On a factorization of Riemann's ζ function with respect to a quadratic field and its computation

Xavier Ros-Oton

Received: date / Accepted: date

Abstract Let K be a quadratic field, and let ζ_K its Dedekind zeta function. In this paper we introduce a factorization of ζ_K into two functions, L_1 and L_2 , defined as partial Euler products of ζ_K , which lead to a factorization of Riemann's ζ function into two functions, p_1 and p_2 . We prove that these functions satisfy a functional equation which has a unique solution, and we give series of very fast convergence to them. Moreover, when $\Delta_K > 0$ the general term of these series at even positive integers is calculated explicitly in terms of generalized Bernoulli numbers.

Keywords Riemman's ζ function \cdot factorization \cdot functional equation \cdot quadratic field

Mathematics Subject Classification (2000) 11M06 · 11M41

1 Introduction

Let K be a quadratic field and let χ be the Dirichlet character attached to K/\mathbb{Q} . Its Dedekind's zeta function can be written as

$$\zeta_K(s) = \zeta(s)L(s,\chi),$$

where ζ is Riemann's zeta function and L is the L-function associated with χ (see, for example, [1]). Hence, an alternative factorization, for $\Re \mathfrak{e}(s) > 1$, is the one given by the partial products

$$\zeta_K(s) = \prod_{p|d} (1 - p^{-s})^{-1} L_1(s) L_2(s),$$

Xavier Ros-Oton

Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona, Spain

Tel.: +34 934015815

E-mail: xavier.ros.oton@upc.edu

where $d = |\Delta_K|$ is the absolute value of the discriminant of K, and

$$L_1(s) = \prod_{\chi(p)=1} (1 - p^{-s})^{-2}, \qquad L_2(s) = \prod_{\chi(p)=-1} (1 - p^{-2s})^{-1}.$$

Note that L_1 and L_2 are obtained as partial Euler products of $\zeta(s)^2$ and $\zeta(2s)$ respectively, so they converge and are non-zero for $\Re \mathfrak{e}(s) > 1$ and $\Re \mathfrak{e}(s) > 1/2$ respectively.

Define now

$$p_1(s) = \prod_{\chi(p)=1} (1 - p^{-s})^{-1}$$
 and $p_2(s) = \prod_{\chi(p)=-1} (1 - p^{-s})^{-1}$. (1)

Then, we have that

$$L_1(s) = p_1(s)^2, \qquad L_2(s) = p_2(2s),$$

and thus it is equivalent to study L_1 and L_2 or p_1 and p_2 . Note that

$$\zeta(s) = \prod_{p|d} (1 - p^{-s})^{-1} p_1(s) p_2(s),$$

and hence, p_1 and p_2 give a factorization of Riemann's zeta function.

The plan of the paper is as follows. In section 2 we see that p_1 and p_2 satisfy a functional equation. More precisely, we prove

Theorem 1 The functions p_1 and p_2 satisfy the functional equations

$$\frac{p_i(2s)}{p_i(s)^2} = q_i(s), \qquad \lim_{\Re \mathfrak{c}(s) \to +\infty} p_i(s) = 1, \qquad \text{for} \qquad i = 1, 2, \tag{2}$$

where

$$q_1(s) = \frac{\zeta(2s)}{\zeta(s)L(s,\chi)} \prod_{p|d} (1+p^{-s}), \qquad q_2(s) = \frac{L(s,\chi)}{\zeta(s)} \prod_{p|d} (1-p^{-s})^{-1}.$$
 (3)

Furthermore, these functional equations have a unique solution, so they completely determine the functions p_1 and p_2 .

Moreover, we shall see that the logarithm of the solution of this functional equation can be written as a series

$$\log p_i(s) = -\sum_{n=0}^{+\infty} \frac{\log q_i(2^n s)}{2^{n+1}}, \qquad i = 1, 2,$$
(4)

and hence, we will have an alternative expression of p_1 and p_2 .

In section 3 we will see that the series given by (4) are of very fast convergence. We shall prove

Theorem 2 Let s be complex number such that $\Re \mathfrak{e}(s) \geq 1$. Then,

$$p_1(2s) = \exp\left\{-\sum_{k=1}^n \frac{1}{2^k} \log q_1(2^k s)\right\} + o\left(2^{-2^n}\right),$$

and

$$p_2(2s) = \exp\left\{-\sum_{k=1}^n \frac{1}{2^k} \log q_2(2^k s)\right\} + o\left(2^{-2^n}\right).$$

As a consequence, we will have a way to evaluate p_1 and p_2 at even positive integers when Δ_K is positive. This will be done by calculating explicitly the general term of the series in this case.

2 The functional equation of p_1 and p_2

First we prove that the functional equation appearing in Theorem 1 has a unique solution and that this solution can be written as an infinite series. The statement of the result is the following.

Proposition 1 Let $\Omega = \{s \in \mathbb{C} | \Re \mathfrak{e}(s) > 1\}$, and q an holomorphic function defined in Ω , with $q(s) \neq 0$ for all $s \in \Omega$ and $\lim_{\Re \mathfrak{e}(s) \to +\infty} q(s) = 1$. Then, the functional equation

$$\frac{p(2s)}{p(s)^2} = q(s), \qquad \lim_{\Re e(s) \to +\infty} p(s) = 1$$

has a unique solution p(s). In addition, the solution can be written as

$$p(s) = \exp\left\{-\sum_{n>0} \frac{\log q(2^n s)}{2^{n+1}}\right\},$$

and this series is absolutely convergent for all s in Ω .

Proof Suppose that p(s) satisfies the functional equation. Then, $p(s) \neq 0$ for all $s \in \Omega$. This is because p(s) = 0 implies p(2s) = 0 and $p(2^k s) = 0$ for k = 1, 2, ..., which contradicts the hypothesis $\lim_{\mathfrak{Re}(s) \to +\infty} p(s) = 1$. Thus, we can define

$$f(s) = \frac{\log p(s)}{s}, \qquad g(s) = \frac{\log q(s)}{2s},$$

where log is the principal branch of the complex logarithm. Taking logarithms to our functional equation and dividing by 2s, we have that

$$f(2s) = f(s) + g(s),$$

$$\lim_{\Re \mathfrak{e}(s) \to +\infty} f(s) = 0.$$

Writing this last equation for $s, 2s, 4s, 8s, ..., 2^{N}s$, and adding them, we obtain that

$$f(2^{N+1}s) = f(s) + \sum_{n=0}^{N} g(2^n s).$$

Since $\Re \mathfrak{e}(s) > 1$, then $\Re \mathfrak{e}(2^{N+1}s) \to +\infty$ when $N \to \infty$, so

$$f(s) + \sum_{n=0}^{\infty} g(2^n s) = \lim_{N \to \infty} f(2^{N+1} s) = 0,$$

and

$$\log p(s) = -\sum_{n>0} \frac{\log q(2^n s)}{2^{n+1}}.$$

Since

$$\lim_{\Re \mathfrak{e}(s) \to +\infty} \log q(s) = 0,$$

the sequence $\{\log q(2^n s)\}_{n \in \mathbb{N}}$ converges (it tends to 0), and in particular it is bounded. Hence, there exists M > 0 such that $|\log q(2^n s)| < M$, and then

$$\sum_{n>0} \left| \frac{\log q(2^n s)}{2^{n+1}} \right| \le \sum_{n>0} \frac{M}{2^{n+1}} = M,$$

so the series is absolutely convergent for all $s \in \Omega$.

Let us see that this function satisfies the functional equation. We have that

$$\log p(2s) - 2\log p(s) = -\sum_{n\geq 0} \frac{\log q(2^{n+1}s)}{2^{n+1}} + 2\sum_{n\geq 0} \frac{\log q(2^ns)}{2^{n+1}}$$
$$= -\sum_{n\geq 1} \frac{\log q(2^ns)}{2^n} + \sum_{n\geq 0} \frac{\log q(2^ns)}{2^n}$$
$$= \log q(s),$$

and then,

$$\frac{p(2s)}{p(s)^2} = q(s).$$

We now have to see that $\lim_{\Re \mathfrak{e}(s) \to +\infty} p(s) = 1$, or equivalently,

$$\lim_{\mathfrak{Re}(s)\to +\infty} \log p(s) = 0.$$

For it, fix $\varepsilon > 0$. Since $\lim_{\Re \mathfrak{e}(s) \to +\infty} q(s) = 1$, then $\lim_{\Re \mathfrak{e}(s) \to +\infty} \log q(s) = 0$, and exists $\sigma > 0$ such that

$$|\log q(s)| < \epsilon$$
 for all s with $\Re e(s) \ge \sigma$.

Hence, if $\Re \mathfrak{e}(s) \geq \sigma$, then

$$|\log p(s)| \le \sum_{n\ge 0} \left| \frac{\log q(2^n s)}{2^{n+1}} \right| \le \sum_{n\ge 0} \frac{\varepsilon}{2^{n+1}} = \varepsilon,$$

and $\lim_{\mathfrak{Re}(s)\to+\infty} \log p(s) = 0$, as claimed.

Note that, in fact, the branch of the logarithm is irrelevant, since when we take exponentials, we will have

$$p(s) = \exp\left\{-\sum_{n\geq 0} \frac{\log q(2^n s)}{2^{n+1}}\right\},$$

independently of the chosen branch.

We can now give the:

Proof of Theorem 1. On the one hand, it is clear that $\lim_{\mathfrak{Re}(s)\to+\infty} p_i(s)=1$, i=1,2.

On the other hand, we have that

$$p_{1}(s)\frac{p_{2}(2s)}{p_{2}(s)} = \prod_{\chi(p)=1} (1-p^{-s})^{-1} \frac{\prod_{\chi(p)=-1} (1-p^{-2s})^{-1}}{\prod_{\chi(p)=-1} (1-p^{-s})^{-1}}$$

$$= \prod_{\chi(p)=1} (1-p^{-s})^{-1} \prod_{\chi(p)=-1} \left(\frac{1-p^{-2s}}{1-p^{-s}}\right)^{-1}$$

$$= \prod_{\chi(p)=1} (1-p^{-s})^{-1} \prod_{\chi(p)=-1} (1+p^{-s})^{-1}$$

$$= L(s,\chi),$$

and since

$$p_1(s) = \frac{1}{p_2(s)} \zeta(s) \prod_{p|d} (1 - p^{-s}),$$

then

$$\frac{p_2(2s)}{p_2(s)^2} = \frac{L(s,\chi)}{\zeta(s)} \prod_{p|d} (1-p^{-s})^{-1}.$$

Using now that

$$p_2(s) = \frac{1}{p_1(s)} \zeta(s) \prod_{p|d} (1 - p^{-s}),$$

we obtain

$$\frac{p_1(2s)}{p_1(s)^2} = \frac{p_2(s)^2}{p_2(2s)} \cdot \frac{\zeta(2s) \prod_{p|d} (1-p^{-2s})}{\zeta(s)^2 \prod_{p|d} (1-p^{-s})^2} = \frac{\zeta(2s)}{\zeta(s) L(s,\chi)} \prod_{p|d} (1+p^{-s}).$$

The fact that these functional equations have an unique solution follows from Proposition 1. $\hfill\Box$

As a consequence of Proposition 1 and Theorem 1, we obtain the following expression for $p_1(s)$ and $p_2(s)$.

Corollary 1 Let p_1 and p_2 be given by (1). Then,

$$p_i(s) = \exp\left\{-\frac{1}{2} \sum_{n \ge 0} \frac{\log q_i(2^n s)}{2^n}\right\}$$
 for $i = 1, 2,$

where

$$q_1(s) = \frac{\zeta(2s)}{\zeta(s)L(s,\chi)} \prod_{p|d} (1+p^{-s}), \quad and \quad q_2(s) = \frac{L(s,\chi)}{\zeta(s)} \prod_{p|d} (1-p^{-s})^{-1}.$$

These expressions will be used in the next section.

3 Evaluating p_1 and p_2

In this section we will calculate the order of convergence of the series given by Corollary 1. We will see that this convergence is of order 2^{-2^n} , i.e.,

$$p_i(2s) = \exp\left\{-\sum_{k=1}^n \frac{1}{2^k} \log q_i(2^k s)\right\} + o\left(2^{-2^n}\right),$$

and therefore this will be a better way to evaluate the functions p_1 and p_2 than the one given by the infinite products

$$p_1(s) = \prod_{\chi(p)=1} (1 - p^{-s})^{-1}$$
 and $p_2(s) = \prod_{\chi(p)=-1} (1 - p^{-s})^{-1}$.

Moreover, we will provide the general term of these series at even positive integers in the case $\Delta_K > 0$. For it, we will use generalized Bernoulli numbers.

 $Remark\ 1$ Recall that

$$f(n) = o(g(n))$$
 means that $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$,

and

$$a(n) = b(n) + o(g(n))$$
 means that $a(n) - b(n) = o(g(n))$.

In order to prove Theorem 2, we will need two lemmata.

Lemma 1 Let σ be a real number, $\sigma > 1$. Then,

$$\frac{2^{\sigma}-1}{2^{\sigma}-2} < \zeta(\sigma) < \frac{2^{\sigma}}{2^{\sigma}-2}.$$

Proof We make a partition of $\mathbb N$ in the sets $A_k=\{n\in\mathbb N: 2^k\leq n<2^{k+1}\},\ k\geq 1$. It is clear that $|A_k|=2^k$, and that if $n\in A_k$, then $n^{-\sigma}\leq 2^{-k\sigma}$. Hence,

$$\zeta(\sigma) = \sum_{n \in \mathbb{N}} n^{-\sigma} = \sum_{k \ge 0} \sum_{n \in A_k} n^{-\sigma} < \sum_{k \ge 0} \sum_{n \in A_k} 2^{-k\sigma}$$
$$= \sum_{k \ge 0} |A_k| \cdot 2^{-k\sigma} = \sum_{k \ge 0} 2^k \cdot 2^{-k\sigma} = \sum_{k \ge 0} (2^{1-\sigma})^k$$
$$= \frac{1}{1 - 2^{1-\sigma}} = \frac{2^{\sigma}}{2^{\sigma} - 2}.$$

Using that if $n \in A_k$ then $n^{-\sigma} \leq 2^{-(k+1)\sigma}$, we obtain the other side of the inequality.

Lemma 2 Let $s = \sigma + it$, with $\sigma \ge 2$, and let q_1 and q_2 be given by (3). Then,

$$|\log q_i(s)| \le \frac{16}{2^{\sigma} - 2}$$
 for $i = 1, 2,$

 $where \ \log \ denotes \ the \ principal \ branch \ of \ the \ complex \ logarithm.$

Proof First we claim that

$$|\log(1+z)| \le -\log(1-|z|),$$
 (5)

for each |z| < 1. To see it, it suffices to compare its power series:

$$|\log(1+z)| = \left|z - \frac{z^2}{2} + \dots\right| \le |z| + \frac{|z|^2}{2} + \dots = -\log(1-|z|).$$

Now, using (5) and that

$$\left| \frac{1 - p^{-s}}{1 + p^{-s}} - 1 \right| = \frac{2p^{-\sigma}}{1 - p^{-\sigma}},$$

we get

$$|\log q_i(s)| = \left| \log \prod_{\chi(p)=\pm 1} \left(\frac{1-p^{-s}}{1+p^{-s}} \right) \right|$$

$$\leq \sum_{\chi(p)=\pm 1} \left| \log \left(\frac{1-p^{-s}}{1+p^{-s}} \right) \right|$$

$$\leq \sum_{\chi(p)=\pm 1} -\log \left(1 - \frac{2p^{-\sigma}}{1-p^{-\sigma}} \right)$$

$$= \sum_{\chi(p)=\pm 1} \log \left(\frac{1-p^{-\sigma}}{1-3p^{-\sigma}} \right).$$

Moreover, since $\log(1+x) \leq x$ for each x > 0, then

$$|\log q_i(s)| \le \sum_{\chi(p)=\pm 1} \left(\frac{1-p^{-\sigma}}{1-3p^{-\sigma}}-1\right) = \sum_{\chi(p)=\pm 1} \frac{2}{p^{\sigma}-3}.$$

But since $\sigma \geq 2$ then

$$p^{\sigma} - 3 \ge \frac{1}{4}p^{\sigma}$$

for each $p \geq 2$, and therefore

$$|\log q_i(s)| \le 8 \sum_{\chi(p)=\pm 1} p^{-\sigma}, \qquad i = 1, 2.$$

Finally, by Lemma 1 we have that

$$|\log q_i(s)| \le 8 \sum_{n \ge 2} n^{-\sigma} \le \frac{16}{2^{\sigma} - 2}, \qquad i = 1, 2,$$

and we are done.

By using the last Lemma, we will be able to bound the general term of the series which give p_1 and p_2 , and from this, we will deduce Theorem 2.

Proof of Theorem 2. Let x_n and y_n be the general term of the series which give $\log p_1(2s)$ and $\log p_2(2s)$, i.e.

$$x_n = \frac{1}{2^{n+1}} \log q_1(2^n s), \qquad y_n = \frac{1}{2^{n+1}} \log q_2(2^n s).$$

By Lemma 2, we have that

$$|x_n| = \frac{1}{2^{n+1}} |\log q_1(2^n s)| \le \frac{1}{2^{n+1}} \frac{16}{2^{2^n \sigma} - 2} = o\left(2^{-2^n}\right).$$

Analogously,

$$y_n = o\left(2^{-2^n}\right).$$

Thus,

$$p_{i}(2s) = \exp\left\{-\sum_{k=1}^{n} x_{k} - \sum_{k=n+1}^{\infty} o\left(2^{-2^{k}}\right)\right\}$$

$$= \exp\left\{-\sum_{k=1}^{n} x_{k} - o\left(\sum_{k=n+1}^{\infty} 2^{-2^{k}}\right)\right\}$$

$$= \exp\left\{-\sum_{k=1}^{n} x_{k} + o\left(2^{-2^{n}}\right)\right\}$$

$$= \exp\left\{-\sum_{k=1}^{n} x_{k}\right\} \exp\left\{o\left(2^{-2^{n}}\right)\right\}$$

$$= \exp\left\{-\sum_{k=1}^{n} x_{k}\right\} \left(1 + o\left(2^{-2^{n}}\right)\right)$$

$$= \exp\left\{-\sum_{k=1}^{n} x_{k}\right\} + o\left(2^{-2^{n}}\right),$$

and we are done.

Let us see now how can we evaluate the general term $2^{-n-1} \log q_i(2^n s)$ of the series at even positive integers when $\Delta_K > 0$.

Recall that given a Dirichlet character χ mod d, the generalized Bernoulli numbers [2] are given by

$$\sum_{a=1}^{d} \chi(a) \frac{te^{at}}{e^{dt} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}.$$

Moreover,

$$L(1-n,\chi) = -\frac{B_{n,\chi}}{n},$$

and using the functional equation of the L-function one can evaluate L at some positive integers, as given in the following Theorem.

Theorem 3 ([2]) Let χ be a nontrivial primitive character modulo d, and let a be 0 if χ is even and 1 if χ is odd. Then, if $n \equiv a \pmod{2}$,

$$L(n,\chi) = (-1)^{1 + \frac{n-a}{2}} \frac{g(\chi)}{2i^a} \left(\frac{2\pi}{m}\right)^n \frac{B_{n,\overline{\chi}}}{n!},$$

where $g(\chi)$ is the Gauss sum of the character.

Let now be $d = \Delta_K > 0$. Then, χ is an even quadratic character $mod\ d$. Therefore, for each $n \in \mathbb{N}$ even, one has

$$L(n,\chi) = (-1)^{1+\frac{n}{2}} \frac{\sqrt{d}}{2} \left(\frac{2\pi}{d}\right)^n \frac{B_{n,\chi}}{n!},\tag{6}$$

and

$$\zeta(n) = (-1)^{1 + \frac{n}{2}} \frac{(2\pi)^n}{2} \frac{B_n}{n!}.$$
 (7)

From these equalities, we deduce the following

Proposition 2 Assume that $d = \Delta_K > 0$. Then, for each even natural number $n \geq 2$, we have

$$q_1(n) = \frac{2d^n}{\binom{2n}{n}\sqrt{d}} \frac{B_{2n}}{B_{n,\chi}B_n} \prod_{p|d} (1+p^{-n}), \tag{8}$$

$$q_2(n) = \frac{\sqrt{d}}{d^n} \frac{B_{n,\chi}}{B_n} \prod_{p|d} (1 - p^{-n})^{-1}.$$
 (9)

Proof It follows immediately from (6), (7), and the definition of q_1 and q_2 (3). \square

Hence, by using Proposition 2 and Theorem 2 we obtain series of very fast convergence to evaluate p_1 and p_2 at even positive integers.

To see an example, let χ be the primitive character modulo 5, and let us evaluate $p_1(2)$. One the one hand, Taking the first 10 terms of the infinite product one obtains 2 correct digits. On the other hand, taking also the first 10 terms in our series one obtains 619 correct digits. The following table shows the approximate error when taking n terms of our series.

N	$p_1(2) - \exp\left\{-\sum_{k=1}^{N} \frac{1}{2^k} \log q_1(2^k)\right\}$
1	10^{-2}
2	10^{-3}
3	10^{-6}
4	10^{-11}
5	10^{-21}
6	10^{-41}
7	10^{-79}
8	10^{-157}
9	10^{-311}
10	10^{-620}
11	10^{-1237}
12	10^{-2470}

Acknowledgements The author thanks Joan-C. Lario for his comments and suggestions.

References

- Davenport H.: Multiplicative number theory. Springer-Verlag, 1980.
 Zagier D. B.: Zetafunktionen und quadratische Körper. Springer-Verlag, 1981.