On a factorization of Riemann's ζ function with respect to a quadratic field and its computation

Xavier Ros-Oton

Received: date / Accepted: date

Abstract

Let K be a quadratic field, and let ζ_{K} its Dedekind zeta function. In this paper we introduce a factorization of ζ_{K} into two functions, L_{1} and L_{2}, defined as partial Euler products of ζ_{K}, which lead to a factorization of Riemann's ζ function into two functions, p_{1} and p_{2}. We prove that these functions satisfy a functional equation which has a unique solution, and we give series of very fast convergence to them. Moreover, when $\Delta_{K}>0$ the general term of these series at even positive integers is calculated explicitly in terms of generalized Bernoulli numbers.

Keywords Riemman's ζ function • factorization • functional equation • quadratic field

Mathematics Subject Classification (2000) 11M06 • 11M41

1 Introduction

Let K be a quadratic field and let χ be the Dirichlet character attached to K / \mathbb{Q}. Its Dedekind's zeta function can be written as

$$
\zeta_{K}(s)=\zeta(s) L(s, \chi)
$$

where ζ is Riemann's zeta function and L is the L-function associated with χ (see, for example, [1]). Hence, an alternative factorization, for $\mathfrak{R e}(s)>1$, is the one given by the partial products

$$
\zeta_{K}(s)=\prod_{p \mid d}\left(1-p^{-s}\right)^{-1} L_{1}(s) L_{2}(s)
$$

[^0]where $d=\left|\Delta_{K}\right|$ is the absolute value of the discriminant of K, and
$$
L_{1}(s)=\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-2}, \quad L_{2}(s)=\prod_{\chi(p)=-1}\left(1-p^{-2 s}\right)^{-1} .
$$

Note that L_{1} and L_{2} are obtained as partial Euler products of $\zeta(s)^{2}$ and $\zeta(2 s)$ respectively, so they converge and are non-zero for $\mathfrak{R e}(s)>1$ and $\mathfrak{R e}(s)>1 / 2$ respectively.

Define now

$$
\begin{equation*}
p_{1}(s)=\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-1} \quad \text { and } \quad p_{2}(s)=\prod_{\chi(p)=-1}\left(1-p^{-s}\right)^{-1} . \tag{1}
\end{equation*}
$$

Then, we have that

$$
L_{1}(s)=p_{1}(s)^{2}, \quad L_{2}(s)=p_{2}(2 s)
$$

and thus it is equivalent to study L_{1} and L_{2} or p_{1} and p_{2}. Note that

$$
\zeta(s)=\prod_{p \mid d}\left(1-p^{-s}\right)^{-1} p_{1}(s) p_{2}(s)
$$

and hence, p_{1} and p_{2} give a factorization of Riemann's zeta function.
The plan of the paper is as follows. In section 2 we see that p_{1} and p_{2} satisfy a functional equation. More precisely, we prove

Theorem 1 The functions p_{1} and p_{2} satisfy the functional equations

$$
\begin{equation*}
\frac{p_{i}(2 s)}{p_{i}(s)^{2}}=q_{i}(s), \quad \lim _{\mathfrak{i c}(s) \rightarrow+\infty} p_{i}(s)=1, \quad \text { for } \quad i=1,2 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{1}(s)=\frac{\zeta(2 s)}{\zeta(s) L(s, \chi)} \prod_{p \mid d}\left(1+p^{-s}\right), \quad q_{2}(s)=\frac{L(s, \chi)}{\zeta(s)} \prod_{p \mid d}\left(1-p^{-s}\right)^{-1} \tag{3}
\end{equation*}
$$

Furthermore, these functional equations have a unique solution, so they completely determine the functions p_{1} and p_{2}.

Moreover, we shall see that the logarithm of the solution of this functional equation can be written as a series

$$
\begin{equation*}
\log p_{i}(s)=-\sum_{n=0}^{+\infty} \frac{\log q_{i}\left(2^{n} s\right)}{2^{n+1}}, \quad i=1,2 \tag{4}
\end{equation*}
$$

and hence, we will have an alternative expression of p_{1} and p_{2}.
In section 3 we will see that the series given by (4) are of very fast convergence. We shall prove

Theorem 2 Let s be complex number such that $\mathfrak{R e}(s) \geq 1$. Then,

$$
p_{1}(2 s)=\exp \left\{-\sum_{k=1}^{n} \frac{1}{2^{k}} \log q_{1}\left(2^{k} s\right)\right\}+o\left(2^{-2^{n}}\right)
$$

and

$$
p_{2}(2 s)=\exp \left\{-\sum_{k=1}^{n} \frac{1}{2^{k}} \log q_{2}\left(2^{k} s\right)\right\}+o\left(2^{-2^{n}}\right)
$$

As a consequence, we will have a way to evaluate p_{1} and p_{2} at even positive integers when Δ_{K} is positive. This will be done by calculating explicitly the general term of the series in this case.

2 The functional equation of p_{1} and p_{2}

First we prove that the functional equation appearing in Theorem 1 has a unique solution and that this solution can be written as an infinite series. The statement of the result is the following.

Proposition 1 Let $\Omega=\{s \in \mathbb{C} \mid \mathfrak{R e}(s)>1\}$, and q an holomorphic function defined in Ω, with $q(s) \neq 0$ for all $s \in \Omega$ and $\lim _{\mathfrak{R c}(s) \rightarrow+\infty} q(s)=1$. Then, the functional equation

$$
\frac{p(2 s)}{p(s)^{2}}=q(s), \quad \lim _{\mathfrak{\mathfrak { e } (s) \rightarrow + \infty}} p(s)=1
$$

has a unique solution $p(s)$. In addition, the solution can be written as

$$
p(s)=\exp \left\{-\sum_{n \geq 0} \frac{\log q\left(2^{n} s\right)}{2^{n+1}}\right\}
$$

and this series is absolutely convergent for all sin Ω.
Proof Suppose that $p(s)$ satisfies the functional equation. Then, $p(s) \neq 0$ for all $s \in \Omega$. This is because $p(s)=0$ implies $p(2 s)=0$ and $p\left(2^{k} s\right)=0$ for $k=1,2, \ldots$, which contradicts the hypothesis $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} p(s)=1$. Thus, we can define

$$
f(s)=\frac{\log p(s)}{s}, \quad g(s)=\frac{\log q(s)}{2 s}
$$

where \log is the principal branch of the complex logarithm. Taking logarithms to our functional equation and dividing by $2 s$, we have that

$$
f(2 s)=f(s)+g(s), \quad \lim _{\mathfrak{R c}(s) \rightarrow+\infty} f(s)=0
$$

Writing this last equation for $s, 2 s, 4 s, 8 s, \ldots, 2^{N} s$, and adding them, we obtain that

$$
f\left(2^{N+1} s\right)=f(s)+\sum_{n=0}^{N} g\left(2^{n} s\right) .
$$

Since $\mathfrak{R e}(s)>1$, then $\mathfrak{R e}\left(2^{N+1} s\right) \rightarrow+\infty$ when $N \rightarrow \infty$, so

$$
f(s)+\sum_{n=0}^{\infty} g\left(2^{n} s\right)=\lim _{N \rightarrow \infty} f\left(2^{N+1} s\right)=0
$$

and

$$
\log p(s)=-\sum_{n \geq 0} \frac{\log q\left(2^{n} s\right)}{2^{n+1}}
$$

Since

$$
\lim _{\mathfrak{R c}(s) \rightarrow+\infty} \log q(s)=0,
$$

the sequence $\left\{\log q\left(2^{n} s\right)\right\}_{n \in \mathbb{N}}$ converges (it tends to 0), and in particular it is bounded. Hence, there exists $M>0$ such that $\left|\log q\left(2^{n} s\right)\right|<M$, and then

$$
\sum_{n \geq 0}\left|\frac{\log q\left(2^{n} s\right)}{2^{n+1}}\right| \leq \sum_{n \geq 0} \frac{M}{2^{n+1}}=M
$$

so the series is absolutely convergent for all $s \in \Omega$.
Let us see that this function satisfies the functional equation. We have that

$$
\begin{aligned}
\log p(2 s)-2 \log p(s) & =-\sum_{n \geq 0} \frac{\log q\left(2^{n+1} s\right)}{2^{n+1}}+2 \sum_{n \geq 0} \frac{\log q\left(2^{n} s\right)}{2^{n+1}} \\
& =-\sum_{n \geq 1} \frac{\log q\left(2^{n} s\right)}{2^{n}}+\sum_{n \geq 0} \frac{\log q\left(2^{n} s\right)}{2^{n}} \\
& =\log q(s)
\end{aligned}
$$

and then,

$$
\frac{p(2 s)}{p(s)^{2}}=q(s) .
$$

We now have to see that $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} p(s)=1$, or equivalently,

$$
\lim _{\mathfrak{R c}(s) \rightarrow+\infty} \log p(s)=0
$$

For it, fix $\varepsilon>0$. Since $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} q(s)=1$, then $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} \log q(s)=0$, and exists $\sigma>0$ such that

$$
|\log q(s)|<\epsilon \quad \text { for all } \quad s \quad \text { with } \quad \mathfrak{R e}(s) \geq \sigma .
$$

Hence, if $\mathfrak{R e}(s) \geq \sigma$, then

$$
|\log p(s)| \leq \sum_{n \geq 0}\left|\frac{\log q\left(2^{n} s\right)}{2^{n+1}}\right| \leq \sum_{n \geq 0} \frac{\varepsilon}{2^{n+1}}=\varepsilon
$$

and $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} \log p(s)=0$, as claimed.
Note that, in fact, the branch of the logarithm is irrelevant, since when we take exponentials, we will have

$$
p(s)=\exp \left\{-\sum_{n \geq 0} \frac{\log q\left(2^{n} s\right)}{2^{n+1}}\right\}
$$

independently of the chosen branch.

We can now give the:
Proof of Theorem 1. On the one hand, it is clear that $\lim _{\mathfrak{R e}(s) \rightarrow+\infty} p_{i}(s)=1$, $i=1,2$.

On the other hand, we have that

$$
\begin{aligned}
p_{1}(s) \frac{p_{2}(2 s)}{p_{2}(s)} & =\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-1} \frac{\prod_{\chi(p)=-1}\left(1-p^{-2 s}\right)^{-1}}{\prod_{\chi(p)=-1}\left(1-p^{-s}\right)^{-1}} \\
& =\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-1} \prod_{\chi(p)=-1}\left(\frac{1-p^{-2 s}}{1-p^{-s}}\right)^{-1} \\
& =\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-1} \prod_{\chi(p)=-1}\left(1+p^{-s}\right)^{-1} \\
& =L(s, \chi),
\end{aligned}
$$

and since

$$
p_{1}(s)=\frac{1}{p_{2}(s)} \zeta(s) \prod_{p \mid d}\left(1-p^{-s}\right),
$$

then

$$
\frac{p_{2}(2 s)}{p_{2}(s)^{2}}=\frac{L(s, \chi)}{\zeta(s)} \prod_{p \mid d}\left(1-p^{-s}\right)^{-1}
$$

Using now that

$$
p_{2}(s)=\frac{1}{p_{1}(s)} \zeta(s) \prod_{p \mid d}\left(1-p^{-s}\right),
$$

we obtain

$$
\frac{p_{1}(2 s)}{p_{1}(s)^{2}}=\frac{p_{2}(s)^{2}}{p_{2}(2 s)} \cdot \frac{\zeta(2 s) \prod_{p \mid d}\left(1-p^{-2 s}\right)}{\zeta(s)^{2} \prod_{p \mid d}\left(1-p^{-s}\right)^{2}}=\frac{\zeta(2 s)}{\zeta(s) L(s, \chi)} \prod_{p \mid d}\left(1+p^{-s}\right)
$$

The fact that these functional equations have an unique solution follows from Proposition 1.

As a consequence of Proposition 1 and Theorem 1 we obtain the following expression for $p_{1}(s)$ and $p_{2}(s)$.

Corollary 1 Let p_{1} and p_{2} be given by (1). Then,

$$
p_{i}(s)=\exp \left\{-\frac{1}{2} \sum_{n \geq 0} \frac{\log q_{i}\left(2^{n} s\right)}{2^{n}}\right\} \quad \text { for } \quad i=1,2,
$$

where

$$
q_{1}(s)=\frac{\zeta(2 s)}{\zeta(s) L(s, \chi)} \prod_{p \mid d}\left(1+p^{-s}\right), \quad \text { and } \quad q_{2}(s)=\frac{L(s, \chi)}{\zeta(s)} \prod_{p \mid d}\left(1-p^{-s}\right)^{-1}
$$

These expressions will be used in the next section.

3 Evaluating p_{1} and p_{2}

In this section we will calculate the order of convergence of the series given by Corollary 1. We will see that this convergence is of order $2^{-2^{n}}$, i.e.,

$$
p_{i}(2 s)=\exp \left\{-\sum_{k=1}^{n} \frac{1}{2^{k}} \log q_{i}\left(2^{k} s\right)\right\}+o\left(2^{-2^{n}}\right)
$$

and therefore this will be a better way to evaluate the functions p_{1} and p_{2} than the one given by the infinite products

$$
p_{1}(s)=\prod_{\chi(p)=1}\left(1-p^{-s}\right)^{-1} \quad \text { and } \quad p_{2}(s)=\prod_{\chi(p)=-1}\left(1-p^{-s}\right)^{-1} .
$$

Moreover, we will provide the general term of these series at even positive integers in the case $\Delta_{K}>0$. For it, we will use generalized Bernoulli numbers.

Remark 1 Recall that

$$
f(n)=o(g(n)) \text { means that } \lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}=0
$$

and

$$
a(n)=b(n)+o(g(n)) \text { means that } a(n)-b(n)=o(g(n)) .
$$

In order to prove Theorem 2 we will need two lemmata.
Lemma 1 Let σ be a real number, $\sigma>1$. Then,

$$
\frac{2^{\sigma}-1}{2^{\sigma}-2}<\zeta(\sigma)<\frac{2^{\sigma}}{2^{\sigma}-2} .
$$

Proof We make a partition of \mathbb{N} in the sets $A_{k}=\left\{n \in \mathbb{N}: 2^{k} \leq n<2^{k+1}\right\}, k \geq 1$. It is clear that $\left|A_{k}\right|=2^{k}$, and that if $n \in A_{k}$, then $n^{-\sigma} \leq 2^{-\bar{k} \sigma}$. Hence,

$$
\begin{aligned}
\zeta(\sigma) & =\sum_{n \in \mathbb{N}} n^{-\sigma}=\sum_{k \geq 0} \sum_{n \in A_{k}} n^{-\sigma}<\sum_{k \geq 0} \sum_{n \in A_{k}} 2^{-k \sigma} \\
& =\sum_{k \geq 0}\left|A_{k}\right| \cdot 2^{-k \sigma}=\sum_{k \geq 0} 2^{k} \cdot 2^{-k \sigma}=\sum_{k \geq 0}\left(2^{1-\sigma}\right)^{k} \\
& =\frac{1}{1-2^{1-\sigma}}=\frac{2^{\sigma}}{2^{\sigma}-2} .
\end{aligned}
$$

Using that if $n \in A_{k}$ then $n^{-\sigma} \leq 2^{-(k+1) \sigma}$, we obtain the other side of the inequality.

Lemma 2 Let $s=\sigma+$ it, with $\sigma \geq 2$, and let q_{1} and q_{2} be given by (3). Then,

$$
\left|\log q_{i}(s)\right| \leq \frac{16}{2^{\sigma}-2} \quad \text { for } \quad i=1,2,
$$

where \log denotes the principal branch of the complex logarithm.

Proof First we claim that

$$
\begin{equation*}
|\log (1+z)| \leq-\log (1-|z|) \tag{5}
\end{equation*}
$$

for each $|z|<1$. To see it, it suffices to compare its power series:

$$
|\log (1+z)|=\left|z-\frac{z^{2}}{2}+\cdots\right| \leq|z|+\frac{|z|^{2}}{2}+\cdots=-\log (1-|z|)
$$

Now, using (5) and that

$$
\left|\frac{1-p^{-s}}{1+p^{-s}}-1\right|=\frac{2 p^{-\sigma}}{1-p^{-\sigma}}
$$

we get

$$
\begin{aligned}
\left|\log q_{i}(s)\right| & =\left|\log \prod_{\chi(p)= \pm 1}\left(\frac{1-p^{-s}}{1+p^{-s}}\right)\right| \\
& \leq \sum_{\chi(p)= \pm 1}\left|\log \left(\frac{1-p^{-s}}{1+p^{-s}}\right)\right| \\
& \leq \sum_{\chi(p)= \pm 1}-\log \left(1-\frac{2 p^{-\sigma}}{1-p^{-\sigma}}\right) \\
& =\sum_{\chi(p)= \pm 1} \log \left(\frac{1-p^{-\sigma}}{1-3 p^{-\sigma}}\right) .
\end{aligned}
$$

Moreover, since $\log (1+x) \leq x$ for each $x>0$, then

$$
\left|\log q_{i}(s)\right| \leq \sum_{\chi(p)= \pm 1}\left(\frac{1-p^{-\sigma}}{1-3 p^{-\sigma}}-1\right)=\sum_{\chi(p)= \pm 1} \frac{2}{p^{\sigma}-3}
$$

But since $\sigma \geq 2$ then

$$
p^{\sigma}-3 \geq \frac{1}{4} p^{\sigma}
$$

for each $p \geq 2$, and therefore

$$
\left|\log q_{i}(s)\right| \leq 8 \sum_{\chi(p)= \pm 1} p^{-\sigma}, \quad i=1,2 .
$$

Finally, by Lemma 1 we have that

$$
\left|\log q_{i}(s)\right| \leq 8 \sum_{n \geq 2} n^{-\sigma} \leq \frac{16}{2^{\sigma}-2}, \quad i=1,2,
$$

and we are done.

By using the last Lemma, we will be able to bound the general term of the series which give p_{1} and p_{2}, and from this, we will deduce Theorem 2 .

Proof of Theorem 2, Let x_{n} and y_{n} be the general term of the series which give $\log p_{1}(2 s)$ and $\log p_{2}(2 s)$, i.e.

$$
x_{n}=\frac{1}{2^{n+1}} \log q_{1}\left(2^{n} s\right), \quad y_{n}=\frac{1}{2^{n+1}} \log q_{2}\left(2^{n} s\right)
$$

By Lemma 2 we have that

$$
\left|x_{n}\right|=\frac{1}{2^{n+1}}\left|\log q_{1}\left(2^{n} s\right)\right| \leq \frac{1}{2^{n+1}} \frac{16}{2^{2^{n} \sigma}-2}=o\left(2^{-2^{n}}\right) .
$$

Analogously,

$$
y_{n}=o\left(2^{-2^{n}}\right)
$$

Thus,

$$
\begin{aligned}
p_{i}(2 s) & =\exp \left\{-\sum_{k=1}^{n} x_{k}-\sum_{k=n+1}^{\infty} o\left(2^{-2^{k}}\right)\right\} \\
& =\exp \left\{-\sum_{k=1}^{n} x_{k}-o\left(\sum_{k=n+1}^{\infty} 2^{-2^{k}}\right)\right\} \\
& =\exp \left\{-\sum_{k=1}^{n} x_{k}+o\left(2^{-2^{n}}\right)\right\} \\
& =\exp \left\{-\sum_{k=1}^{n} x_{k}\right\} \exp \left\{o\left(2^{-2^{n}}\right)\right\} \\
& =\exp \left\{-\sum_{k=1}^{n} x_{k}\right\}\left(1+o\left(2^{-2^{n}}\right)\right) \\
& =\exp \left\{-\sum_{k=1}^{n} x_{k}\right\}+o\left(2^{-2^{n}}\right)
\end{aligned}
$$

and we are done.
Let us see now how can we evaluate the general term $2^{-n-1} \log q_{i}\left(2^{n} s\right)$ of the series at even positive integers when $\Delta_{K}>0$.

Recall that given a Dirichlet character $\chi \bmod d$, the generalized Bernoulli numbers 2] are given by

$$
\sum_{a=1}^{d} \chi(a) \frac{t e^{a t}}{e^{d t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!}
$$

Moreover,

$$
L(1-n, \chi)=-\frac{B_{n, \chi}}{n},
$$

and using the functional equation of the L-function one can evaluate L at some positive integers, as given in the following Theorem.

Theorem 3 ([2]) Let χ be a nontrivial primitive character modulo d, and let a be 0 if χ is even and 1 if χ is odd. Then, if $n \equiv a(\bmod 2)$,

$$
L(n, \chi)=(-1)^{1+\frac{n-a}{2}} \frac{g(\chi)}{2 i^{a}}\left(\frac{2 \pi}{m}\right)^{n} \frac{B_{n, \bar{\chi}}}{n!}
$$

where $g(\chi)$ is the Gauss sum of the character.
Let now be $d=\Delta_{K}>0$. Then, χ is an even quadratic character mod d. Therefore, for each $n \in \mathbb{N}$ even, one has

$$
\begin{equation*}
L(n, \chi)=(-1)^{1+\frac{n}{2}} \frac{\sqrt{d}}{2}\left(\frac{2 \pi}{d}\right)^{n} \frac{B_{n, \chi}}{n!} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta(n)=(-1)^{1+\frac{n}{2}} \frac{(2 \pi)^{n}}{2} \frac{B_{n}}{n!} . \tag{7}
\end{equation*}
$$

From these equalities, we deduce the following.
Proposition 2 Assume that $d=\Delta_{K}>0$. Then, for each even natural number $n \geq 2$, we have

$$
\begin{gather*}
q_{1}(n)=\frac{2 d^{n}}{\binom{2 n}{n} \sqrt{d}} \frac{B_{2 n}}{B_{n, \chi} B_{n}} \prod_{p \mid d}\left(1+p^{-n}\right) \tag{8}\\
q_{2}(n)=\frac{\sqrt{d}}{d^{n}} \frac{B_{n, \chi}}{B_{n}} \prod_{p \mid d}\left(1-p^{-n}\right)^{-1} \tag{9}
\end{gather*}
$$

Proof It follows immediately from (6), (7), and the definition of q_{1} and $q_{2}(3)$.
Hence, by using Proposition 2 and Theorem 2 we obtain series of very fast convergence to evaluate p_{1} and p_{2} at even positive integers.

To see an example, let χ be the primitive character modulo 5 , and let us evaluate $p_{1}(2)$. One the one hand, Taking the first 10 terms of the infinite product one obtains 2 correct digits. On the other hand, taking also the first 10 terms in our series one obtains 619 correct digits. The following table shows the aproximate error when taking n terms of our series.

\mathbf{N}	$p_{1}(2)-\exp \left\{-\sum_{k=1}^{N} \frac{1}{2^{k}} \log q_{1}\left(2^{k}\right)\right\}$
1	10^{-2}
2	10^{-3}
3	10^{-6}
4	10^{-11}
5	10^{-21}
6	10^{-41}
7	10^{-79}
8	10^{-157}
9	10^{-311}
10	10^{-620}
11	10^{-1237}
12	10^{-2470}

Acknowledgements The author thanks Joan-C. Lario for his comments and suggestions.

References

1. Davenport H.: Multiplicative number theory. Springer-Verlag, 1980.
2. Zagier D. B.: Zetafunktionen und quadratische Körper. Springer-Verlag, 1981

[^0]: Xavier Ros-Oton
 Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, Spain
 Tel.: +34 934015815
 E-mail: xavier.ros.oton@upc.edu

