −Px◦ which takes into account both the curvature of
the free boundary and the non-negativity of the solution—this is done in Definition 4.5.
Doing so, and defining W̃3,r in analogy to what done before, we can show (again after a
bootstrap argument) that

r 
→ ‖∇W̃3,r‖L2(B1) is almost increasing, provided

‖W3(r · )‖L2(∂B1) � r5−ε for some ε > 0

1 More precisely, Lemma 4.3 gives the monotonocity of a “truncated frequency function”, where the size of w3(r · )
is corrected by adding a term rγ with γ ∈ (3,4). In order to relate the (almost) monotonicity of this truncated frequency
function to the one of ‖∇w̃3,r‖L2(B1)

, one needs to know that the size of w3(r · ) dominates rγ for some γ ∈ (3,4).
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(see Lemma 4.9). Let us note that obtaining this almost monotonicity is much more in-
volved than in the previous case (when we had 4 − ε instead of 5 − ε). The reason is
technical and rather delicate: we need to show that the size of W3,r controls the one of
its gradient (see Lemma 4.7), and this follows from a semiconvexity estimate along some
rotational derivatives.

Once this almost monotonicity is proved, we can consider accumulation points of
W̃3,r at all points where ‖W3(r · )‖L2(∂B1) � r5−ε, and we prove that (up to a codimension
2 set) the only possible limit is a harmonic polynomial p4,x◦ of degree 4. This leads to an
expansion of the form

w4 := u(x◦ + ·)−Px◦ − p4,x◦, w4(x)= o
(
x4

)
.

Hence, to finally obtain (1.5) with P4,x◦ =Px◦ + p4,x◦ , we only need to prove that w4(x)=
O(|x|5−ζ ) for all ζ > 0, up to a set of dimension n− 2. This is again nontrivial: indeed,
we can show that r 
→ ‖∇w̃4,r‖L2(B1) is almost increasing provided that p4,x◦ vanishes on
{p2,x◦ = 0} and ‖w4(r · )‖L2(∂B1) � r5−ε for some ε > 0. Hence we need to ensure that these
assumptions are satisfied in a large enough set, and for this we exploit some recent results
on the size of the zero set of harmonic functions (see [NV17]) and another dimension
reduction argument. In this way, we conclude the validity of (1.5).

It is important to remark here that the expansion (1.5) up to order 5− ζ is exactly
what we need in order to prove Theorem 1.1. Even if one could improve such an expan-
sion to a higher order, the estimate on the singular set in Theorem 1.1 would not change.
Indeed, the bounds on the sizes of the sets where the expansions stop before 5− ζ would
not improve, and the conclusion in Theorem 1.1 would remain exactly the same (see also
Remark 9.6).

1.3.3. From one solution to a monotone 1-parameter family of solutions. — Note that the
analysis performed above holds only for one solution. If now we have an increasing family
of solutions {ut}t∈(−1,1), we need to understand for each t the size of points where the
expansion stops at some fixed order λ ∈.

If one simply applies the previous analysis to each solution ut one would not be
able to conclude. Indeed, if for each solution the set � t,λ has dimension bounded by
some s ≥ 0, then a simple argument (using the structure of our problem) would show that
their union over t ∈ (−1,1) has dimension bounded by s+1. Unfortunately, this estimate
would be absolutely too weak for our scope. Indeed, in order to prove our result, we need
to show the following: if the analysis performed on a single solution implies that a set
� t,λ has dimension bounded by s, then also

⋃
t∈(−1,1) �

t,λ has dimension bounded by s.
In other words, the bound on the union should be exactly the same as the one obtained
for each single set!

To achieve this, we have to exploit the fact that we have an increasing family ut of
solutions to obtain very refined estimates on the possible blow-ups of a fixed solution at
a free boundary point. More precisely, the idea is the following: if a sequence of singular
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points xk ∈� tk converges to 0 ∈�0, and if both solutions utk and u0 have a Taylor expan-
sion up to the same order λ at these points, then this implies some extra information on
the possible Taylor expansion of u0 at 0 (more precisely, this implies some symmetry prop-
erties on its higher order term). This analysis is performed in Section 6 and it introduces a
complete series of new ideas and techniques with respect to [FS19], where only one fixed
solution was considered. We want to emphasize that, with respect to the case of only one
solution (where one can still deduce symmetry properties of blow-ups as a consequence
of being an accumulation point of other singular points), in this case this analysis is made
particularly delicate by the fact that we do not have any equation in t relating the solu-
tions: we only know that they are ordered and strictly increasing with respect to t. Still,
we are able to deduce some strong symmetry properties of blow-up at all points where
the Almgren’s frequency is continuous (see the results in Section 6), and from these prop-
erties we obtain a very precise description of the structure of singular points. This is then
combined with a series of covering and dimension reduction arguments (see Sections 7
and 8) to estimate the size of the singular points where blow-ups have few symmetries,
which allow us to show the desired dimensional bounds on

⋃
t∈(−1,1) �

t,λ. To our knowl-
edge, this is the first dimension reduction argument for a 1-parameter family of solutions
to elliptic PDEs, and we expect these ideas and techniques to be useful in many other
problems.

1.3.4. Extra comments. — The previous description syntheses well the main ideas
behind our strategy, and what explained until now suffices for proving the Schaeffer con-
jecture in R3. However, for the R4 case, other extra ideas (that we only briefly mentioned
before) are required. In particular, we need a more refined analysis that depends on the
type of singular point, having to distinguish two cases:

(a) The case of the “lower dimensional strata”. — For singular points in
⋃

t∈(−1,1) �
t
m with

m ≤ n− 2, we know that the expansion (1.6) stops at λ= 2 at “anomalous points”, and
these points have dimension bounded by m− 1. Hence, denoting this set of anomalous
points by

⋃
t∈(−1,1) �

t,2
m , and the remaining m-dimensional set (where the expansion stops

at λ= 3) by
⋃

t∈(−1,1) �
t,3
m , applying (1.8) for n= 4 and m= 2 we get the trivial bound

dimH
({

t ∈ (−1,1) : � t,λ
m �= ∅

})≤ dimH(
⋃

t∈(−1,1) �
t,λ
m )

λ− 1
= 1,

for λ= 2,3.

To improve this estimate, we refine our barrier arguments and show that (1.7) can be
improved to � t◦+rλ−ε,i

m ∩ Br(x0) = ∅ for any ε > 0, for λ = 2,3. This increased speed at
which the contact set clears near singular points for “lower strata” is not difficult to prove,
but is fundamental to establish Schaeffer’s conjecture in R4.
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(b) The case of the “top stratum”. — A big difficulty arises from points in
⋃

t∈(−1,1) �
t
n−1

where the expansion stops at λ = 3. More precisely, as mentioned in Section 1.3.2(b)
when discussing the case where the third blow-up is not harmonic, there may exist a set⋃

t∈(−1,1) �
t,3
n−1 of dimension n− 2 at which the expansion ut◦(x)= p2,x◦,t◦(x− x◦)+O(|x−

x◦|3) is sharp—i.e., the third derivatives of ut◦ do not exist at those points. Then, if we use
(1.8) for λ= 3 and n= 4, we obtain the (trivial) estimate

dimH
({

t ∈ (−1,1) : � t,3
n−1 �= ∅

})≤ n− 2
λ− 1

= 1,

while to establish Schaeffer’s conjecture in R4 we need to prove H1({t ∈ (−1,1) : � t,3 �=
∅})= 0. Since it is possible to construct examples where the set

⋃
t∈(−1,1) �

t,3
n−1 is (n− 2)-

dimensional, there is no hope to improve its dimensional bound. In addition, unlike in
the “lower strata”, one can see that (1.7) for λ= 3 is sharp at these points. Consequently,
we need a completely different argument to conclude.

Here the idea consists in taking negative increments of t—which make the contact
set become thicker instead of thinner—and use barrier arguments to show that all free
boundary points in a neighborhood become regular at a slightly enhanced speed (see
Lemma 9.4). However, we can only take advantage of this improvement if we can prove
that the set

⋃
t∈(−1,1) �

t,3
n−1 is (n− 2)-rectifiable (the information that its Hausdorff dimen-

sion is bounded by n− 2 is not sufficient). This rectifiability result is crucial, and its proof
relies on the existence of limr↓0 w̃2,r in the non-harmonic case. As mentioned before, this
fact requires completely new ideas with respect to the classical tools known in this kind of
problems, and it is the focus of Section 5. It is worth observing that such arguments lead
to new interesting results even when applied to the Signorini problem, see Appendix B.

1.4. Organization of the paper. — The paper is organized as follows. In Section 2
we introduce a series useful functionals that will be used in the proof of some of our
monotonicity formulae. In Section 3 we present some preliminary results that will be
needed throughout the paper. Then, in Section 4 we develop our higher order analysis
of singular points. In Section 5 we study in detail singular points at which the blow up
of u(x◦ + · )− p2,x◦ is 3-homogeneous (cf. Section 1.3.2). In Section 6 we consider a 1-
parameter family of solutions to the obstacle problem and study symmetry properties of
their blow-ups. In Section 7 we prove a series of lemmas of geometric measure theory-
type, and in Section 8 we establish several dimension reduction results. Finally, in Sec-
tion 9 we prove our main result, Theorem 1.1, as well as Theorem 1.2. In addition, at the
end of the paper we provide two appendices on the Signorini problem: one with some
basic results that are needed throughout the paper, and a second one with new results
(uniqueness and nondegeneracy of blow-ups at odd frequencies) that are a consequence
of our analysis in Section 5 and that we believe to be of independent interest.
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2. Useful functionals and formulae

In all this section r ∈ (0,1), and w : B→ R denotes an arbitrary C1,1 function
defined in a ball B⊂Rn (specified in each statement). Throughout the paper we shall use
the following dimensionless quantities:

D(r,w) := r2−n

ˆ

Br

|∇w|2 = r2

ˆ

B1

|∇w|2(r · ),

H(r,w) := r1−n

ˆ

∂Br

w2 =
ˆ

∂B1

w2(r · ).

We also introduce here a useful notation for rescaling and normalization. Given
w : B→R and r > 0 we define wr and w̃r as

(2.1) wr(x) :=w(rx) and w̃r(x) := wr

H(1,wr)
1
2

= w(r · )
H(r,w)

1
2

.

We start by computing the derivatives of H and D.

Lemma 2.1. — Let w ∈C1,1(B2). Then

(2.2)
d

dr

∣∣
∣∣

r=1

H(r,w)= 2
ˆ

∂B1

wwν = 2
ˆ

B1

w�w+ 2
ˆ

B1

|∇w|2.

Proof. — This is a standard computation, that can be found for instance in
[FS19]. �

Lemma 2.2. — Let w ∈C1,1(B2). Then

(2.3)
d

dr

∣∣
∣∣

r=1

D(r,w)= 2
ˆ

∂B1

w2
ν − 2

ˆ

B1

�w(x · ∇w).

Proof. — For convenience, we set D(r) :=D(r,w). It holds

D′(1)=
∑

i,j

ˆ

B1

2wixjwij + 2D(1)

=
∑

i,j

ˆ

∂B1

2wixjwjνi −
∑

i,j

ˆ

B1

2(wixj)iwj + 2D(1)
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= 2
ˆ

∂B1

w2
ν − 2

ˆ

B1

�w(x · ∇w)− 2
ˆ

B1

|∇w|2 + 2D(1)

= 2
ˆ

∂B1

w2
ν − 2

ˆ

B1

�w(x · ∇w). �

Let us introduce the functions

(2.4) φ(r,w) := D(r,w)

H(r,w)
, φγ (r,w) := D(r,w)+ γ r2γ

H(r,w)+ r2γ
.

The quantity φ is often known as the Almgren frequency function. Instead, φγ is a new
truncated frequency function, that to our knowledge has never been introduced before.
It will be used throughout the paper and will be extremely useful in our arguments, as it
will allow us to deal with the cases when H may be too small.2 The choice of the constant
γ in front of r2γ in the numerator is important to make the following lemma work.

Lemma 2.3. — Let w ∈C1,1(B1). Then for r ∈ (0,1) we have

d

dr
φ(r,w)≥ 2

r

(r2−n
´

Br
w�w)2 + E(r,w)

(H(r,w))2

and

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2 + Eγ (r,w)

(H(r,w)+ r2γ )2
,

where

(2.5) E(r,w) :=
(

r2−n

ˆ

Br

w�w

)
D(r,w)−

(
r2−n

ˆ

Br

(x · ∇w)�w

)
H(r,w)

and

Eγ (r,w) :=
(

r2−n

ˆ

Br

w�w

)
(
D(r,w)+ γ r2γ

)
(2.6)

−
(

r2−n

ˆ

Br

(x · ∇w)�w

)(
H(r,w)+ r2γ

)
.

2 In the past, other kind of truncations have been introduced (see in particular [CSS08]), but they do not work in
our case due to the fact that D is not equal to (a multiple of) the derivative of H, as it is instead the case for the Signorini
problem.
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Proof. — We first observe that, for r ∈ (0,1), the formula for φ can be deduced
from the one for φγ letting γ ↑+∞.

By scaling it is enough to compute, for a > 0,

d

dr

∣∣
∣
∣

r=1

logφγ,a(r,w), for φγ,a(r,w) := D(r,w)+ γ (ar)2γ

H(r,w)+ (ar)2γ
.

Using Lemmas 2.1 and 2.2 we obtain

d

dr
|r=1(D(r,w)+ γ (ar)2γ )

D(1,w)+ γ a2γ
= 2

´
∂B1

w2
ν −

´
B1
(x · ∇w)�w+ γ 2a2γ

´
∂B1

wwν −
´

B1
w�w+ γ a2γ

and

d

dr
|r=1(H(r,w)+ ar2γ )

H(1,w)+ a2γ
= 2

´
∂B1

wwν + γ a2γ

´
∂B1

w2 + a2γ
.

Therefore,

d

dr
logφγ,a(1,w)=

d

dr
|r=1(D(r,w)+ γ (ar)2γ )

D(1,w)+ γ a2γ
−

d

dr
|r=1(H(r,w)+ ar2γ )

H(1,w)+ a2γ

= 2
X2 + rest

(D(1,w)+ γ a2γ )(H(1,w)+ a2γ )
,

where

X2 :=
(ˆ

∂B1

w2
ν + γ 2a2γ

)(ˆ

∂B1

w2 + a2γ

)
−

(ˆ

∂B1

wwν + γ a2γ

)2

≥ 0

(the non-negativity of X2 follows by Hölder inequality), and

rest :=
(ˆ

B1

w�w

)(ˆ

∂B1

wwν+γ a2γ

)
−

(ˆ

B1

(x ·∇w)�w

)(ˆ

∂B1

w2+a2γ

)
.

Using again Lemma 2.1 we have

rest=
(ˆ

B1

w�w

)2

+
(ˆ

B1

w�w

)(
D(1,w)+ γ a2γ

)

−
(ˆ

B1

(x · ∇w)�w

)
(
H(1,w)+ a2γ

)
.
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By scaling (applying the previous formulas with w replaced by wr =w(r · ) and a replaced
by r) we obtain

d

dr
logφγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2 + Eγ (r,w)

(D(r,w)+ γ r2γ )(H(r,w)+ r2γ )
,

where Eγ is defined in (2.6). Since d

dr
logφγ (r,w) = φγ (r,w)−1 d

dr
φγ (r,w), the lemma

follows immediately by recalling the definition of φγ in (2.4). �

3. Preliminaries: first and second blow-up analysis

In this section we collect some known results and basic tools that will be used
throughout the paper. Let u : B1→R be a solution to the obstacle problem

(3.1) �u= χ{u>0} and u≥ 0 in B1.

By the classical theory of Caffarelli on the obstacle problem [Caf77, Caf98], any solution
u of (3.1) with 0 ∈ ∂{u > 0} satisfies

(3.2) ‖u‖C1,1(B1/2) ≤C and sup
Br(0)

u≥ cr2 ∀r ∈
(

0,
1
2

)
,

where C, c > 0 are positive dimensional constants. Moreover, points of the free boundary

∂{u > 0} can be split into two classes:

• Regular points: x◦ ∈ ∂{u > 0} is a regular point if

lim
r→0

r−2u(x◦ + rx)= 1
2

(
max{0,e · x})2

for some e ∈ Sn−1.
• Singular points: x◦ ∈ ∂{u > 0} is a singular point if

p2,x◦(x) := lim
r→0

r−2u(x◦ + rx)

exists and p2,x◦ is a quadratic polynomial belonging to the set

P := {convex 2-homogeneous polynomials p with �p≡ 1}.
It is well known that the free boundary is analytic in a neighborhood of regular

points. So, the main goal is to understand the structure of singular points.
When x◦ = 0 is a singular point, we will simplify the notation p2,x◦ to p2. A well

known result due to Caffarelli is the following estimate at singular points.
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Lemma 3.1. — There exists a modulus of continuity ω : R+ → R+, depending only on the

dimension n, such that if u is a solution of the obstacle problem (3.1) and 0 is a singular free boundary

point, then

‖u− p2‖L∞(Br) ≤ r2ω(r), ∀r ∈ (0,1).

Proof. — This result, with an abstract (dimensional) modulus of continuity ω, is
contained in [Caf98, Theorem 8]. A stronger quantitative version of the estimate (with in-
dependent proofs) giving an explicit C| log r|−ε modulus of continuity is given in [CSV18,
FS19]. �

Remark 3.2. — Let p ∈P . Since �u=�p= 1 in {u > 0}, we have

(3.3) (u− p)�(u− p)= pχ{u=0} ≥ 0.

Similarly,

(3.4) x · ∇(u− p)�(u− p)= x · ∇pχ{u=0} = 2pχ{u=0} ≥ 0.

We recall Weiss’ monotonicity formula (proved in [W99] for λ= 2, and in [FS19]
in the general case) and a useful consequence of it.

Lemma 3.3 (Weiss’ formula). — Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a

singular point. Given p ∈P , set w := u− p. Also, for λ > 0 set

Wλ(r,w) := r−2λ
(
D(r,w)− λH(r,w)

)
.

Then:

(a) For all λ≥ 2

d

dr
Wλ(r,w)≥ 2r−2λ−1

ˆ

∂Br

(x · ∇w− λw)2 ≥ 0.

(b) W2(0+,w)= 0 and

(3.5) D(r,w)− 2H(r,w)≥ 0, ∀r ∈ (0,1).

Proof. — (a) By scaling it is enough to compute d

dr
Wλ(r,w) at r = 1. Using Lem-

mas 2.1–2.2, we obtain

W′
λ(1,w)= (

D′(1,w)− λH′(1,w)
)− 2λD(1,w)+ 2λ2H(1,w)

= 2
ˆ

∂B1

w2
ν − 2

ˆ

B1

�w(x · ∇w)
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− 2λ
ˆ

∂B1

wwν − 2λD(1,w)+ 2λ2H(1,w)

= 2
ˆ

∂B1

w2
ν + 2

ˆ

B1

(λw− x · ∇w)�w− 4λ
ˆ

∂B1

wwν + 2λ2

ˆ

∂B1

w2

= 2
ˆ

∂B1

(wν − λw)2 + 2
ˆ

B1

(λw− x · ∇w)�w

= 2
ˆ

∂B1

(wν − λw)2 + 2
ˆ

{u(r · )=0}∩B1

(λp− x · ∇p).

One concludes noticing that, for λ≥ 2, it holds (λp− x · ∇p)= (λ− 2)p≥ 0.
(b) Since 0 is a singular point then wr(x)= (u− p)(rx)= (p2 − p)(rx)+ o(r2), thus

W2

(
0+,w

)= lim
r↓0

W
(
1, r−2wr

)=W2(1, p2 − p)= 0.

As a consequence, (3.5) follows integrating (a) for λ= 2 between 0 and r. �

We recall from [FS19] that the frequency function φ applied to the function w =
u− p, with p ∈P , is monotone increasing in r. More precisely we have the following:

Proposition 3.4 (Frequency formula). — Let u : B1 → [0,∞) be a solution of (3.1), and let

0 be a singular point. Given p ∈P , set w := u− p. Then

d

dr
φ(r,w)≥ 2

r

(r2−n
´

Br
w�w)2

H(r,w)2
≥ 0, ∀r ∈ (0,1).

Proof. — By Lemma 2.3 we just need to show that

E(r,w) :=
(

r2−n

ˆ

Br

w�w

)
D(r,w)−

(
r2−n

ˆ

Br

(x · ∇w)�w

)
H(r,w)≥ 0.

Using Remark 3.2 for w = u− p we have
(

r2−n

ˆ

Br

(x · ∇w)�w

)
= 2

(
r2−n

ˆ

Br

w�w

)
,

thus

E(r,w)=
(

r2−n

ˆ

Br

w�w

)(
D(r,w)− 2H(r,w)

)
,

which by (3.5) and Remark 3.2 is nonnegative. �
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The following observation, also contained in [FS19], follows immediately from
(3.5).

Lemma 3.5. — Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular point.

Given p ∈P , set w := u− p. Then φ(0+,w)≥ 2.

A new important estimate that we will use throughout the paper is the following:

Lemma 3.6. — Let u : B1 → [0,∞) be a solution of (3.1), and let 0 be a singular

point. Given p ∈ P , set w := u − p. Suppose that for 0 < r < R < 1 we have λ ≤ φ(r,w) ≤
φ(R,w)≤ λ. Then, for any given δ > 0 we have

(
R
r

)2λ

≤ H(R,w)

H(r,w)
≤Cδ

(
R
r

)2λ+δ

,

where Cδ depends only on n, λ, δ.

Proof. — Define

F(r) := r2−n
´

Br
w�w

H(r,w)
.

By Proposition 3.4 we have

(3.6)
d

dr
φ(r,w)≥ 2

r

(
F(r)

)2
.

On the other hand, thanks to Lemma 2.1,

(3.7)
d

dr
H(r,w)

H(r,w)
= 2

r

r2−n
´

Br
w�w+ r2−n

´
Br
|∇w|2

H(r,w)
= 2

r
φ(r,w)+ 2

r
F(r).

Integrating (3.6) and using Cauchy-Schwartz inequality, since λ ≤ φ(ρ,w) ≤ λ for all
ρ ∈ (r,R) we get

(λ− λ)1/2
(
log(R/r)

)1/2

≥
( Rˆ

r

d

dρ
φ(ρ,w)dρ

)1/2( R̂

r

dρ

ρ

)1/2

=
( Rˆ

r

1
ρ

(
F(ρ)

)2
dρ

)1/2( Rˆ

r

dρ

ρ

)1/2

≥
Rˆ

r

1
ρ

F(ρ)dρ ≥ 0.
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Hence, integrating (3.7), we obtain

log
H(R,w)

H(r,w)
≤

Rˆ

r

2
ρ

(
λ+ F(ρ)

)
dρ ≤ log

(
(R/r)2λ

)+C
(
log(R/r)

)1/2

≤ log
(
(R/r)2(λ+δ)

)+C,

where C depends only on n, λ, and δ.
For the lower bound we recall that, since w�w ≥ 0, we have F(ρ)≥ 0. Therefore,

integrating (3.7) over [r,R],

log
H(R,w)

H(r,w)
≥ 2λ

Rˆ

r

dρ

ρ
= log(R/r)2λ. �

We will also need the following result, which allows us to control the L∞ norm of
the difference of two solutions with the L2 norm.

Lemma 3.7. — Let u : B1 → [0,∞) and v : B1 → [0,∞) be solutions of the obstacle

problem (3.1). Then

‖u− v‖L∞(B1/2) ≤C(n)‖u− v‖L2(B1).

Proof. — On the one hand, from

�(u− v)= 1−�v ≥ 0 in {u > 0} and u− v =−v ≤ 0 in {u= 0}
we obtain that (u− v)+ =max(u− v,0) is subharmonic in B1. Exchanging the role of
u and v, the same argument shows that (v − u)+ = (u− v)− is subharmonic. Thus also
|u− v| = (u− v)+ + (u− v)− is subhamonic in B1, and using the mean value property
we obtain, for x ∈ B1/2,

|u− v|(x)≤ −
ˆ

B1/2(x)

|u− v| ≤C(n)‖u− v‖L1(B1) ≤C(n)‖u− v‖L2(B1). �

We now start investigating the structure of possible second blow-ups. The next few
results are a small modification of those in [FS19].

The following Lipschitz estimate for the rescaled difference u− p, with p ∈P , will
be useful in the sequel. We recall that wr and w̃r have been defined in (2.1).

Lemma 3.8. — Let u : B1 → [0,∞) be a solution of (3.1) with u �≡ p2, and let 0 be a

singular point. Given p ∈P , set w := u− p. Let R≥ 1, and r ∈ (0, 1
10R). Then

(3.8) ∂eew̃r ≥−C in BR, ∀e ∈ Sn−1 ∩ {p= 0}
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where C depends only on n, R, and φ(1/2, u− p). In addition, if dim({p= 0})= n− 1, then

(3.9) |∇w̃r| ≤C in BR/2,

where C depends only on n, R, and φ( 1
2 , u− p).

Proof. — This proof is essentially contained in Step 3 from the Proof of Proposi-
tion 2.10 in [FS19]. However, since some small changes are needed in our setting, we
reproduce the main steps for the convenience of the reader.

Given a function f :Rn →R, a vector e ∈ Sn−1, and h > 0, let

δ2
e,hf :=

f ( · + he)+ f ( · − he)− 2f

h2

denote a second order incremental quotient. For e ∈ {p = 0} ∩ Sn−1 we have δ2
e,hp ≡ 0.

Thus, since �u= 1 outside of {u= 0} and �u≤ 1 in B1, we have

�
(
δ2

e,hw
)= �u( · + he)+�u( · − he)− 2�u

h2
≤ 0 in BR \ {u= 0}.

On the other hand, since u≥ 0 we have

δ2
e,hw = δ2

e,hu( · )≥ 0 in {u= 0}.
As a consequence, the negative part of the second order incremental quotient (δ2

e,hw̃r)−
is subharmonic, and so is its limit (∂2

eew̃r)− (recall that u is semiconvex, and thus
(δ2

e,hw̃r)− → (∂2
eew̃r)− a.e. as h → 0). Therefore, by weak Harnack inequality (see for

instance [CC95, Theorem 4.8(2)]) there exists ε = ε(n) ∈ (0,1) such that

∥∥(
∂2

eew̃r

)
−
∥∥

L∞(BR)
≤C(n)

(
−
ˆ

BR

(∂eew̃r)
ε
−

)1/ε

≤C(n)

(
−
ˆ

B2R

|∂eew̃r|ε
)1/ε

.

Also, by standard interpolation inequalities, the Lε norm (here we use ε < 1) can be
controlled by the weak L1 norm, namely

(ˆ

B2R

|∂eew̃r|ε
)1/ε

≤C(n,R) sup
θ>0

θ
∣
∣{|∂eew̃r|> θ

}∩ B2R

∣
∣.

Furthermore, by Calderón-Zygmund theory, the right hand side above is controlled by

‖�w̃r‖L1(B3R) + ‖w̃r‖L1(B3R).
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Thus, since �wr ≤ 0 in B3R, ‖�w̃r‖L1(BR) is controlled by the L1 norm of w̃r inside B4R:
indeed, if χ is a smooth nonnegative cut-off function that is equal to 1 in B3R and vanishes
outside B4R, then

(3.10) ‖�w̃r‖L1(B3R) ≤−
ˆ

B4R

χ �w̃r =−
ˆ

B4R

�χ w̃r ≤C(n,R)

ˆ

B4R\B3R

|w̃r|.

Also, for 8rR < 1, as a consequence of Lemma 3.6 we have

H(4R, w̃r)≤CR2φ(1,u−p)+1H(1, w̃r)=CR2φ( 1
2 ,u−p)+1

and thus

‖w̃r‖L1(B4R) ≤C
(

n,R, φ

(
1
2
, u− p

))
.

In conclusion, we obtain

∥
∥(∂eew̃r)−

∥
∥

L∞(BR)
≤C(n,R)‖w̃r‖L1(B4R) ≤C

(
n,R, φ

(
1
2
, u− p

))
.

Finally note that, when {p = 0} is (n − 1)-dimensional, as a consequence of (3.8) the
tangential Laplacian of w̃r (in the directions of {p= 0}) is uniformly bounded from below.
Thus, since �w̃r ≤ 0, we have

∂e′e′w̃r ≤C in BR, for e′ ∈ {p= 0}⊥ with
∣∣e′

∣∣= 1,

where, as before, C=C(n,R, φ( 1
2 , u− p)). Thanks to these semiconvexity and semicon-

cavity estimates, we deduce the Lipschitz bound (3.9). �

The next result corresponds to [FS19, Proposition 2.10]. However the statement
there has a small mistake (that anyhow does not affect any of the arguments in [FS19])
and for convenience we correct it here.

Proposition 3.9. — Let u : B1 → [0,∞) be a solution of (3.1) with u �≡ p2, let 0 be a

singular point, and set w := u−p2. Denote m := dim({p2 = 0}) ∈ {0,1,2, . . . n−1}, and λ2nd :=
φ(0+,w).

Then, for every sequence rk ↓ 0 there is a subsequence rk� such that w̃rk�
⇀ q as �→∞ in

W1,2
loc (R

n), where q �≡ 0 is a λ2nd -homogeneous function satisfying the following:

(a) If 0≤ m≤ n−2 then q is a harmonic polynomial, and in particular λ2nd ∈ {2,3,4, . . . }.
In addition, if λ2nd = 2, then in some appropriate coordinates we have

(3.11) p2(x)= 1
2

n∑

i=m+1

μix
2
i and q(x)= ν

n∑

i=m+1

x2
i −

m∑

j=1

νjx
2
j ,



202 ALESSIO FIGALLI, XAVIER ROS-OTON, JOAQUIM SERRA

where μi, ν > 0, and they satisfy
∑n

i=m+1 μi = 1, (n− m)ν =∑m

j=1 νj , and |νj| ≤ ν

for any j = 1, . . . ,m.

(b) If m = n− 1 then we have w̃rk�
→ q in C0

loc(R
n) and we have λ2nd ≥ 2+ α◦, where

α◦ > 0 is a dimensional constant. In addition, q is a global solution of the Signorini problem:

(3.12)

⎧
⎪⎨

⎪⎩

�q≤ 0 and q�q= 0 in Rn

�q= 0 in Rn \ {p2 = 0}
q≥ 0 on {p2 = 0}.

Proof. — The statement here is almost identical to that of [FS19, Proposition 2.10].
The only differences are the following:

(1) In [FS19] it is incorrectly stated that νj > 0. Instead, [FS19, Lemma 2.12]
proves that ν is the largest eigenvalue of D2q, hence the correct conclusion is that |νj| ≤ ν

for each j = 1, . . . ,m.
(2) In the above statement we said that w̃k ⇀ q weakly in W1,2

loc (R
n), while [FS19,

Proposition 2.10] states the convergence only in W1,2(B1). The reason why we may
replace B1 by any larger ball is Lemma 3.6, as it allows us to control H(R, w̃r) by
C(n, φ(1,w),R)H(1, w̃r) for any r < 1/R. Hence, using a diagonal argument, the proof
of [FS19, Proposition 2.10] yields the desired result. �

We now recall another important estimate from [FS19]:

Proposition 3.10. — Let u : B1 → [0,∞) be a solution of (3.1) with u �≡ p2, let 0 be a

singular point, and set w := u− p2, λ2nd := φ(0+,w). Let λ ∈ (0, λ2nd]. Then

|{u= 0} ∩ Br|
|Br| ≤Crλ−2 ∀r ∈ (0,1/2).

Moreover, if dim({p2 = 0})= n− 1 then

{u= 0} ∩ Br ⊂
{
x : dist

(
x, {p2 = 0})≤Crλ−1

}
.

The constant C depends only on n and λ.

Proof. — The first part is exactly [FS19, Proposition 2.13]. The second part on
�n−1 follows by the argument in [FS19, Remark 2.14], as a consequence of the Lipschitz
estimate in Lemma 3.8. �

Following the notation introduced in [FS19], we denote

(3.13) �m :=
{
x◦ singular points with dim

({p2,x◦ = 0})= m
}
, 0≤ m≤ n− 1

and, for m≤ n− 2,

(3.14) �a
m :=

{
x◦ ∈�m such that φ

(
0+, u(x◦ + · )− p2,x◦

)= 2
}
, 0≤ m≤ n− 2.
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Moreover, for m= n− 1 we introduce some further notation: we define

(3.15) �<3
n−1 :=

{
x◦ ∈�n−1 such that φ

(
0+, u(x◦ + · )− p2,x◦

)
< 3

}
,

and

(3.16) �
≥3
n−1 :=�n−1 \�<3

n−1.

Finally, we will need the following:

Definition 3.11. — Let u : B1 →[0,∞) solve (3.1). For 1≤ m≤ n− 1 we denote by �3rd
m

the set of points x◦ ∈�m such that, for w := u(x◦ + · )− p2,x◦ , the following two conditions hold:

(i) φ(0+,w)≥ 3;

(ii) there exists some sequence rk ↓ 0 along which r−3
k w(rk · ) converges, weakly in W1,2

loc (R
n),

to some 3-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}—possibly the poly-

nomial zero.

Notice that, by Proposition 3.9(a), for m ≤ n− 2 we have �m \�a
m = �3rd

m = �≥3
m .

On the other hand, this is not true for m= n− 1, and later on in the paper we will need
to understand the set �≥3

n−1 \�3rd
n−1.

We conclude this section by recalling that if 0 ∈�3rd
m then the limit

(3.17) lim
r↓0

r−3(u− p2)(r · )

exists. Indeed, as shown in [FS19], this is a consequence of the following Monneau-type
monotonicity formula.

Lemma 3.12. — Let u : B1 → [0,∞) satisfy (3.1), and let 0 ∈ �≥3
m for some 0 ≤ m ≤

n − 1. Let w := u − p2 − P, where P is any 3-homogeneous harmonic polynomial vanishing on

{p2 = 0}. Then

(3.18) D(r,w)≥ 3H(r,w) ∀r ∈ (0,1)

and

(3.19)
d

dr

(
r−6H(r,w)

)≥−C sup
∂B1

P2

p2
,

where C is some dimensional constant.

Proof. — The proof is contained in [FS19, Lemma 4.1]. �

The next result provides the existence of a unique limit in (3.17) for all points in
�3rd

m , which follows immediately from Lemma 3.12 (see [FS19, Proposition 4.5]):
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Lemma 3.13. — Let u : B1 → [0,∞) solve (3.1). Then, for all x◦ in �3rd
m with 0≤ m ≤

n− 1, the limit

p3,x◦ := lim
r↓0

1
r3

(
u(x◦ + r · )− p2,x◦(r · )

)

exists, and p3,x◦ is a 3-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}.
When x◦ = 0 we simplify the notation p3,0 to p3.

4. Higher order blow-ups on the maximal stratum

As explained in Section 1.2, in order to prove the main result of this paper (Theo-
rem 1.1) we need to obtain—among other things—an expansion up to order O(|x|5−ζ ) at
“most points” of �3rd

n−1. This requires a very detailed analysis of such set, which is the goal
of this section. From now on, we will only study the points of �n−1 (hence, m= n− 1).

In order to study the higher regularity properties of the set �3rd
n−1, we need a new

frequency function for u − p2 − p3. The following lemma is a more flexible version of
Lemma 3.6. It will be useful later in order to prove the almost monotonicity of φγ (r,w)

for a suitable γ , where w will be the difference between u and its polynomial expansions
at singular points.

Lemma 4.1. — Let R ∈ (0,1), and let w : BR → [0,∞) be a C1,1 function. Assume that

for some κ ∈ (0,1) we have

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
− rκ−1 ∀r ∈ (0,R).

Then the following holds:

(a) Suppose that 0 < λ ≤ φγ (r,w) ≤ λ for all r ∈ (0,R). Then, for any given δ > 0 we

have

1
Cδ

(
R
r

)2λ−δ

≤ H(R,w)+R2γ

H(r,w)+ r2γ
≤Cδ

(
R
r

)2λ+δ

for all r ∈ (0,R),

where Cδ depends only on n, γ , κ , λ, δ.

(b) Assume in addition that

r2−n
´

Br
w�w

H(r,w)+ r2γ
≥−rκ ∀r ∈ (0,R).

Then, for λ∗ := φγ (0+,w), we have

e
− 4

κ2

(
R
r

)2λ∗
≤ H(R,w)+R2γ

H(r,w)+ r2γ
.
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Proof. — (a) Define

F(r) := r2−n
´

Br
w�w

H(r,w)+ r2γ

so that, by assumption, we have

(4.1)
d

dr
φγ (r,w)+ rκ−1 ≥ 2

r

(
F(r)

)2
.

It follows by Lemma 2.1 that

d

dr
(H(r,w)+ r2γ )

(H(r,w)+ r2γ )
= 2

r

r2−n
´

Br
w�w+ r2−n

´
Br
|∇w|2 + γ r2γ

H(r,w)+ r2γ
(4.2)

= 2
r
φγ (r,w)+ 2

r
F(r).

Integrating (4.1) and using Cauchy-Schwarz inequality, since 0 ≤ φγ (r,w) ≤ λ for all
r ∈ (0,R), we get

∣
∣∣
∣

R̂

r

1
ρ

F(ρ)dρ

∣
∣∣
∣≤

( R̂

r

1
ρ

(
F(ρ)

)2
dρ

)1/2( R̂

r

dρ

ρ

)1/2

(4.3)

≤
( R̂

r

(
d

dr
φγ (ρ,w)+ ρκ−1

)
dρ

)1/2( R̂

r

dρ

ρ

)1/2

≤
(
λ+ 1

κ

(
Rκ − rκ

)
)1/2(

log(R/r)
)1/2

≤C
(
log(R/r)

)1/2
.

Hence, integrating (4.2) between r and R (recall 0 < r < R < 1) and using
φγ (ρ,w)≤ λ and (4.3) we obtain

log
H(R,w)+R2γ

H(r,w)+ r2γ

≤
Rˆ

r

2
ρ

(
λ+ F(ρ)

)
dρ ≤ 2λ log(R/r)+C

(
log(R/r)

)1/2

≤ (2λ+ δ) log(R/r)+Cδ.
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Similarly (now using φγ (ρ,w)≥ λ) we obtain

log
H(R,w)+R2γ

H(r,w)+ r2γ
≥ (2λ− δ) log(R/r)−Cδ.

(b) In this case we have F(r) ≥ −rκ for all r ∈ (0,R). Hence, integrating (4.2) be-
tween 0 and ρ ∈ (0,R) we obtain

φγ (ρ,w)− λ∗ ≥ −1
κ
ρκ.

Thus,

log
H(R,w)+R2γ

H(r,w)+ r2γ
≥

R̂

r

2
ρ

(
φγ (ρ,w)+ F(ρ)

)
dρ

≥ 2λ∗

R̂

r

dρ

ρ
−

(
2
κ
+ 1

) R̂

r

ρκ−1 dρ

≥ 2λ∗ log(R/r)− 4
κ2

. �

Remark 4.2. — An interesting consequence of Lemma 4.1(a) is the following. If
w is as in of Lemma 4.1(a) then φγ (0+,w) ≤ γ . Indeed, otherwise we would have
φγ (r,w) ≥ λ := γ + δ > γ for all r > 0 small, and Lemma 4.1(a) would imply that
H(r,w)+ r2γ ≤Cr2λ−δ =Cr2γ+δ for r� 1, impossible.

The following lemma gives the (approximate) monotonicity of φγ when applied
to w := u− p2 − P, where P is any 3-homogeneous harmonic polynomial vanishing on
{p2 = 0}.

Lemma 4.3. — Let u : B1 → [0,∞) be a solution of (3.1), with 0 ∈ �
≥3
n−1. Let w :=

u− p2 − P, where P is a 3-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then, given

γ ∈ (3,4), for all r ∈ (0,1/2) we have

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−Cr3−γ and

r2−n
´

Br
w�w

H(r,w)+ r2γ
≥−Cr4−γ ,

where C depends only on n, γ , ‖P‖L2(B1).

In particular, assuming 0 ∈�3rd
n−1, the previous inequalities hold for w := u− p2 − p3.
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Proof. — The proof will rely on a iteration argument where one enlarge the value
of γ , starting from 3 and increasing it up to the desired γ ∈ (3,4). We split the proof in
two steps.
• Step 1. We first show that

(4.4)
d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−Cr3−γ φγ (r,w)gγ (r)

and

(4.5)
r2−n

´
Br
w�w

H(r,w)+ r2γ
≥−Cr4−γ gγ (r),

where

gγ (r) := ‖wr‖L2(B2\B1)

(H(r,w)+ r2γ )1/2

and C depends only on n and ‖P‖L2(B1).
Indeed, by Lemma 2.3 we have

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
+ E

γ
(r,w),

where

E
γ
(r,w) := 2

r

r2−n
´

Br
(λrw− x · ∇w)�w

H(r,w)+ r2γ
and

λr = φγ (r,w)= D(r,w)+ γ r2γ

H(r,w)+ r2γ
.

Note that �w =�(u− p2 − p3)= χ{u>0} − 1− 0=−χ{u=0}. Also, since λr ≥ 3 by (3.18),
using the inequality p2 + P≥− P2

2p2
, since P2

p2
is homogeneous of degree 4 we have

(λr − x · ∇)(p2 + P)≥ (λr − 2)p2 + (λr − 3)P≥ (λr − 3)(p2 + P)

≥−(λr − 3)
2

(
sup
∂B1

P2

p2

)
|x|4.

Therefore we obtain

E
γ
(r,w)= 2

r

r2−n
´

Br∩{u=0}(λr − x · ∇)(p2 + P)

H(r,w)+ r2γ
(4.6)

≥−(λr − 3)r3−γ

(
sup
∂B1

P2

p2

)
r2−n|Br ∩ {u= 0}|
(H(r,w)+ r2γ )1/2

.
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Also, since �w = −χ{u=0} ≤ 0, choosing χ ∈ C∞c (B2) a nonnegative cut-off satisfying
χ = 1 in B1, integrating by parts we obtain

r2−n
∣
∣{u= 0} ∩ Br

∣
∣=

ˆ

B1

−�wr ≤
ˆ

B2

−�wr χ

=−
ˆ

B2

wr �χ ≤C
ˆ

B2\B1

|wr| ≤C‖wr‖L2(B2\B1).

Thus, since λr = φγ (r,w) and recalling (4.6), we have shown that

E
γ
(r,w)≥−Cr3−γ φγ (r,w)gγ (r),

and (4.4) follows. Note that, since by assumption P2 is divisible by p2, we have that
sup∂B1

P2

p2
is bounded by a constant depending only on n and ‖P‖L2(B1), and thus the con-

stant C above depends only on n and ‖P‖L2(B1).
Similarly, using again p2 + P≥− P2

2p2
, we obtain

r2−n
´

Br
w�w

H(r,w)+ r2γ
= r2−n

´
{u=0}∩Br

(p2 + P)

H(r,w)+ r2γ
≥−Cr4−γ r2−n|{u= 0} ∩ Br|

(H(r,w)+ r2γ )1/2
,

which gives (4.5).
• Step 2. Next we show that (4.4) implies that, for all γ < 4,

(4.7) φγ (r,w)≤Cγ and gγ (r)≤Cγ ,

with Cγ depending only on n, γ , and ‖P‖L2(B1).
We prove (4.7) for all γ ∈ [3,4) by iteratively increasing the value of γ at each

iteration, starting from γ = 3, in order to always have (along the iteration) a uniform
bound on φγ (r,w) and gγ (r).

First, we observe that since 0 ∈�
≥3
n−1 we have φ(0+, u− p2)≥ 3, hence |u− p2| ≤

C|x|3. Therefore |u − p2 − P| ≤ C|x|3, which immediately implies that g3(r) ≤ C3, and
then it follows by (4.4) that log(φ3(·,w)) is almost monotonically increasing, so in partic-
ular it is uniformly bounded.

We show next that if (4.7) holds for some γ ≥ 3 then (4.7) holds also with γ replaced
by γ + β for any β > 0 such that 3β < 4− γ .

Indeed, we can bound

φγ+β(r,w)= D(r,w)+ (γ + β)r2γ+2β

H(r,w)+ r2γ+2β
≤ 2

r2β

D(r,w)+ γ r2γ

H(r,w)+ r2γ
≤ φγ (r,w)

r2β

≤ 2
Cγ

r2β
,
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and similarly

gγ+β(r)= ‖wr‖L2(B2\B1)

(H(r,w)+ r2γ+2β)1/2
≤ 1

rβ
‖wr‖L2(B2\B1)

(H(r,w)+ r2γ )1/2
= gγ (r)

rβ
≤ Cγ

rβ
.

Then (4.4)—with γ replaced by γ + β—yields

(4.8)
d

dr
φγ+β(r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−CC2

γ r4−γ−1−3β.

Noticing that r4−γ−1−3β is integrable over r ∈ (0,1) provided 3β < 4 − γ , (4.8) implies
that φγ+β(r,w) is almost monotonically increasing. In particular φγ+β(r,w) ≤ C′ for
r ∈ (0,1/2), where C′ is a constant depending only on n and γ + β .

In addition, (4.8) and Lemma 4.1(a) imply that

H(R,w)+R2γ+2β

H(r,w)+ r2γ+2β
≤C′ ∀R ∈ (r,2r),

thus

(
gγ+β(r)

)2 = ‖wr‖2
L2(B2\B1)

H(r,w)+ r2γ+2β
≤C −

2rˆ

r

H(R,w) dR
H(r,w)+ r2γ+2β

≤CC′,

and therefore (4.7) holds for γ replaced by γ + β .
Having proven that if (4.7) holds for some γ ≥ 3 then (4.7) holds also with γ re-

placed by γ + β for any β > 0 such that 3β < 4− γ , iterating finitely many times we
conclude that (4.7) holds for any γ < 4, as claimed.

Combining this information with (4.4) we obtain

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−CC2

γ r3−γ ∀r ∈ (0,1/2).

Also, it follows by (4.5) and (4.7) that
r2−n

´
Br

w�w

H(r,w)+r2γ ≥−CCγ r4−γ . Finally, when 0 ∈�3rd
n−1 we

can take P= p3 (since, by definition of �3rd
n−1, p3 vanishes on {p2 = 0}). �

We have proved that in �3rd
n−1 we have almost monotonicity of the new truncated

frequency function φγ (r, u− p2− p3) for any γ ∈ (3,4). This means that φγ (0+, u− p2−
p3) exists, and satisfies 3≤ φγ (0+, u− p2 − p3)≤ γ (see Remark 4.2).

Hence, we can now introduce the following:

Definition 4.4. — Let u : B1 → [0,∞) solve (3.1). We denote by �>3
n−1 the set of points

x◦ ∈�3rd
n−1 such that, for w := u(x◦+ · )−p2,x◦ −p3,x◦ , we have φγ (0+,w) > 3 for any γ ∈ (3,4).

Moreover, we will need the following:
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Definition 4.5. — Let u : B1 → [0,∞) solve (3.1), and assume that 0 ∈ �3rd
n−1. Choose a

coordinate system such that

(4.9) p2(x)= 1
2

x2
n and p3(x)=

n−1∑

α=1

aα

2
x2
αxn + an

6
x3

n .

(Here we used that p3 is harmonic and vanishes on {xn = 0}.) We define the fourth order polynomial
Ansatz at 0, and we denote it by P , as3

(4.10) P(x) := 1
2

x2
n + p3 + 1

2

(
p3

xn

)2

+ xnQ= 1
2

(
xn + p3

xn

+Q
)2

+O
(|x|5).

Here Q is a 3-homogeneous polynomial which depends only on p2 and p3, and is defined as follows

(4.11) Q(x) :=
n−1∑

α=1

(
a2
α −

aαan

3

)(
x3

n

12
− x2

αxn

2

)
.

When u is a solution of (3.1) and x◦ ∈�3rd
n−1, we define Px◦ to be the fourth oder polynomial Ansatz at

0 of u(x◦ + · ) (note that Px◦ depends only on p2,x◦ and p3,x◦ ). In addition, for α ∈ {1,2, . . . , n−1}
we define the osculating rotation vector fields at 0 as

(4.12) Xα := (1+ aαxn)eα − aαxαen, where ei = (0, . . . ,0,
i
�

1,0, . . . ,0),

where aα are as in (4.9).

We will use the following notation throughout the section. Given f ∈ C1(Rn), we
denote by Xαf the derivative of f in the direction of Xα , namely Xαf = (1+ aαxn)∂αf −
aαxα∂nf .

Lemma 4.6. — Given p2 and p3 as in (4.9), define Q as (4.11). Then, P given by (4.10)
satisfies

�P = 1 and XαXαP =O
(|x|3) ∀α ∈ {1,2, . . . , n− 1}.

Proof. — Let p2, p3, P , and Xα , be as in (4.9), (4.10), (4.11), (4.12). We compute

XαXα

(
x2

n

2

)
=−aαxn + a2

α

(
x2
α − x2

n

)
,

XαXαp3 = aαxn + 2a2
α

(
x2

n − x2
α

)−
n−1∑

β=1

aαaβ

2
x2
β −

aαan

2
x2

n +O
(|x|3),

3 The formula for the ansatz can found by inspection, by trying to find the coefficients that guarantee the validity
of Lemma 4.6.
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XαXα

(
1
2

(
p3

xn

)2)
=

n−1∑

α=1

aαaβ

2
x2
β +

aαan

6
x2

n + a2
αx2

α +O
(|x|3),

XαXα(xnQ)=−
(

a2
α −

aαan

3

)
x2

n +O
(|x|3),

and thus adding them we obtain

XαXαP =O
(|x|3).

Similarly, using that
∑n−1

α=1 aα = −an (as a consequence of the fact that p3 is harmonic),
a direct (but tedious) computation shows that

�

(
1
2

(
p3

xn

)2

+ xnQ
)
= 0,

therefore �P ≡ 1. �

We will need the following semiconvexity estimate in the spirit of Lemma 3.8.

Lemma 4.7. — Assume that u : B1 →[0,∞) is a solution of (3.1) and that 0 ∈�3rd
n−1. Let

w := u−P − P, where P is a 4-homogeneous harmonic polynomial vanishing on {p2 = 0}. Then

inf
Br

r2XαXαw ≥−C(P)
(‖wr‖L2(B5\B1) + r5

)

and

sup
Br/2

r|∇w| ≤C(P)
(‖wr‖L2(B5\B1) + r5

)

for all r ∈ (0,1/5).

Proof. — Let p2, p3, P , and Xα , be as in (4.9), (4.10), (4.11), (4.12), and fix α ∈
{1,2, . . . , n− 1}.
• Step 1. For r > 0 small, we consider the rescaled vector field Xr

α =Xα(r · ), and denote
wr =w(r · ) and v :=Xr

αXr
αwr . We consider

v̄(x) :=min
{
v(x) , −C(P)r5

}

for some constant C(P) > 0 depending on P, to be chosen. We claim that

�v̄ ≤ 0 in B5.

Since wr is C1,1 (for fixed r > 0) but not C2, to prove that v̄ is subharmonic we need
to proceed similarly to the proof of Lemma 3.8, now taking second order “rotational”
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incremental quotients. More precisely, let φh
Xr

α
denote the integral flow of the vector field

Xr
α at time h, and define

vh := wr ◦ φh
Xr

α
+wr ◦ φ−h

Xr
α
− 2wr

h2
.

On the one hand, since φh
Xr

α
is a rotation (and thus it commutes with �), noticing that

�w = χ{u>0} − 1≤ 0 in B1 and �w = 0 in {u > 0} we obtain

(4.13) �vh ≤ 0 in
{
u(r · ) > 0

}∩ B1/r.

On the other hand, we claim that

(4.14) vh ≥−C(P) r5 in
{
u(r · )= 0

}∩ B5.

Indeed, recalling that XαXαP = O(|x|3) (by Lemma 4.6) and since XαXαP = ∂ααP+
O(|x|3), we obtain

XαXα(−P − P)≥−∂ααP+O
(|x|3).

In addition, since P is 4-homogeneous and vanishes on {xn = 0}, we wave ∂ααP= xn�(x
′)

where � is some linear function, thus

|∂ααP| ≤C(P)|x||xn|.
Therefore, combining all these estimates, we get

(4.15)
∣∣XαXα(P + P)

∣∣≥C(P)
(
r3 + r|xn|

)
in B5r.

In addition, thanks to Proposition 3.10 (recall that λ2nd ≥ 3, since by assumption 0 ∈�3rd
n−1)

we have

(4.16) {u= 0} ∩ B1/2 ⊂
{|xn| ≤C

∣
∣x′

∣
∣2}

,

thus
(
x′, xn

) ∈ {u= 0} ∩ B5r ⇒ ∣
∣x′

∣
∣≤ 5r, |xn| ≤Cr2

⇒ ∣
∣φrh

Xα
(x) · en

∣
∣≤Cr2 ∀h ∈ (0,2).

As a consequence, combining this bound with (4.15) we obtain

|(P + P) ◦ φrh
Xα
+ (P + P) ◦ φ−rh

Xα
− 2(P + P)|

(rh)2
≤C(P)r3

in {u= 0} ∩ B5r ∀h ∈ (0,1).
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Rescaling this estimate one gets (4.14), that combined with (4.13) implies that

v̄h :=min
{
vh(x) , −C(P)r5

}
is superharmonic.

Therefore, since v̄ = limh↓0 v̄
h a.e. then the function v̄ is superharmonic too, as claimed.

• Step 2. Note that if we consider V := ∂ααwr instead of rotational derivatives (as we did
in the proof of Lemma 3.8), then the same argument as the one above gives

∣
∣∂αα(P + P)

∣
∣≤C(P)r2 in B5r

(cf. (4.15)), from which one deduces that the function V̄ := min{V , −C(P)r4} is super-
harmonic (notice the difference in the power of r in the definitions of v̄ and V̄).
• Step 3. Now, as in the proof of Lemma 3.8, by weak Harnack inequality, interpolation,
and the Calderón-Zygmund theory, we have

‖v̄‖L∞(B1) ≤C(n)

(
−
ˆ

B3/2

|v̄|ε
)1/ε

≤C
(‖wr‖W2,1

weak(B2)
+ r5

)

≤C
(‖wr‖L1(B3\B2) + ‖�wr‖L1(B3) + r5

)
.

On the other hand, since �wr ≤ 0 (because �w = �u − �(P − P) = �u − 1 ≤ 0),
reasoning as in the proof of Lemma 3.8 (cf. (3.10)) we obtain

‖�wr‖L1(B3) ≤C(n)‖wr‖L1(B4\B3).

Hence ‖v̄‖L∞(B1) ≤C‖wr‖L1(B4\B3), which yields

(4.17) inf
B1

XαXαwr ≥−C
(‖wr‖L1(B4\B3) + r5

)
,

and the first part of the lemma (semiconvexity) follows easily by scaling.
In order to prove the Lipschitz bound, we note that if we repeat the same reasoning

with V̄ instead of v̄, we find instead the semiconvexity estimates

inf
B1

∂ααwr ≥−C
(‖wr‖L1(B4\B3) + r4

)
, for 1≤ α ≤ n− 1.

Although this estimate is less precise (it has an error of size r4 instead of r5) it is still useful.
Indeed, using that �wr ≤ 0, it implies the semiconcavity estimate

sup
B1

∂nnwr ≤C
(‖wr‖L1(B4\B3) + r4

)
.

Combined together, these semiconvexity and semiconcavity estimates imply a bound on
the Lipschitz constant of wr in terms of its L∞ norm in B4 \ B3 and its semiconvex-
ity/semiconcavity constants, that is

(4.18) ‖wr‖Lip(B3/4) ≤C
(‖wr‖L∞(B4\B3) + r4

)
.
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Although this is not the desired bound, this will be useful in the next step to obtain the
sharp bound.
• Step 4. To conclude the proof, we need to improve (4.18) and get Lipschitz bound for wr

in B1/2 with an error O(r5). For this, we note that for each α = 1, . . . , n−1 the unit vector
field Eα =Xr

α/|Xr
α| satisfies |Eα − eα| ≤ Cr in B1, and thus we can complete {Eα}n−1

α=1 to
obtain a orthonormal moving frame by adding a vectorfield En satisfying |En − en| ≤ Cr

in B1.
Note that, since ∇Xr

α
Xr

α = O(r) and ∇Eα
Eα = O(r), we can choose En satisfying

∇En
En =O(r). Hence, using these bounds and �wr ≤ 0, we obtain

EnEnwr −Cr‖wr‖Lip(B3/4) ≤D2wr(En,En)≤−
n−1∑

α=1

D2wr(Eα,Eα)

≤−
n−1∑

α=1

Xr
αXr

αwr +Cr‖wr‖Lip(B3/4) in B3/4.

Thus, recalling (4.17) and (4.18), we get

(4.19) sup
B3/4

EnEnwr ≤C
(‖wr‖L1(B4\B3) + r‖wr‖L∞(B4\B3) + r5

)

It follows by (4.17) (resp. (4.19)) that the restriction of wr to the integral curves of Xα

(resp. En) is semiconvex (resp. semiconcave), and hence Lipschitz along these curves. Since
the directions of these curves span Rn, this yields

sup
B1/2

|∇wr| ≤C sup
B1/2

( n−1∑

α=1

|∇wr ·Xα|+ |∇wr ·En|
)
≤C

(‖wr‖L∞(B4\B3)+ r5
)
.

Finally, to conclude the proof, it suffices to show that the L∞(B4 \B3)-norm above can be
replaced by ‖wr‖L2(B5\B2) +C(P)r5. Indeed, recalling that �w =−χ{u=0}, the function w

is superharmonic everywhere, and harmonic outside {u= 0}. In particular, this gives the
desired control on the L∞ norm of w−. In addition, since P ≥O(|x|5) and P is a 4-th
order polynomial vanishing on {xn = 0}, it follows from (4.16) that

w = u−P − P≤ P≤C(P)r5 inside {u= 0} ∩ Br,

hence the function max{w+,C(P)r5} is subharmonic. Thus, the mean value inequalities
allow us to control the L∞ norm of (wr)± with the L1 (or L2) norm of |wr| + Cr5 in a
slightly larger domain, concluding the proof. �

Remark 4.8. — We note that Lemma 2.3 can be rewritten as

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
+ 2

r

ˆ

B1

(
λrŵ

(γ )
r − x · ∇ŵ(γ )

r

)
�ŵ(γ )

r ,
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where

λr := φγ (r,w) and ŵ(γ )
r := w(r · )

(H(r,w)+ r2γ )1/2
.

Also, we observe that Lemma 4.7 yields ‖∇ŵ(γ )
r ‖L∞ ≤ C for all γ ≤ 5 when w := u −

P − P. This will be crucial in the proof of Lemma 4.9 below.

Lemma 4.9. — Let u : B1 →[0,∞) be a solution of (3.1), and assume that 0 ∈�3rd
n−1. Set

w := u−P − P, where P is defined in (4.10), and P is a 4-homogeneous harmonic polynomial

vanishing on {p2 = 0}. Then, given γ ∈ (4,5), for all r ∈ (0,1/2) we have

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−Cr4−γ and

r2−n
´

Br
w�w

H(r,w)+ r2γ
≥−Cr5−γ ,

where C is a constant depending only on n, γ , and ‖P‖L2(B1).

Proof. — With no loss of generality, we assume that {p2 = 0} = {xn = 0}. By Re-
mark 4.8 we have

(4.20)
d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
+ 2

r

ˆ

B1

(
λrŵ

(γ )
r − x · ∇ŵ(γ )

r

)
�ŵ(γ )

r .

• Step 1. We show that for some C=C(n,P) we have

(4.21)
d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−Cr4−γ φγ (r,w)

(
gγ (r)+ 1

)
,

where

gγ (r) := ‖wr‖2
L2(B5\B1)

H(r,w)+ r2γ
.

Indeed, recall that by Lemma 4.7 we have

r|∇w| ≤C
(‖wr‖L2(B5\B1) + r5

)
in Br.

Now, notice that (recall that p3 and P are divisible by xn)

1
2
(xn + p3/xn +Q+ P/xn)

2 =P + P+O
(|x|5),
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we obtain

(xn + p3/xn +Q+ P/xn)
(
1+O

(|x|))

= (xn + p3/xn +Q+ P/xn)∂n(xn + p3/xn +Q+ P/xn)

= ∣∣∂n(P + P)
∣∣+O

(|x|4).
Therefore, since Q is 3-homogenous and also divisible by xn and |xn| ≤ C|x|2 in

{u= 0} (cf. (4.16)) we obtain

1
2
|xn + p3/xn + P/xn| ≤ ∂n(P + P)+O

(|x|4) in {u= 0}.

Thus, since w := u−P − P, inside Br ∩ {u= 0} (for r small) we have

r
1
2
|xn + p3/xn + P/xn| ≤ r

∣
∣∂n(P + P)

∣
∣+O

(
r5

)= r|∂nw| +O
(
r5

)
(4.22)

≤C
(‖wr‖L2(B5\B1) + r5

)

Therefore

|w| = ∣∣−(P + P)
∣∣= |xn + p3/xn + P/xn|2 +O

(
r5

)
(4.23)

≤ 2r2|xn + p3/xn + P/xn| +O
(
r5

)

≤C
(
r‖wr‖L2(B5\B1) + r5

)
in Br ∩ {u= 0}

and, for α = 1,2, . . . , n− 1,

r|∂αw| = r
∣∣−∂α(P + P)

∣∣= r
∣∣∂α(p3/xn)

∣∣ |xn + p3/xn + P/xn| +O
(
r5

)
(4.24)

≤Cr2|xn + p3/xn + P/xn| +O
(
r5

)

≤C
(
r‖wr‖L2(B5\B1) + r5

)
in Br ∩ {u= 0},

from which it follows that

∣
∣λrŵ

(γ )
r − x · ∇ŵ(γ )

r

∣
∣≤ C(1+ λr)(r‖wr‖L2(B5\B1) + r5)

(H(r,w)+ r2γ )1/2
(4.25)

≤C(1+ λr)
(
rgγ (r)1/2 + r5−γ

)

≤C(1+ λr)r
5−γ

(
gγ (r)1/2 + 1

)
in B1 ∩ {ur = 0}.

Also, since �P ≡ 1 and �P≡ 0 we have �w =−χ{u=0} ≤ 0. Hence, arguing as in (3.10),

(4.26) 0≥
ˆ

B1

�ŵ(γ )
r ≥−C

∥∥ŵ(γ )
r

∥∥
L1(B5\B1)

≥−C
‖wr‖L2(B5\B1)

(H(r,w)+ r2γ )1/2
≥−Cgγ (r)1/2.
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Combining this information with (4.25) we obtain
∣
∣∣
∣

ˆ

B1

(
λrŵ

(γ )
r − x · ∇ŵ(γ )

r

)
�ŵ(γ )

r

∣
∣∣
∣≤C(1+ λr)r

5−γ
(
gγ (r)+ 1

)
,

that together with (4.20) yields (4.21).
• Step 2. Next we show that (4.21) implies that, for all γ < 5, we have

(4.27) φγ (r,w)≤Cγ and gγ (r)≤Cγ ,

where Cγ depends only on n, γ , and ‖P‖L2(B1).
We prove (4.27) for all γ ∈ [3,5) by iteratively increasing the value of γ at each

iteration, starting from γ = 3, in order to always have (along the iteration) a uniform
bound on φγ (r,w) and gγ (r).

First, we observe that since 0 ∈�3rd
n−1 we have φ(0+, u− p2)≥ 3, hence |u−P −

P| ≤ Cr3 in Br , with a bound depending only on n and P. This immediately implies that
g3(r)≤C3, and then it follows by (4.21) that φ3(·,w) is almost monotonically increasing,
so in particular it is uniformly bounded.

Then, by the very same argument as the one used in Step 2 in the proof of
Lemma 4.3 (using (4.21) in place of (4.4)) we deduce that if (4.27) holds for some γ ≥ 3,
then (4.27) holds also with γ replaced by γ + β for any β > 0 such that 4β < 5 − γ .
Thanks to this fact, with finitely many iterations we conclude that (4.27) holds for any
γ < 5, as claimed.

Combining (4.27) with (4.21), we obtain

d

dr
φγ (r,w)≥ 2

r

(r2−n
´

Br
w�w)2

(H(r,w)+ r2γ )2
−CC2

γ r4−γ ∀r ∈ (0,1).

Moreover, recalling (4.23) and (4.26), we conclude that

r2−n
´

Br
w�w

H(r,w)+ r2γ
=

ˆ

B1∩{ur=0}
ŵr�ŵr ≥−Cr5−γ gγ (r)≥−CCγ r5−γ . �

Thanks to Lemma 4.9 we know that the truncated frequency function φγ is almost
monotone for γ < 5, and we can use this to study finer properties for points in �3rd

n−1. In
particular, we introduce the following:

Definition 4.10. — Let u : B1 → [0,∞) solve (3.1). We denote by �4th
n−1 the set of points

x◦ ∈�3rd
n−1 such that the following holds:

Set w = u(x◦ + · )−Px◦ , where Px◦ is defined as in (4.10) starting from p2,x◦ and p3,x◦ .

Then there exists some sequence rk ↓ 0 along which r−4
k w(rk · ) converges, weakly in W1,2

loc (R
n), to some

4-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}—possibly the polynomial zero.
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We can now prove the existence of a unique 4-th order limit at points of �4th
n−1.

Lemma 4.11. — Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ �
≥4
n−1 (see Definition 4.13

below). Set w := u−P − P, where P is defined in (4.10), and P is a 4-homogeneous harmonic

polynomial vanishing on {p2 = 0}. Then, for any γ ∈ (4,5) we have

(4.28)
d

dr
log

(
r−8

(
H(r,w)+ r2γ

))≥−Cr4−γ ,

where C is a constant depending only on n, γ , and ‖P‖L2(B1).

As a consequence, for all x◦ ∈�4th
n−1 the limit

p4,x◦ := lim
r↓0

1
r4

(
u(x◦ + r · )−Px◦(r · )

)

exists, and it is a 4-homogeneous harmonic polynomial vanishing on {p2,x◦ = 0}.

Proof. — For every 4-homogeneous harmonic polynomial P vanishing on {p2 = 0},
we have

d

dr
log

(
r−8

(
H(r,w)+r2γ

))= 2
r

(
φγ (r,w)−4

)+ r2−n
´

Br
w�w

H(r,w)+ r2γ
≥−Cr4−γ ,

where we used Lemma 4.9. This proves (4.28).
Now, if 0 ∈ �4th

n−1 then we have that, for some rk ↓ 0 and some P which is 4-
homogeneous harmonic and vanishes on {p2 = 0},

log
(
r−8
k

(
H(rk,w)+ r

2γ
k

))→−∞.

Thus, thanks to (4.28) we have

lim
r↓0

log
(
r−8

(
H(r,w)+ r2γ

))=−∞,

which implies that r−4(u−P)(rx)→ P=: p4,0. �

When x◦ = 0 we will simplify the notation p4,0 to p4.
We can now prove an enhanced version of Proposition 3.9 for higher-order blow-

ups in �3rd
n−1 and �4th

n−1.

Proposition 4.12. — Let u : B1 →[0,∞) solve (3.1), and let P be as in Definition 4.5.

(a) Let 0 ∈�3rd
n−1 \�4th

n−1 and set w := u−P . Then the limit λ3rd := limr↓0 φ(r,w) exists

and satisfies λ3rd ∈ [3,4]. Moreover, for every sequence rk ↓ 0 there is a subsequence rk� such

that w̃rk�
→ q as �→∞ in C0

loc(R
n) and weakly in W1,2

loc (R
n), where q �≡ 0 is a global

λ3rd -homogeneous solution of the Signorini problem (3.12). In addition, if λ3th < 4 then q is

even with respect to {p2 = 0}.
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(b) Let 0 ∈�4th
n−1 and set w := u−P − p4. Then:

(b1) either H(r,w)1/2 ≤Cζ r5−ζ for all ζ ∈ (0,1), for some Cζ depending on ζ ;

(b2) or the limit λ4th := limr↓0 φ(r,w) exists and satisfies λ4th ∈ [4,5). More-

over, for every sequence rk ↓ 0 there is a subsequence rk� such that w̃rk�
⇀ q

as �→∞ in C0
loc(R

n) and weakly in W1,2
loc (R

n), where q �≡ 0 is a λ4th-

homogeneous solution of (3.12), even with respect to {p2 = 0}.

Proof. — (a) Let 0 ∈�3rd
n−1 \�4th

n−1, and w := u−P . Let γ := 5− ε ∈ (4,5).
We note that φγ (0+,w) ≤ 4. Indeed, if by contradiction φγ (0+,w) > 4 then by

Lemma 4.1 (which can be applied thanks to Lemma 4.9) we would have

H(r,w)+ r2γ ≤Crφ
γ (0+,w)

(
H(1,w)+ 1

)� r8 as r ↓ 0,

and hence we would have r−4wr → 0 and in particular 0 ∈ �4th
n−1 (with p4 ≡ 0), contra-

dicting our assumption.
Note now that since γ > 4 we have

(4.29) φγ
(
0+,w

)= lim
r↓0

D(r,w)+ γ r2γ

H(r,w)+ r2γ
≤ 4 < γ.

Also, using Lemma 4.1,

(4.29) ⇒ r2γ

H(r,w)
↓ 0 ⇒ λ3rd := φγ

(
0+,w

)= φ
(
0+,w

)
.

Thus, the limit φ(0+,w) exists and equals again λ3rd ≤ 4. In addition, by Lemmas 4.1
and 4.9 we have

‖w̃r‖W1,2(BR) ≤C(R) ∀r > 0

for each R≥ 1, which gives weak compactness in W1,2
loc (R

n) of w̃r as r ↓ 0.
We now show that any “accumulation point”

q := lim
k

w̃rk

satisfies

(4.30) cr−λ3rd

H(r, q)1/2 ≤H(1, q)1/2 = 1 ∀r ∈ (0,1)

and, for all δ > 0,

(4.31) cδR−λ3rd−δH(R, q)1/2 ≤H(1, q)1/2 = 1 ∀R ∈ (1,∞),

where c, cδ are positive constants.
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Indeed, since φγ (0+,w)= λ3rd , Lemma 4.1 gives (for 0 < r < R� 1)

c(R/r)2λ3rd ≤ H(R,w)+R2γ

H(r,w)+ r2γ
= H(R/rk, w̃rk)+ R2γ

H(rkw)

H(r/rk, w̃rk)+ r2γ

H(rk,w)

.

In particular, replacing R by rk and r by rkr (with r < 1) we obtain

cr−2λ3rd ≤ H(1, w̃rk)+ r
2γ
k

H(rkw)

H(r, w̃rk)+ (rk r)2γ

H(rk,w)

≤ H(1, w̃rk)+ r
2γ
k

H(rk,w)

H(r, w̃rk)
→ H(1, q)

H(r, q)
,

proving (4.30).
Similarly, by the other inequality in Lemma 4.1 we have (for 0 < r < R� 1)

cδ(R/r)2λ3rd+δ ≥ H(R,w)+R2γ

H(r,w)+ r2γ
= H(R/rk, w̃rk)+ R2γ

H(rkw)

H(r/rk, w̃rk)+ r2γ

H(rk,w)

.

In particular, replacing R by rkR and r by rk (with R > 1) we obtain

cδR2γ ≥ H(R, w̃rk)+R2γ r
2γ
k

H(Rrkw)

H(1, w̃rk)+ (rk)
2γ

H(rk,w)

≥ H(R, w̃rk)

H(1, w̃rk)+ (rk)
2γ

H(rk,w)

→ H(R, q)

H(1, q)
,

which proves (4.31).
We now note that �w = −χ{u=0} implies that �w̃k and �q are nonpositive mea-

sures. Also, the Lipschitz estimate in Lemma 4.7 (with P≡ 0) implies that

‖w̃rk‖Lip(BR) ≤C(R), and thus ‖q‖Lip(BR) ≤C(R),

for all R≥ 1. As a consequence, the convergence of w̃rk to q is uniform on compact sets.
Furthermore, by (4.10) we have w = u−P ≥ −P ≥ −O(|x|5) on {xn = p3/xn}, so by
uniform convergence we obtain

q≥ 0 on {xn = 0}.
In addition, by Lemma 4.9 we have

ˆ

BR

w̃rk�w̃rk ↓ 0,

and since w̃rk → q in C0 and 0 ≥ �wk ⇀
∗ �q (up to extracting a further subsequence)

we obtain
ˆ

BR

q�q= 0 ∀r ≥ 1.
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But since �w̃r is supported in {ur = 0} ⊂ {|xn| ≤ o(1)} as r ↓ 0, the support the nonpositive
measure �q is contained on {xn = 0} where q ≥ 0. We have thus shown that q :Rn →R
is a solution of the Signorini problem (3.12).

Finally, recalling (4.30) and (4.31) we have that φ(0+, q)≥ λ3rd while φ(+∞, q)≤
λ3rd + δ for all δ > 0. This implies that φ(r, q) = λ3rd for all r > 0, and thus q must be
λ3rd -homogeneous (see Lemma A.3).

Note also that, by Lemma 4.1, we have H(w, r)� rλ
3rd+δ for every δ > 0. Thus,

since by definition of �3rd
n−1 we have φ(0+, u− p2) ≥ 3, this implies |u− p2| ≤ C|x|3 and

thus |u−P| ≤C|x|3. Therefore it must be λ3rd ≥ 3.
To conclude part (a), we need to show that if λ3rd < 4 then q is even. For this, notice

that if one writes q as the sum of its even and odd part, then the odd part is harmonic.
Thus, if λ3rd ∈ (3,4) then any λ3rd -homogeneous solution of the Signorini problem is even
(since the homogeneity of a harmonic function is always an integer), so we only need to
understand the case λ3rd = 3.

Assume λ3rd = 3, and let us show that q is even. We have (see Lemma 4.1) that
H(w, r)� r3+δ for all δ > 0 as r ↓ 0 therefore

q := lim
k

w̃rk = lim
k

(u− p2 − p3)(rk·)
H(rk, u− p2 − p3)1/2

.

Moreover, using (3.19) from Lemma 3.12 we obtain (note that w in this proof and in
Lemma 3.12 are different)

(4.32)
ˆ

∂B1

(
(u− p2 − p3)r

r3
+ P

)2

+C(P)r ≥ lim
r↓0

ˆ

∂B1

(
(u− p2 − p3)r

r3
+ P

)2

≥
ˆ

∂B1

P2

for all P harmonic 3-homogeneous vanishing on {p2 = 0}, therefore

−C(P)r ≤
ˆ

∂B1

[(
(u− p2 − p3)r

r3
+ P

)2

− P2

]
.

As a consequence, expanding the square and dividing by

εr :=
(ˆ

∂B1

(
(u− p2 − p3)r

r3

)2)1/2

= o(1),

since rδ� εr as r ↓ 0 we obtain

−C(P)
rk

εrk

≤
ˆ

∂B1

[
εr

(
(u− p2 − p3)r

H(rk, u− p2 − p3)1/2

)2

+ 2
(u− p2 − p3)r

H(rk, u− p2 − p3)1/2
P
]
,
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and in the limit as r ↓ 0 we get

0≤ 2
ˆ

∂B1

qP

for every odd harmonic 3-homogeneous polynomial P. Since if P is an odd harmonic
3-homogeneous polynomial then so is −P, we deduce that q must be orthogonal to all
odd harmonic polynomials, hence q is even.

(b) We assume that (b1) fails and we prove (b2). If (b1) fails then there exist ζ ∈ (0,1)
and a sequence rk → 0 such that H(rk,w)1/2 ≥ Cζ r

5−ζ

k . In particular, there exists some
γ ∈ (4,5) such that

(4.33) φγ
(
0+,w

)= lim
r↓0

D(r,w)+ γ r2γ

H(r,w)+ r2γ
< γ.

Thus, as in the proof of (a),

(4.33) ⇒ r2γ

H(r,w)
↓ 0 ⇒ λ4th := φ

(
0+,w

)= φγ
(
0+,w

)
,

∀γ ∈ (
λ4th,5

)
.

In addition, combining Lemmas 4.1 and 4.9 we obtain that

‖w̃r‖W1,2(BR) ≤C(R) ∀r > 0

for each R ≥ 1, which gives compactness of sequences w̃rk as rk ↓ 0—they converge
weakly in W1,2(BR) for every R up to extracting a subsequence. Also, as in (a), it fol-
lows by Lemma 4.1 that any “accumulation point”

q := lim
k

w̃rk

satisfies (4.30) and (4.31) with λ3rd replaced by λ4th. Also, exactly as in (a) we have that
�w̃k and �q are nonpositive measures, and

‖w̃rk‖Lip(BR) ≤C(R) and thus ‖q‖Lip(BR) ≤C(R)

for all R ≥ 1. As a consequence, the convergence is uniform on compact sets. Further-
more (4.10) yields w = u−P−p4 ≥−P−p4 ≥−O(|x|5) on {xn = p3/xn}, so by uniform
convergence of w̃rk to q we obtain

q≥ 0 on {xn = 0}.
Also, by Lemma 4.9 we obtain

´
BR

w̃rk�w̃rk ↓ 0 from which we deduce that
´

BR
q�q= 0

for all R > 1. As a consequence, q is a solution of the Signorini problem (3.12). Finally,
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recalling (4.30) and (4.31) we have that φ(0+, q)≥ λ4th while φ(+∞, q)≤ λ4th + δ for all
δ > 0. This implies that φ(r, q)= λ4th for all r > 0, and thus q must be λ4th-homogeneous.

Note also that by Lemma 4.1 we have H(w, r)� rλ
4th+δ for every δ > 0. Thus,

since by definition of �4th
n−1 we have |u−P| ≤C|x|4, it must be λ4th ≥ 4.

Finally, we prove that q must be even. As in (a), we only need to understand the
case λ4th = 4. When λ4th = 4 then we have (see Lemma 4.9) H(w, r)� r4+δ for all δ > 0
as r ↓ 0. On the other hand, by definition of p4 it follows that H(rk, u−P − p4)

1/2 = r4
k εk ,

where rδk � εk = o(1). Then, using Lemma 4.11 we obtain

r−8H(r, u−P − P)≥−C(P) rδ + lim
r↓0

r−8H(r, u−P − P)

=−C(P) rδ +H(1, p4 − P),

for all P quartic vanishing on {xn = 0}. Therefore, similarly to (a), we deduce that q is
orthogonal to every odd harmonic 4-homogeneous polynomial. Since q is a solution of
Signorini this implies that its odd part (which is harmonic) must vanish, concluding the
proof. �

We can now introduce the following:

Definition 4.13. — Let u : B1 → [0,∞) solve (3.1), and recall the definition of Px◦ in

(4.10).
We denote by �

≥4
n−1 the set of points x◦ ∈�3rd

n−1 such that, for w := u(x◦ + · )−Px◦ , we have

φγ (0+,w)≥ 4 for every γ ∈ (4,5).
We denote by �>4

n−1 the set of points x◦ ∈�4th
n−1 such that, for w := u(x◦ + · )−Px◦ − p4,x◦ ,

we have φγ (0+,w) > 4 for every γ ∈ (4,5).
Furthermore, for fixed ζ ∈ (0,1) we denote by �

≥5−ζ

n−1 the set of points x◦ ∈�4th
n−1 such that, for

w := u(x◦ + · )−Px◦ − p4,x◦ , we have φγ (0+,w)≥ 5− ζ for any γ ∈ (5− ζ,5).

Our last goal of this section is to show that �>4
n−1 =�4th

n−1. For this, we need a new
monotonicity formula.

Lemma 4.14. — Let u : B1→[0,∞) solve (3.1), and let 0 ∈�4th
n−1. Let w := u−P−p4,

where P is defined in (4.10), and let P be any 4-homogeneous harmonic polynomial such that P ≥ 0
on {p2 = 0}. Then

d

dr

(
r−4

ˆ

∂B1

wrP
)
≤C,

where C is a constant depending only on n and ‖P‖L2(B1).
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Proof. — After a rotation, we may assume p2 = 1
2x2

n . We have

d

dr

ˆ

∂B1

wrP=
ˆ

∂B1

x

r
· ∇wrP= 1

r

ˆ

∂B1

∂νwrP= 1
r

ˆ

B1

div(∇wrP)

= 1
r

(ˆ

B1

∇wr∇P+
ˆ

B1

�wrP
)

= 1
r

(ˆ

∂B1

wr∂νP−
ˆ

B1

wr�P+
ˆ

B1

�wrP
)

= 1
r

(
4
ˆ

∂B1

wrP+
ˆ

B1

�wrP
)
,

where we used that ∂νP= 4P on ∂B1, and that �P= 0. Now, since �wr =−r2χ{ur=0}, we
deduce that

d

dr

(
r−4

ˆ

∂B1

wrP
)
=− 1

r3

ˆ

B1∩{ur=0}
P.

Finally notice that (4.22) rescaled implies, using ‖wr‖L2(B5\B1) ≤Cr4 since 0 ∈�4th
n−1,

{ur = 0} ∩ B1 ⊂
{|xn + rp3/xn| ≤Cr2

}
and thus

∣∣{ur = 0} ∩ B1

∣∣≤Cr2

Moreover, since P≥ 0 on {xn = 0}, we have P≥−C|xn| in B1. Hence we obtain

−
ˆ

B1∩{ur=0}
P≤Cr

∣
∣{ur = 0} ∩ B1

∣
∣≤Cr3,

and the lemma follows. �

We can now show the following:

Proposition 4.15. — Let u : B1 →[0,∞) solve (3.1). Then �4th
n−1 =�>4

n−1.

Proof. — Assume by contradiction that 0 ∈ �4th
n−1 \ �>4

n−1. Then, by Proposi-
tion 4.12(b), there is a sequence rk → 0 along which w̃rk → q locally uniformly in Rn,
where q is a 4-homogeneous even solution of the Signorini problem (3.12). Then, by
[GP09, Lemma 1.3.4], q is a harmonic polynomial.

Let w := u − P − p4. Since r−4wr → 0 (by definition of p4), it follows by
Lemma 4.14 that

ˆ

∂B1

r−4wrP≤Cr

for any 4-homogeneous harmonic polynomial P vanishing on {p2 = 0}.
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Set now w̃r = wr/H(1,wr)
1/2 and εr := r−4H(1,wr)

1/2, and notice that, since 0 /∈
�>4

n−1, for any δ > 0 we have εr � rδ for r > 0 small enough. Hence,

Cr ≥
ˆ

∂B1

r−4wrP=
ˆ

∂B1

εrw̃rP.

Dividing by εr , and letting r = rk → 0, we deduce that

0≥
ˆ

∂B1

qP.

Taking P= q, this provides the desired contradiction. �

5. Uniqueness and nondegeneracy of non-harmonic cubic blow-ups

The goal of this section is to study the set �
≥3
n−1 \ �>3

n−1, namely the set of singu-
lar points where blow-ups are 3-homogeneous and non-harmonic.4 As explained in the
introduction, this study is crucial for our proof of Theorem 1.1.

We will prove that �
≥3
n−1 \ �3rd

n−1 is contained in a countable union of (n − 2)-
dimensional Lipschitz manifolds, and that �3rd

n−1 \ �>3
n−1 = ∅. For this, we will need to

establish the uniqueness and nondegeneracy of blow-ups at these points.
We start by classifying all λ-homogeneous solutions of the Signorini problem in Rn,

with λ odd.

Lemma 5.1. — Let q :Rn →R be a λ-homogenous solution of the Signorini problem

(5.1)

⎧
⎪⎨

⎪⎩

�q≤ 0 and q�q= 0 in Rn

�q= 0 in Rn \ {xn = 0}
q≥ 0 on {xn = 0},

with homogeneity λ= 2m+ 1, m ∈N. Then q≡ 0 on {xn = 0}.

Proof. — Using complex variables (so i denotes the imaginary unit), for α ∈
{1,2, . . . , n− 1} define

ψ(x) :=
{

i1−λRe[(xn + ixα)
λ] xn ≥ 0

−i1−λRe[(xn + ixα)
λ] xn ≤ 0.

4 More precisely, �
≥3
n−1 \ �3rd

n−1 is the set in which any second blow-up (for u − p2) is 3-homogeneous and non-
harmonic, while �3rd

n−1 \�>3
n−1 is the set in which the third blow-up (for u− p2 − p3) is 3-homogeneous and non-harmonic.
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Note that

ψ
(
x′, xn

)=ψ
(
x′,−xn

)
and ψ(x)= 0 on {xn = 0}.

In addition, on {xn = 0} we have ∂nψ(x′,0+)= λ|xα|λ−1 (recall that λ− 1 is even), there-
fore

�ψ = 2λ|xα|λ−1Hn−1
∣
∣
{xn=0}.

On the other hand, since both ψ and q are λ-homogeneous we have (x · ∇q)ψ = q(x ·
∇ψ)= λqψ . Thus

´
∂B1

(qνψ − qψν)= 0, and an integration by parts gives
ˆ

B1

�qψ =
ˆ

B1

q�ψ.

Since �q is concentrated on {xn = 0} where ψ vanishes, combining all together we get

0=
ˆ

B1

q�ψ = 2λ
ˆ

B1∩{xn=0}
q|xα|λ−1.

Since q ≥ 0 on {xn = 0} and the previous equality holds for all α ∈ {1,2, . . . , n− 1}, we
conclude that q must vanish on {xn = 0}. �

Lemma 5.2. — Assume that q : Rn → R is a 3-homogenous even solution of the Signorini

problem (5.1). Then, after a suitable rotation that leaves the hyperplane {xn = 0} invariant, we have

q(x)= b|xn|3 − 3|xn|
( n−1∑

α=1

bαx2
α

)
,

where b, bα ≥ 0 and b=∑n−1
α=1 bα .

Proof. — By Lemma 5.1 q must vanish everywhere on {xn = 0}. Thus, q is a 3-
homogenous harmonic function in {xn > 0} vanishing on {xn = 0}, so its odd extension is
a 3-homogeneous harmonic polynomial. This implies, after a rotation, that

q(x)= bx3
n − 3xn

( n−1∑

α=1

bαx2
α

)
for xn > 0,

where b, bα ∈ R and b =∑n−1
α=1 bα . Finally, since q is an even solution of Signorini, it

follows that ∂nq≤ 0 on {xn = 0}. This implies that bα ≥ 0 (and thus b≥ 0), concluding the
proof. �

In order to continue our analysis, we introduce a new monotonicity formula:
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Lemma 5.3. — Let u : B1→[0,∞) solve (3.1), and let 0 ∈�
≥3
n−1 \�>3

n−1. Set w := u− p2

and wr := w(r · ). Then, for fixed � ∈ (0,1) and for any 3-homogeneous solution q of the Signorini

problem (3.12), we have

d

dr

ˆ

∂B�

wrq= 3
r

ˆ

∂B�

wrq− �

r

ˆ

B�

wr�q+O
(
r3

)
.

In particular

d

dr

(
1
r3

ˆ

∂B1

wrq

)
≥−C.

Proof. — We have

d

dr

ˆ

∂B�

wrq=
ˆ

∂B�

x

r
· ∇wrq= �

r

ˆ

∂B�

∂νwrq= �

r

ˆ

B�

div(∇wrq)

= �

r

(ˆ

B�

∇wr∇q+
ˆ

B�

�wrq

)

= �

r

(ˆ

∂B�

wr∂νq−
ˆ

B�

wr�q+
ˆ

B�

�wrq

)
.

Now, since q is 3-homogeneous, we find that �
´
∂B�

wr∂νq = 3
´
∂B�

wrq. To complete the
proof of the Lemma we only need to show that

´
B�

�wrq=O(r4).

With no loss of generality, assume that p2 = 1
2x2

n . Then it follows by Proposition 3.10
that {u(r · ) = 0} ∩ B1 ⊂ {|xn| ≤ Cr}, and |q| ≤ C|xn| in B1 (by Lemma 5.2). Thus, since
�wr =−r2χ{u(r · )=0}, we get

´
B�

�wrq=O(r4).
Finally, taking � = 1 and using that −wr�q ≥ 0 in Rn (since wr = u(r · ) ≥ 0 on

{xn = 0}), we obtain

d

dr

(
1
r3

ˆ

∂B1

wrq

)
= 1

r4

(
−
ˆ

∂B1

wr�q+
ˆ

B1

�wrq

)
≥ 1

r4

ˆ

B1

�wrq≥−C,

as desired. �

As a consequence of the previous lemma, we deduce the uniqueness of blow-ups
in �

≥3
n−1 \ �3rd

n−1. Notice that this is quite surprising, since even in the (simpler) case of
the Signorini problem it was not known if cubic blow-ups are unique at every point (see
Appendix B).
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Proposition 5.4. — Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ �
≥3
n−1 \ �3rd

n−1. Then the

limit

q̃ := lim
r↓0

(u− p2)(r · )
r3

exists, and it is a 3-homogeneous (non-harmonic) solution of Signorini.

Proof. — Let w := u− p2, and wr =w(r · ). Assume that

q(i) = lim
r
(i)
k ↓0

1

(r
(i)

k )3
w

r
(i)
k
, i = 1,2,

are two accumulation points along different sequences r
(i)

k . Then, give a 3-homogeneous
solution of Signorini q, we can apply Lemma 5.3 to deduce that r 
→ 1

r3

´
∂B1

wrq has a
unique limit as r→ 0. In particular this implies that

(5.2)
ˆ

∂B1

q(1)q=
ˆ

∂B1

q(2)q.

Choosing q= q(1) − q(2) we obtain
ˆ

∂B1

(
q(1) − q(2)

)2 = 0,

hence q(1) ≡ q(2), as desired. �

The next step consists in showing that if 0 ∈�3rd
n−1 then φ(0+, u− p2− p3) > 3. This

is a kind of nondegeneracy property, which implies that �3rd
n−1 \�>3

n−1 is empty. This highly
non-trivial fact is essential in order to establish Schaeffer conjecture in R4, and it is the
core of this section. Its proof require a barrier and ODE-type arguments obtained below.

Lemma 5.5. — Let u : B1 →[0,∞) solve (3.1), and let 0 ∈�3rd
n−1. Set w := u− p2 − p3,

and let wr and w̃r be defined as in (2.1). Assume that {p2 = 0} = {xn = 0}, and given x =
(x1, . . . , xn) ∈Rn let x′ := (x1, . . . , xn−1) ∈Rn−1.

For any η > 0 there exists δ = δ(n, η) such that if

‖w̃r − q‖L∞(B2) ≤ δ

for q= |xn|
(

a

3
x2

n − x′ ·Ax′
)
, A ∈R(n−1)×(n−1), A≥ 0, a= trace(A)

then

u(r · )=O
(
r4

)
on {xn = 0} ∩ (B1 \ B1/2)∩

{
x′ ·Ax′ ≥ η

}
.
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Proof. — Let z= (z′,0) ∈ (B1 \ B1/2) satisfy z′ ·Az′ ≥ η, and given c > 0, denote

φz,c(x) := (p2 + p3)(rz+ rx)− r3(n− 1)|xn|2 + r3
∣
∣x′

∣
∣2 + c.

Note that, since q is uniformly close to w̃r , the constant a and the matrix A appearing in
the definition of q are universally bounded. Hence, there exists � > 0 small, depending
only on n and η, such that

−n|xn|2 ≥ |xn|
(

a

3
x2

n −
(
z′ + x′

) ·A(
z′ + x′

))
for |x|< �.

Thus, denoting hr :=H(r,w)1/2 = o(r3), we have

φz,c ≥ (p2 + p3)(rz+ rx)− r3(n− 1)|xn|2 + r3
∣∣x′

∣∣2 + c(5.3)

> (p2 + p3)(rz+ rx)+ hrq(rz+ rx)+ r3
(|xn|2 +

∣
∣x′

∣
∣2)

≥ (
u(rz+ rx)− δhr

)+ r3|x|3 for |x|< �.

We now compare the two functions ûz(x) := u(rz+ rx) and φz,c in B�(0). Two cases arise:
(1) either φz,c ≥ uz for each c > 0, which implies that 0≤ u(rz)= uz(0)≤ φz,0(0)=

0 (since p2 and p3 vanish on {xn = 0});
(2) or there exists c∗ > 0 such that φz,c∗ touches from above ûz at some point y =

(y′, yn) ∈ Bρ . Note that �φz,c∗ = r2 in Bρ , and �ûz = r2χ{ûz>0} in Bρ . Also, since hr :=
H(r,w)1/2 = o(r3), for r small enough we have φz,c ≥ ûz(x) on ∂B� (by (5.3)). Thus, it
follows by the maximum principle that the point y must belong to {ûz = 0} ∩Bρ ⊂ {|xn| ≤
Cr} ∩ Bρ , therefore

0= ûz(y)= φz,c∗(y)= (p2 + p3)
(
rz′ + ry′, ryn

)− r3(n− 1)|yn|2 + r3
∣∣y′

∣∣2 + c∗

≥ −Cr4 + c∗.

Thus c∗ ≤Cr4, and as a consequence

0≤ u(rz)= ûz(0)≤ φz,c∗(0)= c∗ ≤Cr4.

This proves that in both cases 0≤ u(rz)≤Cr4, and since z ∈ {xn = 0} ∩ (B1 \ B1/2)∩ {x′ ·
Ax′ ≥ η} is arbitrary, the result follows. �

Another key tool is the following ODE-type formula.

Lemma 5.6. — Let u : B1→[0,∞) satisfy (3.1), and 0 ∈�3rd
n−1. Set w := u− p2− p3, let

wr and w̃r be defined as in (2.1), and set h(r) :=H(r,w)1/2. Assume that {p2 = 0} = {xn = 0}, and
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given a symmetric (n− 1)× (n− 1) matrix A≥ 0, we define its “associated solution of the Signorini

problem”

(5.4) qA(x) := |xn|
(

trace(A)

3
x2

n − x′ ·Ax′
)
, x= (

x′, xn

) ∈Rn−1 ×R,

and we introduce the quantity

(5.5) ψ(r;A) :=
ˆ

∂B1

w̃rqA − 2
ˆ

∂B1/2

w̃rqA.

Then

d

dr
ψ(r;A)=−θ(r)ψ(r;A)− 1

r

ˆ

B1\B1/2

w̃r�qA +O
(
r3/h(r)

)
,

where

θ(r) :=
(

h′(r)
h(r)

+ 3
r

)
= (

log
(
h(r)/r3

))′
.

Proof. — As in the proof of Lemma 5.3, we obtain

d

dr

ˆ

∂B�

wrqA = 3
r

ˆ

∂B�

wrqA − �

r

ˆ

B�

wr�qA +O
(
r3

)
.

Now, since w̃r =wr/h(r) we deduce that

d

dr

ˆ

∂B�

w̃rqA =
(
−h′(r)

h(r)
+ 3

r

) ˆ

∂B�

w̃rq− �

r

ˆ

B�

w̃r�qA +O
(
r3/h(r)

)

and the lemma follows by combining the identities for �= 1 and �= 1/2. �

We shall also need the following formula:

Lemma 5.7. — Given A, Ā≥ 0 be two symmetric (n− 1)× (n− 1) matrices, let qA and qĀ

as defined in (5.4).
Then

ˆ

∂B�

qAqĀ = 4�n+5|∂B1|
n(n+ 2)(n+ 4)

{
trace(A · Ā)+ 1

3
trace(A) trace(Ā)

}
.
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Proof. — Let A = (aαβ)
n−1
α,β=1, Ā = (āαβ)

n−1
α,β=1, a = trace(A) = ∑

α aαα , ā =
trace(Ā)=∑

α āαα . Denote for brevity q= qA, q̄= qĀ. Then

ˆ

∂B�

qq̄=
n−1∑

α,β,γ,δ=1

ˆ

∂B�

x2
n

(
a

x2
n

3
− aαβxαxβ

)(
ā

x2
n

3
− āγ δxγ xδ

)
.

Up to a rotation in the {xn = 0} plane, we may assume that aαβ is diagonal. Noting that´
∂B�

x4
n xγ xδ =

´
∂B�

x2
n x2

αxγ xδ = 0 for γ �= δ, we have

ˆ

∂B�

qq̄=
ˆ

∂B�

(
aā

9
x6

n +
∑

α

{
−

(
ā

3
aαα + a

3
āαα

)
x4

n x2
α + aαα āααx2

n x4
α

}

+
∑

α �=γ

aαα āγ γ x2
n x2

αx2
γ

)

We observe that
ˆ

∂B1

x4
i =

1
4

ˆ

∂B1

∂ν

(
x4

i

)= 1
4

ˆ

B1

�
(
x4

i

)= 3
ˆ

B1

x2
i =

3
n+ 2

ˆ

∂B1

x2
i

= 3
n(n+ 2)

|∂B1|.

Similarly,
ˆ

∂B1

x6
i =

1
6

ˆ

B1

�
(
x6

i

)= 5
ˆ

B1

x4
i =

5
n+ 4

ˆ

∂B1

x4
i =

15
n(n+ 2)(n+ 4)

|∂B1|,
ˆ

∂B1

x2
i x2

j =
1
4

ˆ

B1

�
(
x2

i x2
j

)= 2
4(n+ 2)

ˆ

∂B1

2x2
i =

1
n(n+ 2)

|∂B1|,
ˆ

∂B1

x4
i x2

j =
1
6

ˆ

B1

�
(
x4

i x2
j

)= 1
6(n+ 4)

ˆ

∂B1

(
12x2

i x2
j + 2x4

i

)

= 3
n(n+ 2)(n+ 4)

|∂B1|,

and
ˆ

∂B1

x2
i x2

j x2
k =

1
6

ˆ

B1

�
(
x2

i x2
j x2

k

)= 3
6(n+ 4)

ˆ

∂B1

2x2
i x2

j =
1

n(n+ 2)(n+ 4)
|∂B1|.
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Thus, calling cn := |∂B1|
n(n+2)(n+4) and using that

∑
α aαα = a and

∑
α āαα = ā, we obtain

ˆ

∂B�

qq̄= �n+5

(
aā

9
15cn − aā

3
6cn +

∑

α

aαα āαα3cn +
∑

α �=γ

aαα āγ γ cn

)
.

Finally, since
∑

α

∑
γ aαα āγ γ = (

∑
α aαα)(

∑
γ āγ γ )= aā and recalling that aαβ is diagonal,

we get
ˆ

∂B�

qq̄= 2�n+5cn

∑

α

aαα āαα = 2cn�
n+5

(
2 trace

(
(aαβ) · (āγ δ)

)+ 2
3

aā

)
,

as claimed. �

We can now finally prove the following fundamental result, which implies that
�3rd

n−1 \�>3
n−1 = ∅:

Proposition 5.8. — Let 0 ∈�3rd
n−1, and set w := u− p2 − p3. Then φ(0+,w) > 3.

Proof. — Without loss of generality, we can assume that {p2 = 0} = {xn = 0}.
Suppose by contradiction that φ(0+,w)= 3. Then we know that the accumulation

points of w̃r as r ↓ 0 must be 3-homogeneous even solutions of the Signorini problem, that
is, of the form qA for some symmetric matrix A≥ 0 (see (5.4)). Note that, by construction,
‖qA‖L2(∂B1) = 1 and thus the matrix A must have at least one positive eigenvalue.

Let us define the quantity

(5.6) �(r) :=max
{
ψ(r;A) : ‖qA‖L2(∂B1) = 1

}
,

where ψ is given by (5.5). Let A∗r be the matrix for which the previous maximum is
attained. Then, as a consequence of Lemma 5.6, we have

d

dr
�(r)= θ(r)�(r)− 1

r

ˆ

B1\B1/2

w̃r�qA∗r +O
(
r3/h(r)

)
, for a.e. r > 0.

On the other hand, if we define �(r) :=ψ(r, Id), then

(5.7)
d

dr
�(r)= θ(r)�(r)− 1

r

ˆ

B1\B1/2

w̃r�qId +O
(
r3/h(r)

)
.

We now claim that

�(r)��(r)� �(r)

�(r)
� 1 as r ↓ 0,
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where X� Y is a short notation for X≤ C(n)Y and Y≤ C(n)X. Indeed, the accumula-
tion points of w̃r (as r ↓ 0 and in the C0

loc(R
n) topology) are of the form qA (and have unit

norm) and thus for every r > 0 we have wr− qAr
= o(1) for some Ar . Hence, by definition

of � ,

�(r)≥ψ(r;Ar)=
ˆ

∂B1

w̃rqAr
− 2

ˆ

∂B1/2

w̃rqAr
=
ˆ

∂B1

q2
Ar
− 2

ˆ

∂B1/2

q2
Ar
+ o(1)

= (
1− 2−n−4

)ˆ

∂B1

q2
Ar
+ o(1)≥ c(n) > 0.

Note that the above computation shows also that ψ(r;A∗r )= (1−2−n−4)
´
∂B1

qAr
qA∗r + o(1)

(as r ↓ 0). Thus since by definition of A∗r we have ψ(r;A∗r )≥ψ(r;Ar) it follows
ˆ

∂B1

qA∗r qAr
≥
ˆ

∂B1

q2
Ar
+ o(1)

Since
´
∂B1

q2
A∗r =

´
∂B1

q2
Ar
= 1 is follows that qA∗r = qAr

+ o(1) and hence

A∗r = Ar + o(1) as r ↓ 0.

Similarly, using Lemma 5.7,

�(r)=
ˆ

∂B1

w̃rqId − 2
ˆ

∂B1/2

w̃rqId =
ˆ

∂B1

qAr
qId − 2

ˆ

∂B1/2

qAr
qId + o(1)

= (1− 2−n−4)4|∂B1|
n(n+ 2)(n+ 4)

{
trace(Ar)+ 1

3
trace(Ar)(n− 1)

}

+ o(1)≥ c(n) > 0.

Since �(r) and �(r) are bounded by above, the claim follows.
Now notice that, using the expressions for d

dr
� and d

dr
�, we find

d

dr

(
�(r)

�(r)

)
= 1

r

−�(r)
´

B1\B1/2
w̃r�qId +�(r)

´
B1\B1/2

w̃r�qA∗r

�(r)2

+O
(
r3/h(r)

)
.

We claim that, given ε > 0, for r sufficiently small it holds

(5.8)

∣
∣∣
∣

ˆ

B1\B1/2

w̃r�qA∗r

∣
∣∣
∣≤ ε

∣
∣∣
∣

ˆ

B1\B1/2

w̃r�qId

∣
∣∣
∣+Cr4/h(r).
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Indeed, it follows by Lemma 5.5 that, for any η > 0, if r > 0 is sufficiently small so that
‖w̃r − qA∗r ‖L∞(B2) ≤ δ(n, η) then (here we use the notation B′r := Br ∩ {xn = 0})

−
ˆ

B1\B1/2

wr�qA∗r = 2
ˆ

B′1\B′1/2

u
(
rx′,0

) (
x′ ·A∗r x′

)
dx′

≤ 2η
ˆ

(B′1\B′1/2)∩{x′·Ax′≤η}

u
(
rx′,0

)
dx′ +

ˆ

(B′1\B′1/2)∩{x′·Ax′≥η}

Cr4 dx′

≤ 2η
ˆ

B′1\B′1/2

u
(
rx′,0

)+Cr4

(here we used that wr ≡ u(r · ) on {xn = 0}), while

−
ˆ

B1\B1/2

wr�qId = cn

ˆ

B′1\B′1/2

u
(
rx′,0

) ∣∣x′
∣∣2

dx′ ≥ cn

ˆ

B′1\B′1/2

u
(
rx′,0

)
dx′,

where cn > 0. Dividing by h(r), we obtain

0≤−
ˆ

B1\B1/2

w̃r�qA∗r ≤−4η
ˆ

B1\B1/2

w̃r�qId +Cr4/h(r),

and thus (5.8) follows.
Hence, thanks to (5.8), we have that

d

dr

(
�(r)

�(r)

)
= 1

r

−�(r)
´

B1\B1/2
w̃r�qId +�(r)

´
B1\B1/2

w̃r�qA∗r

�(r)2

+O
(
r3/h(r)

)

=−a(r)

r

ˆ

B1\B1/2

w̃r�qId +O
(
r3/h(r)

)
, a(r)� 1.

Choosing r0 so that C−1 ≤ a(r) ≤ C over [0, r0], we can integrating the above ODE
over [r̂, r0] for any r̂ > 0. Then, since the integrals of d

dr
(�(r)

�(r)
) and r3/h(r) are both

uniformly bounded independently of r̂, so must be the integral of the negative term
a(r)

r

´
B1\B1/2

w̃r�qId. Hence, this proves that

r0ˆ

0

∣
∣∣
∣
1
r

ˆ

B1\B1/2

w̃r�qId

∣
∣∣
∣ dr <∞.
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Since �(r)� 1 and θ(r)= d

dr
log(h(r)/r3), it follows from (5.7) that

d

dr
log�(r)= d

dr
log

(
h(r)/r3

)+ g(r), with g ∈ L1
([0, r0]

)
.

Integrating over [r̂, r0] and using again that �(r) � 1, we deduce that log(h(r̂)/r̂3) is
uniformly bounded as r̂→ 0, therefore h(r)� r3. However, since 0 ∈�3rd

n−1 we know that
h(r)= o(r3), contradiction. �

6. Symmetry properties of blow-ups for 1-parameter family of solutions

As explained in the introduction, to establish generic regularity results, we shall
consider 1-parameter monotone family of solutions. For this, we shall use the parameter
t (over which solutions are indexed) as a second variable for our solution u (one may think
of t as a “time” variable, although there is no equation in t).

So, let u : B1×[−1,1]→R, u≥ 0, be a monotone 1-parameter family of solutions
of the obstacle problem, namely

(6.1) �u(·, t)= χ{u(·,t)>0} and 0≤ u( · , t)≤ u
( · , t′

)
in B1, for −1≤ t ≤ t′ ≤ 1.

We will assume in addition that u ∈C0(B1×[−1,1]) (this continuity property in t follows
by the maximum principle whenever u ∈C0(∂B1 × [−1,1])).

Note that by, the regularity results for the obstacle problem, u( · , t) is of class C1,1

inside B1 for each t ∈ (−1,1). Moreover, for each fixed t ∈ (−1,1), we can apply the
results of the previous sections, and define the different blow-ups at singular points.

So, following the previous sections, we say that (x◦, t◦) is a singular point of u if x◦
is a singular point of u( · , t◦). Given a singular free boundary point (x◦, t◦), we denote

p2,x◦,t◦(x) := lim
r→0

r−2u(x◦ + rx, t◦).

Note that p2,x◦,t◦ is a convex 2-homogeneous polynomials with �p2,x◦,t◦ = 1. When
(x◦, t◦)= (0,0), we simplify the notation to p2.

From now on, using the notation introduced in the previous sections, we set:

� := {
(x◦, t◦) singular points in B1 × [−1,1]},

�m :=
{
(x◦, t◦) : x◦ ∈�m for u( · , t◦)

}
, 0≤ m≤ n− 1,

�a
m :=

{
(x◦, t◦) : x◦ ∈�a

m for u( · , t◦)
}
, 0≤ m≤ n− 2,

�<3
n−1 :=

{
(x◦, t◦) : x◦ ∈�<3

n−1 for u( · , t◦)
}
,

�≥3
n−1 :=

{
(x◦, t◦) : x◦ ∈�

≥3
n−1 for u( · , t◦)

}
,(6.2)

�3rd
n−1 :=

{
(x◦, t◦) : x◦ ∈�3rd

n−1 for u( · , t◦)
}
,
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�>3
n−1 :=

{
(x◦, t◦) : x◦ ∈�>3

n−1 for u( · , t◦)
}
,

�4th
n−1 :=

{
(x◦, t◦) : x◦ ∈�4th

n−1 for u( · , t◦)
}
,

�>4
n−1 :=

{
(x◦, t◦) : x◦ ∈�>4

n−1 for u( · , t◦)
}
,

�
≥5−ζ

n−1 := {
(x◦, t◦) : x◦ ∈�

≥5−ζ

n−1 for u( · , t◦)
}
, ζ ∈ (0,1).

Recall that �m, �a
m, �<3

n−1, and �≥3
m were defined in (3.13)-(3.16), while �3rd

m , �>3
n−1, �≥4

m ,
�4th

n−1, �>4
n−1, and �

≥5−ζ

n−1 were defined in Definitions 3.11, 4.4, 4.10, 4.13, respectively.

Remark 6.1. — Note that, as a consequence of Proposition 5.8, �3rd
n−1 =�>3

n−1.

For (x◦, t◦) ∈�3rd
m we define

(6.3) p3,x◦,t◦(x) := lim
r→0

r−3
(
u(x◦ + rx, t◦)− p2,x◦,t◦(rx)

)
,

and for (x◦, t◦) ∈�4th
m we define Px◦,t◦ as the fourth order Ansatz of u(x◦ + · , t◦) at 0 (cf.

(4.10)), and

(6.4) p4,x◦,t◦(x) := lim
r→0

r−4
(
u(x◦ + rx, t◦)−Px◦,t◦(rx)

)
.

We begin with a simple lemma.

Lemma 6.2. — Let u ∈C0(B1 × [−1,1]) solve (6.1). Then:

(a) The singular set is closed—more precisely � ∩ B� × [−1,1] is closed for any � < 1.

Moreover,

� ∩ B� × [−1,1] 	 (xk, tk)→ (x∞, t∞) ⇒ p2,xk,tk → p2,x∞,t∞ .

(b) The frequency function

� 	 (x◦, t◦) 
→ φ
(
0+, u(x◦ + · , t◦)− p2,x◦,t◦

)

is upper semi-continuous.

(c) If (x◦, t1) and (x◦, t2) belong both to � and t1 < t2, then there exists r > 0 such that

u(x, t) is independent of t for all (x, t) ∈ Br(x◦)× [t1, t2].
Proof. — (a) We first show that if (xk, tk) are singular points and (xk, tk)→ (x∞, t∞)

then the limit point is also singular. Indeed, by Lemma 3.1 we have
∥∥u(xk + · , tk)− p2,xk tk

∥∥
L∞(Br)

≤ r2ω(r) ∀r > 0.

Hence, since u(xk + · , tk)→ u(x∞ + · , t∞) in C0 as k →∞ and (after taking a subse-
quence) p2,xk tk → P for some convex 2-homogeneous polynomials with �P= 1, we obtain

(6.5)
∥
∥u(x∞ + · , t∞)− P

∥
∥

L∞(Br)
≤ r2ω(r) ∀r > 0.
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Thus (x∞, t∞) ∈ � and p2,x∞t∞ = P. A posteriori, we deduce that for any other subse-
quence it must be p2,xk tk → p2,x∞t∞ since there is only one P for which (6.5) holds, namely,
p2,x∞t∞ .

(b) The upper semicontinuity follows from the fact that the map r 
→ φ(r, u(x◦ +
· , t◦)− p2,x◦t◦) is increasing, and that for r > 0 fixed the map (x◦, t◦) 
→ φ(r, u(x◦ + · , t◦)−
p2,x◦t◦) is continuous on �—using (a) and the fact that u(x◦ + · , t◦) satisfies uniform C1,1

estimates.
(c) As in (a), we have, for i = 1,2,

∥∥u(x◦ + · , ti)− p2,x◦,ti
∥∥

L∞(Br)
≤ r2ω(r) ∀r > 0.

Since u(x◦ + · , t1)≤ u(x◦ + · , t2) then it must be p2,x◦,t1 ≡ p2,x◦,t2 =: P. Also, after a change
of coordinates, we can assume that {P= 0} ⊂ {xn = 0}.

Take r > 0 small enough, and set v := u(x◦ + r · , t2)− u(x◦ + r · , t1)≥ 0. Then

�v = 0 in
{
u(x◦ + r · , t1) > 0

}
.

Also, as a consequence of Lemma 3.1, given ε > 0, for r > 0 small enough we have

Cε :=
{

y : dist
(

y

|y| , {xn = 0}
)

> ε

}
⊂ {

u(x◦ + r · , t1) > 0
}
.

Consider now the first eigenfunction of

−�Sn−1� = kε� in Sn−1 ∩ C2ε, � = 0 in Sn−1 ∩ ∂C2ε.

Then, setting ψ(x) := |x|λε�(x/|x|) with kε = (n− 2+λε)λε, we have that ψ is a positive
λε-homogeneous harmonic function in C2ε which vanishes on the boundary. Note that
as ε ↓ 0 we have Sn−1 ∩ ∂C2ε ↓ {xn = 0} and λ0 = 1 (this corresponds to the solution
|xn|). Thus, by continuity, for ε > 0 small enough, the function ψ̂(x) := |x|3/2�(x/|x|) is
subharmonic and vanishes on ∂C2ε. Hence using ψ̂ as lower barrier and the standard
Harnack inequality on v, we obtain that if v > 0 somewhere then v ≥ cψ̂(x) in B1 for
some c > 0. This implies

u(x◦ + r · , t2)≥ cψ̂(x),

which is impossible since u(x◦ + · , t2) = P + o(|x|2) = O(|x|2), while ψ̂ is positive in
some cone and 3/2-homogeneous. This proves that u(·, t1)≡ u(·, t2) inside Br(x◦), which
implies the result. �

We now prove some relations between p2 and singular points close to (0,0).



238 ALESSIO FIGALLI, XAVIER ROS-OTON, JOAQUIM SERRA

Lemma 6.3. — Let u ∈ C0(B1 × [−1,1]) solve (6.1), let (xk, tk) ∈ �, (0,0) ∈ �, and

assume that xk → 0. Set p2,k := p2,xk,tk . Then p2,k → p2 and we have
∥
∥∥
∥p2,k − p2

(
xk

|xk| + ·
)∥

∥∥
∥

L∞(B1)

≤Cω
(
2|xk|

)
and

‖p2,k − p2‖L∞(B1) ≤Cω
(
2|xk|

)
.

In addition,

dist
(

xk

|xk| , {p2 = 0}
)
→ 0 as k→∞.

Proof. — We observe first that p2,xk,tk → p2. Indeed, if tk → t∞ then (up to a subse-
quence) by Lemma 6.2 we have p2,xk,tk → p2,0,t∞ and p2,0,t∞ ≡ p2, as desired.

Now, set rk := |xk|. By Lemma 3.1 we have
∥∥r−2

k u(xk + rkx, tk)− p2,k(x)
∥∥

L∞(B2)
≤ 4ω(2rk) and

∥∥r−2
k u(rkx,0)− p2(x)

∥∥
L∞(B2)

≤ 4ω(2rk).

Thus, defining yk := xk/|xk|, for all x ∈ B2 we have the following: if tk ≤ 0 then

−4ω(2rk)+ p2,k(x)≤ r−2
k u(xk + rkx, tk)≤ r−2

k u(xk + rkx,0)

≤ 4ω(2rk)+ p2(yk + x),

while if tk ≥ 0 then

4ω(2rk)+ p2,k(x)≥ r−2
k u(xk + rkx, tk)≥ r−2

k u(xk + rkx,0)

≥−4ω(2rk)+ p2(yk + x).

In both cases, since p2,k and p2 are nonnegative 2-homogeneous polynomials vanishing at
0 and with Laplacian 1, then p2,k − p2(yk + · ) is a harmonic quadratic polynomial which
vanishes at some point of the segment joining 0 and yk , where yk := xk/|xk|. Moreover,
|p2,k− p2(yk+ · )| is bounded from above by 8ω(2rk) in B2. Using the mean value formula
and the fact that all norms are comparable on polynomials, we obtain

∥
∥p2,k − p2(yk + · )

∥
∥

L∞(B1)
≤C

∥
∥p2,k − p2(yk + · )

∥
∥

L2(∂B1)
≤Cω(2rk).

By orthogonality of spherical harmonics with different homogeneities (or by a direct com-
putation) we then obtain

‖p2,k − p2‖2
L2(∂B1)

+ ∥
∥p2 − p2(yk + · )

∥
∥2

L2(∂B1)
= ∥

∥p2,k − p2(yk + · )
∥
∥2

L2(∂B1)

≤Cω(2rk)
2.

In particular ‖p2 − p2(yk + · )‖L2(∂B1)→ 0, and therefore dist(yk, {p2 = 0})→ 0. �
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We prove next two key lemmas that will allow us to perform some dimension re-
duction arguments needed to control the spatial projection (i.e., π1 : (x, t) 
→ x) of some
“bad” subsets of � ⊂ B1×[−1,1]. Note that the spatial version of these first two lemmas
(i.e., when considering u(·, t◦) with t◦ fixed) was proven in [FS19]. Here we need stronger
results valid for a one-parameter monotone family of solutions to the obstacle problem.
To our best knowledge, this is the first dimension reduction argument applicable to a
one-parameter family of solutions to an elliptic equation, and it will involve several new
and non-standard techniques.

We recall that, given w : Rn → R, the rescaled functions wr and w̃r have been
defined in (2.1).

The first lemma concerns the intermediate strata of the singular set �m with 0 ≤
m≤ n− 2.

Lemma 6.4. — Let u ∈C0(B1×[−1,1]) solve (6.1), let (0,0) ∈�m with 0≤ m≤ n−2,

and assume that u( · ,0) �≡ p2. Let (xk, tk) ∈�m satisfy |xk| ≤ rk with rk ↓ 0, and suppose that

(6.6) w̃rk ⇀ q in W1,2
loc

(
Rn

)
for w := u− p2 and yk := xk

rk

→ y∞.

Then y∞ ∈ {p2 = 0} and q(y∞)= 0.

Proof. — Let us define

wk := u(xk + rk · , tk)− p2(rk · )=w
(1)
k +w

(2)
k +w

(3)
k ,

where

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · ,0),

w
(2)
k := u(xk + rk · ,0)− p2(xk + rk · ),

w
(3)
k := p2(xk + rk · )− p2(rk · ).

We divide the proof into three steps.
• Step 1. We prove that

w̃k := wk

‖wk‖L2(∂B1)

⇀ Q in W1,2
loc

(
Rn

)

for some harmonic function Q with polynomial growth.
Indeed, since u ∈C0(B1×[−1,1]), by the monotonicity of φ there exist r◦ > 0 and

k◦ ∈N such that, for M := φ(0+, u( · ,0)− p2)+ 1, we have

(6.7) φ
(
r , u(xk + · , tk)− p2

)≤M ∀r ∈ (0, r◦), ∀k ≥ k◦,

or equivalently

(6.8) φ(r,wk)≤M ∀r ∈ (0, r◦/rk), ∀k ≥ k◦.
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Then, applying Lemma 3.6 to wk , we obtain the following polynomial growth control for
w̃k :

(6.9) H(R, w̃k)≤CR2M+1H(1, w̃k)=CR2M+1 ∀R ∈ [1, r◦/rk), ∀k ≥ k◦.

Note that (6.8) is equivalent to φ(rk, w̃k)≤M, which combined with (6.9) implies that

(6.10) ‖w̃k‖W1,2(BR) ≤C(R).

This gives compactness of the sequence w̃k and hence (up to a subsequence)

w̃k ⇀ Q in W1,2
loc

(
Rn

)

for some Q :Rn →R. Let us prove next that Q is harmonic.
Indeed, on the one hand we have

(6.11) �wk =−r2
k χ{u(xk+rk · , tk)=0} ≤ 0 in B 1

2rk

.

On the other hand, Lemmas 3.1 and 6.3 imply that, for R≥ 1,

x ∈ BR ∩
{
u(xk + rkx, tk)= 0

} ⇒ p2,xk,tk(x)≤R2ω(Rrk)

⇒ p2(x)≤CR2ω(Rrk);
thus, since p2 grows quadratically away from its zero set,

(6.12) BR ∩
{
u(xk + rk · , tk)= 0

}⊂ {
y : dist

(
y, {p2 = 0})≤CR

√
ω(Rrk)

}
.

Note that, for any fixed R≥ 1, we have CR
√
ω(Rrk) ↓ 0 as k→∞. We have thus shown

sup
{
dist

(
x, {p2 = 0}) : x ∈ BR ∩

{
u(xk + rk · , tk)= 0

}} ↓ 0 as k→∞.

Therefore, the weak limit of the sequence of nonpositive measures �w̃k will be supported
on {p2 = 0}. But then, recalling (6.10), we have shown that Q is a locally W1,2 function
whose Laplacian is supported in linear space of dimension m = dim({p2 = 0}) ≤ n − 2
and thus of zero harmonic capacity. It follows5 that Q must be harmonic.

Moreover, since xk is a singular point, Lemma 3.6 yields

H(ρ,wk)≤ ρ4H(1,wk) for all ρ ∈ (0,1),

and thus in the limit we find

(6.13) H(ρ,Q)1/2 ≤ ρ2 for all ρ ∈ (0,1).

5 The proof of this implication is standard. We want to prove that
´ ∇Q · ∇ξ = 0 for all ξ ∈ C1

c (R
n). But since

{p2 = 0} has zero harmonic capacity, any given ξ can be approximated in W1,2 norm by functions ξk which vanish on
{p2 = 0}, and thus for which

´ ∇Q · ∇ξk =−
´
�Qξk = 0. The desired conclusion follows by taking the limit as k→∞.
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• Step 2. We now want to prove that

(6.14)
w

(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)

in W1,2
loc

(
Rn

)

(with q defined in (6.6)), and

(6.15)
w

(3)
k

‖w(3)
k ‖L2(∂B1)

→∇p2 · e in W1,2
loc

(
Rn

)

for some (nonzero) e ∈ {p2 = 0}⊥.
Note that, since y∞ ∈ {p2 = 0} (by Lemma 6.3),

w
(2)
k

‖w(2)
k ‖L2(∂B1)

= wrk(yk + · )
‖wrk(yk + · )‖L2(∂B1)

= w̃rk(yk + · ) ‖w̃rk‖L2(∂B1)

‖w̃rk(yk + · )‖L2(∂B1)

.

Thus, noticing that ‖w̃rk‖L2(∂B1)→‖q‖L2(∂B1) and ‖w̃rk(yk+· )‖L2(∂B1)→‖q(y∞+· )‖L2(∂B1),
since q is a nonzero quadratic harmonic polynomial (see Proposition 3.9) both limits are
nonzero and universally bounded. Thus (6.14) follows.

To prove (6.15), we set εk := ‖p2(yk + · )− p2‖L2(∂B1)→ 0. Then, if y∗k denotes the
projection of yk onto {p2 = 0}, we have p2(y

∗
k + · )≡ p2 and y∗k − yk → y∗∞ − y∞ = 0. Thus,

up to taking a further subsequence, we obtain

lim
k

w
(3)
k

‖w(3)
k ‖L2(∂B1)

= lim
k

p2(yk + · )− p2

εk

= lim
k

p2(yk − y∗k + · )− p2

εk

= c∇p2 · lim
k

yk − y∗k
|yk − y∗k |

= ∇p2 · e

for some nonzero e ∈ {p2 = 0}⊥. Note that the limit in k exists (up to subsequence) and is

nonzero, since w
(3)
k

‖w3
k ‖L2(∂B1)

is a sequence of linear functions with unit L2 norm.

• Step 3. We finally prove that q(y∞)= 0.
Let us consider

ε̂k :=
∑

i=1,2,3

∥∥w(i)

k

∥∥
L2(∂B1)

and ŵk := wk

ε̂k

.

By Step 1 we have

(6.16) ŵk → Q̂= aQ for some a ∈ [0,1].
Moreover, by Step 2,

Q̂(2) := lim
k

w
(2)
k /ε̂k = bq(y∞ + · ), Q̂(3) := lim

k
w

(3)
k /ε̂k = c∇p2 · e,

for some constant b, c≥ 0. (Above, the convergences are weak in W1,2
loc (R

n).)
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Then, it is well defined

Q̂(1) := lim
k

w
(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since w
(1)
k = u(xk+rk · , tk)−

u(xk + rk · ,0) is so, depending on the sign of tk ). Moreover, since Q̂, Q̂(2), and Q̂(3) are
harmonic, so is Q̂(1) and thus it must be constant by Liouville Theorem. Hence, we have

Q̂=C+ bq(y∞ + · )+ c∇p2 · e.
Note now that, by definition of ε̂k , we have

∑
i=1,2,3 ‖Q̂(i)‖L2(∂B1) = 1. Moreover, since

the homogeneity of q at the origin is at least two, the three functions Q̂(i) are linearly
independent and hence their sum Q̂ cannot be zero (equivalently, in (6.16) it must be
a > 0). Note also that it must be b > 0 since (6.13) implies that Q̂ is at least quadratic and
hence it can not be equal to the constant Q̂(1) plus the linear function, Q̂(3). Finally, (6.13)
implies ∇Q(0)= 0.

But then, since y∞ ∈ {p2 = 0}, and q is a homogeneous polynomial of degree
φ(q,1),

0= y∞ · ∇Q̂(0)= y∞ · ∇Q̂(1)(0)+ by∞ · ∇q(y∞)+ cy∞ · ∇(∇p2 · e)(0)
= 0+ bφ(q,1) q(y∞)+ 0,

which proves that q(y∞)= 0. �

The next lemma concerns the maximal stratum �n−1. This case is more involved,
since blow-ups are not necessarily harmonic functions as in the previous lemma. In par-
ticular, in this situation we will need to assume that the frequency is continuous along the
sequence that we consider.

Lemma 6.5. — Let u ∈ C0(B1 × [−1,1]) solve (6.1), let (0,0) ∈ �n−1, and assume that

u( · ,0) �≡ p2. Let (xk, tk) ∈ �n−1 satisfy |xk| ≤ rk with rk ↓ 0, assume that (6.6) holds, and that

λ2nd
k → λ2nd , where

λ2nd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk

)
and λ2nd := φ

(
0+, u− p2

)
.

Then y∞ ∈ {p2 = 0} and qeven is translation invariant in the direction y∞. (Here qeven denotes the even

symmetrisation of q with respect to the hyperplane {p2 = 0}.)

Proof. — Let us define

wk := u(xk + rk · , tk)− p2,xk,tk(rk · )=w
(1)
k +w

(2)
k +w

(3)
k ,
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where

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · ,0),

w
(2)
k := u(xk + rk · ,0)− p2(xk + rk · ),

w
(3)
k := p2(xk + rk · )− p2,xk,tk(rk · ).

We divide the proof into three steps.
• Step 1. Exactly as in Lemma 6.4,

w̃k := wk

‖wk‖L2(∂B1)

⇀ Q in W1,2
loc

(
Rn

)

for some Q ∈W1.2
loc (R

n) with polynomial growth. We claim that Q is a λ2nd -homogeneous
solution of the Signorini problem (3.12).

Indeed, by the upper-semicontinuity property in Lemma 6.2(b) and the assumption
λ2nd

k → λ2nd , given δ > 0 there exist rδ > 0 and kδ such that

(6.17) φ
(
r, u(xk + · , tk)− p2,xk,tk

) ∈ (
λ2nd − δ,λ2nd + δ

) ∀r ∈ (0, rδ), ∀k ≥ kδ,

or equivalently

(6.18) φ(r,wk) ∈
(
λ2nd − δ,λ2nd + δ

) ∀r ∈ (0, rδ/rk), ∀k ≥ kδ.

Then, applying Lemma 3.6 to wk we obtain the following polynomial growth control for
w̃k :

(6.19) H(R, w̃k)≤CδR2λ2nd+3δ ∀R ∈ [1, rδ/rk), ∀k ≥ k◦,

and the decay estimate

(6.20) H(�, w̃k)≤C�2(λ2nd−δ) ∀� ∈ (0,1], ∀k ≥ k◦.

In addition, the Lipschitz estimate in Lemma 3.8 gives

‖w̃k‖Lip(BR) ≤C(R).

Hence w̃k →Q in C0
loc(R

n) (up to a further subsequence).
Note that, using (6.11) and (6.12) in our context, one deduces that �Q is a nonposi-

tive measure supported on {p2 = 0}. Moreover, since wk(yk+ · )= u(xk+ rk · )−p2,xk tk(rk · ),
it follows that w̃k(yk+ · )≥ 0 on {p2,xk tk = 0} and thus, by uniform convergence, Q≥ 0 on
{p2 = 0}.

On the other hand (6.11) and the fact that w̃k(yk + · )≤ 0 on {u(xk + rk · , tk)= 0}
imply that w̃k�w̃k ≥ 0, and since �w̃k ⇀ �Q weakly as measures and w̃k →Q in C0,
we obtain Q�Q ≥ 0 in Rn. But since �Q ≤ is nonpositive and supported on {p2 = 0}
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where Q ≥ 0, it must be Q�Q ≤ 0. This implies that Q is a solution of the Signorini
problem (3.12).

Finally, taking the limit in (6.19) and (6.20) we obtain that, for any given δ > 0,

(6.21) H(R,Q)≤CδR2λ2nd+3δ ∀R ∈ [1,∞)

and

(6.22) H(�,Q)≤C�2(λ2nd−δ) ∀� ∈ (0,1].
Since δ > 0 is arbitrary and Q is a global solution of Signorini, it follows by Lemma A.3
that

λ2nd ≤ φ
(
0+,Q

)≤ φ(+∞,Q)≤ λ2nd .

Hence φ(r,Q)= λ2nd for all r > 0, from which (using Lemma A.3 again) it follows that
Q is a λ2nd -homogeneous.
• Step 2. We now want to prove that

(6.23)
w

(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)

in W1,2
loc

(
Rn

)

and

(6.24) lim
k

w
(3)
k

‖w3
k‖L2(∂B1)

→ (e · x)+ (
e′ · x)(e · x) �≡ 0 in W1,2

loc

(
Rn

)
,

for some e ∈ {p2 = 0}⊥ and e′ ∈ {p2 = 0}.
Indeed, the proof of (6.23) is identical to the one of (6.14) in the proof of

Lemma 6.4.
To show (6.24), denote εk := ‖p2(yk+ · )− p2,xk,tk‖→ 0. Recall that (by Lemma 6.3)

we have y∞ ∈ {p2 = 0} and hence, if y∗k denotes the projection of yk onto {p2 = 0}, then
p2(y

∗
k + · )≡ p2 and y∗k − yk → y∗∞ − y∞ = 0. Thus, up to taking a further subsequence, if

{p2 = 0} = {ê · x= 0} and {p2,xk,tk = 0} = {êk · x= 0} with ê, êk ∈ Sn−1, then

lim
k

w
(3)
k

‖w(3)
k ‖L2(∂B1)

= lim
k

p2(yk + · )− p2,xk,tk

εk

= lim
k

p2(yk − y∗k + · )− p2

εk

+ lim
k

p2 − p2,xk,tk

εk

= c1∇p2 · lim
k

yk − y∗k
|yk − y∗k |

+ c2 lim
k

(ê · x)2 − (êk · x)2

2|ê− êk|
= (e · x)+ (

e′ · x)(e · x),
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where e ∈ {p2 = 0}⊥ and e′ ∈ {p2 = 0}. Note that the previous limit in k must exist (up
to subsequence) and will be nonzero, since w

(3)
k /‖w(3)

k ‖L2(∂B1) is a sequence of quadratic
polynomials with unit L2 norm.
• Step 3. We finally prove that q is translation invariant in the direction y∞. Consider

ε̂k :=
∑

i=1,2,3

∥∥w(i)

k

∥∥
L2(∂B1)

and ŵk := wk

ε̂k

.

By Step 1 we have

ŵk → Q̂= aQ for some a ∈ [0,1].
Moreover, by Step 2

Q̂(2) := lim
k

w
(2)
k /ε̂k = bq(y∞ + · )

and, after choosing some appropriate coordinate frame (so that, in particular, {p2 = 0} =
{xn = 0}),

Q̂(3) := lim
k

w
(3)
k /ε̂k = c1xn + c2xnxn−1

for some b, c≥ 0. (Above, the convergences are weak in W1,2
loc (R

n).)
Then, it is well defined

Q̂(1) := lim
k

w
(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since the functions w
(1)
k

are so). Hence, we have

Q̂= Q̂(1) + bq(y∞ + · )+ c1xn + c2xnxn−1.

Note now that, by definition of ε̂k , we have
∑

i=1,2,3 ‖Q̂(i)‖L2(∂B1) = 1. Moreover, since the
homogeneity of q at the origin is at least 2+ α◦ (see Proposition 3.9), the three functions
Q̂(i) are linearly independent6 and thus their sum Q̂ cannot be zero.

Let us show next that b > 0 and that Q̂ ≡ bq. Indeed, since both q and Q̂ are
λ2nd -homogeneous with λ2nd ≥ 2+ α◦, if Q(1) ≥ 0 (resp. ≤) then

Q̂= lim
R→∞

Q̂(R · )
Rλ2nd

= lim
R→∞

Q(1)(R · )+ bq(y∞ +R · )+Q(3)(R · )
Rλ2nd

≥ bq (resp. ≤),

6 Note again that Q̂(1) has a sign, Q̂(2) is (the translation of) a λ2nd -homogeneous solution of Signorini with λ2nd > 2,
and Q̂(3) is a odd quadratic harmonic polynomial, and thus they are linearly independent.
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where we used that Q(3) is 2-homogeneous. Hence, Q̂ and bq are two ordered solutions
of Signorini with homogeneities greater than 1 at the origin and thus they must be equal
by Lemma A.4.

Therefore, we have shown that

(6.25) Q̂= Q̂(1) + bq(y∞ + · )+ xn(c1xn−1 + c2)= bq.

In particular, since Q̂ has unit L2(∂B1) norm this implies that b > 0.
Now, taking the even parts, if Q(1) ≥ 0 (resp. if Q(1) ≤ 0) we obtain

(6.26) bqeven(y∞ + · )≤ bqeven (resp. ≥).

Hence it follows by homogeneity that, for all s > 0,

bs−λ2nd

qeven(sy∞ + x)≤ bs−λ2nd

qeven(x) (resp. ≥).

Therefore, since b > 0,

q(sy∞ + x)≤ q(x) (resp. ≥),

and thus

y∞ · ∇qeven ≤ 0 (resp. ≥).

In summary we obtain that ψ := y∞ · ∇qeven has constant sign. But then ψ restricted to
the sphere Sn−1 must be a multiple of the first even eigenfunction (since all other eigen-
functions change sign) of

{
−�Sn−1ψ = kψ in Sn−1 \Z
ψ = 0 on Sn−1 ∩Z,

where Z := {xn = 0} ∩ {q = 0} and k := (n− 2+ λ2nd)λ2nd . Note Z ⊂ {xn = 0}, and the
two extremal cases Z = ∅ and Z = {xn = 0} correspond respectively to the eigenfunctions
1 and |xn| (restricted to the sphere), which have homogeneity 0 and 1 respectively. As a
consequence of the monotonicity property of the eigenvalues with respect to the domain,
for every Z we will have (n− 2+ 0)0≤ k = (n− 2+ λ2nd)λ2nd ≤ (n− 2+ 1)1. This leads
to λ2nd ≤ 2; a contradiction. Therefore, the only possibility is that ψ = y∞ · ∇qeven ≡ 0. In
other words qeven is translation invariant in the direction y∞. �

The next result will imply that the projection π1(�
≥3
n−1 \ �3rd

n−1) (recall that
π1(x, t) = x) is contained in a countable union of (n − 2)-dimensional Lipschitz mani-
folds, i.e., it is (n− 2)-rectifiable. This will be crucial in our proof of Theorem 1.1.
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Lemma 6.6. — Let u ∈C0(B1×[−1,1]) solve (6.1), and let (0,0) ∈�≥3
n−1 \�3rd

n−1. Then

there exists a (n− 2)-dimensional linear subspace L such that the following holds: for any ε > 0 there

exists �ε > 0 such that

π1

(
�≥3

n−1

)∩ Br ⊂ L+ Bεr for all r ∈ (0, �ε),

where L+ Bεr := {z= (x+ y) : x ∈ L, y ∈ Bεr} denotes the sum of sets.

Proof. — Let w := u( · ,0) − p2, and recall that wr(x) = w(rx) and w̃r =
wr/‖wr‖L2(∂B1). Recall also that, by Proposition 5.4, the following limit exists

q̃ := lim
r↓0

r−3w(r · ),

and (after choosing suitable coordinate system) the even part of q̃ is of the form

(6.27) q̃even(x)= b|xn|3 − 3|xn|
( n−1∑

α=1

bαx2
α

)
,

where b > 0, bα ≥ 0, and b =∑n−1
α=1 bα ; see Lemma 5.2. Relabelling if necessary the in-

dices, we may assume that b1 ≤ b2 ≤ · · · ≤ bn−1. In particular we must have bn−1 > 0.
Define L to be the (n− 2)-dimensional subspace {xn = xn−1 = 0} in this system of

coordinates. We claim that, for any sequence (xk, tk) ∈�≥3
n−1 such that xk → 0, we have

dist
(

xk

|xk| ,L
)
→ 0.

Note that the lemma follows immediately from this claim. To prove the claim we observe
that

λ2nd
k := φ

(
0+, u(xk+ · , tk)− p2,xk,tk

)≥ 3 and λ2nd := φ
(
0+, u− p2

)= 3.

Thus, since the frequency is upper-semicontinuous, λ2nd
k → λ2nd = 3. This allows us to

apply Lemma 6.5 with rk := |xk| and deduce that, if y∞ is an accumulation point of
{xk/|xk|}, then the even part of q = q̃

‖q̃‖L2(∂B1)
is translation invariant in the direction y∞.

Thus q̃even has the same invariance. But then, recalling (6.27) and bn−1 > 0, we find that
y∞ ∈ {xn = xn−1 = 0} = L. �

We next need the following Lipschitz estimate.

Lemma 6.7. — Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ �3rd
n−1 \ �

≥4
n−1. Set w :=

u− p2 − P, where P is a 3-homogeneous harmonic polynomial vanishing on {p2 = 0}, and let wr and

w̃r be as in (2.1). Assume that, for some r◦ > 0, γ ∈ (3,4), δ◦ > 0, and h◦ > 0, we have

(6.28) φγ (r, u− p2 − P)≤ γ − δ◦ ∀r ∈ (0, r◦) and H(r◦, u− p2 − P)≥ h◦.
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Then there exist positive constants �◦, η◦, and C, depending only on n, γ , δ◦, r◦, h◦, and ‖P‖L2(B1),

such that for any given R≥ 1 and for all r ∈ (0, �◦
10R) we have

(6.29) ‖w̃r‖Lip(BR) ≤CR3 and w̃r�w̃r ≥−Crη◦R4�w̃r in BR.

Proof. — With no loss of generality we can assume that {p2 = 0} = {xn = 0}.
Since P is some 3-homogeneous harmonic polynomial vanishing on {p2 = 0}, for

any unit vector e tangential to {p2 = 0} we have |∂eeP| ≤ C|xn| ≤ Cr2 in Br ∩ {u= 0} (cf.
(4.16)). Thus, arguing as in the proof of Lemma 4.7 (see Step 3), we get

(6.30) inf
Br

r2∂eew ≥−C(P)
(∥∥w(r · )∥∥

L2(B5)
+ r4

)
.

Also, since 0 ∈ �3rd
n−1 \ �

≥4
n−1, we can apply Lemmas 4.1 and 4.9 to deduce that

φ(0+, u−P) exists and is less that 4 (cf. proof of Proposition 4.12(a)).
We now note that, as a consequence of (6.28), Lemmas 4.3 and 4.1 yield that, for

any δ > 0, r > 0, and � ∈ (r, r◦],
H(�,w)+ ρ2γ

H(r,w)+ r2γ
≤Cδ(�/r)2(γ−δ)+δ.

In particular, for δ = 4− γ and �= r◦ we obtain

(6.31) H(1,wr)=H(r,w)= H(r◦,w)+ r2γ
◦

Cδ

(r/r◦)2(γ−δ)+δ − r2γ ≥ c1r2γ−δ,

provided that r ∈ (0, r1), where c1 > 0 and r1 ∈ (0, r◦) is sufficiently small. Also, for r ∈
(0, r1) and �=Rr ≤ r◦ we get

H(Rr,w)≤CδR2γ−δ
(
H(r,w)+ r2γ

)≤CR8H(r,w),

where C = Cδ(1 + 1/c1) depends only on n, γ , δ, and h◦ Thus, scaling (6.30), for r ∈
(0, r1

10R) we obtain

(2R)−2 inf
B2R

∂eewr ≥−C(P)
(∥∥w(3Rr · )∥∥

L2(B5)
+ (2Rr)4

)

≥−CR4
(
H(r,w)1/2 + r4

)≥−CH(1,wr)
1/2,

where C depends only on n, R, γ , δ and h◦.
Hence, given R≥ 1, for all r ∈ (0, r◦

10R) we have ∂eew̃r ≥−CR2 in B2R. Therefore,
as in the proof of Lemma 3.8, we obtain |∇w̃r| ≤ CR3 in BR, where C depends only on
n, γ , δ, and h◦. This proves the first part of (6.29).

For the second part, notice that |u− p2−P| = | 12(xn)
2+P| ≤C|x|4 inside {u= 0}—

here we used that |xn| ≤C|x|2 in {u= 0} and that P is a cubic polynomial divisible by xn.
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Combining this bound with (6.31) and the fact that �w̃r = 0 inside {ur > 0}, we find
(choosing for instance η◦ := 4− γ )

w̃r�w̃r ≥− C|rx|4
H(1,wr)1/2

�w̃r ≥−C(rR)4

cr4−η◦
�w̃r =−Crη◦R4 �w̃r in Br,

which proves (6.29). �

The following result will be needed in order to bound the Hausdorff dimension of
the projection π1(�

>3
n−1 \ �≥4

n−1). Although the argument is very similar to the one used
in the proof of Lemma 6.5, we repeat the proof in detail since there are differences that
require a detailed analysis. Recall that p3 = p3,0,0 is defined in (6.3).

Lemma 6.8. — Let u ∈ C0(B1 × [−1,1]) solve (6.1), let (0,0) and (xk, tk) belong to

�>3
n−1 \�≥4

n−1, and suppose that |xk| ≤ rk ↓ 0. Assume in addition that

(6.32) w̃rk ⇀ q in W1,2
loc

(
Rn

)
for w := u− p2 − p3 and yk := xk

rk

→ y∞,

and that λ3rd
k → λ3rd , where

λ3rd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)
and

λ3rd := φ
(
0+, u− p2 − p3

)
.

Then y∞ ∈ {p2 = 0}, and q is translation invariant in the direction y∞.

Proof. — The fact that y∞ ∈ {p2 = 0} follows from Lemma 6.3.
Since (0,0) ∈ �>3

n−1 \ �≥4
n−1, as in the proof of Lemma 6.7 the limit limr↓0 φ(r,

u( · ,0)− p2 − p3) exists and belongs to (3,4), that is

λ3rd := φ
(
0+, u( · ,0)− p2 − p3

) ∈ (3,4).

Similarly, the limits defining λ3rd
k exist, and by assumption, we have

(6.33) λ3rd
k := φ

(
0+, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)→ λ3rd .

We define

p := p2 + p3 and pk := p2,xk,tk + p3,xk ,tk

and consider

(6.34)

wk := u(xk + rk · , tk)− pk(rk · )=w
(1)
k +w

(2)
k +w

(3)
k ,

w
(1)
k := u(xk + rk · , tk)− u(xk + rk · ,0),

w
(2)
k := u(xk + rk · ,0)− p(xk + rk · ),

w
(3)
k := p(xk + rk · )− pk(rk · ).
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Recall that yk := xk/rk and define

(6.35) w̃k := wk

‖wk‖L2(∂B1)

.

• Step 1. Throughout the proof we fix γ ∈ (λ3rd,4). Thanks to Lemma 4.3, for any given
δ > 0 we have

(6.36)
∣∣φγ

(
r, u(xk + · , tk)− p2,xk,tk − p3,xk,tk

)− λ3rd
∣∣≤ δ ∀r ∈ (0, rδ), ∀k ≥ kδ.

Hence, we may fix positive constants δ◦ and r◦ such that, for k ≥ k◦ large enough, we have

(6.37) φγ
(
r, u(xk + · , tk)− pk

)≤ γ − 3δ◦ ∀r ∈ (0, r◦),

and Lemma 6.7—applied to the function u(xk + · , tk) and with r = rk—yields

(6.38) ‖w̃k‖Lip(BR) ≤C(R) in BR

and w̃k�w̃k ≥−C(R)r
η◦
k �w̃k , where η◦ > 0 and C(R) are independent of k. Then, sim-

ilarly to the proof of Lemma 6.5, the (locally uniformly bounded) nonpositive measures
�w̃k converge weakly to �Q≤ 0, and since r

η◦
k �w̃k ⇀ 0 and w̃k →Q locally uniformly,

we have w̃k�w̃k →Q�Q≥ 0. Furthermore, since wk = u(xk+ rk · , tk)≥ 0 on {p2,xk,tk = 0}
and p2,xk,tk → p2, we obtain that Q≥ 0 on {p2 = 0}. Therefore, we proved that Q is a so-
lution of the Signorini problem (3.12). Finally, arguing as in the proof of Lemma 6.5, it
follows by (6.36) that the function Q is λ3rd -homogeneous.

Note that, by the same reasoning, also q is a λ3rd -homogeneous of the Signorini
problem (3.12).
• Step 2. Recall that y∞ ∈ {p2 = 0}. In addition by Proposition 4.12(a) we have

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)

in W1,2
loc

(
Rn

)
,

and, by construction, w(3)
k is a cubic harmonic polynomial.

We claim that, for each k, there exists a point ȳk in the segment 0 yk such that

(6.39)
∣∣w(3)

k (ȳk)
∣∣≤Cr4

k .

Indeed, note that p2 + p3 ≥ − p2
3

2p2
and thus we have p(rk · ) ≥ −Cr4

k and pk(rk · ) ≥ −Cr4
k

in B1. Hence, since p(0)= pk(0)= 0,

w
(3)
k (0)= p(0)− pk(−rkyk)≥−Cr4

k and

w
(3)
k (yk)= p(rkyk)− pk(0)≤Cr4

k ,

so (6.39) follows.
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• Step 3. Let us consider

ε̂k :=
∑

i=1,2,3

∥
∥w(i)

k

∥
∥

L2(∂B1)
and ŵk := wk

ε̂k

.

Recalling that φγ (0+, u( · ,0)− p)= λ3rd < γ < 4, it follows by Lemma 4.1 that, for any
given δ > 0,

ε̂k ≥
∥∥w(2)

k

∥∥
L2(∂B1)

= ∥∥(u−p2−p3)
(
rk(yk+ · )

)∥∥
L2(∂B1)

� rλ
3rd+δ

k as k→∞.

Thus, by Step 1, we have

ŵk → Q̂= aQ for some a ∈ [0,1].
Moreover, by Step 2,

Q̂(2) := lim
k

w
(2)
k /ε̂k = bq(y∞ + · ) and

Q̂(3) := lim
k

w
(3)
k /ε̂k = [degree 3 harmonic polynomial]

for some b≥ 0. (Above, the convergences are weak in W1,2
loc (R

n).) Thus, it is well defined

Q̂(1) := lim
k

w
(1)
k /ε̂k = lim

k
wk/ε̂k − lim

k
w

(2)
k /ε̂k − lim

k
w

(3)
k /ε̂k,

and we observe that Q(1) is either nonpositive or nonnegative (since so is w
(1)
k ). Hence,

we have

Q̂= Q̂(1) + bq(y∞ + · )+ Q̂(3).

Moreover, it follows by (6.39) that the polynomial Q̂(3) vanishes at some point ȳ in the
segment 0 y∞. Hence, since Q̂(3) is harmonic, we see that it cannot have constant sign
(unless it is identically zero).

Note now that, by definition of ε̂k , we have
∑

i ‖Q̂(i)‖L2(∂B1) = 1. Hence, since q is a
λ3rd -homogeneous solution of Signorini with λ3rd > 3, Q̂(1) has constant sign, and Q̂(3) is
a cubic harmonic polynomial that does not have constant sign, we deduce that the three
functions Q̂(i) are linearly independent and their sum Q̂ cannot be zero.

We show next that b > 0 and that Q̂ ≡ bq. Indeed, since both q and Q̂ are λ3rd -
homogeneous, if Q̂(1) ≥ 0 (resp. ≤) then

Q̂= lim
R→∞

Q̂(R · )
Rλ3rd

= lim
R→∞

Q̂(1)(R · )+ bq(y∞ +R · )+ Q̂(3)(R · )
Rλ3rd

≥ bq (resp. ≤).
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But then Q̂ and bq are two solution ordered solutions of Signorini with homogeneities
> 1 at the origin, and thus they must be equal by Lemma A.4.

Therefore, we have shown

b
(
q− q(y∞ + · )

)= Q̂(1) + Q̂(3).

Now, using homogeneity, we obtain that for all s > 0

Q̂(1)
(
s−1x

)+ bs−λ3rd

q(sy∞ + x)+ Q̂(3)
(
s−1x

)= bs−λ3rd

q(x).

If Q(1) ≥ 0 (resp. if Q(1) ≤ 0), we obtain

(6.40) b
q(sy∞ + x)− q(x)

s
≤ sλ

3rd−1Q̂(3)
(
s−1x

)
(resp. ≥).

Note that, since q is a solution of (3.12) (and so it is Lipschitz continuous, see for instance
[ACS08]), the absolute value of the left hand side of (6.40) is bounded as s ↓ 0. Hence,
since λ3rd ∈ (3,4), the cubic coefficients of Q̂(3) (recall that Q̂(3) is a cubic harmonic
polynomial) must vanish as otherwise the right hand side would be unbounded. Thus,
the cubic coefficients of Q̂(3) vanish and therefore right hand side converges to zero.

Thus, since b > 0, we have shown that

y∞ · ∇q≤ 0 (resp. ≥ 0).

Hence, reasoning as in Step 3 of the proof of Lemma 6.5, we obtain that ψ := y∞ · ∇q

restricted to Sn−1 must be a multiple of the first eigenfunction of a certain elliptic problem,
and this easily leads to a contradiction because the homogeneity of q is greater than 2. �

Our next goal is to prove a variant of Lemma 6.8 for points in �>4
n−1 \�

≥5−ζ

n−1 . For
that, we need the following Lipschitz estimate.

Lemma 6.9. — Let u : B1 → [0,∞) solve (3.1), and let 0 ∈ �>4
n−1 \ �≥5−ζ

n−1 . Set w :=
u−P − P, where P is some 4-homogeneous harmonic polynomial vanishing on {p2 = 0}. Assume

that, for some r◦ > 0, γ ∈ (4,5), δ > 0, and h◦ > 0,

(6.41) φγ (r, u−P − P)≤ γ − δ◦ ∀r ∈ (0, r◦) and H(r◦, u−P − P)≥ h◦.

Then there exist positive constants �◦, η◦, and C, depending only on n, γ , δ◦, r◦, and h◦, such that for

any given R≥ 1 and for all r ∈ (0, �◦
10R) we have

(6.42) ‖w̃r‖Lip(BR) ≤CR4 and w̃r�w̃r ≥−Crη◦R5�w̃r in BR.

Proof. — The proof is analogous to the one of Lemma 6.7, using Lemma 4.7 in-
stead of (6.30) and Lemma 4.9 instead of Lemma 4.3. �
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Recalling that p4 = p4,0,0 is defined in (6.4), we now prove the following:

Lemma 6.10. — Let u ∈ C0(B1 × [−1,1]) solve (6.1), let (0,0) and (xk, tk) belong to

�>4
n−1 \�

≥5−ζ

n−1 for some ζ ∈ (0,1), and suppose that |xk| ≤ rk ↓ 0. Assume in addition that

w̃rk ⇀ q in W1,2
loc

(
Rn

)
for w := u−P − p4 and yk := xk

rk

→ y∞,

and that λ4th
k → λ4th, where

λ4th
k := φ

(
0+, u(xk + · , tk)−Pxk,tk − p4,xk,tk

)
and

λ4th := φ
(
0+, u−P − p4

)
.

Then y∞ ∈ {p2 = 0}, and q is translation invariant in the direction y∞.

Proof. — The proof is very similar to that of Lemma 6.8, with some appropriate
modifications. As before, the fact that y∞ ∈ {p2 = 0} follows from Lemma 6.3.

Also, since (0,0) ∈ �>4
n−1 \ �

≥5−ζ

n−1 , as in the proof of Lemma 6.7 the limit
limr↓0 φ(r, u( · ,0)−P − p4) exists and belongs to (4,5− ζ ), that is

λ4th := φ
(
0+, u( · ,0)−P − p4

) ∈ (4,5− ζ ).

Similarly, the limits defining λ4th
k exist, and by assumption we have

λ4th
k := φ

(
0+, u(xk + · , tk)−Pxk,tk − p4,xk,tk

)→ λ4th.

We define

p :=P + p4 and pk :=Pxk,tk + p4,xk,tk ,

and consider wk := u(xk + rk · , tk)− pk(rk · )= w
(1)
k +w

(2)
k +w

(3)
k as in (6.34). Recall that

yk := xk/rk and define w̃k as in (6.35).
• Step 1. Here we argue as in Step 1 in the proof of Lemma 6.8. More precisely, using
Lemma 4.3 in place of Lemma 6.7, by the very same argument we deduce that w̃k con-
verges locally uniformly to Q, and that both q and Q are λ4th-homogeneous solutions of
(3.12).
• Step 2. By Proposition 4.12(a), we have

w
(2)
k

‖w(2)
k ‖L2(∂B1)

⇀
q(y∞ + · )

‖q(y∞ + · )‖L2(∂B1)

in W1,2
loc

(
Rn

)

and, by construction, w(3)
k is a quartic harmonic polynomial. In addition, arguing as in

Step 2 of the proof of Lemma 6.8 we obtain that, for each k, there exists a point ȳk in the
segment 0 yk such that

(6.43)
∣
∣w(3)

k (ȳk)
∣
∣≤Cr5

k .
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• Step 3. Considering

ε̂k :=
∑

i=1,2,3

∥
∥w(i)

k

∥
∥

L2(∂B1)
and ŵk := wk

ε̂k

,

as in Step 3 of the proof of Lemma 6.8 we have

ŵk → Q̂= aQ, Q̂(2) := lim
k

w
(2)
k /ε̂k = bq(y∞ + · ),

Q̂(3) := lim
k

w
(3)
k /ε̂k = [degree 4 harmonic pol.],

where a ∈ [0,1], b≥ 0, and all the convergences hold weakly in W1,2
loc (R

n). Hence

Q̂= Q̂(1) + bq(y∞ + · )+ Q̂(3),

where Q̂(1) := limk w
(1)
k /ε̂k has constant sign. Since q is a λ4th-homogeneous solution of

Signorini with λ4th > 4, Q̂(1) has constant sign, and Q̂(3) is a forth order harmonic poly-
nomial that does not have constant sign (as a consequence of (6.43)), we deduce that the
three functions Q̂(i) are linearly independent and their sum Q̂ cannot be zero.

Also, exactly as in Step 3 of the proof of Lemma 6.8, b > 0 and Q̂≡ bq, therefore

b
(
q− q(y∞ + · )

)= Q̂(1) + Q̂(3).

Now, using homogeneity, if Q(1) ≥ 0 (resp. if Q(1) ≤ 0) we obtain

q(sy∞ + x)− q(x, t)

s
≤ sλ

4th−1Q̂(3)
(
s−1x

)
(resp. ≥),

for all s > 0. As in Step 3 of the proof of Lemma 6.8, this is possible only if the quartic
coefficients of Q̂(3) vanishes, and letting s→ 0 we get

y∞ · ∇q≤ 0 (resp. ≥ 0).

Reasoning now as in Step 3 of the proof of Lemma 6.5 (see also Step 3 of the proof of
Lemma 6.8), we obtain that ψ := y∞ ·∇q restricted to Sn−1 must be a multiple of the first
eigenfunction of a certain elliptic problem, and this easily leads to a contradiction. �

Before proving the last result of this section, we introduce a definition:

Definition 6.11. — We denote by P even
4,≥ the set of 4-homogeneous harmonic polynomials p =

p(x1, . . . , xn), such that, for some e ∈ Sn−1, we have:

• p is even with respect to {e · x= 0}, that is, p(x)= p(x− 2(e · x)e);
• p≥ 0 on {e · x= 0};
• ‖p‖L2(∂B1) = 1.
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Given p ∈P even
4,≥ , we denote S(p, ε)⊂Rn the set

S(p, ε) := {|e · x| ≤ ε
}∩ {p≤ ε} ∩ B2.

We now show the following result, which will be used later to bound the Hausdorff
dimension of π1(�

≥4
n−1 \�4th

n−1).

Lemma 6.12. — Let u : B1 →[0,∞) solve (3.1), and let 0 ∈�
≥4
n−1 \�4th

n−1. Let P even
4,≥ and

S(p, ε) be as in Definition 6.11. Then, given ε > 0, there exists �ε > 0 such that, for all r ∈ (0, �ε),

(6.44) {u= 0} ∩ Br ⊂ rS(pr, ε) for some pr ∈P even
4,≥ .

Proof. — Consider the set of “accumulation points” Q defined as

Q := {
q : ∃ rk ↓ 0 s.t. r−4

k (u−P)(rk · )→ q
}
.

Note that, for all η > 0, there exists �η > 0 such that for any r ∈ (0, �η) we have

(6.45) ‖u−P − qr‖L∞(Br) ≤ ηr4 for some qr ∈Q.

Thanks to Proposition 4.12(a) and [GP09, Lemma 1.3.4], Q is a closed set of 4-
homogeneous harmonic polynomials. Also, using Lemma 4.11 with P≡ 0 and γ ∈ (4,5)
fixed, we see that ‖q‖L2(∂B1) ≤C for all q ∈Q. This implies that set Q is compact.

Now, since by assumption 0 ∈�
≥4
n−1 \�4th

n−1, then qeven �≡ 0 for all q ∈Q (recall Defi-
nition 4.10). Thus, by compactness of Q, we deduce that

0 < c◦
∥
∥qeven

∥
∥

L2(∂B1)
≤ ‖q‖L2(∂B1) ≤C ∀q ∈Q.

Now, for r > 0 and qr as in (6.45), we define

pr := qeven
r

‖qeven
r ‖L2(∂B1)

,

and note that pr ∈ P even
4,≥ . We claim that (6.44) holds true provided that r ∈ (0, ρε), with

ρε > 0 small.
Indeed, assume with no loss of generality that {p2 = 0} = {xn = 0}. Then (since qr

solves (3.12)) every pr is a 4-homogeneous harmonic polynomial, even in the variable xn,
nonnegative on {xn = 0}, and with unit L2(∂B1) norm.

We recall that

(6.46) P(x)≥ (xn + p3/xn +Q)2 −C|x|5.
Now, by definition of S(p, ε), it follows in particular that, fixed θ > 0,

y ∈ B2 \ S(pr, ε) ⇒ either
(

pr(y) > ε and |yn| ≤ θε
)

or
( |yn|> θε

)
.
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We now observe that, if pr(y) > ε and |yn| ≤ θε, since qodd
r vanishes on {xn = 0} we get

qr(y)= pr(y)
∥∥qeven

∥∥
L2(∂B1)

+ qodd
r (y)≥ c◦ε−C|yn| ≥ (c◦ −Cθ)ε ≥ 1

2
c◦ε > 0

provided we choose θ := c◦
2C small enough. Thus, recalling (6.45) and (6.46), if r > 0 is

sufficiently small (so that we can take η� ε) we get

u(ry)≥P(ry)+ qr(ry)− ηr4 ≥−Cr5 + 1
2

c◦εr4 − ηr4 > 0.

On the other hand, if |yn|> θε, using again (6.46) we obtain, for r > 0 sufficiently small,

u(ry)≥P(ry)+ qr(ry)− ηr4 ≥ (
θεr −Cr2

)2 −Cr5 −Cr4 − ηr4 > 0.

Therefore, we have proven that

y ∈ B2 \ S(pr, ε) ⇒ u(ry) > 0,

which gives (6.44). �

7. Hausdorff measures and covering arguments

As already explained in the introduction, to prove our main results we will need
some auxiliary results from geometric measure theory. Before stating them, we recall
some classical definitions.

Given β > 0 and δ ∈ (0,∞], the Hausdorff premeasures Hβ

δ (E) of a set E are
defined as follows:7

(7.1) Hβ

δ (E) := inf
{∑

i

diam(Ei)
β : E⊂

⋃

i

Ei, diam(Ei) < δ

}
,

where the index i goes through a finite or countable set. Then, one defines the β-
dimensional Hausdorff measure of E as Hβ(E) := limδ→0+Hβ

δ (E).
The Hausdorff dimension can be defined in terms of Hβ

∞ as follows:

(7.2) dimH(E) := inf
{
β > 0 : Hβ

∞(E)= 0
}

(this follows from the fact that Hβ
∞(E) = 0 if and only if Hβ(E) = 0, see for instance

[Sim83, Section 1.2]).
We now state (and prove, for completeness) a couple of standard results.

7 In many textbooks, the definition of Hβ

δ includes a normalization constant chosen so that the Hausdorff measure
of dimension k coincides with the standard k-dimensional volume on smooth sets. However such normalization constant
is irrelevant for our purposes, so we neglect it.
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Lemma 7.1. — Let E⊂Rn, and f : E→R. Define

F := {
x ∈ E : ∃ xk → x, xk ∈ E, s.t. f (xk)→ f (x)

}
.

Then E \ F is at most countable.

Proof. — Let G := {(x, f (x)) : x ∈ E} ⊂ Rn × R be the graph of f . We note that
x ∈ E \ F if a only if (x, f (x)) is a isolated point of G. In particular E \ F is the projection
of a discrete (and hence countable) set. �

From now on, by convention, whenever we say that a set E can be covered by a
number M > 0 of balls that it is not necessarily an integer, we mean that it can be covered
by "M# balls, where "M# denotes the integer part of M.

Lemma 7.2. — Let Br(x) ⊂ Rn be an open ball, and ! be a m-dimensional plane. Let

β1 > m. Then there exists ε̂ = ε̂(m, β1) > 0 such that the following holds: Let E⊂Rn satisfy

E⊂ Br(x)∩
{
y : dist(y,!)≤ εr

}
, for some 0 < ε ≤ ε̂, x ∈Rn, r > 0.

Then E be covered with γ −β1 balls of radius γ r centered at points of E, where γ := 5ε.

Proof. — Up to a scaling and a translation, it suffices to prove the result when
r = 1 and Br(x) is the unit ball B1 centered at the origin. Consider the m-dimensional set
B1∩!, and given ε > 0 small consider the covering of E⊂ B1∩{y : dist(y,!)≤ ε} given
by the closed balls {Bε(x)}x∈E. By Vitali Covering Lemma, there exists a disjoint family
{Bε(xi)}i∈I such that

⋃

i∈I
B5ε(xi)⊃

⋃

x∈E

Bε(x)⊃ E.

Note that

Bε(xi)⊂N2ε(!) := {
x ∈ B2 : dist(x,!)≤ 2ε

}
.

Since Hn(N2ε(!))≤C(n)εn−m, denoting by ωn the volume of the n-dimensional unit ball
we have

ωn ε
n #I ≤

∑

i∈I
Hn

(
Bε(xi)

)≤Hn
(
N2ε(!)

)=C(n)εn−m,

which proves that #I ≤C(n)ε−m. Set γ := 5ε. Then, since β1 > m, choosing ε sufficiently
small we have C(n)ε−m = C(n)5mγ −m ≤ γ −β1 , proving that E can be covered by γ −β1

open balls of radius γ centered at points of E, as desired. �
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The following Reifenberg-type result will be used later choosing as function f the
frequency function, and it will allow us to perform our dimension reduction arguments
only at continuity points of the frequency.

Proposition 7.3. — Let E ⊂ Rn, and f : E→ R. Assume that, for any ε > 0 and x ∈ E
there exists �= �(x, ε) > 0 such that, for all r ∈ (0, �), we have

E∩ Br(x)∩ f −1
([

f (x)− �, f (x)+ �
])⊂ {

y : dist(y,!x,r)≤ εr
}
,

for some m-dimensional plane !x,r passing through x (possibly depending on r). Then dimH(E)≤ m.

Proof. — We need to prove that, given β > m, we have Hβ(E)= 0.
Let ε > 0 be a small constant to be fixed later, and for any k > 1 and j ∈ Z define

Ek,j :=
{

x ∈ E : �(x, ε) > 1/k, f (x) ∈
[

j

2k
,

j + 1
2k

)}
.

Since E =⋃
k,j Ek,j , it suffices to prove that Hβ(Ek,j) = 0 for each k, j. So, we fix k > 1

and j ∈ Z. Similarly, it suffices to prove that for all R ≥ 1 we have Hβ(ER
k,j) = 0, where

ER
k,j := BR ∩ Ek,j .

By assumption, for every x ∈ ER
k,j and r ∈ (0,1/k], there exists a m-dimensional

plane !x,r such that

ER
k,j ∩ Br(x)⊂

{
y : dist(y,!x,r)≤ εr

}
.

So, we consider the covering {B1/k(x)}x∈ER
k,j

, and since ER
k,j ⊂ BR we extract a finite subcov-

ering of closed balls B(0)
1 , . . . ,B(0)

M . (Indeed, by Vitali’s lemma there is a covering {B1/k(x�)}
such that the balls {B1/(5k)(x�)} are disjoint, and hence there is a finite number of them.)
Inside each ball B(0)

i we have, by assumption,

ER
k,j ∩ B(0)

i ⊂
{
y : dist(y,!B(0)

i
)≤ ε/k

}
.

Choose β1 := m+β

2 ∈ (m, β). Applying Lemma 7.2 with ε = ε̂(m, β1) we deduce that, for
each fixed i, j, k,R, the set ER

k,j ∩B(0)
i can be covered with γ −β1 closed balls B̂(1)

1 , . . . , B̂(1)
γ−β1

of radius γ /k centered at points of ER
k,j ∩B(0)

i , where γ = 5ε. Using our assumption again,
in each of these balls we have

ER
k,j ∩ B̂(1)

� ⊂
{
y : dist(y,!

x
(1)
�
)≤ εγ /k

}
,

where x
(1)
� is the centre of B̂(1)

� . We then apply again Lemma 7.2 so that, for each � ∈
{1, . . . , γ −β1}, we can cover the set ER

k,j ∩ B̂(1)
� with γ −β1 closed balls of radius γ 2/k. This

gives a new covering of ER
k,j ∩ B(0)

i with γ −2β1 closed balls B̂(2)
1 , . . . , B̂(2)

γ−2β1
of radius γ 2/k
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centered at points of ER
k,j . Iterating this construction, we conclude that ER

k,j ∩ B(0)
i can be

covered by γ −Nβ1 closed balls {B̂(N)

� } of radius γ N/k for any N≥ 1, which implies that

Hβ
∞

(
ER

k,j ∩ Bi

)≤Cn,m

∑

�

diam
(
B̂(N)

�

)β ≤Cn,mγ
−Nβ1

(
γ N/k

)β ≤Cγ N(β−β1).

Since β1 ∈ (m, β), letting N→∞ we conclude that

Hβ
∞

(
ER

k,j ∩ B(0)
i

)= 0 for all i, j, k,R,

concluding the proof. �

In our study of 4-homogeneous blow-ups, we will need a variant of the previous re-
sults involving zero sets of 4-homogeneous harmonic polynomials instead of hyperplanes
(recall Definition 6.11).

Lemma 7.4. — Given β1 > n − 2, there exists ε̂ = ε̂(n, β1) > 0 such that the following

holds: Let E⊂Rn satisfy

E⊂ B1 ∩ S(p, ε), for some 0 < ε ≤ ε̂, p ∈P even
4,≥ .

Then E can be covered with γ −β1 balls of radius γ centered at points of E, for some γ = γ (n, β1) ∈
(0,1).

Proof. — Given t, ε > 0 small, consider the covering of E⊂ B1∩{y : dist(y,S(p, ε))
≤ t} given by {Bt(x)}x∈E. By Vitali’s lemma, there exists a disjoint family {Bt(xi)}i∈I such
that

⋃

i∈I
B5t(xi)⊃

⋃

x∈E

Bt(x)⊃ E.

Note that, since xi ∈ E,

Bt(xi)⊂N2t

(
S(p, ε)

) := {
x ∈ B2 : dist

(
x,S(p, ε)

)≤ 2t
}
.

We claim that there exists a dimensional constant C(n) such that, for any given t ∈ (0,1),
there is εt > 0 such that

(7.3) Hn
(
N2t

(
S(p, ε)

))≤C(n)t2 ∀ε ∈ (0, εt).

Indeed, if not, then for arbitrarily large M there would exist some tM ∈ (0,1) and se-
quences εk ↓ 0 and pk ∈P even

4,≥ such that

(7.4) Hn
(
N2tM

(
S(pk, εk)

))≥Mt2
M ∀k ≥ 1.
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Now, given p ∈ Peven
4,≥ which is even with respect to the hyperplane {e · x= 0} and nonneg-

ative on it, let us define

z(p) := {p= 0} ∩ {e · x= 0}.
Notice that, by definition of S(p, ε), for all p ∈ Peven

4,≥ we have

(7.5) S(p, ε) ↓ z(p) as ε ↓ 0.

In addition, for all x ∈ z(p), we have that e · ∇p(x) = 0 (since p is even with respect
{e · x = 0}). Furthermore, the tangential gradient vanishes at x ∈ z(p) (since p ≥ 0 on
{e · x= 0} and p(x)= 0). Hence, this proves that

(7.6) z(p)⊂ {
p= |∇p| = 0

}
.

Let pk be even with respect to ek ∈ Sn−1, and assume without loss of generality that pk →
p∞ ∈ P even

4,≥ and that ek → e∞. Then it follows by (7.5) that, for all δ > 0, there exists kδ
such that

N2tM

(
S(pk, εk)

)⊂ {
x ∈ B2 : dist

(
x,z(p∞)

)≤ 2tM + δ
}
, ∀k ≥ kδ.

Recalling (7.4), this implies that

Hn
({

x ∈ B2 : dist
(
x,z(p∞)

)≤ 2tM
})≥Mt2

M.

On the other hand, [NV17, Theorem 1.1] implies the existence of a dimensional constant
C(n) such that

Hn
({

x ∈ B2 : dist
(
x,

{
u= |∇u| = 0

})≤ 2t
})≤C(n)t2 ∀t ∈ (0,1)

for every nonzero harmonic function u in B4. Recalling (7.6), we obtain a contradiction
by choosing M > C(n).

Now, denoting by ωn the volume of the n-dimensional unit ball, given t ∈ (0,1),
thanks to (7.3) we have

ωn tn #I ≤
∑

i∈I
Hn

(
Bt(xi)

)≤Hn(N2t

(
S(p, ε)

)=C(n)t2 ∀ε ∈ (0, εt),

which proves that #I ≤ C(n)t2−n. Set γ := 5t. Since β1 > n− 2, choosing t sufficiently
small we have C(n)t2−n = C(n)5n−2γ 2−n ≤ γ −β1 , proving that E can be covered by γ −β1

open balls of radius γ centered at points of E whenever ε < ε̂ := εt . �

Proposition 7.5. — Let E⊂Rn be a measurable set, and τ : E→R a lower-semicontinuous

function. Assume that, for any ε > 0 and x ∈ E, there exists � = �(x, ε) > 0 such that, for all

r ∈ (0, �), we have

E∩ Br(x)∩ τ−1
([
τ(x),+∞))⊂ {

x+ ry : y ∈ S(px,r, ε)
}

for some px,r ∈P even
4,≥ . Then dimH(E)≤ n− 2.
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Proof. — Given β > n− 2, we need to prove that Hβ(E)= 0. Let ε > 0 be a small
constant to be fixed later, and for any k > 1 define

Ek :=
{
x ∈ E : ρ(x)≥ 1/k

}
.

Since E=⋃
k Ek , it suffices to prove that Hβ(Ek)= 0 for each k. So, we fix k > 1. Thanks

to [Fed69, Corollary 2.10.23], it suffices to prove that Hβ(K)= 0 for any compact set K
contained inside Ek .

We now claim the following: For each closed ball Br(x) centered at a point x ∈ E
and of radius r ≤ 1/k, there exist x̄ ∈K∩ Br(x) and px̄,2r ∈P even

4,≥ such that

K∩ Br(x)⊂ x̄+ rS(px̄,r, ε).

To prove this claim it suffices to observe that it is trivially true if K ∩ Br(x) is empty.
Otherwise, the lower semicontinuous function τ attains its minimum at some point x̄ ∈
K∩ Br(x). Then, by the assumption of the lemma,

K∩ Br(x)=K∩ Br(x)∩ τ−1
([
τ(x̄),∞))⊂ E∩ B2r(x̄)∩ τ−1

([
τ(x̄),∞))

⊂ x̄+ rS(px̄,r, ε),

which proves the claim.
Now, consider the covering {B1/k(x)}x∈K, and extract a finite subcovering of closed

balls B(0)
1 , . . . ,B(0)

M . Inside each ball B(0)
i we can apply the claim to deduce that

K∩ B(0)
i ⊂ x̄i + rS(px̄i,r, ε).

Applying now Lemma 7.4 we deduce that, for each fixed i, the set K∩B(0)
i can be covered

with γ −β1 closed balls B̂(1)
1 , . . . , B̂(1)

γ−β1
of radius γ /k centered at points of E. In each of

these balls we now reapply the claim to deduce that

K∩ B̂(1)
� ⊂ x̄

(1)
� +

γ

k
S(p

x̄
(1)
� ,

γ
k
, ε).

Thus we can apply again Lemma 7.4 (rescaled) to cover, for each �, the set K ∩ B̂(1)
�

with γ −β1 closed balls. In this way we obtain a new covering of K ∩ B(0)
i by γ −2β1 closed

balls B̂(2)
1 , . . . , B̂(2)

γ−2β1
of radius γ 2/k centered at points of E. Iterating this construction,

we conclude that K∩ B(0)
i can be covered by γ −Nβ1 closed balls {B̂(N)

� } of radius γ N/k for
any N≥ 1, which implies that

Hβ
∞(K∩ Bi)≤Cn,m

∑

�

diam
(
B̂(N)

�

)β ≤Cn,mγ
−Nβ1

(
γ N

k

)β

≤Cγ N(β−β1).

Since β1 ∈ (n− 2, β), letting N→∞ we conclude that

Hβ
∞

(
K∩ B(0)

i

)= 0 for all i = 1,2, . . . ,M.
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This proves that Hβ
∞(K)= 0 and therefore Hβ(K)= 0 (see [Sim83, Section 1]), conclud-

ing the proof. �

We will also use the following basic result about Hausdorff measures. We refer to
[Fed69, 2.10.19(2)] and [FS19, Lemma 3.5] for a proof of such result; see also [Whi97,
Lemma 2.4].

Lemma 7.6. — Let E⊂Rn be a set satisfying Hβ
∞(E) > 0 for some β ∈ (0, n]. Then:

(a) For Hβ-almost every point x◦ ∈ E, there is a sequence rk ↓ 0 such that

(7.7) lim
k→∞

Hβ
∞(E∩ Brk(x◦))

r
β

k

≥ cn,β > 0,

where cn,β is a constant depending only on n and β . We call these points “density points”.

(b) Assume that 0 is a “density point”, let rk ↓ 0 be a sequence along which (7.7) holds, and

define the “accumulation set” for E at 0 along rk as

A=AE :=
{
z ∈ B1 : ∃ (z�)�≥1, (k�)�≥1 s.t. z� ∈ r−1

k�
E∩ B1 and z�→ z

}
.

Then Hβ
∞(A) > 0.

The last main result of this section is the following covering-type result that will play
a crucial role in the understanding of the generic size of the singular set, and in particular
in the proof of Theorem 1.1. Notice that, when k = 1, β is an integer, and π1(E) is β-
rectifiable, then the result follows from the coarea formula; see also Eilenberg’s inequality
[BZ80, 13.3].

Proposition 7.7. — Let E⊂ Rn × [−1,1], let (x, t) denote a point in Rn × [−1,1], and

let π1 : (x, t) 
→ x and π2 : (x, t) 
→ t be the standard projections. Assume that for some β ∈ (0, n]
and s > 0 we have:

• Hβ(π1(E)) <+∞;

• For any (x◦, t◦) ∈ E there exists a modulus of continuity ωx◦,t◦ :R+ →R+ such that

{
(x, t) ∈Rn × [−1,1] : t − t◦ >ωx◦,t◦

(|x− x◦|
)|x− x◦|s

}∩ E= ∅.
Then:

(a) If β ≤ s, we have Hβ/s(π2(E))= 0.

(b) If β > s, for H1-a.e. t ∈R we have Hβ−s(E∩ π−1
2 ({t}))= 0.

Proof. — Fix ε > 0 be arbitrarily small. We decompose E=⋃
i≥1 Ei as

E1 :=
{
(x◦, t◦) ∈ E : ωx◦,t◦(1) < ε

}
,
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Ei :=
{
(x◦, t◦) ∈ E : ωx◦,t◦

(
2−i+1

)
< ε ≤ ωx◦,t◦

(
2−i+2

)}
, for i ≥ 2.

Fix i ≥ 1 and note that, if (x1, t1) and (x2, t2) belong to Ei , then

(7.8)
{
(x, t) ∈ B2−i+1(xj ) × (−1,1) : t − tj > ε|x− xj|s

}∩ E= ∅, j = 1,2.

Hence, by triangle inequality,

(7.9) x1, x2 ∈ Ei, |x1 − x2| ≤ 2−i ⇒ |t1 − t2| ≤ ε|x1 − x2|s.
In particular, since the sets {Ei} give a partition of E, it follows from (7.9) that the projec-
tion π1 : E→Rn is injective, and thus the sets π1(Ei) are disjoint.

Now, by definition of Hβ(π1(Ei)), there is countable collection of balls {B�} such
that π1(Ei)⊂⋃

� B�, with

(7.10) diam(B�) < 2−i and
∑

�

diam(B�)
β <Hβ

(
π1(Ei)

)+ 2−i.

Then, thanks to (7.9), we see that Ei can be covered by the family of cylinders

Fi :=
{
C� := B� ×

(
t� − ε diam(B�)

s, t� + ε diam(B�)
s
)}

for some suitable t� ∈ (−1,1).
Let us show (a). Since {π2(C�)} is a covering of π2(Ei) made of intervals of length

2εdiam(B�)
s, we have

Hβ/s
∞

(
π2(Ei)

)≤ (2ε)β/s
∑

�

diam(B�)
β ≤ (2ε)β/s

(
Hβ

(
π1(Ei)

)+ 2−i
)
.

Summing over i ≥ 1 we obtain

Hβ/s
∞

(
π2(E)

)≤ (2ε)β/s
(
Hβ

(
π1(E)

)+ 1
)
,

and (a) follows from the arbitrariness of ε.
To show (b), following the same notation as above, we define the function

Ni(t, j)= #
{
C� ∈Fi : diam(B�) ∈

(
2−j−1,2−j

)
,

t ∈ (
t� − εdiam(B�)

s, t� + εdiam(B�)
s
)}

.

Let Ii,j denote the set of indices � such that C� ∈ Fi and diam(B�) ∈ (2−j−1,2−j). Then
we can rewrite Ni(t, j) as

Ni(t, j)=
∑

�∈Ii,j

χ(t�−εdiam(B�)
s,t�+εdiam(B�)

s)(t).
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Hence, integrating over [−1,1] we get

1ˆ

−1

Ni(t, j) dt ≤
∑

�∈Ii,j

2εdiam(B�)
s ≤ 2ε

(
2−j

)s
#Ii,j,

therefore, multiplying this estimate by (2−j)β−s and summing over j, we obtain (recall
(7.10))

1ˆ

−1

∑

j

(
2−j

)β−s
Ni(t, j) dt = 2ε

∑

j

(
2−j

)β
#Ii,j ≤ 21+βε

∑

C�∈Fi

diam(B�)
β(7.11)

≤ 21+βε
(
Hβ

(
π1(Ei)

)+ 2−i
)
.

We now consider the functions fi,ε(t) :=∑
j(2
−j)β−sNi(t, j) (note that the covering used

to define Ni(t, j) depends on ε), and fε(t) :=∑
i fi,ε(t). Then, summing (7.11) over i, we

have
1ˆ

−1

fε(t) dt ≤ 21+βε
(
Hβ

(
π1(E)

)+ 1
)
,

and it follows by Chebyshev inequality

H1
(
Xε

)≤ 21+βε1/2
(
Hβ

(
π1(E)

)+ 1
)
,

where Xε := {
t ∈ (−1,1) : fε(t) > ε1/2

}
.

Set X := ∩∞M=1XM, where XM :=⋃∞
k=M X2−2k

. Then

H1(XM)≤
∞∑

k=M

21+β2−k
(
Hβ

(
π1(E)

)+ 1
)≤ 21+β21−M

(
Hβ

(
π1(E)

)+ 1
)
,

therefore H1(X)= 0.
Also, for any t ∈ [−1,1] \X, there exists Mt such that t ∈ [−1,1] \XM ⊂ [−1,1] \

X2−2M
for any M ≥Mt . Therefore, considering the covering associated to ε = 2−2M, we

get

Hβ−s
∞

(
π1(E)∩ π−1

2

({t}))

≤
∑

i

Hβ−s
∞

(
π1(Ei)∩ π−1

2

({t}))

≤
∑

i

∑

j

(
2−j

)β−s
Ni(t, j)= f2−2M(t)≤ 2−M ∀M≥Mt.

This proves that Hβ−s
∞ (π1(E)∩ π−1

2 ({t}))= 0 for all t ∈ [−1,1] \X, as wanted. �
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As an immediate consequence of Proposition 7.7, we get:

Corollary 7.8. — Let E⊂Rn × [−1,1], let (x, t) denote a point in Rn × [−1,1], and let

π1 : (x, t) 
→ x and π2 : (x, t) 
→ t be the standard projections. Assume that, for some β ∈ (0, n] and

s > 0, we have:

• dimH(π1(E))≤ β ;

• For all (x◦, t◦) ∈ E and ε > 0, there exists �= �x◦,t◦,ε > 0 such that

{
(x, t) ∈ B�(x◦)× [−1,1] : t − t◦ > |x− x◦|s−ε

}∩ E= ∅.
Then:

(a) If β < s, we have dimH(π2(E))≤ β/s.

(b) If β ≥ s, for H1-a.e. t ∈R we have dimH(E∩ π−1
2 ({t}))≤ β − s.

8. Dimension reduction results

This section is concerned with bounding the Hausdorff dimension of the differ-
ences of the subsets of �n−1 defined in (6.2). Note that we have the chain of inclusions

(8.1) � ⊃�n−1 ⊃ �≥3
n−1 ⊃ �3rd

n−1 = �>3
n−1 ⊃ �≥4

n−1 ⊃ �4th
n−1 = �>4

n−1 ⊃ �
≥5−ζ

n−1 ,

where the two equalities in such chain of inclusions follow from Propositions 4.15 and 5.8.
For 0≤ m≤ n− 2, we simply consider the sets

�m ⊃�≥3
m =�3rd

m , 0≤ m≤ n− 2,

as this suffices for our purposes. Recall that, by Proposition 3.9(a), we have �m \ �a
m =

�≥3
m =�3rd

m .
Our goal is to show that dimH(π1(� \�

≥5−ζ

n−1 )) ≤ n− 2 for any ζ ∈ (0,1), where
π1 denotes the canonical projection π1 : (x, t) 
→ x. For this, using the tools developed in
the previous sections, in the next lemmas we bound the size all the differences between
consecutive sets of the previous chain of inclusions.

Proposition 8.1. — Let u ∈C0(B1 × [−1,1]) solve (6.1). Then:

(a) dimH(π1(�
a
m))≤ m− 1 for 1≤ m≤ n− 2 (π1(�

a
m) is discrete if m= 1).

(b) dimH(π1(�
<3
n−1))≤ n− 3 (π1(�

<3
n−1) is countable if n= 3).

(c) For any � ∈ (0,1):

– if m ≤ n − 2 then π1(�m \ �a
m) ∩ Bρ is covered by a C1,1 m-dimensional

manifold;

– π1(�
≥3
n−1)∩ Bρ is covered by a C1,1 (n− 1)-dimensional manifold.
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Proof. — (a) We need to prove that, for any β > m− 1, the set π1(�
a
m) has zero Hβ

measure. Assume by contradiction that

Hβ
(
π1

(
�a

m

))
> 0.

Then, by Lemma 7.6, there exists a point (x◦, t◦) ∈�a
m—which we assume for simplicity

to be (x◦, t◦)= (0,0)—, a sequence rk ↓ 0, and a set A⊂ B1 with Hβ(A) > 0, such that
for every point y ∈A there is a sequence (xk, tk) in �a

m such that xk/rk → y.
Let w = u( · ,0)− p2, wr =w(r · ), w̃r =wr/H(1,wr)

1/2. Then, thanks to Proposi-
tion 3.9, up to extracting a subsequence we have

(8.2) w̃rk ⇀ q in W1,2
loc

(
Rn

)
,

where q is λ2nd -homogeneous harmonic function. By definition of �a
m we have λ2nd = 2,

and thus q is a quadratic harmonic polynomial satisfying (3.11).
Thanks to Lemma 6.4 we have A ⊂ {q = 0} ∩ {p2 = 0}. Therefore, since

Hβ(A) > 0, the polynomial q vanishes in a subset of dimension β > m − 1 of the m-
dimensional linear space {p2 = 0}. The only possibility is that q≡ 0 on {p2 = 0}, and then
(3.11) implies q≡ 0; a contradiction since H(1, q)= 1.

We note that in the case m= 1 the same proof gives that �a
1 cannot have accumu-

lation points, i.e., it must be a discrete set.
(b) We apply Proposition 7.3 to the set π1(�

<3
n−1) with the function f : π1(�

<3
n−1)→[0,∞) defined by

f (x◦) := φ
(
0+, u

( · , τ (x◦)
)− p2,x◦,τ (x◦)

)
,

with τ(x◦) :=min
{
t ∈ [−1,1] : (x◦, t) ∈�

}
.

Note that, by Lemma 6.2(c), we have φ(0+, u( · , t)− p2,x◦,t)= f (x◦) for every t such that
(x◦, t) ∈ �. Also, by Proposition 3.9 (b) and the definition of �<3

n−1, we have f (x◦) ∈ [2+
α◦,3).

To obtain the result, thanks to Proposition 7.3, it suffices to show the following
property: for all x◦ ∈ π1(�

<3
n−1) and for all ε > 0 there exists �= �(x◦, ε) > 0 such that

Br(x◦)∩ π1

(
�<3

n−1

)∩ f −1
([

f (x◦)− �, f (x◦)+ �
])

⊂ {
y : dist(y,!x◦,r)≤ εr

} ∀r ∈ (0, �),

where !x◦,r is a (n− 3)-dimensional plane passing through x◦.
With no loss of generality we can assume that (x◦, t◦) = (0,0), and we prove this

statement by contradiction. If such � > 0 did not exist for some ε > 0, then we would
have sequences rk ↓ 0 and x

(j)

k ∈ π1(�
<3
n−1)∩ Brk , 1≤ j ≤ n− 2, such that

y
(j)

k := x
(j)

k /rk → y(j)∞ ∈ B1, dim
(
span

(
y(1)∞ , y(2)∞ , . . . , y(n−2)

∞
))= n− 2,

∣
∣f

(
x
(j)

k

)− f (0)
∣
∣ ↓ 0.
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Let w = u( · ,0)− p2, wr =w(r · ), w̃r =wr/H(1,wr)
1/2. It follows by Proposition 3.9 that

(8.2) holds, where q is a λ2nd -homogeneous solution of the Signorini problem (3.12). Also,
since we are supposing that (0,0) ∈�<3

n−1, we have λ2nd ∈ [2+ α◦,3).
Applying then Lemma 6.5 to the sequences (x(j)

k , τ (x
(j)

k )) we deduce that q is trans-
lation invariant in the n− 2 independent directions

y(1)∞ , y(2)∞ , . . . , y(n−2)
∞ ∈ {p2 = 0}.

As a consequence q is a two dimensional λ2nd -homogeneous solution of Signorini, with
λ2nd ∈ [2+ α◦,3). However, it follows from Lemma A.2 that 2D homogeneous solutions
of Signorini have homogeneities {1,2,3,4, . . . } ∪ {1+ 1

2 ,3+ 1
2 ,5+ 1

2 ,7,+ 1
2 , . . . }, im-

possible.
Note finally that, when n= 3, the same argument (but using Lemma 7.1 in place

of Proposition 7.3) implies that �<3
n−1 is at most countable.

(c) We prove the statement for the maximal stratum �≥3
n−1; the proof for �m \�a

m =
�≥3

m is analogous.
Given x◦ ∈ π1(�

≥3
n−1), set Px◦ := p2,x◦,τ (x◦)( · − x◦). We claim that, for every pair

x◦, x ∈ π1(�
≥3
n−1)∩ B�, we have

(8.3)
∣
∣DkPx◦(x)−DkPx(x)

∣
∣≤C|x− x◦|3−k for k = 0,1,2.

Indeed, note that for all x̂ ∈ π1(�
≥3
n−1) ∩ B� we have φ(0+u(x̂ + · , τ (x̂))− p2,x̂,τ (x̂)) ≥ 3.

Thus, by Lemma 3.6,

∥∥u
(
x̂+ · , τ (x̂))− p2,x̂,τ (x̂)

∥∥
L∞(Br)

≤C(n, �)r3 ∀r ∈
(

0,
1− �

2

)
,

therefore, applying this bound both to x̂= x◦ and x̂= x, we get
∣∣u

( · , τ (x◦)
)− Px◦

∣∣≤Cr3 in Br(x◦) and
∣
∣u

( · , τ (x))− Px

∣
∣≤Cr3 in Br(x).

Choosing r = 2|x− x◦|, and assuming without loss of generality that τ(x◦)≤ τ(x), since
u( · , τ (x◦))≤ u( · , τ (x)) we obtain

Px◦ − Px ≤Cr3 + u
( · , τ (x◦)

)− u
( · , τ (x))≤Cr3 in Br(x◦)∩ Br(x).

Noticing that Px◦ − Px is a harmonic quadratic polynomial that vanishes at some point
x̂ in the segment joining x◦ to x, as a consequence of the above upper bound we easily
deduce that

‖Px◦ − Px‖L∞(B4r(x̂)) ≤Cr3,

and since the L∞(B1) and the C3(B1) norm are equivalent on space of quadratic polyno-
mials, (8.3) holds.
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Then, applying Whitney’s extension theorem (see [Fef09] or [FS19, Lemma 3.10])
we obtain a C2,1 function F : B1→R satisfying

F(x)= Px◦(x)+O
(|x◦ − x|3)

for all x◦ ∈ π1(�
≥3
n−1) ∩ B�. In particular π1(�

≥3
n−1) ⊂ {∇F = 0} and D2F(x◦) =

D2p2,x◦,τ (x◦)(0) has rank one (recall that (x◦, τ (x◦)) ∈ �n−1). Hence, by the implicit func-
tion theorem, we find that {∇F= 0} is a C1,1 (n− 1)-dimensional manifold in a neigh-
borhood of x◦. �

As a consequence of the previous result, we get the following:

Corollary 8.2. — Let n = 3, let u ∈ C0(B1 × [−1,1]) solve (6.1), and assume that

u(x, t′) > u(x, t) whenever t′ > t and u(x, t) > 0. Then, for all but a countable set of singular points

(x◦, t◦), we have

∥
∥u(x◦ + · , t◦)− p2,x◦,t◦

∥
∥

L∞(Br)
≤Cr3 ∀r ∈

(
0,

1− |x◦|
2

)
,

where C depends only on n and 1− |x◦|.
Proof. — On the one hand, since n = 3, Proposition 8.1 implies that �m \ �≥3

m is
a countable set for m = 0,1,2.8 On the other hand, for (x◦, t◦) ∈ �≥3

m , setting ρ = 1−|x◦|
2

and applying Lemma 3.6 to the function w = ρ−2u(x◦ + ρ · , t◦)− p2,x◦,t◦ (note that then
φ(0+,w)≥ 3) we obtain

(
ρ

r

)6

≤ H(w,ρ)

H(w, r)
.

Therefore, using Lemma 3.7, we obtain

‖w‖L∞(Br) ≤C(n)H(w,2r)1/2 ≤C(n)
H(w,ρ)1/2

ρ3
r3,

as desired. �

Proposition 8.3. — Let u ∈ C0(B1 × [−1,1]) solve (6.1). Then π1(�
≥3
n−1 \�3rd

n−1) is con-

tained in a countable union of (n− 2)-dimensional Lipschitz manifolds.

Proof. — For any (x◦, t◦) ∈�≥3
n−1 \�3rd

n−1 we apply Lemma 6.6 to u(x◦ + · , t◦ + · ) to
find a (n− 2)-dimensional linear subspace Lx◦,t◦ and �x◦,t◦ > 0 such that

π1

(
�≥3

n−1

)∩ Br(x◦)⊂ x◦ + Lx◦,t◦ + Br for all r ∈ (0, �x◦,t◦).

8 Note that, as a consequence of [Caf98], points in �0 are always isolated and u is strictly positive in a neighborhood
of them.
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Write �≥3
n−1 \�3rd

n−1 =
⋃

j Ej , where

Ej :=
{
(x◦, t◦) ∈�≥3

n−1 \�3rd
n−1 : �x◦,t◦ > 1/j

}
.

Note that, for any (x◦, t◦) ∈ Ej , the set π1(�
≥3
n−1)∩ B1/j(x◦) is contained inside the cone

{
x ∈ B1/j(x◦) : dist

(
x− x◦
|x− x◦| , x◦ + Lx◦,t◦

)
≤ 1

}
,

which implies (by a classical geometric argument) that the set π1(Ej)∩B1/2 can be covered
by a 1-Lipschitz (n− 2)-dimensional manifold. The result follows by taking the union of
these manifolds over all j ∈N. �

Lemma 8.4. — Let u ∈C0(B1 × [−1,1]) solve (6.1). Then:

(a) dimH(π1(�
>3
n−1 \�≥4

n−1))≤ n− 2 (countable if n= 2).

(b) dimH(π1(�
>4
n−1 \�

≥5−ζ

n−1 ))≤ n− 3 (countable if n= 3).

Proof. — (a) The proof is similar to the one of Proposition 8.1(b). Indeed, we apply
Proposition 7.3 to the set π1(�

>3
n−1 \�≥4

n−1) with the function f : π1(�
>3
n−1 \�≥4

n−1)→[0,∞)

defined as

f (x◦) := φ
(
0+, u

( · , τ (x◦)
)−Px◦,τ (x◦)

)
,(8.4)

where τ(x◦) :=min
{
t ∈ [−1,1] : (x◦, t) ∈�

}
.

By Lemma 6.2 (c) we have φ(0+, u( · , t)−Px◦,t)= f (x◦) for every t such that (x◦, t) ∈�.
Moreover, by definition of �>3

n−1 \�≥4
n−1, we have f (x◦) ∈ (3,4). Then, thanks to Proposi-

tion 7.3, it is enough to show that for all x◦ ∈ π1(�
>3
n−1 \�≥4

n−1) and for all ε > 0 there exist
�= �(x◦, ε) > 0, and a (n− 2)-dimensional plane !x◦ passing through x◦, such that

Br(x◦)∩ π1

(
�>3

n−1 \�≥4
n−1

)∩ f −1
([

f (x◦)− �, f (x◦)+ �
])

⊂ {
y : dist(y,!x◦)≤ εr

} ∀r ∈ (0, �).

Assuming (x◦, t◦) = (0,0) and arguing by contradiction, we find sequences rk ↓ 0 and
x
(j)

k ∈ π1(�
>3
n−1 \�≥4

n−1)∩ Brk , 1≤ j ≤ n− 1, such that

y
(j)

k := x
(j)

k /rk → y(j)∞ ∈ B1, dim
(
span

(
y(1)∞ , y(2)∞ , . . . , y(n−1)

∞
))= n− 1,

∣
∣f

(
x
(j)

k

)− f (0)
∣
∣ ↓ 0.

Setting w = u( · ,0) − P , wr = w(r · ), w̃r = wr/H(1,wr)
1/2, it follows by Proposi-

tion 4.12(a) that (8.2) holds, where q is a λ3rd -homogeneous solution of the Signorini prob-
lem (3.12) with λ3rd ∈ (3,4) (recall that (0,0) ∈�>3

n−1 \�≥4
n−1). Also, applying Lemma 6.8



270 ALESSIO FIGALLI, XAVIER ROS-OTON, JOAQUIM SERRA

to the sequences (x(j)

k , τ (x
(j)

k )), we deduce that q is translation invariant in the n− 1 inde-
pendent directions

y(1)∞ , y(2)∞ , . . . , y(n−1)
∞ ∈ {p2 = 0}.

Thus q is a 1D λ3rd -homogeneous solution of Signorini, with λ3rd ∈ (3,4), and this is
impossible by Lemma A.1.

Finally, when n = 2, the same argument (using Lemma 7.1 instead of Proposi-
tion 7.3) implies that �>3

n−1 \�≥4
n−1 is at most countable.

(b) The proof is completely analogous to the one of part (a), using Lemmas 6.10
and A.2 instead of Lemmas 6.8 and A.1. �

Remark 8.5. — Notice that the difference between parts (a) and (b) in the pre-
vious Lemma comes from the fact that there exist 2D solutions to the Signorini prob-
lem with homogeneity 3 + 1

2 ∈ (3,4), while there is no such solution with homo-
geneity in the interval (4,5). Hence, using the exact same proof as above, one can
show that dimH(π1(�

>3
n−1 \ �

≥7/2
n−1 )) ≤ n− 3, where we define �

≥7/2
n−1 as the set at which

φ(0+, u−P)≥ 7/2.

With the aid of Lemmas 7.4 and 7.5, we can next prove the following:

Lemma 8.6. — Let u ∈C0(B1 × [−1,1]) solve (6.1). Then

dimH
(
π1

(
�≥4

n−1 \�4th
n−1

))≤ n− 2.

Proof. — Define τ : π1(�)→[−1,1] as in (8.4) and note that, by Lemma 6.2, it is
lower semicontinuous.

Hence, thanks to Lemma 7.5, it suffices to prove that, for any given ε > 0 and
(x◦, τ (x◦)) ∈�≥4

n−1 \�4th
n−1, there exists �= �(x◦, ε) > 0 such that

(8.5) � ∩ Br(x◦)×
[
τ(x◦),1

)⊂ {
x◦ + ry : y ∈ S(px◦,r, ε)

} ∀r ∈ (0, �),

for some px◦,r ∈P even
4,≥ . This follows from Lemma 6.12 applied to u(x◦ + · , τ (x◦) ), since by

monotonicity

� ∩ π−1
2

([
τ(x◦),1

])⊂ {
u
(
x◦ + · , τ (x◦)

)= 0
}
. �

We can finally prove the following:

Theorem 8.7. — Let u ∈C0(B1×[−1,1]) solve (6.1). There exists a set �∗ ⊂�n−1 ⊂�,

with dimH(π1(� \�∗))≤ n− 2, such that for any given ε > 0 the following holds:
∥
∥u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦

∥
∥

L∞(Br)
≤Cr5−ε

∀r ∈
(

0,
1
2

)
, ∀(x◦, t◦) ∈

(
�∗ ∩ B1/2

)× (−1,1),

where C depends only on n and ε.
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Proof. — Recall the chain of inclusions (8.1). We have:

• Proposition 8.1 (a) and (c) ⇒ dimH( π1(� \�n−1) )≤ n− 2,

• Proposition 8.1 (b) ⇒ dimH( π1(�n−1 \�≥3
n−1) )≤ n− 3,

• Proposition 8.3 ⇒ dimH( π1(�
≥3
n−1 \�3rd

n−1) )≤ n− 2,

• Remark 6.1 ⇒ π1(�
3rd
n−1 \�>3

n−1) = ∅,

• Lemma 8.4(a) ⇒ dimH( π1(�
>3
n−1 \�≥4

n−1) )≤ n− 2,

• Lemma 8.6 ⇒ dimH( π1(�
≥4
n−1 \�>4

n−1) )≤ n− 2,

• Lemma 8.4(b) ⇒ dimH(π1(�
>4
n−1 \�

≥5−ζ

n−1 ))≤ n− 3.

Thus, if we define

�∗ :=
⋂

ε>0

�≥5−ε
n−1 ,

then dimH(π1(� \�∗)) ≤ n− 2. Fix ε > 0, and let (x◦, t◦) ∈ (�∗ ∩ B1/2)× (−1,1). By
Lemmas 4.9 and 4.1 applied to w := u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦ we obtain

c

(
1
r

)2(5−ε)

≤ H(1/2,w)+ (1/2)2(5−ε)

H(r,w)+ r2(5−ε)
,

therefore

H(r,w)1/2 ≤C
(ˆ

B1/2

(
u(x◦ + · , t◦)−Px◦,t◦ − p4,x◦,t◦

)2 + (1/2)2(5−ε)

)1/2

r5−ε

≤C(n, ε) r5−ε.

Combining this bound with the Lipschitz estimate in Lemma 4.7, we easily conclude that
∥
∥u(x◦+ · , t◦)−Px◦,t◦ −p4,x◦,t◦

∥
∥

L∞(Br)
= ‖w‖L∞(Br) ≤Cr5−ε ∀0 < r < 1/2,

where C depends only on n and ε. �

9. Cleaning lemmas and proof of the main results

Recall that, in all the previous sections, we only assumed that u(·, t) was nonde-
creasing in t. Now, in order to conclude the proof of Theorem 1.1, we will assume the
“uniform monotonicity” condition (1.2). Note that condition (1.2) rules out the existence
of connected components of the complement of the contact set that remain unchanged
for some interval of times.

The first bound involves a barrier argument that will play an important role.
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Lemma 9.1. — Let u : B1 × (−1,1)→ [0,∞) solve (6.1), with (0,0) ∈ � and {p2 =
0} ⊂ {xn = 0}. Let p be a polynomial satisfying �p= 1. Assume that, for some β ≥ 0, we have

∣∣u( · ,0)− p
∣∣≤Crβ in Br ∀r ∈ (0, r◦),

and define

ψ(x) := −
n−1∑

i=1

x2
i + (n− 1)x2

n +
1
2
, ψ r(x) :=ψ(x/r),

Dr := ∂Br ∩
{
ψ r > 0

}= ∂Br ∩
{
|xn|> r√

2n

}
.

Then, for all t ≥ 0 we have

u( · , t)≥ p+ minDr
[u( · , t)− u( · ,0)]
max∂B1 ψ

ψ r −Crβ in Br ∀r ∈ (0, r◦).

Proof. — It follows by our assumption on u that

(9.1) u( · ,0)− p≥−Crβ ∀r ∈
(

0,
1
2

)
.

Set

v := p+Mψ r −Crβ, with M := minDr
[u( · , t)− u( · ,0)]
max∂B1 ψ

.

We claim that v ≤ u( · , t) on ∂Br . Indeed, since t ≥ 0, it follows by (9.1) that

v ≤ p−Crβ ≤ u( · ,0)≤ u( · , t) on ∂Br ∩
{
ψ r ≤ 0

}
.

On the other hand, since max∂B1 ψ = maxDr
ψ r , we see that Mψ r ≤ minDr

[u( · , r) −
u( · ,0)] on ∂Br . Hence

v = p+Mψ r−Crβ ≤ u( · ,0)+Mψ r ≤ u( · , t) on Dr = ∂Br∩
{
ψ r > 0

}
,

and the claim follows.
To conclude the proof it suffices to observe that, since ψ r is harmonic, we have

�v = 1≥ χ{u( · ,t)>0} =�u( · , t). Thus, combining the claim with the maximum principle,
we conclude that

v ≤ u( · , t) in Br. �

The second result gives us a bound on the speed at which u increases in t at singular
points. Note that this speed is much better in the lower strata �m with m ≤ n − 2 with
respect to �n−1. This is one of the reasons why, in the previous sections, we needed to
perform a very refined analysis at points in �n−1.
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Lemma 9.2. — Let u : B1 × (−1,1)→ [0,∞) satisfy (6.1) and (1.2), with (0,0) ∈ �

and {p2 = 0} ⊂ {xn = 0}. Let Dr be defined as in Lemma 9.1.

(a) If (0,0) ∈�m with m≤ n− 2, then for all ε > 0 there exist cε, ρε > 0 such that

min
Dr

[
u( · , t)− u( · ,0)

]≥ cεr
εt, ∀r ∈ (0, ρε).

(b) If (0,0) ∈�n−1, there exists c, ρ > 0 such that

min
Dr

[
u( · , t)− u( · ,0)

]≥ crt, ∀r ∈ (0, ρ).

Proof. — (a) Note that, by the uniform convergence of r−2u(r · ,0) to p2, given δ > 0
there exists rδ > 0 such that

{
u( · ,0)= 0

}∩ Brδ ⊂ Cδ :=
{

x ∈Rn : dist
(

x

|x| , {p2 = 0}
)
≤ δ

}
.

Denote by C̃δ :=Rn \ Cδ the complementary cone, and let ψδ(x) := |x|μδ�δ(x/|x|), where
�δ ≥ 0 is the first eigenfunction of the spherical Laplacian in C̃δ ∩ Sn−1 with zero bound-
ary conditions and μδ is chosen so that the first eigenvalue is μδ(n− 2+μδ)). In this way
ψδ is a μδ-homogeneous harmonic function vanishing on the boundary of C̃δ .

Since dim({p2 = 0}) = m ≤ n − 2, the set {p2 = 0} has zero capacity and so ψδ

converges to a positive constant as δ ↓ 0. Thus μδ ↓ 0, and we can choose δ = δ(ε) > 0
such that μ2δ < ε.

We now observe that, for t ≥ 0, we have
{
u( · , t) > 0

}⊃ {
u( · ,0) > 0

}⊃ C̃δ ∩ Brδ ⊃ C̃2δ ∩ Brδ ,

and v := u( · , t)− u( · ,0) is nonnegative and harmonic in {u( · , t) > 0}. Note also that,
by the maximum principle, every connected component of {u( · , t) > 0}must have a part
of its boundary on ∂B1, and thus (1.2) and the Harnack inequality (applied to a chain of
balls) imply that

v ≥ cδt in C̃2δ ∩ ∂Brδ , cδ > 0.

Hence we can use the function

v′ := cδψ2δ

‖ψ2δ‖L∞(∂Brδ
)

t

as lower barrier, and applying the maximum principle we obtain v − v′ ≥ 0 inside the
domain C̃2δ ∩ Brδ . Since Drδ ⊂ C̃2δ ∩ Brδ , this proves that

min
Dr

[
u( · , t)− u( · ,0)

]=min
Dr

v ≥min
Dr

v′ = crμ2δ t ≥ crεt ∀r ∈ (0, rδ).
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(b) After a rotation, we may assume that {p2 = 0} = {xn = 0}. By Propositions 3.9
and 3.10, we have that {u(·,0) > 0} ⊃ {|xn| ≤C|x′|1+α◦} in a neighborhood of the origin,
where x = (x′, xn) and α◦ > 0. In particular, there exists a C1,α◦ domain � contained
inside {u(·,0) > 0} and satisfying 0 ∈ ∂�. By monotonicity of u in t, the same domain �

is contained in {u(·, t) > 0} for t > 0.
Hence, the function v := u(·, t) − u(·,0) is positive and harmonic in �, and by

assumption (1.2) we have—as in the proof of (a)—that v ≥ c1t > 0 in a small ball B⊂⊂�.
Using Hopf ’s lemma in C1,α domains, we deduce that ∂xn

v(0) ≥ c2t > 0, and the result
follows. �

We can now prove the following key result:

Lemma 9.3. — Let u : B1× (−1,1)→[0,∞) satisfy (6.1) and (1.2), let α◦ > 0 be given

by Proposition 3.9, and let �∗ ⊂�n−1 be given by Theorem 8.7.

(a) If (0,0) ∈�a
m and m≤ n− 2, then for all ε > 0 there exists � > 0 such that

{
(x, t) ∈ B� × (0,1) : t > |x|2−ε

}∩ {u= 0} = ∅.
(b) If (0,0) ∈�m \�a

m, m≤ n− 2, then for all ε > 0 there exists � > 0 such that

{
(x, t) ∈ B� × (0,1) : t > |x|3−ε

}∩ {u= 0} = ∅.
(c) If (0,0) ∈�<3

n−1, then there exist C, � > 0 such that

{
(x, t) ∈ B� × (0,1) : t > C|x|1+α◦

}∩ {u= 0} = ∅.
(d) If (0,0) ∈�>3

n−1, then there exist δ,� > 0 such that

{
(x, t) ∈ B� × (0,1) : t > |x|2+δ

}∩ {u= 0} = ∅.
(e) If (0,0) ∈�∗, then for all ε > 0 there exists � > 0 such that

{
(x, t) ∈ B� × (0,1) : t > |x|4−ε

}∩ {u= 0} = ∅.

Proof. — After a rotation, we may assume {p2 = 0} ⊂ {xn = 0}. In all the following
cases we will apply Lemma 9.1 and use that ψ r ≥ 1

4 in Br/2.
(a) By Lemma 9.2(a) we have, for any ε > 0,

(9.2) min
Dr

[
u( · , t)− u( · ,0)

]≥ cεr
ε/2t.

Also, since u is C1,1, |u( · ,0)| ≤ C0r2 in Br for all r ∈ (0,1/2). Thus, by Lemma 9.1
applied with p≡ 0 and β = 2,

(9.3) u( · , t)≥ c1 min
Dr

[
u( · , t)− u( · ,0)

]
ψ r −C0r2 in Br, ∀r ∈ (0,1/2).
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Since ψ r ≥ 1
4 in Br/2, thanks to (9.2) we deduce that

u( · , t) > 0 in Br/2 for t ≥ (r/2)2−ε,

therefore

{u= 0} ∩ {
t > |x|2−ε

}= ∅.
(b) Using again Lemma 9.2(a), it follows that (9.2) holds. Also, since (0,0) ∈ �m \

�a
m, it follows from Proposition 3.9(a) that λ2nd ≥ 3. Hence Lemmas 3.6 and 3.7 imply

that |u( · ,0)− p2| ≤C0r3 in Br , and therefore Lemma 9.1 applied with p≡ p2 and β = 3
yields

u( · , t)≥ p2 + c1 min
Dr

[
u( · , t)− u( · ,0)

]
ψ r −C0r3 in Br, ∀r ∈ (0,1/2).

Since p2 ≥ 0, one concludes as in the proof of (a).
(c) By Lemma 9.2(b) we have

(9.4) min
Dr

[
u( · , t)− u( · ,0)

]≥ crt.

Since at the maximal stratum the frequency is at least 2 + α◦ (see Proposition 3.9(b)),
using Lemmas 3.6 and 3.7 we have |u( · ,0)− p2| ≤ C0r2+α◦ in Br . Therefore, it follows
from Lemma 9.1 applied with p≡ p2 and β = 2+ α◦, that

u( · , t)≥ p2+ c1 min
Dr

[
u( · , t)− u( · ,0)

]
ψ r−C0r2+α◦ in Br, ∀r ∈ (0,1/2).

Thus, since ψ r ≥ 1
4 in Br/2, thanks to (9.4) we obtain

u( · , t) > 0 in Br/2 for t ≥C3r1+α◦ .

(d) Again, (9.4) holds as a consequence of Lemma 9.2(b). Moreover, since (0,0) ∈
�>3

n−1, thanks to Lemma 4.7 we deduce that |u( · ,0)−P| ≤C0r3+2δ in Br for some δ > 0
(note that δ may depend on the point (0,0)). Therefore, Lemma 9.1 applied with p≡P
and β = 3+ 2δ yields

u( · , t)≥P+c1 min
Dr

[
u( · , t)−u( · ,0)

]
ψ r−C0r3+2δ in Br, ∀r ∈ (0,1/2).

Recalling that P ≥ −C̄|x|5, it follows from (9.4) that, for t > (r/2)2+δ and r sufficiently
small,

u( · , t)≥P + c3rt −C0r3+δ ≥−C̄r5 + c3rt −C0r3+2δ > 0

in Br/2 ∩
{
u( · ,0)= 0

}
.

Since u( · , t)≥ u( · ,0), this proves the result.
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(e) Again, (9.4) holds as a consequence of Lemma 9.2(b). Moreover, by Theo-
rem 8.7, for every ε > 0 we have |u( · ,0) −P − p4| ≤ C0r5−ε/2 in Br . Then, applying
Lemma 9.1 with p≡P + p4 and β = 5− ε/2,

u( · , t)≥P + p4 + c1 min
Dr

[
u( · , t)− u( · ,0)

]
ψ r −C0r5−ε/2

in Br ∀r ∈ (0,1/2).

Also,

P + p4 ≥−C̄|x|5 in
{
u( · ,0)= 0

}⊂ {
xn ≤C

∣∣x′
∣∣2}

.

Thus (9.4) yields, for t > r4−ε and r small,

u( · , t)≥P + p4 + c3rt −C0r5−ε/2 ≥−C̄r5 + c3rt −C0r5−ε/2 > 0

in Br/2 ∩
{
u( · ,0)= 0

}
. �

The set �≥3
n−1 \�3rd

n−1 is treated separately in the following lemma. Since in this case
the 3rd order blow-up is not harmonic, the proof is more involved. In particular, instead
of proving that there are no singular points in the “future” t > 0, we show that they do
not exists in the past.

Lemma 9.4. — Let u : B1 × (−1,1)→ [0,∞) satisfy (6.1) and (1.2), with (0,0) ∈
�≥3

n−1 \�3rd
n−1. Then

{
(x, t) ∈ B1 × (−1,0) : t <−ω

(|x|)|x|2}∩�≥3
n−1 = ∅,

for some modulus a continuity ω : [0,∞)→[0,∞).

Proof. — Let w = u( ·0)− p2, wr = w(r · ). Also, with no loss of generality we as-
sume that p2 = 1

2x2
n . By Proposition 5.4 we have that

(9.5)
∥∥r−3wr− q̃

∥∥
L∞(B4)

≤ δ(r) ↓ 0 for q̃(x)= |xn|
(

a

3
x2

n−x′ ·Ax′
)
+xn

(
b

3
x2

n−x′ ·Bx′
)
,

where x = (x′, xn), and A ∈ Rn−1 × Rn−1 is symmetric, nonnegative definite, and has at
least one positive eigenvalue.

Fix η > 0, and assume by contradiction that there exists r > 0 small and t ≤−ηr2

such that u( · , t) has a singular point in �≥3
n−1 ∩ Br . Under this assumption, we claim that

(9.6)
{

xn + b

3
x2

n = x′ · Bx′
}
∩ B2r ⊂

{
u( · , t/2)= 0

}
,

where b and B are given by (9.5).
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Before proving the claim, we show that it leads to a contradiction. Indeed, thanks
to Proposition 3.10, since we are assuming that u( · , t) has a singular point xr ∈�

≥3
n−1 with

|xr| ≤ r, then for some er ∈ Sn−1 we have

(9.7)
{
u( · , t)= 0

}∩ Bρ ⊂
{
x ∈ Bρ :

∣
∣er · (x− xr)

∣
∣≤Cρ2

}
, for all ρ ∈ [r,1].

Note that the hypersurface {xn+bx2
n = x′ ·Bx′}∩B2r separates the ball B2r in two connected

components B+2r and B−2r . Also, by monotonicity, (9.6) and (9.7) hold for u( · , t′) for all
t′ ∈ [t, t/2]. Hence, if we define

u+
(
x, t′

) :=
{

u(x, t′) in B+2r,

0 in B−2r,
u−

(
x, t′

) :=
{

0 in B+2r,

u(x, t′) in B−2r,

then both u+( · , t′) and u−( · , t′) are solutions to the obstacle problem with a thick con-
tact set at 0. Combining this information with (9.7), it follows by [Caf77] that the free
boundaries of u+( · , t′) and u−( · , t′) are uniformly smooth hypersurface inside B3r/2, for
all t′ ∈ [t, t/2]. In addition, by strict monotonicity, these hypersurfaces are disjoint for any
t′ < t/2. Since the free boundary of u( · , t′) is the union of these hypersurfaces, this proves
in particular that the free boundary of u( · , t) has no singular points, a contradiction.

Thus, we are left with proving (9.6). First of all we note that, by Lemma 6.3, we
have

(9.8) er → en and
(
r−1xr

) · er → 0 as r ↓ 0,

where er is the unit vector appearing in (9.7). Furthermore, by the classical barrier argu-
ment used in proof of Hopf ’s Lemma (see for instance [Eva10, Chapter 6.4.2]), it follows
from (9.7) that

(9.9) u( · ,0)− u( · , t)≥ c1|t|
(∣∣er · (x− xr)

∣
∣−C|x− xr|2

)
+.

Now, given z′ ∈ B′2 ⊂Rn−1 and c≥ 0, we define the function

φz′,c(x) :=
(

1
2r
− n

)(
xn + br

3
x2

n − rx′ · Bx′
)2

+ (
x′ − z′

)2 + c.

Note that φz′,c ≥ c≥ 0 and

�φz′,c = 1
r
− 2n+O(r)+ 2(n− 1)≤ 1

r
, provided 0 < r� 1.

Also, since A≥ 0 we have q̃(x)≤−xn(x
′ · Bx′)+C|xn|3, therefore (recall (9.5))

r−3u(rx,0)− 1
2r

x2
n = r−3wr(x)≤ q̃(x)+δ(r)≤−xn

(
x′ ·Bx′

)+C|xn|3+δ(r).
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Thus, combining the bound above with (9.9), we get

r−3u(rx, t)− 1
2r

x2
n

≤ r−3
(
u(rx, t)− u(rx,0)

)− xn

(
x′ · Bx′

)+C|xn|3 + δ(r)

≤−r−3c1|t|
(∣∣er · (rx− xr)

∣
∣−C|rx− xr|2

)
+− xn

(
x′ · Bx′

)+C|xn|3 + δ(r)

≤−c1η
(∣∣er · (x− x̂r)

∣∣−Cr|x− x̂r|2
)
+ − xn

(
x′ · Bx′

)+C|xn|3 + δ(r),

where we used that |t| ≥ ηr2 and we denoted x̂r =: r−1xr ∈ B1.
Recalling (9.8), this implies that

v(x) := r−3u(rx, t)≤ 1
2r

x2
n − xn

(
x′ · Bx′

)− c1η|xn| +C|xn|3 + θ(r),

for some modulus of continuity θ(r). On the other hand, for any c≥ 0 we have

φz′,c(x)≥ 1
2r

x2
n − nx2

n −C|xn|3 − xn

(
x′ · Bx′

)+ (
x′ − z′

)2 +O(r).

Let now z := (z′, zn) satisfy zn + r b

3z2
n = rz′ · Bz′, and consider a point x ∈ ∂Bs(z), where

0 < r� s� 1. Then, since |zn| =O(r), we have (x′ −z′)2 = s2− x2
n+O(r), and therefore

φz′,c(x)≥ 1
2r

x2
n − (n+ 1)x2

n −C|xn|3− xn

(
x′ ·Bx′

)+ s2+O(r) on ∂Bs(z).

Since, for r� s� 1,

c1η|xn| + s2 ≥Cx2
n +C|xn|3 + θ(r) for |xn| ≤ s,

we deduce that

v(x)= r−3u(rx, t) < φz′,c(x) on ∂Bs(z)

for all c > 0.
Now, assume there exists c∗ > 0 be such that φz′,c∗ touches v from above at some

point x◦ ∈ Bs(z). Since v < φz′,c∗ on ∂Bs(z), the contact point is inside Bs(z). Also, since
�v = r−1 in {u(r · , t) > 0} while �φz′,c∗ ≤ r−1, it follows by the maximum principle that
x◦ /∈ {u(r · , t) > 0}. Thus,

0= r−3u(rx◦, t)= v(x◦)= φz′,c∗(x◦)≥ c∗ > 0,

a contradiction. This proves that v ≤ φz′,c for all c > 0, and letting c→ 0 we obtain

0≤ r−3u(rz, t)= v(z)≤ φz′,0(z)= 0.

Since z′ ∈ B′2 is arbitrary, this proves (9.6), and the lemma follows. �
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We finally prove:

Theorem 9.5. — Let u : B1 × (−1,1)→[0,∞) satisfy (6.1) and (1.2). Then:

(a) In dimension n= 2 we have dimH(π2(�))≤ 1/4.

(b) In dimension n= 3 we have dimH(π2(�))≤ 1/2.

(c) In dimensions n≥ 4, for H1-a.e. t ∈ (−1,1) we have

Hn−4
(
� ∩ π−1

2

({t}))= 0.

In particular, for n≤ 4, the singular set is empty for a.e. t.

Proof. — First of all, as in the proof of Theorem 8.7, we have the following:

• dimH(π1(�
a
m))≤ n− 3 for 0≤ m≤ n− 2;

• dimH(π1(�m \�a
m))≤ n− 2 for 0≤ m≤ n− 2;

• dimH(π1(�n−1 \�≥3
n−1))≤ n− 3;

• π1(�
≥3
n−1 \�3rd

n−1) is contained in a countable union of (n− 2)-dimensional Lips-
chitz graphs;

• π1(�
3rd
n−1 \�>3

n−1)= ∅;
• dimH(π1(�

>3
n−1 \�∗))≤ n− 2;

• dimH(π1(�
∗))≤ n− 1.

Furthermore, thanks to Lemmas 9.3 and 9.4, we have:

• In �a
m for 0≤ m≤ n− 2, we can use Corollary 7.8 with β = n− 3 and k = 2;

• In �m \�a
m we can use Corollary 7.8 with β = n− 2 and k = 3;

• In �n−1 \�≥3
n−1 we can use Corollary 7.8 with β = n− 3 and k = 1+ α◦;

• In �≥3
n−1 \ �3rd

n−1 (up to taking a countable union, and up to reversing time) we
can use Proposition 7.7 with β = n− 2 and k = 2;

• In �>3
n−1 \�∗ we can use Proposition 7.7 with β = n− 2 and k = 2;

• In �∗ we can use Corollary 7.8 with β = n− 1 and k = 4.

Hence, combining these information, we deduce that:

• dimH(�a
m ∩ π−1

2 ({t}))≤ n− 5 for H1-a.e. t ∈R;
• dimH((�m \�a

m)∩ π−1
2 ({t}))≤ n− 5 for H1-a.e. t ∈R;

• dimH(�<3
n−1 ∩ π−1

2 ({t}))≤ n− 4− α◦ for H1-a.e. t ∈R;
• Hn−4((�≥3

n−1 \�3rd
n−1)∩ π−1

2 ({t}))= 0 for H1-a.e. t ∈R;
• Hn−4((�>3

n−1 \�∗)∩ π−1
2 ({t}))= 0 for H1-a.e. t ∈R;

• dimH(�∗ ∩ π−1
2 ({t}))≤ n− 5 for H1-a.e. t ∈R.

Thus, part (c) is proved. Parts (a) and (b) follow exactly in the same way, but using instead
Proposition 7.7(a) and Corollary 7.8(a). �
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Remark 9.6. — Thanks to Remark 8.5, one could actually slightly improve the es-
timate for the set �>3

n−1 \�∗ and show that dimH((�>3
n−1 \�∗) ∩ π−1

2 ({t})) ≤ n− 4− 1
2 .

However, all the other estimates are sharp (at least with respect to the techniques intro-
duced in this paper), and in particular we believe that it is very unlikely that one could
prove a stronger result with these techniques.

As a consequence of the previous estimates, we finally obtain our main results:

Proof of Theorems 1.1 and 1.2. — The results follow immediately from Theo-
rem 9.5. �
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Appendix A: Some results on the Signorini problem

For the convenience of the reader, in this appendix we gather some classical results on
the Signorini problem (5.1) that we use several times throughout the paper

Lemma A.1. — The only 1D solutions to (5.1) that vanish at the origin are given by q(xn)=
−c|xn| + bxn, for some c≥ 0 and b ∈R.

Proof. — Since q = q(xn), it follows from (5.1) that q must be affine in Rn \ {0},
hence q(xn) = a − c|xn| + bxn for some a, b, c ∈ R. The condition �q ≤ 0 implies that
c≥ 0. Also, since q(0)= 0 we deduce that a= 0, as desired. �

Lemma A.2. — Let λ > 0, and let i denote the imaginary unit. The only 2D λ-homogeneous

solutions of (5.1) (i.e., q= q(xn, xn−1) and q(rx)= rλq(x) for every r > 0) are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(xn, xn−1)= ci1−λRe(|xn| + ixn−1)
λ + bRe(xn + ixn−1)

λ,

if λ ∈ {1,3,5, . . .}
q(xn, xn−1)= ciλRe(xn + ixn−1)

λ + bIm(xn + ixn−1)
λ,

if λ ∈ {2,4,6, . . .},
q(xn, xn−1)= cRe(xn + ixn−1)

λ,

if λ ∈ { 3
2 ,

7
2 ,

11
2 , . . .},

where c ≥ 0 and b ∈ R. In particular the set of possible homogeneities is {1,2,3,4,5, . . .} ∪
{ 3

2 ,
7
2 ,

11
2 , . . .}.
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Proof. — A proof of this result can be found, for instance, in [FS18, Proposi-
tion A.1]; see also [GP09, Remark 1.2.7]. �

The following result is proved in [ACS08, Lemma 1].

Lemma A.3. — Let q be a solution of (5.1) and assume that q(0)= 0. Let φ(·, q) be as in

(2.4). Then r 
→ φ(r, q) is monotone nondecreasing. Moreover, if I 	 r 
→ φ(r, q)≡ λ > 0 for some

open interval I⊂R+, then q is λ-homogeneous.

We conclude this section with a uniqueness result.

Lemma A.4. — Let qi, i = 1,2 be two solutions of (5.1) satisfying q1 ≥ q2 in B1 and

qi(0)= 0. Assume that φ(0+, q2) > 1, or that q2 ≡ 0. Then q1 ≡ q2.

Proof. — We use coordinates (x′, xn) ∈ Rn−1 × R. Assume by contradiction that
q1 �≡ q2. Then, applying Hopf ’s Lemma at the origin, we deduce that ∂xn

(q1 − q2)×
(0,0+) > 0. Also, our assumption on q2 implies that ∇q2(0,0)= 0, thus ∂xn

q1(0,0+) > 0.
On the other hand, the distributional Laplacian of q1 on {xn = 0} is given by 2∂xn

q1(x
′,0+).

Since �q1 ≤ 0, this gives the desired contradiction. �

Appendix B: Odd frequency points in the Signorini problem

The aim of this section is to show how the arguments developed in this paper (see in
particular Section 5) can be applied in the context of the Signorini problem to prove both
uniqueness and nondegeneracy of blow-ups at all points of odd frequency for solutions of
the Signorini problem

(B.1)

⎧
⎪⎨

⎪⎩

�u≤ 0 and u�u= 0 in B1

�u= 0 in B1 \ {xn = 0}
u≥ 0 on B1 ∩ {xn = 0},

see Theorem B.7 below. Since this was an open problem in this topic which we expect to
be of interest to a wide audience, we prefer to give a complete and self-contained proof
(rather than referring to parts of this paper) so that this appendix can become of reference
for future results on the Signorini problem.

Note that this appendix extends the results of [GP09] (which were dealing only
with even frequencies) to the sets "2m+1(u), m ∈N (see [GP09] for an explanation of this
notation).

Since the odd part of a solution of (B.1) is harmonic and vanishes on {xn = 0},
to understand the structure of the solution and the free boundary it suffices to study
even solutions, that is, u(x′, xn) = u(x′,−xn). For this reason, also when studying global
homogeneous solutions, we can restrict ourselves to even functions.
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We begin by recalling Lemma 5.1: If q is a λ-homogeneous even solution of (B.1)
and λ = 2m + 1 is an odd integer, then q ≡ 0 on {xn = 0} (this result was not known
before). As a consequence of this fact and the Liouville Theorem for harmonic functions
vanishing on a hyperplane,9 q must be a harmonic polynomial on each side sides of
{xn = 0}.

Then, since q|{xn=0} = 0, q is even, and q is harmonic in Rn \ {xn = 0}, we deduce
that

q
(
x′, xn

)=−|xn|
(
q0

(
x′
)+ x2

n q1

(
x′, xn

))
,

(
x′, xn

) ∈Rn−1 ×R,

where q0 and q1 are polynomials. Furthermore, since �q ≤ 0, the polynomial q0(x
′) is

nonnegative.
In the sequel it will be useful to define the “trace operator” T as

(B.2) q 
→T[q] := q0.

Since q0 ≡ 0 implies that q≡ 0 (as a consequence the harmonicity of q outside of {xn = 0}),
one easily deduces that T is injective.

We will need a monotonicity formula that is the analogue of Lemma 5.3.

Lemma B.1. — Let u : B1 → R be an even solution of (B.1) with φ(0+, u)= λ, where λ

is an odd integer, and define ur(x) := u(rx). Also, let q be any λ-homogeneous even solution of (B.1).
Then, for any � ∈ (0,1),

d

dr

ˆ

∂B�

urq= λ

r

ˆ

∂B�

urq− �

r

ˆ

B�

ur�q.

In particular

d

dr

(
1
rλ

ˆ

∂B1

urq

)
≥ 0.

Proof. — We have

d

dr

ˆ

∂B�

urq=
ˆ

∂B�

x

r
· ∇urq= �

r

ˆ

∂B�

∂νurq= �

r

ˆ

B�

div(∇urq)

= �

r

(ˆ

B�

∇wr∇q+
ˆ

B�

�wrq

)

= �

r

(ˆ

∂B�

ur∂νq−
ˆ

∂B�

ur�q+
ˆ

B�

�urq

)
.

9 More precisely, if we consider the odd reflection of u|{xn>0}, then we obtain a global λ-homogeneous harmonic
functions in the whole space. By Liouville Theorem, this functions mush be a λ-homogeneous harmonic polynomial.
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Since q is λ-homogeneous, we find that �
´
∂B�

ur∂νq = λ
´
∂B�

urq. Also, since q vanishes
on {xn = 0} (by Lemma 5.1) and �u is a measure supported on {xn = 0}, we have´

B�
�urq= 0. This proves the first statement.

Finally, taking � = 1 and using that −ur�q ≥ 0 in Rn (since �q ≤ 0 is supported
on {xn = 0}, and ur ≥ 0 there) we obtain

d

dr

(
1
rλ

ˆ

∂B1

urq

)
=− 1

rλ+1

ˆ

∂B1

ur�q≥ 0. �

As a consequence of the previous result, we deduce the following:

Proposition B.2. — Let u : B1 →R be an even solution of (B.1) with φ(0+, u)= λ, where

λ= 2m+ 1 is an odd integer. Then the limit

q̃ := lim
r↓0

u(r · )
rλ

exists and it is a λ-homogeneous even solution of (B.1).

Proof. — Let

q(i) = lim
r
(i)
k ↓0

1

(r
(i)

k )λ
u

r
(i)
k
, i = 1,2,

be two accumulation points along different sequences r
(i)

k . Then, given a λ-homogeneous
solution of Signorini q, we can apply Lemma B.1 to deduce that r 
→ 1

rλ

´
∂B1

urq has a
unique limit as r→ 0. In particular this implies that

ˆ

∂B1

q(1)q=
ˆ

∂B1

q(2)q,

therefore, choosing q= q(1) − q(2), we deduce that q(1) ≡ q(2). �

The next step consists in showing the following nondegeneracy property: if
φ(0+, u) = λ, then the limit q̃ obtained in Proposition B.2 cannot be identically zero.
This is the most delicate part of this appendix, and the proof of this fact requires a new
compactness lemma and an interesting ODE type formula obtained below.

Lemma B.3. — Let u : B1 →R be an even solution of (B.1) satisfying φ(0+, u)= λ with

λ odd, set ur(x) := u(rx), and let ũr := ur/‖ur‖L2(∂B1). Given η > 0 there exists δ = δ(n, λ, η) such

that, if for some r ∈ (0,1/2) and for some λ-homogeneous even solution q of (B.1) we have

‖ũr − q‖L∞(B2) ≤ δ,
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then

ũr = 0 on {xn = 0} ∩ (B1 \ B1/2)∩
{
T[q] ≥ η

}
,

where T[q] is defined as in (B.2).

Proof. — Fix z = (z′,0) ∈ (B1 \ B1/2) such that T[q](z′) ≥ η, and given c > 0 we
define

φc(x) := −(n− 1)|xn|2 +
∣
∣x′

∣
∣2 + c.

Let � > 0 be sufficiently small (depending only on n and η) and take δ = �3. Then, for
|x| = � we have

ur(z+ x)≤ q(z+ x)+ δ(B.3)

=−|xn|q0

(
z′
)+O

(
�3

)+ δ ≤−η|xn| +O
(
�3

)+ δ

≤−n|xn|2 + |x|2 ≤ φc(x) ∀c≥ 0.

Since φc > q(z+ · ) inside B� for c large, we can decrease c until a contact point occur
inside B�. Since φ0(0) = 0 ≤ q(z) (since z ∈ {xn = 0}), we see that such a contact point
must occur for some value c∗ ≥ 0.

If c∗ = 0 then we have ur(z)≤ φ0(0)= 0, as wanted. Hence, it suffices to show that
c∗ > 0 is impossible.

Assume by contradiction that there exists c∗ > 0 such that φc∗ ≥ q(z+ · ) in B�, and
φc∗(x◦)= q(z+ x◦) for some x◦ ∈ B�. By (B.3) we see that φc∗ and ur(z+ · ) must touch at
an interior point, that is x◦ /∈ ∂B�. Also, since φc∗ is harmonic, it cannot touch ur(z+ · ) at
some point where it is harmonic too. Thus, x◦ must belong to {xn = 0} ∩ {ur(z+ ·)= 0}.
This gives 0= ur(z+ x◦)= φc∗(x◦)= |x◦|2 + c∗ > 0, a contradiction. �

Another fundamental tool is the following ODE-type formula.

Lemma B.4. — Let u : B1 →R be an even solution of (B.1) satisfying φ(0+, u)= λ, with

λ odd. Set ur(x) := u(rx), h(r) := ‖ur‖L2(∂B1), and ũr := ur/h(r). Let q be an even λ-homogeneous

solution of (B.1), and define

(B.4) ψ(r; q) :=
ˆ

∂B1

ũrq− 2
ˆ

∂B1/2

ũrq.

Then

d

dr
ψ(r; q)=−θ(r)ψ(r; q)− 1

r

ˆ

B1\B1/2

ũr�q,

where θ(r) :=
(

h′(r)
h(r)

+ λ

r

)
= (

log
(
h(r)/rλ

))′
.
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Proof. — As in the proof of Lemma B.1, we obtain

d

dr

ˆ

∂B�

urq= λ

r

ˆ

∂B�

urq− �

r

ˆ

B�

ur�q.

Thus, since ũr = ur/h(r), we deduce that

d

dr

ˆ

∂B�

ũrq=
(
−h′(r)

h(r)
+ λ

r

) ˆ

∂B�

ũrq− �

r

ˆ

B�

ũr�q,

and the lemma follows combining the identities for �= 1 and �= 1/2. �

In the sequel, for λ= 2m+ 1, m ∈N, we denote

Qλ := {even λ-homogeneous solutions of (B.1)}.

Also, given f ∈ L1
loc(R

n), we define the radial symmetrization in the first (n− 1) variables
as

(B.5) f̂
(
x′, xn

) := −
ˆ

SO(n−1)

f
(
Mx′, xn

)
dM, x= (

x′, xn

) ∈Rn−1 ×R,

where the previous average is with respect to the Haar measure of SO(n− 1).

Lemma B.5. — Given λ≥ 3 odd, there exists a unique Q ∈Qλ satisfying

(B.6) Q= Q̂ and ‖Q‖L2(∂B1) = 1.

Moreover, for any other q ∈Qλ we have

ˆ

∂B1

qQ≥ cn,λ‖q‖L2(∂B1) > 0

where cn,λ is some positive constant depending only on n and λ.

Proof. — We begin by noticing that Q= Q̂ belongs to Qλ if and only if

(B.7) Q(x)=
λ−1

2∑

k=0

ak

∣
∣x′

∣
∣λ−1−2k|xn|1+2k, a0 ≤ 0, �

( λ−1
2∑

k=0

ak|x′|λ−1−2kx1+2k
n

)
= 0.
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Setting r′ := |x′| and noticing that �Q= ∂r′r′Q+ n−2
r′ ∂r′Q+ ∂xnxn

Q, we can rewrite (B.7)
as

λ−3
2∑

j=0

(
aj(λ− 1− 2j)(λ− 2− 2j + n− 2)

+ aj+1(3+ 2j)(2+ 2j)
)(

r′
)λ−3−2j

x1+2j
n = 0.

Therefore, (B.7) is satisfied if and only if

aj(λ− 1− 2j)(λ− 2− 2j + n− 2)+ aj+1(3+ 2j)(2+ 2j)= 0

for all j = 0,1, . . .
λ− 3

2
.

This means that all the coefficients are uniquely determined (by induction over j) once
a0 ≤ 0 is fixed, and a0 < 0 is uniquely determined imposing that ‖Q‖L2(∂B1) = 1. This
concludes the first part of the proof.

To prove the second part, note that if q ∈Qλ then q̂ ∈Qλ (see (B.5)). We now recall
that, to define the trace operator T, we used the expansion

q
(
x′, xn

)=−|xn|
(
q0

(
x′
)+ x2

n q1

(
x′, xn

))
, so that T[q] = q0.

Since T[q] ≡ 0 implies q≡ 0, it follows by compactness that
∥
∥T[q]∥∥

L2(∂B1)
≥ c̃n,λ‖q‖L2(∂B1) ∀q ∈Qλ, for some cn,λ > 0.

Also

q̂
(
x′, xn

)=−|xn|
(
q̂0

(
x′
)+ x2

n q̂1

(
x′, xn

))
, that is T[̂q] = T̂[q].

Thus, given q ∈Qλ, since q̂ ∈Qλ depends only on the variables r′ = |x′| and xn, it follows
from the first part of the proposition that q̂ must by a positive multiple of Q, that is,
q̂= tQ, where t ≥ cn,λ‖q‖L2(∂B1) > 0. Hence, since Q̂=Q and using the invariance of the
Haar measure dM on SO(n− 1) under the transformation M 
→M−1, we get

ˆ

∂B1

qQ=
ˆ

∂B1

qQ̂=
ˆ

∂B1

dx −
ˆ

SO(n−1)

q
(
x′, xn

)
Q

(
Mx′, xn

)
dM

=
ˆ

∂B1

dx −
ˆ

SO(n−1)

q
(
M−1x′, xn

)
Q

(
x′, xn

)
dM

=
ˆ

∂B1

dx −
ˆ

SO(n−1)

q
(
Mx′, xn

)
Q

(
x′, xn

)
dM

=
ˆ

∂B1

q̂Q= t

ˆ

∂B1

Q2 ≥ cn,λ‖q‖L2(∂B1). �
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In the following proposition we will use the notation X� Y for X≤C(n, λ)Y and
Y≤C(n, λ)X.

Proposition B.6. — Let u : B1 →R be an even solution of (B.1) with φ(0+, u)= λ, where

λ is an odd integer. Suppose that ‖u‖L2(∂B1) = 1, and set ur(x) := u(rx). Then

0 < crλ ≤ ‖ur‖L2(∂B1) ≤ rλ ∀r ∈ (0,1],
where c depends only on n and λ.

Proof. — The inequality ‖ur‖L2(∂B1) ≤ rλ follows from the fact that r−2λH(r, u) is
monotone nondecreasing since φ(r, u) ≥ λ (see [ACS08, Lemma 2]). We need to show
the bound from below (the nondegeneracy).

Define

(B.8) �(r) :=max
{
ψ(r; q) : q ∈Qλ and ‖q‖L2(∂B1) = 1

}
,

where ψ is given by (B.4), and let q∗r be the function at which the above maximum is
attained (note Qλ is a closed convex subset of a finite dimensional vector space). Also,
let Q be as in Lemma B.5, and define �(r) := ψ(r,Q). Then, as a consequence of
Lemma B.4, we have

d

dr
�(r)= θ(r)�(r)− 1

r

ˆ

B1\B1/2

ũr�q∗r for a.e. r > 0,

and

(B.9)
d

dr
�(r)= θ(r)�(r)− 1

r

ˆ

B1\B1/2

ũr�Q ∀r > 0.

We now claim that

�(r)��(r)� �(r)

�(r)
� 1 as r ↓ 0.

Indeed, the accumulation points of ũr (as r ↓ 0 and in the C0
loc(R

n) topology) belong to
the unit ball of Qλ (see [ACS08]) and therefore ũr − qr = o(1) for some qr ∈Q. Hence, by
definition of � ,

�(r)≥ψ(r; qr)=
ˆ

∂B1

ũrqr − 2
ˆ

∂B1/2

ũrqr =
ˆ

∂B1

q2
r − 2

ˆ

∂B1/2

q2
r + o(1)

= (
1− 2−n−1−2λ

)ˆ

∂B1

q2
r + o(1)≥ 1

2
> 0.



288 ALESSIO FIGALLI, XAVIER ROS-OTON, JOAQUIM SERRA

Note that the above computation shows also that ψ(r, q)= (1− 2−n−1−2λ)
´
∂B1

qrq+ o(1),
from which it follows that q∗r = qr + o(1) as r ↓ 0 (recall that q∗r is a maximizer in (B.8)).

Similarly, using Lemma B.5,

�(r)=
ˆ

∂B1

ũrQ− 2
ˆ

∂B1/2

ũrQ=
ˆ

∂B1

qrQ− 2
ˆ

∂B1/2

qrQ+ o(1)

≥ cn,λ

(
1− 2−n−1−2λ

)+ o(1)≥ cn,λ

2
> 0,

where cn,λ is the constant from Lemma B.5. Finally, it is clear that �(r) and �(r) are
bounded by above, so the claim is proved.

Using the expressions for d

dr
� and d

dr
�, we find

d

dr

(
�(r)

�(r)

)
=−1

r

�(r)
´

B1\B1/2
ũr�q∗r −�(r)

´
B1\B1/2

w̃r�Q

�(r)2

We claim that, given ε > 0, for r sufficiently small,

(B.10)

∣
∣∣
∣

ˆ

B1\B1/2

ũr�q∗r

∣
∣∣
∣≤ ε

∣
∣∣
∣

ˆ

B1\B1/2

ũr�Q

∣
∣∣
∣.

Indeed, introducing the notation B′r := Br ∩ {xn = 0} and using Lemma B.3, given η > 0
and choosing r > 0 is sufficiently small so that ‖ũr − q∗r ‖L∞(B2) ≤ δ(n, η) (recall that q∗r =
qr + o(1) as r ↓ 0), we have

0≤−
ˆ

B1\B1/2

ur�q∗r =
ˆ

B′1\B′1/2

u
(
rx′,0

)
T

[
q∗r

]
dx′

= η

ˆ

(B′1\B′1/2)∩{T[q∗r ]≤η}

ur dx′ ≤ η

ˆ

B′1\B′1/2

ur dx′

(recall that ur ≥ 0 on {xn = 0}), while

−
ˆ

B1\B1/2

ur�Q= 2|a0|
ˆ

B′1\B′1/2

u
(
rx′,0

)∣∣x′
∣∣λ−1

dx′ ≥ c′n,λ

ˆ

B′1\B′1/2

ur dx′,

for some constant c′n,λ > 0. Hence, dividing by h(r), we obtain

0≤−
ˆ

B1\B1/2

ũr�qr ≤Cn,λη

ˆ

B1\B1/2

ũr�Q,

and (B.10) follows.
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Then, thanks to (B.10), we deduce that

d

dr

(
�(r)

�(r)

)
=−1

r

�(r)
´

B1\B1/2
ũr�q∗r −�(r)

´
B1\B1/2

ũr�Q

�(r)2

� 1
r

ˆ

B1\B1/2

ũr�Q

for r ≤ r0 small enough.
Integrating the above ODE over [r̂, r0], since the integral of d

dr
(�(r)

�(r)
) over [r̂, r0] is

uniformly bounded as r̂ → 0, we deduce that the negative term 1
r

´
B1\B1/2

ũr�Q is inte-

grable over [0, r0]. Hence, since �(r)� 1 and θ(r)= d

dr
log(h(r)/rλ), it follows from (B.9)

that

d

dr
log�(r)= d

dr
log

(
h(r)/rλ

)+ g(r), with g ∈ L1
([0, r0]

)
.

Integrating over [r̂, r0] and using again that �(r) � 1, we deduce that log(h(r̂)/r̂λ) is
uniformly bounded as r̂→ 0, therefore h(r)� rλ, as desired. �

As a consequence of Propositions B.2 and B.6, we get the uniqueness and nonde-
generacy of blow-ups:

Theorem B.7. — Let u : B1 → R be an even solution of (B.1) with φ(0+, u) = λ, where

λ= 2m+ 1 is an odd integer. Then the limit

q̃ := lim
r↓0

u(r · )
rλ

exists, is non-zero, and it is a λ-homogeneous even solution of (B.1).

Thanks to this result, by classical arguments (see Proposition 8.3 and Lemma 6.6)
one easily obtains the following rectifiability result, that was already proved with com-
pletely different methods in [FS18]:

Corollary B.8. — Let u : B1 → R be an even solution of (B.1). Then, for any odd integer

λ≥ 3, the set of free boundary points of frequency λ is (n− 2)-rectifiable.
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