BOUNDARY REGULARITY ESTIMATES FOR
NONLOCAL ELLIPTIC EQUATIONS IN C' AND C'* DOMAINS

XAVIER ROS-OTON AND JOAQUIM SERRA

ABSTRACT. We establish sharp boundary regularity estimates in C' and C1®
domains for nonlocal problems of the form Lu = f in Q, u = 0 in Q°. Here, L is
a nonlocal elliptic operator of order 2s, with s € (0, 1).

First, in C1® domains we show that all solutions u are C* up to the boundary
and that u/d* € C*(Q), where d is the distance to 9.

In C' domains, solutions are in general not comparable to d®, and we prove
a boundary Harnack principle in such domains. Namely, we show that if u; and
ug are positive solutions, then u; /us is bounded and Hélder continuous up to the
boundary.

Finally, we establish analogous results for nonlocal equations with bounded
measurable coefficients in non-divergence form. All these regularity results will
be essential tools in a forthcoming work on free boundary problems for nonlocal
elliptic operators [CRS15].

1. INTRODUCTION AND RESULTS

In this paper we study the boundary regularity of solutions to nonlocal elliptic
equations in C! and C1* domains. The operators we consider are of the form

Lu(z) = / (“(“m tul@—y) —u(x)) aw/lvl) 4, (1.1)

2 i

with
0<A<a@) <A,  HecSh (1.2)
When a = ctt, then L is a multiple of the fractional Laplacian —(—A)®.
We consider solutions u € L>®(R™) to

Lu = f in BiNQ
with f € L>®(Q N By) and 0 € 01.

When L is the Laplacian A, then the following are well known results:
(i) If Qis C12, then u € CY(Q N By o).
(i) If  is C*, then solutions are in general not C%!.
Still, in C* domains one has the following boundary Harnack principle:
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(iii) If Q is C1, and u; and uy are positive in €, with f = 0, then u; and u, are
comparable in QN By, and uy /us € cor(QnN By ;) for some small v > 0.
Actually, (iii) holds in general Lipschitz domains (for v small enough), or even in
less regular domains; see [Dah77, BBB91]. Analogous results hold for more general
second order operators in non-divergence form L = 3}, - a;;(x)0;ju with bounded
measurable coefficients a;;(x) [BB94].

The aim of the present paper is to establish analogous results to (i) and (iii) for
nonlocal elliptic operators L of the form ({1.1)-(1.2)), and also for non-divergence

operators with bounded measurable coefficients.

1.1. C%* domains. When L = A in (1.3) and Q is C*“, then solutions u are as
regular as the domain €2 provided that f is regular enough. In particular, if €2 is

C> and f € C* then u € C>(Q).

When L = —(—A)?%, then the boundary regularity is well understood in C1:!
and in €' domains. In both cases, the optimal Holder regularity of solutions is
u € C*(Q), and in general one has u ¢ C**<(Q) for any e > 0. Still, higher order
estimates are given in terms of the regularity of u/d*: if Q is C* and f € C* then
u/d® € C=(); see Grubb [Gruld, [Gruld]. Here, d(x) = dist(z,R™ \ ).

We prove here a boundary regularity estimate of order s + o in C** domains.
Namely, we show that if Q is C* then u/d* € C*(€), as stated below.

We first establish the optimal Holder regularity up to the boundary, u € C*(Q).

Proposition 1.1. Let s € (0,1), L be any operator of the form (L.1)-(1.2), and Q
be any bounded CY* domain. Let u be a solution of (1.3)). Then,

ullcs(s, ) < C (1l Biney + llull Lo @ny) -

The constant C' depends only on n, s, €2, and ellipticity constants.

Our second result gives a finer description of solutions in terms of the function d?,
as explained above.

Theorem 1.2. Let s € (0,1) and o € (0,s). Let L be any operator of the form

(1.1)-([1.2), Q be any CY* domain, and d be the distance to 0. Let u be a solution
of (1.3)). Then,

lu/dllcags, pom < C (I l=mine) + llullze@n) -
The constant C' depends only on n, s, a, 2, and ellipticity constants.

The previous estimate in CY® domains was only known for the half-Laplacian
(—A)Y2; see De Silva and Savin [DST4]. For more general nonlocal operators, such
estimate was only known in C'*' domains [RS14D).

The proofs of Proposition [1.1|and Theorem |1.2|follow the ideas of [RS14b], where
the same estimates were established in C'' domains. One of the main difficulties in
the present proofs is the construction of appropriate barriers. Indeed, while any C'!!
domain satisfies the interior and exterior ball condition, this is not true anymore
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in C** domains, and the construction of barriers is more delicate. We will need a
careful computation to show that

IL(d*)] < Cd*™ in Q.

In fact, since d® is not regular enough to compute L, we need to define a new function
) which behaves like d but it is C? inside ©, and will show that |L(¢*)] < Cd*~%;
see Definition 2.1

Once we have this, and doing some extra computations we will be able to construct
sub and supersolutions which are comparable to d®, and thus we will have

lu| < Cd°.
This, combined with interior regularity estimates, will give the C** estimate of Propo-
sition [l
Then, combining these ingredients with a blow-up and compactness argument in
the spirit of [RS14bl, RS14], we will find the expansion
[ule) — Q(2)d* ()] < Cla — 2|+
at any z € 02. And this will yield Theorem [1.2]

1.2. C' domains. In C! domains, in general one does not expect solutions to be
comparable to d°. In that case, we establish the following.

Theorem 1.3. Let s € (0,1) and o € (0,s). Let L be any operator of the form

(L.1)-(1.2), and Q be any C* domain.

Then, there exists is § > 0, depending only on «, n, s, 2, and ellipticity constants,
such that the following statement holds.

Let wy and ug, be wviscosity solutions of with right hand sides f; and fs,
respectively. Assume that || f;||LeB,na) < Co (with Cy > 3), ||t;| peemny < Co,

fi>—=0 in BiNQ,

and that
u; >0 in R, sup u; > 1.
B2
Then,
[u1/uzl|ca@np, ) < CCo, a € (0,s),
where C' depends only on «, n, s, Q, and ellipticity constants.

We expect the range of exponents « € (0, s) to be optimal.
In particular, the previous result yields a boundary Harnack principle in C*! do-
mains.

Corollary 1.4. Let s € (0,1), L be any operator of the form (1.1))-(1.2)), and Q be
any C' domain. Let uy and uy, be viscosity solutions of

Lu;=Luy = 0 in B NN
up=uy = 0 in B\,
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Assume that
u; >0 and ug > 0 m  R",
and that supp, , U1 = supg, Uy = 1. Then,
U
0<Cl<l<c in By,
U2

where C' depends only on n, s, 2, and ellipticity constants.

Theorems and will be important tools in a forthcoming work on free
boundary problems for nonlocal elliptic operators [CRS15]. Namely, Theorem
(applied to the derivatives of the solution to the free boundary problem) will yield
that C! free boundaries are in fact C*%, and then thanks to Theorem we will
get a fine description of solutions in terms of d°.

1.3. Equations with bounded measurable coefficients. We also obtain esti-
mates for equations with bounded measurable coefficients,

M+u > _KO in B1 NnQ
M~u S K(] in B1 NnQ (14)
u = 0 in By \ Q.

Here, M and M~ are the extremal operators associated to the class L., consisting
of all operators of the form (1.1))-(1.2)), i.e.,

M* := M} u= sup Lu M~ := M} u= inf Lu.
£* Y ﬁ*
LeL. LeL.

Notice that the equation (|1.4)) is an equation with bounded measurable coefficients,
and it is the nonlocal analogue of

For nonlocal equations with bounded measurable coefficients in CY® domains, we
show the following.

Here, and throughout the paper, we denote & = &(n, s, A\, A) > 0 the exponent in
[RS14, Proposition 5.1].

Theorem 1.5. Let s € (0,1) and o € (0,&). Let Q be any C** domain, and d be
the distance to 0. Let u € C'(By) be any viscosity solution of (1.4). Then, we have

lw/d s, om < C (Ko + lullen) -
The constant C' depends only on n, s, «, €2, and ellipticity constants.
In C' domains we prove:

Theorem 1.6. Let s € (0,1) and a € (0,a). Let Q be any C* domain.
Then, there exists is § > 0, depending only on «, n, s, S, and ellipticity constants,
such that the following statement holds.
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Let uy and us, be functions satisfying

{ M (auy + bus)

Uyp = U2

—0(|a] +10]) in ByN§
0 m B1 \ Q,

v

for any a,b € R. Assume that
u; >0 in R,
||| oo mry < Co, and that Supp, , Ui > 1. Then, we have

||U1/U2||0a(mBl/2) <C,
where C' depends only on «, n, s, 1, and ellipticity constants.

The Boundary Harnack principle for nonlocal operators has been widely stud-
ied, and in some cases it is even known in general open sets; see Bogdan [Bog97],
Song-Wu [SW99], Bogdan-Kuleczycki-Kwasnicki [BKKO0§|, and Bogdan-Kumagai-
Kwasnicki [BKK15]. The main differences between our Theorems [1.3 and pre-
vious known results are the following. On the one hand, our results allow a right
hand side on the equation ([1.3)), and apply also to viscosity solutions of equations
with bounded measurable coefficients . On the other hand, we obtain a higher
order estimate, in the sense that for linear equations we prove that wu; /us is C for
all « € (0,s). Finally, the proof we present here is perturbative, in the sense the
we make a blow-up and use that after the rescaling the domain will be a half-space.
This allows us to get a higher order estimate for u; /uy, but requires the domain to
be at least C*.

The paper is organized as follows. In Section [2] we construct the barriers in O
domains. Then, in Section [3| we prove the regularity of solutions in C1** domains,
that is, Proposition and Theorems and [I.5] In Section [ we construct the
barriers needed in the analysis on C!' domains. Finally, in Section [5| we prove
Theorems [L.3] and [L.6l

2. BARRIERS: C'1® DOMAINS
Throughout this section, € will be any bounded and C'* domain, and
d(x) = dist(z,R" \ Q).

Since d is only O inside €2, we need to consider the following “regularized version”
of d.

Definition 2.1. Given a C''® domain 2, we consider a fixed function 1) satisfying
C~'d <+ < Cd, (2.1)

[¥llgra@ <C and  [D*)] < Cd*, (2.2)
with C' depending only on (2.
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Remark 2.2. Notice that to construct ¢) one may take for example the solution to
—Ay =11n Q, ¢ = 0 on 012, extended by ) = 0 in R™ \ Q.

Note also that any C'** domain Q can be locally represented as the epigraph of
a C1@ function. More precisely, there is a py > 0 such that for all z € 9 the set
00N B,,(2) is, after a rotation, the graph of a C** function. Then, the constant
C in — can be taken depending only on py and on the C* norms of these

functions.
We want to show the following.

Proposition 2.3. Let s € (0,1) and a € (0,s), L be given by (1.1))-(1.2), and 2 be
any OV domain. Let ¢ be given by Definition[2.1. Then,

|L(°)| < Cd*™* n §2. (2.3)
The constant C' depends only on s, n, ), and ellipticity constants.
For this, we need a couple of technical Lemmas. The first one reads as follows.

Lemma 2.4. Let Q be any C* domain, and v be given by Definition [2.1. Then,
for each xy € Q we have

(@0 +y) = ((ao) + Viblao) -y) | S Clyl™* forye R
The constant C' depends only on §2.

Proof. Let us consider ¥, a CH(R™) extension of ¢|q satisfying ¢ < 0 in R™\ .
Then, since ¢ € C1*(R") we clearly have

9(@) = ¥(an) — Volan) - (v = 20)| < Cla — o[

in all of R™. Here we used 1 (z) = 1(z) and V)(zq) = V(o).
Now, using that |ay — by | < |a — b|, combined with (¢), = 1, we find

’ﬁ(l’) — (¥(x0) + V(o) - (x — $0))+’ < Clz — x|
for all x € R™. Thus, the lemma follows. Il

The second one reads as follows.

Lemma 2.5. Let Q be any C** domain, p € Q, and p = d(p)/2. Let v > —1 and
B # ~. Then,

dy
d(p+y) <C(1+p77).
/Bl\Bp/2 |y|" o ( )
The constant C depends only on v, 3, and ).

Proof. The proof is similar to that of [RV15, Lemma 4.2].
First, we may assume p = 0.
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Notice that, since  is C*®, then there is x, > 0 such that for any ¢ € (0, x,] the
level set {d =t} is C'"*. Since
dy

d'(y)—— < C, (2.4)
/(Bl\Bp)ﬂ{d>n*} |y|" P

then we just have to bound the same integral in the set {d < k.}. Here we used
that B, N {d > k.} = 0 if r < k, — 2p, which follows from the fact that d(0) = 2p.
We will use the following estimate for ¢ € (0, k)

H' L ({d = 1) 0 By \ Bya)) < C27H)

which follows for example from the fact that {d = t} is C** (see the Appendix in
[RV15]). Note also that {d =t} N B, =0 if t > r + 2p.
Let M > 0 be such that 2= < p < 2=M+! Then, using the coarea formula,

dy
/ d’*(y)| 5 <
(B1\B,)n{d<r.} Y|
Moo
S 25 / d'(y)|Vd(y)| dy
kZ:O 27 M) (By—k41\By—x)N{d<C27F}
M 1 Cc2-k (25)
I A" (y)
o 2—k(n+p) 0 (By—k41\By_1)N{d=t}
M M
9—k)y+19—k(n—1)
< CZ ( ;k(nJr,B) — CZQk(B—V) — C(l + [ﬂ_ﬁ).
= k=0

k=0
Here we used that v # 5 —in case v =  we would get C'(1 + |log p|).
Combining (2.4)) and ({2.5)), the lemma follows. O

We now give the:

Proof of Proposition[2.3. Let zo € Q and p = d(z).

Notice that when p > py > 0 then ° is smooth in a neighborhood of x4, and thus
L(1)®)(xg) is bounded by a constant depending only on pg. Thus, we may assume
that p € (0, py), for some small py depending only on (2.

Let us denote

U(x) = (b(x0) + Vip(o) - (2 — $0))+,
which satisfies
L(¢*) =0 in {¢>0};
see [RS14) Section 2].
Now, notice that
U(xo) = (x0) and Vip(xo) = VE(xp).
Moreover, by Lemma [2.4] we have

¢ (w0 +y) — Uz +y)| < Cly|™,
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and using |a® — b*| < Cla — b|(a*~ + b*71) for a,b > 0, we find

[0 (w0 +y) — (o + )| < Clyl™™* (& (w0 +y) + € wo +y)) . (2.6)

Here, we used that ¢ < Cd.

On the other hand, since ¢ € C*(Q) and 1 > cd in Q, then it is not difficult to
check that

(>0 in B,ps(x),
provided that pg is small (depending only on ). Thanks to this, one may estimate
D4 = )] < Cp™™% in By,
and thus
|0° = E|(z0 +y) < D" =€)l 1(B, nonyl* < Cot2yl> (2.7)

for y € B,s.
Therefore, it follows from . and - that

Cpro=2|y|? for y € B,s
|° = 07| (w0 +y) < S Clyl*e (d(wo +y) + (o +y)) fory € Bi\ By
Clyl? for y € R™\ Bj.

Hence, recalling that L(¢%)(zo) = 0, we find
L") (wo)| = [L(¥" =€) (20)|
/ |4 = £(z0 + ) ’<y‘7{J|ry2‘s) dy

dy
Cps—l-a 2 y 2 / C y s +
</ o e O e

By/2

d
Lo @ ) )
Bi\B, » Y]
d
<Cp*7*+1)+C (@ H(zo +y) + 7 o + ) n+2€—1—a'
BI\B, 2 Y|

Thus, using Lemma [2.5] twice, we find
| L(¢*) (xo)| < Cp™7,
and ([2.3) follows. O

When « > s the previous proof gives the following result, which states that for
any operator (L1.1)-(1.2) one has L(d*) € L*(€). Here, as in [Grulf, [RS14b} RS14],
d denotes a fixed function that coincides with dist(z, R™ \ Q) in a neighborhood of
99, satisfies d = 0 in R™\ 0, and it is C»* in Q.
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Proposition 2.6. Let s € (0,1), L be given by (1.1)-(1.2)), and Q be any bounded
CY* domain, with o > s. Then,

|L(d°)] < C  in .
The constant C' depends only on n, s, €2, and ellipticity constants.

To our best knowledge, this result was only known in case that L is the fractional
Laplacian and Q is ', or in case that a € C°°(S"!) in (1) and Q is C* (in this
case L(d®) is C*°(Q); see [Gruld]).

Also, recall that for a general stable operator (1.1]) (with a € L'(S™"!) and without
the assumption (1.2))) the result is false, since we constructed in [RS14b] an operator

L and a C* domain  for which L(d®) ¢ L>(2). Hence, the assumption (|1.2) is
somewhat necessary for Proposition to be true.

Proof of Proposition[2.6. Let zy € 2, and p = d(z).

Notice that when p > py > 0 then d* is C'™ in a neighborhood of x4, and thus
L(d*)(zo) is bounded by a constant depending only on py. Thus, we may assume
that p € (0, pg), for some small py depending only on (.

Let us denote

U(z) = (d(z0) + Vd(zo) - (z — xo))+,

which satisfies
L(*)=0 in {¢>0}.

Moreover, as in Proposition [2.3, we have

|d* (20 +y) — (20 +y)| < Cly" (& (20 +y) + £ (20 +y)) - (2.8)
In particular,

|d*(z0 +y) — (0 +y)| < Cp~Hy['F* for y € B,p.
Hence, recalling that L(¢%)(z¢) = 0, we find
|L(4") (wo)] = [L(¢° — £) ()]

= / % — £ (o + y)j%l@;') dy

s—1 14+«
<[ ety /RH\B Clyl' iz +
1

By/2
d
T / Clyl™+ (o + 1) + £ (@0 +)) —L_
Bl\Bp/g |y|

<C(14p*7%).

Here we used Lemma [2.5] Since a > s, the result follows. O

We next show the following.
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Lemma 2.7. Let s € (0,1), L be given by (1.1)-(1.2), and Q be any CH* domain.
Let ¢ be given by Definition[2.1 Then, for any € € (0,a), we have

L") > ecd™ - C in Q2N By s, (2.9)

with ¢ > 0. The constants ¢ and C depend only on €, s, n, Q, and ellipticity
constants.

Proof. Exactly as in Proposition [2.3], one finds that
[0 (20 +y) — £ (o +y)| < Cly™ (™ wo +y) + 7 Hao +y)) . (2.10)
and
‘were o €S+E|(Z‘0 4 y> S Cp8+€+0172‘y’2 (2.11)
for y € B,j5. Therefore, as in Proposition [2.3)
|[L(* = £77) (o) < C(L+ pF7).
We now use that, by homogeneity, we have
L) (wo) = rp"*,
with k > 0 (see [RS14]). Thus, combining the previous two inequalities we find

L) ) 2w~ = O(L4 9™ 2 St - €.

as desired. 0

We now construct sub and supersolutions.

Lemma 2.8 (Supersolution). Let s € (0,1), L be given by (1.1)-(1.2)), and Q be any
bounded C** domain. Then, there exists py > 0 and a function ¢, satisfying

Léy < =1 inQn{d<po}
Clds < ¢ < Cd° inQ

The constants C' and py depend only on n, s, 2, and ellipticity constants.

Proof. Let 1 be given by Definition and let e = §. Then, by Proposition [2.3| we
have
—Cod*™* < L(9%) < Cod™ ™%,

and by Lemma
L(’QD8+€) Z Code_s — Co.

Next, we consider the function

¢1 = — e,
with ¢ small enough. Then, ¢, satisfies
Loy < Cod* ™+ Coy — cerd™ < —1 in QNn{d<po}, (2.12)

for some py > 0. Finally, by construction we clearly have
C'd* < ¢ <Cd® in Q,
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and thus the Lemma is proved. O
Notice that the previous proof gives in fact the following.

Lemma 2.9. Let s € (0,1), L be given by (1.1)-(1.2), and Q be any bounded C**

domain. Then, there exist po > 0 and a function ¢, satisfying

Loy < —d° in QN {d < po}
Cld* < ¢ < Cd*  inQ
¢ = 0 in R™\ Q.
The constants C' and py depend only on n, s, 2, and ellipticity constants.

Proof. The proof is the same as Lemma see (2.12)). O

We finally construct a subsolution.

Lemma 2.10 (Subsolution). Let s € (0,1), L be given by (1.1)-(1.2), and Q be any
bounded C** domain. Then, for each K CC ) there exists a function ¢, satisfying

Lo > 1 in Q\ K
Cld® < ¢y < Cd* in Q2

The constants ¢ and C depend only on n, s, ), K, and ellipticity constants.
Proof. First, notice that if n € C°(K) then Ln > ¢; > 0 in Q\ K. Hence,
¢2 =" + 4"+ O
satisfies
L¢2 Z —nga_s + Code_s - OO + CCl Z 1 in \ K,
provided that C'is chosen large enough. U

3. REGULARITY IN C1® DOMAINS

The aim of this section is to prove Proposition [I.I] and Theorem [I.2]

3.1. Holder regularity up to the boundary. We will prove first the following
result, which is similar to Proposition [1.1] but allows u to grow at infinity and f to
be singular near 0.

Proposition 3.1. Let s € (0,1), L be any operator of the form (1.1)-(1.2)), and Q
be any bounded CY* domain. Let u be a solution to (1.3), and assume that

lfl<Cd™ in Q.
Then,

ulles(s,,,) < C (Ilds‘efllLoo(Bmm +sup Ré_QSIIUIILwBR)) -

The constant C' depends only on n, s, €, §, 2, and ellipticity constants.
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Proof. Dividing by a constant, we may assume that

1d°=¢ fll oo (Bung) + sup B[]l oo ) < 1.
R>1

Then, the truncated function w = uyp, satisfies
|Lw| < Cd™* in QN By,
w<1in By, and w =0 in R™\ B;.
Let Q be a bounded C** domain satisfying: B; N Q) C Q; By M0 C 09 and

dist(z,09Q) > ¢ > 0in QN (B \ Bs/4). Let ¢1 be the function given by Lemma ,
satisfying

Lpy < —d* in §:2 N {cz < po}
cd* < ¢ < Cd* inQ
¢ = 0 in R™\ €,

where we denoted d(z) = dist(z, R\ Q).
Then, the function ¢ = C'¢; satisfies

LQD < —Cd* in QN Bl/g N {d < po}
(2 < cd° in QN Bl/2
(2 Z 1 in QN (Bl \ B3/4) andin QN Bl/g N {d Z po}
p > 0 in R™.

In particular, if C' is large enough then we have L(¢ —w) < 0in QN By ,N{d < po},
and ¢ —w > 0in R"\ (QN By N{d < po}).

Therefore, the maximum principle yields w < ¢, and thus w < Cd® in By s.
Replacing w by —w, we find

Now, it follows from the interior estimates of [RS14b, Theorem 1.1] that

Ts[w]CS(Br(a:o)) < C(T%HLWHLW(BQT(%)) + ?gi R6_28Hw||L<>o(BTR(IO)))

for any ball B, (z¢) C QN Byz with 2r = d(xo). Now, taking § = s and using (3.1)),
we find
R_SHwHLOO(B.,«R(wo)) < Cr® forall R>1.
Thus, we have
[wes (B, (@) < C
for all balls B,(xg) C QN By with 2r = d(xg). This yields

[w] C3(Byjp) < C.

Indeed, take z,y € By, let r = |z — y| and p = min{d(z),d(y)}. If 2p > r, then
using |u| < Cd*

lu(z) — u(y)] < |u(z)] + |u(y)| < Cr*+ C(r+p)* < Cp®.
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If 2p < r then By,(z) C 2, and hence
u(x) — u(y)| < plulcsB,@) < Cp’.
Thus, the proposition is proved. U
The proof of Proposition is now immediate.

Proof of Proposition[1.1 The result is a particular case of Proposition [3.1} U

3.2. Regularity for u/d®. Let us now prove Theorem (1.2 For this, we first show
the following.

Proposition 3.2. Let s € (0,1) and a € (0,s). Let L be any operator of the form

(L.I)-([1.2), Q be any CY* domain, and v be given by Definition .
Assume that 0 € 09, and that O N By can be represented as the graph of a C1
function with norm less or equal than 1.

Let u be any solution to , and let
Ko = [|d°% fll oo Bing) + [l oo @n).-
Then, there exists a constant Q satisfying |Q| < CKy and
lu(z) — QU*(z)| < CKolz|.
The constant C' depends only on n, s, and ellipticity constants.
We will need the following technical lemma.

Lemma 3.3. Let €2, ¥, and u be as in Proposition|3.4, and define

¢r () := Qu(r)Y* (), (3.2)
where f
- : . 2\ 2 __ JB, uy®
Q:(r) := argmin /B T (v — Qu*)"dr = T, e
Assume that for all r € (0,1) we have
[u = @pllzoe(s,) < Cor*™. (3.3)

Then, there is @ € R satisfying |Q] < C(Co + ||ul|ze(s,)) such that
lu — QU° || (p,) < CCor®™?,
for some constant C' depending only on s and «.

Proof. The proof is analogue to that of [RS14b, Lemma 5.3].
First, we may assume Cy + ||u||p(p,) = 1. Then, by (3.3), for all € B, we have

620 (@) = B0(2)] < [ul@) = 6 (2)| + [ulr) — By(x)] < O,
This, combined with supg 9* = cr®, gives

|Q*(2r) - Q*(T)l < Cre.
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Moreover, we have |Q.(1)| < C, and thus there exists the limit @ = lim, o Q.(r).
Furthermore,

Q= Qu(r)] < Y127 r) = Q.27 M) < Y Camr < O

k>0 k>0

In particular, |Q] < C.
Therefore, we finally find

[ — QY |lL(s,) < [lu— Qu(r)Y |ee(s,) + Cr*|Qu(r) — Q < Cr**,
and the lemma is proved. Il

We now give the:

Proof of Proposition|3.4 The proof is by contradiction, and uses several ideas from
[RS14Db, Section 5].

First, dividing by a constant we may assume Ky = 1. Also, after a rotation we
may assume that the unit (outward) normal vector to 992 at 0 is v = —e,,.

Assume the estimate is not true, i.e., there are sequences ., Ly, fi, uy, for which:

e (), is a C1® domain that can be represented as the graph of a C** function

with norm is less or equal than 1;
0 € 092, and the unit normal vector to 9€2;, at 0 is —e,;
Ly, is of the form —;
A" fll L= (Bing) + Nullzee @y < 15
For any constant ), sup,.qsupp, Ty, — QUi = oc.

Then, by Lemma [3.3] we will have

sup sup ||ur — Gpr||Lo(B,) = 00,
k >0

where
S
B fBr uk¢k

o Jpvi

Orr(x) = Qu(r)vi,  Qx(r)
We now define the monotone quantity

O(r) := s%p slup(r’)*S*aHuk — Onr || Lo (B,

r>r

which satisfies 0(r) — oo as » — 0. Hence, there are sequences r,, — 0 and k,,,
such that

e 1
(Tm) Uy, = P | L2 (1) = 59(rm). (3.4)
Let us now denote ¢, = ¢y, r,, and define

U, (Tm®) = m(rme)
) = T ()

Note that
/ V() g (rma)dz = 0, (3.5)
B1
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and also
1
vl Lo By) > > (3.6)

which follows from ((3.4)).
With the same argument as in the proof of Lemma [3.3] one finds
@k, (2r) = O, (r)| < Cr0(r).
Then, by summing a geometric series this yields
|Qk,, (rR) = Qu,, (1) < Cr0(r) R
for all R > 1 (see [RS14h]).
The previous inequality, combined with

[t = Qi (rm RV, e (8, ) < (rm B)*0(rm R)

(which follows from the definition of ), gives

1 S
[vmll oo (Br) = WH% = Qi (rm) Ui, | L2 (B, 1)

(rmR)*T*0(r,,R) C(rmR)*
(7m)5t0(rm) (rim) 0 ()
S CRs—i-oz

for all R > 1. Here we used that 6(r,,R) < 0(r,,) if R > 1.
Now, the functions v,, satisfy

(Tm)Zs (rm)Zs

o) o) = G yrsog gy e )

in (r,,'%,,) N B,-1. Since a < s, and using Proposition , we find

. (3.7)

| Qb (rmB) = Qi (71m)|

Lo (x) =

| Lo | < (1) %dy, *(rm) in (r ', )N B,

¢
0(rm)
Thus, denoting Q,, = 7', and d,,(z) = dist(z, 7', ), we have
C
|Lm’Um| S m d%_s<.%') in Qm N Br;ll‘ (38)

Notice that the domains €, converge locally uniformly to {z,, > 0} as m — oc.
Next, by Proposition 3.1} we find that for each fixed M > 1

cs(By) < C(M) for all m with r;;! > 2M.

[[om]

The constant C(M) does not depend on m. Hence, by Arzela-Ascoli theorem, a
subsequence of v, converges locally uniformly to a function v € C'(R").

In addition, there is a subsequence of operators L, which converges weakly to
some operator L of the form (1.1)-(1.2]) (see Lemma 3.1 in [RS14b]). Hence, for
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any fixed K CC {z,, > 0}, thanks to the growth condition (3.7)) and since v,, — v
locally uniformly, we can pass to the limit the equation (3.8) to get

Lv=0 in K.

Here we used that the domains €2, converge uniformly to {z, > 0}, so that for m
large enough we will have K C ,,, N B,-1. We also used that, in K, the right hand
side in converges uniformly to 0.

Since this can be done for any K CC {z, > 0}, we find

Lv=0 in {z, > 0}.

Moreover, we also have v = 0 in {z,, <0}, and v € C(R").
Thus, by the classification result [RS14b, Theorem 4.1], we find

v(r) = K@)} (3.9)
for some k € R.

Now, notice that, up to a subsequence, ' (r,z) — c1(2,); uniformly, with
c; > 0. This follows from the fact that ¢, are CY*(Qy, ) (uniformly in m) and
that 0 < COdkm < 77Z}km < OOdkm-

Then, multiplying by (r,,)~* and passing to the limit, we find

/Bl v(z)(2n)fde = 0.

This means that x = 0 in (3.9, and therefore v = 0. Finally, passing to the limit
(3.6) we find a contradiction, and thus the proposition is proved. O
We finally give the:
Proof of Theorem[1.3 First, dividing by a constant if necessary, we may assume
[fllzoe(Bine) + llullLoemny < 1.
Second, by definition of ¢ we have 1/d € C*(Q N By 2) and
1%/l o,y < C-
Thus, it suffices to show that
/vl oe@np, ) < C- (3.10)

To prove (3.10)), let 9 € 2N By, and 2r = d(zy). Then, by Proposition [3.2| there
is @ = Q(zy) such that

|u — QU°|| Lo (B, (20)) < CT°T. (3.11)
Moreover, by rescaling and using interior estimates, we get
[t — QU°[| e (B, (z0)) < CT°. (3.12)

Finally, (3.11))-(3.12]) yield (3.10)), exactly as in the proof of Theorem 1.2 in [RS14b].
U
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Remark 3.4. Notice that, thanks to Proposition 3.2} we have that Theorem [I.2] holds
for all right hand sides satisfying |f(x)| < Cd** in .

3.3. Equations with bounded measurable coefficients. We prove now Theo-
rem [|.of
First, we show the following C'* estimate up to the boundary.

Proposition 3.5. Let s € (0,1), and 2 be any bounded CY* domain.
Let u be a solution to

M+U Z —Kodg_s m B1 By
M u < Kod* m B1NQ (313)
u = 0 in By \ Q.

Then,
fullse < € (Kot sup B lullimqo )
The constant C' depends only on n, s, €, 6, 2, and ellipticity constants.

Proof. The proof is very similar to that of Proposition [3.5]
First, using the supersolution given by Lemma [2.8, and by the exact same argu-
ment of Proposition [3.5] we find

”U)’ S Cd° in BI/Q-
Now, using the interior estimates of [CS09] one finds
[wles s, @) < C
for all balls B,(x9) C 2N By, with 2r = d(x), and this yields
[wllcas, ) < C,
as desired. 4

We next show:

Proposition 3.6. Let s € (0,1) and a € (0,&). Let L be any operator of the form

(L.)-([1.2), Q be any CY* domain, and ) be given by Definition .
Assume that 0 € 09, and that OQ N By can be represented as the graph of a C®

function with norm less or equal than 1.
Let u be any solution to (1.4), and let

Ko = || fllzo=Bine) + llull oo gn)-
Then, there exists a constant Q satisfying |Q| < CKy and
[u(z) — QU*(x)| < CKolz|.
The constant C' depends only on n, s, and ellipticity constants.

Proof. The proof is very similar to that of Proposition [3.2]
Assume by contradiction that we have €2, and wuy such that:
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Q) is a C1* domain that can be represented as the graph of a C%® function
with norm is less or equal than 1;

0 € 092, and the unit normal vector to 92, at 0 is —e,;

uy, satisfies with Ky = 1;

For any constant @, sup,qsupg, 7~°"“|u — Q}| = oo.

Then, by Lemma |3.3| we will have
sup sup ||uy, — <Z5k,r||Loo(B,.) = 00,
k>0

where

brr(@) = Qur)dg,  Qulr) = M
B, Vk

We now define 0(r), r,, — 0, and v,, as in the proof of Proposition . Then, we
have

/ Un (@)Y (rmx)dz = 0, (3.14)
By
1
vl LB > > (3.15)
and
[Vl Lo (Bry < CR*T® forall R>1. (3.16)
Moreover, the functions v,, satisfy

— (Tm)Qs (rm)Qs + rox
M~ vy (z) < o edr) T el (Mg, ) (rm)

in (r,'Q%,,) N B,1. Using Lemma , and denoting Q,, = r,,'Q. and d,,(z) =
dist(x, 7,1y, ), we find

M~ v, < ﬁ dp, *(z)  in QN B, (3.17)
Similarly, we find
M*tv, > — ¢ do % (z) in Q,NB,1.

T 0(rm)
Notice that the domains €, converge locally uniformly to {z,, > 0} as m — oc.
Next, by Proposition [3.5, we find that for each fixed M > 1

|Vm]|ca By < C(M) for all m with r )t > 2M.

The constant C(M) does not depend on m. Hence, by Arzela-Ascoli theorem, a
subsequence of v, converges locally uniformly to a function v € C'(R").
Hence, passing to the limit the equation (3.17]) we get

M v<0< MY in{z, >0}
Moreover, we also have v = 0 in {z, <0}, and v € C(R").
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Thus, by the classification result [RS14, Proposition 5.1], we find
v(r) = K(2n)} (3.18)
for some k € R. But passing (3.14) —multiplied by (r,,,)*— to the limit, we find

/B o)) =0

This means that v = 0, a contradiction with (3.15]). O
Finally, we give the:

Proof of Theorem[1.5. The result follows from Proposition [3.6} see the proof of The-
orem O

4. BARRIERS: C'' DOMAINS

We construct now sub and supersolutions that will be needed in the proof of The-
orem Recall that in C'' domains one does not expect solutions to be comparable
to d°, and this is why the sub and supersolutions we construct have slightly different
behaviors near the boundary. Namely, they will be comparable to d**¢ and d* ¢,
respectively.

Lemma 4.1. Let s € (0,1), and e € S"~'. Define

ot = (- (-2

Pyuper (7) 1= (6 7+ 1] (1 - (e\%;)2>):_6

For every € > 0 there is 1 > 0 such that two functions Pgy, and Pgyper satisfy, for
all L € L.,

and

LOyp > cd™ >0  inC,
q)sub =0 i R™ \C77

and

LOyper < —cd <0 inC.,
(I)super =0 n R™ \ Cfn

where C, 1s the cone

2
Ciy = xER":e-i>:|:n 1—(6-1) .
|z] ]

The constant n depends only on €, s, and ellipticity constants.
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Proof. We prove the statement for ®q,1,. The statement for ®gper is proved similarly.
Let us denote @ := ®,;,. By homogeneity it is enough to prove that L® > ¢, > 0
on points belonging to e +9dC,, since all the positive dilations of this set with respect

to the origin cover the interior of C,,.
Let thus P € 9C,, that is,

roo(in-Spr) =

Consider
Qp,(z) :=P(P+e+u)

_ (e.(P+e+£U) _p <‘p+e+x| (e -|;P++€e++xx‘))2>)i+e

(e-(P+e+z))? (e P)? ste
|P + e+ z | P| ))

= (1+e-x—n(|P+e+x|—|P|—
+

=(1+e-z— n¢p<$))i+e,

where we define
(e-(P+e+x))? (e P)?

x):=|P+e+z|—|P|—

Note that the functions ¥ p satisfy
¥p(0) =0,
[Vp(x)] < C in R*\ {-P —e},
and
|D*yp(z)] < C forz € Bi s,

where C' does not depend on P (recall that |e| = 1).
Then, the family ®p,, satisfies

(I)PJI — (1 +e- 13)i+6 in 02<Bl/2)
as 1\ 0, uniformly in P and moreover

[ [mtte ], ce
n —Jr

de < C s+e'
11 |22 DTt ez =T

Thus,
L&p,(0) = L((1+e )5)(0) > c(s,e,A) >0 asn\0
uniformly in P.

In particular one can chose n = n(s,€, A, A) so that L®p,(0) > c¢. > 0 for all
P € 0C, and for all L € L,, and the lemma is proved. O
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5. REGULARITY IN C'!' DOMAINS
We prove here Theorems [[.3] and [1.6]

Definition 5.1. Let 9 > 0 and let p : (0,79] — 0 be a nonincreasing function with
limy o p(t) = 0. We say that a domain € is improving Lipschitz at 0 with inwards
unit normal vector e, = (0,...,0,1) and modulus p if

QN B, ={(2",x,) : &, > g} B,  for re (0,1,
where g : R"~! — R satisfies
19llLip,) < p(r)  for 0 <r <.

We say that € is improving Lipschitz at xy € 0 with inwards unit normal e € S™1
if the normal vector to 0S2 at x is e and, after a rotation, the domain 2 — x( satisfies
the previous definition.

We first prove the following C'* estimate up to the boundary.

Lemma 5.2. Let s € (0,1), and let Q C R™ be a Lipschitz domain in By with
Lipschitz constant less than €. Namely, assume that after a rotation we have

QN B ={(2,z,) : &, > g(a')} N By,
with ||g||Lip(sy) < £. Let u € C(By) be a viscosity solution of
Mtu>—Kyd™ and M u<Kod® in QN By,
u=0 1n B\ Q.
Assume that
|l (g < KoR*™¢  for all R > 1.
Then, if £ < by, where o = ly(n, s, \,\), we have
||U||Ca(31/2) < CK,.
The constants C' and & depend only on n, s, € and ellipticity constants.

Proof. By truncating v in B, and dividing it by C'Ky we may assume that

[l ooy = 1
and that
MTu>—d* and M u<d™® in QN DB;.
Now, we divide the proof into two steps.
Step 1. We first prove that

lu(z)| < Clz — xo|* in QN By, (5.1)
where xq € 0 is the closest point to z on 0. We will prove (5.1) by using
a supersolution. Indeed, given € € (0,s), let Pgyper and C, be the homogeneous
supersolution and the cone from Lemma where e = ¢e,. Note that ®gpe is

a positive function satisfying M~ Pgyper < —cd™7° < 0 outside the convex cone
R™\ C,, and it is homogeneous of degree s — e.
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Then, we easily check that the function ¢ = C®gyper — X B, (20), With C large and
|z0] > 2 such that $guper > 1 in By(2), satisfies My < —d“* in By;4 N C, and
v > % in C, \ By 4. Indeed, we simply use that M~ xp, () = co > 0 in By/. Note
that this argument exploits the nonlocal character of the operator and a slightly
more complicated one would be needed in order to obtain a result that is stable as

sT1.
Note that the supersolution v vanishes in By 4 \ C,. Then, if ¢, is small enough,
for every point in zy € 02N Bs/4 we will have

To + (31/4\677) C Bl\Q

Then, using translates of ¢ (and —¢) upper (lower) barriers we get |u(z)| <
Y(xg+ ) < Cle — xo]*~, as desired.

Step 2. To obtain a C* estimate up to the boundary, we use the following interior
estimate from [CS09]: Let r € (0,1),

Mty > —r*2 and M u <r** in B,(z)
and

lu(z)| < r® (1 + %) in all of R™.

Then,
[wlcas, s < C,
with C' and o > 0 depending only s, ellipticity constants and dimension.
Combining this estimate with (5.1)), it follows that
HU’HCD‘(Bl/z) <C.
Thus, the lemma is proved. O

We will also need the following.

Lemma 5.3. Let s € (0,1), a € (0,@), and Cy > 1. Given € € (0,a], there exist
0 > 0 depending only on €, n, s, and ellipticity constants, such that the following
statement holds.

Assume that 0 C R" is a Lipchitz domain such that €Y N By s is a Lipchitz graph
of the form x,, = g(2'), in || < 1/6 with

[9]Lip(B, 5) < 0,

and 0 € 0f2.

Let ¢ € C(R™) be a viscosity solution of

Mto>—=0d™ and M @ <6d™° inQN By,

=0 in Bys\Q,
satisfying
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Assume that o satisfies
supp =1 and |@llz~(s,) < Co(2)**  for all 1 > 0.
By

Then, we have

1
/ ©* dx > —/ (z,)2° dx (5.2)
B1 2 B

and N
1 ST€ Sup B (p 1 S—€
(—) < BT o <—> for all 1 < 0. (5.3)
2 Supp, ¢ 2
Proof. Step 1. We first prove that, for 4 small enough, we have (5.2)) and
s+e su s—€
(1) <Pt o (1) (5.4)
2 supg, ¥ 2

In a second step we will iterate (5.4]) to show (5.3)).
The proof of (5.4) is by compactness. Suppose that there is a sequence ¢y, of

functions satisfying the assumptions with é = d; | 0 for which one of the three

possibilities
1\ supgp, , ¥k
() > (5.5)
2 SUpp, P
Supp, ,, Pk 1\
J B TR > <_> (5.6)
Supp, Pk 2
or

1
/ prdr < —/ (zn)2% da (5.7)
B 2 By
holds for all £ > 1.

Let us show that a subsequence of @, converges locally uniformly R™ to the
function (z,)5. Indeed, thanks to Lemma and the Arzela-Ascoli theorem a
subsequence of @y converges to a function ¢ € C(R™), which satisfies Mty > 0
and M~ < 0in R}, and ¢ = 0 in R”. Here we used that J;, — 0. Moreover,
by the growth control |¢|pe(p, < CR*™® and the classification theorem [RS14)
Proposition 5.1}, we find ¢(z) = K(z,)%. But since supp, 5 = 1, then K = 1.

Therefore, we have proved that a subsequence of ¢ converges uniformly in By to

(z,,)7.. Passing to the limit (5.5), (5.6) or (5.7)), we reach a contradiction.

Step 2. We next show that we can iterate (5.4]) to obtain (5.3) by induction.
Assume that for some m < 0 we have

1 s+e Sllp SO 1 S—e€
<_> < P ¥ oo (-) for m <1< 0. (5.8)
2 SUpp,, ¥ 2

We then consider the function

p(27Mx)

P = ;
Supp,, ¥
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and notice that
26+ < supp < 2679 for m <1 <0.

B,

Thus,

2sm
M*tp > —5trom 2 —0 in (27™Q) N By-m s
and similarly
M~@¢ <6 in (27Q) N Bymys.
Clearly
=0 in(27"CQ) N Bymys
and
©>0 in Byw D B.

Since 0N is Lipchitz with constant § in By/s and 27™ > 1 (m < 0) we have that
the rescaled domain (27€2) N By-m s is also Lipchitz with the same constant 1/§ in
a larger ball.

Finally, using again we find

_ Supp 2
sup p = ——=—"—
B, SUPB,., ¥
For [ +m > 0 we have

s+a)(l+m)
SupB2l+m ¥ 002( _ 002(5+o¢)l2(a—6)m S 002(8+06)l.

ol+m

< 25+l < o(stall for I > 0 with [ +m <0,

SBuQIl:)SO: 2(s+e)m90 - 2(s+e)m

Hence, using Step 1, we obtain

1\*" _supp ¢ [1\°°
- < 2T o (Z)
2 T osupg, @~ \2
Thus (5.8) holds for [ = m — 1, and the lemma is proved. O

We next prove the following.

Proposition 5.4. Let s € (0,1), a € (0,@), and Cy > 1.
Let Q C R™ be a domain that is improving Lipschitz at 0 with unit outward normal
e € S" 1 and with modulus of continuity p (see Definition . Then, there exists
0 > 0, depending only on «, s, Cy, ellipticity constants, and dimension such that
the following statement holds.
Assume that ro = 1/§ and p(1/0) < §. Suppose that u,p € C(R™) are viscosity
solutions of
M (au+ bp) > —o(|a| + |b])d*—* in Byss N § (5.9)
u=p=0 in Bys\ Q, '
for all a,b € R. Moreover, assume that

law + bp|| e rny < Co(|al + b)) R*T™  for all R > 1, (5.10)
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>0 By, and supp=1.
B1

Then, there is K € R with |K| < C such that
|u(x) — Ko(z)| < Clz|** in By,
where C' depends only on p, Cy, «, s, ellipticity constants, and dimension.

Proof. Step 1 (preliminary results). Fix e € (0,a). Using Lemma , if ¢ is small
enough we have

1
/ ©* dr > —/ (2,)2° dz > c(n,s) >0 (5.11)
B1 2 B
and .
1 s+e supp., | ¢ 1 s—e
(—) < DT o (—) for all I < 0. (5.12)
2 SUpp, ¢ 2
In particular, since supg, ¢ = 1 then
(r/2)°* <supp < (2r)°° for all r € (0,1). (5.13)
B

Step 2. We prove now, with a blow-up argument, that

|u(z) — Krgp(x)HLoo By S Crote (5.14)
for all r € (0, 1], where
updr
K, = Iy, ue (5.15)
fB 2dx

Notice that (5.14) implies the estimate of the proposition with K = lim, o K.
Indeed, we have |K;| < C' —which is immediate using (5.10) with a =1 and b =10

and — and
K, — Ko po(r/2)"4 < || Ky — KT/QSDHLOO(BT
+

TSOHLOO(BT) Kr/%DHLoo(B )

Thus,
K| < K|+ ) [Kys — Ky | SC+C Y 277079 < C,

=0 =0
provided that € is taken smaller that .
Let us prove ([5.14) by contradiction. Assume that we have a sequences ), e;,u;,
¢; satisfying the assumptions of the Proposition, but not (5.14]). That is,

lim supr T aHu] ) — K,
j—}OOT

vj(ijLoo(Br) = %%

were K, ; is defined as in (5.15]) with u replaced by u; and ¢ replace by ¢;.
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Define, for r € (0, 1] the nonincreasing quantity
0(r) = Sl(lpl)(rl)_s_aHUj(ﬂf) — Ko j0ill poe 5.
r'e(r, r

Note that 6(r) < oo for r > 0 since ||u;||geemn) < 1 and that lim,\60(r) = oco.
For every m € N, by definition of € there exist r/, > 1/m, jm, Qm = Q
em = €j,, such that

and

Jm

()™ g () = Ko,

m

1
1/m) 2 360(r").

Note that v/ — 0. Taking a subsequence we may assume that e,, — e € S"L.
Denote

1
JmSOJmHLoo(B, )= 9 o(

Up = Wj,,, Ky =Ky ;. and @, =@,
We now consider the blow-up sequence
U (1) = K (17, %)
(rp)*te0(r7,)

U () =
By definition of # and r/, we will have

[vm Lo (1) 2> (5.16)

l\Dlr—t

In addition, by definition of K, = K,, ; we have

/B U (@) o (rh,2) dz = 0 (5.17)

for all m > 1.
Let us prove that
|Um| Lo (Bry < CR*T™  for all R > 1. (5.18)

Indeed, first, by definition of §(2r) and 6(r),
[ Karjips = K’“J%’HLOO(BT) 2°70(2r) [uj = Kr 5] (Bar) [ — K’"/ZJ'%HLOO(BT)

rstaf(r) - 0(r) (2r)sted(2r) rstaf(r)
<29t 41 <5
On the one hand, using Step 1 we have
|[Kory = Ko (r/2)"7 _ | Borj — Kol llojllr=s.)
rstaf(r) - rstaf(r)
K205 = Ko oi ey
rstaf(r)

<5

and therefore
|K2,,«7j — Kr,j| S ]_0 Ta_EQ(T), (519)

which we will use later on in this proof.
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On the other hand, by (5.12) in Step 1 we have, whenever 0 < 2ir < 2Np <1,

[3ll sy < 257NN 05 1o,
and therefore
HKQHMJSOJ' - Ker,jgijLw(Ber) B ‘KQl“m' - K21T7j| ||S0j||L°°(B2Nr)
,rs+a9(7n) - rs—i—a@(r)
3 ‘Kgurlm' — K2lr,j| (s+e)(N-1) HSOjHLOO(BzzT)
>~ 7"5+O‘9(7”)
2(S+€)(N*l) ||K21+17",j<)0]' - Kﬂr,j@j ||L0°(B21T)

= rited(r)

2l(s+a)0<2lr> 2(S+€)(N*l) ||K2l+1r7jg0j — KerijOj ||L°°(Bglr)

0(r) (2lr)stef(2!r)
S 10 2(S+€)N 2[(@—6)‘
Thus,
[ Kanrjios = Knjos| —
" ’ > (Byn,) (s+e)N l(a—e) (s+a)N
< 2 2 < C2
7”5+°‘9(T) — ; = )
where we have used that € € (0, «).
Form the previous equation we deduce
O A P
rstaf(r)
whenever 0 < r < Rr < 1.
Hence,
lomllz=) = 5z o = Koo
L= Br) g Yy YstallEm T BmEmlieo By,
< R5+O¢Hujm - KR”invjm(pjm“L‘”(Bme) + HKRT;mjmgojm - Krin’jm(pjm”L‘x’(BRr%@)
- 0(r),) (R, )5t (rh)*Te0(r7,)
R5T6(Rr!
( Tm) + CRs+a
0(r1,)
S CR3+04’

whenever Rr! < 1.
When Rr!, > 1 we simply use the assumption (5.10)), namely,

| @t 4 b || Loo@ny < Co(lal + [b])R*T* for all R > 1,
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twice, with a = 1, b = =K, ;,, and with a = 0, b = 1 to estimate

1

m || Lo° = T N e~ m T Km
[0l o= (B) Q(Mn)(r;n)sw\\“

gpmHLw(BRr/m)

SCAUTAEE () 8(r)
K i = Bty i 2= (1) |l 13,

(r7n)*t20(r7,) @sm Il (51)

< Co(1+ | Ky, )R+

1 s+
corre (L)
< CR**® + C(r),) " (Rr},)*" < CR**,

where we have used |K; j, | < C (that we will prove in detail in Step 3).

Step 3. We prove that a subsequence of v, converges locally uniformly to a entire
solution v, of the problem

M*ve > 02> M vy %n {e-z >0} (5.20)
Voo =0 in {e-z < 0}.
By assumption, the function w = au,, + bp,, satisfies
M (aum + bpm) > —0(|al + |b])d** in By NQy, (5.21)
U = Om =0 in By \ Q,, '

for all a,b € R.
Now, using ([5.19)) we obtain

\Klj K2 vyl AR Kyt — Kyonar ]

2 )
=0
N-1
Zlo 2( N+1)(a—e)

=

| /\

=z

-1
0 2(7N+l)(a76) < C,

IN
—_
Iy
o

since o — € > 0.

Next, using (5.11)) —that holds with ¢ replaced by ¢;—,the definition K, ;, and

that ||¢;]|ze(s,) = 1 while ||u;|| s,y < Co, we obtain
fB uj p;dx
|Ky;| = 7| < (5.22)
fBl Py ar
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Thus
[Koong| _ [Kug| | [Bo = Kaong|
0(2-N) — 0(27N) 0(2-) -
Using this control for K, ; and setting in (5.21])
1 —K,
— d b — r'mv]m
o) 0(r%,)
we obtain
! \2s 1 K. .
M+ = (Tm) M+ o — TmsJm " I
= Gyt o) T o) o) )
dn ® . 1
2 —C(Sm m B(r;n)—l N (7";”) Qm,

where d,,(x) = dist(z, r,,'Q, ). Similarly, changing sign in the previous choices of
a and b we obtain

dO(—S
— M~ (vn) = M ¥ (=vy) > =C6 "~ in By -1 N (7)) ' Uy,

0(r7.)

As complement datum we clearly have

U =0 in By y-1 \ (7,) 7 Q.

m

Then, by Lemma [5.2] we have
vmllcviggr < C(R)  for all m large enough.

The constant C(R) depends on R, but not on m.
Then, by Arzela-Ascoli and the stability lemma in [CS11bl Lemma 4.3] we obtain
that

U — Uso € C'(R"),
locally uniformly, where v, satisfies the growth control

Vool Lo (Br) < CR*T™ for all R > 1

and solves ([5.20) in the viscosity sense. Thus, by the Liouville-type result [RS14)
Proposition 5.1}, we find v (x) = K(z - €)5 for some K € R.

Step 4. We prove that as subsequence of ¢,,, where

P (1)
SUpp, Pm ’

() =

converges locally uniformly to (z - e)s.
This is similar to Step 3 and we only need to use the estimates in Step 1, and the
growth control (5.10)), to obtain a uniform control of the type

|@mll oo (pr) < CoR*  for all R > 1.
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Using the estimates in Step 1 we easily show that
! \2s
W)™
SUpp, Pm
Thus, we use ((5.21)) with a =0 and b = (sup B, gom)_l to prove that ,, converges
locally uniformly to a solution ¢, of
Mt > 0> M ¢y in {e-z >0}
Poo =0 in {e-z < 0},
Then, using the Liouville-type result [RS14, Proposition 5.1] and since

1Pocll ooy = Hm [[Gollzoe(py = lim 1=1

we get
Poo = (- €)%
Hence, ¢, (x) — (- €)% locally uniformly in R™.

Step 5. We have v,, = K(x-e)% and @, — (x - ¢e)} locally uniformly. Now, by
(5.17),

/ VUi ()P () dx = 0.
By
Thus, passing this equation to the limits,
/ Voo () (2 - €)% dz = 0.
By

This implies K = 0 and v, = 0.
But then passing to the limit (5.16]) we get

Vo || oo (1) >

Y

DO | —

a contradiction. O
We next prove Theorems [I.3] and [L.6]

Proof of Theorem[1.6. Step 1. We first show, by a barrier argument, that for any
given € > 0 we have

cd®te <, < Cd*™¢ in By 2,
where d = dist(-,B; \ ), and ¢ > 0 is a constant depending only on Q, n, s,
ellipticity constants.

First, notice that by assumption we have M~ u; = —M ™ (—w;) < § and M u; >
—0 in B; N Q). Therefore, since sup By Ui 2 1, for any small p > 0 by the interior
Harnack inequality we find

inf w;,>Ct'—C§>c>0,
By 4n{d>p}

provided that § is small enough (depending on p).
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Now, let xg € By, N OS2, and let e € S"~! be the normal vector to 9 at zo. By
the previous inequality,

inf  w; >ec
B, (zo+2pe)

Since Q is C*, then for any 1 > 0 there is p > 0 for which
(1‘0 + C77) N B4p C Q,

where C, is the cone in Lemma [.1]
Therefore, using the function ®g,, given by Lemma 4.1 we may build the subso-
lution

¢ = <I>subXB4,,(gv0) + ClXBp/Q(zO—I—Qpe)'

Indeed, if C; is large enough then ¢ satisfies

M~y >1 in (zo+Cy) N (Bsy(zo) \ By(wo + 2pe))
and ¢ = 0 outside z + C,,.

Hence, we may use co1) as a barrier, with ¢, small enough so that u; > ¢t in
B,(xo + 2pe). Then, by the comparison principle we find
U; Z CQ¢>
and in particular
ui(zg + te) > c3t**e

for t € (0, p). Since this can be done for all g € B/, N IS, we find

U; Z Cds—i_E in Bl/?- (523)
Similarly, using the supersolution @, from Lemma [4.1], we find
(% < Cd°™¢ in B1/27 (524)

fori=1,2.
Step 2. Let us prove now that
(51 S CU2 in B1/2~ (525)

To prove [5.25] we rescale the functions u; and us and use Proposition [5.4
Let x¢ € Bl/g N 89, and let

luill oo (B, (o)) + U2l oo (B, (o))
o) = G

Notice that 6(r) is monotone nonincreasing and that 6(r) — oo by (5.23)). Let
r, — 0 be such that

[t oo (B, (o)) + 2]l Lo By, (o)) = 5 (1) O (),

N | —

with ¢g > 0, and define

~uy(@o + 1)

 up(wo + )
= G

= )
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Note that

N | —

vkl Loe(By) + [lwk |l Loo(y) >
Moreover,
lurll(B, ) O(rpR)(rpR)+
|Vl Loo(BR) = o < pores
(%) +<0 () (7%)5+<0 ()

for all R > 1, and analogously

S R$+€7

lwilloe sy < R

for all R > 1.
Now, the functions vy, wy satisfy the equation
2s
M (avg + bwy,) (x) = % M (auy + bug)(zo + rxz) > —Co(r1)* 6(|al + |b])
(rk)*+<0(rx)

in QN Brk—l, where Q. = r,;l(Q — Ip).
Taking k large enough, we will have that €2 satisfies the hypotheses of Proposi-
tion in By, and
M (avy, + bwyg) > —6(|a| + |b]) in QN Bys.

Moreover, since supg, vy +supg, wy, > 1/2, then either supp, vy > 1/4 or supp, wy >
1/4. Therefore, by Proposition [5.4| we find that either

or(2) — Kywg(z)] < Cla]™™
or
|wi(2) — Kavp(x)| < Claf™
for some |K| < C. This yields that either
lui (z) — Kyug(x)| < Clz — x> (5.26)
or
lug(2) — Kauy(x)| < Clo — x|t (5.27)
with a bigger constant C'.

Now, we may choose € > 0 so that € < a/2, and then ([5.27) combined with ([5.23)-
(5.24)) gives Ky > ¢ > 0, which in turn implies (5.26)) for K; = K5 ', |K;| < C. Thus,
in any case (5.26|) is proved.

In particular, for all 2y € By, N0 and all x € By, N Q2 we have
ui ()
uz(x)
Choosing x( such that |z — x| < Cd(z) and using (5.24)), we deduce

ui(z)/us(z) < Ky + Cd*t /d*~ < C,

and thus (5.25]) is proved.

uy () /uz(z) < Ky +

— K| < Ky + Clo — zo|*™ Jus(2).
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Step 3. We finally show that u;/us € C*(Q2N By2) for all a € (0,@). Since this
last step is somewhat similar to the proof of Theorem 1.2 in [RS14b], we will omit
some details.

We use that, for all o € (0, @) and all z € By, N2, we have

up(x)
us ()

— K(z0)| < Clz — x|, (5.28)

where zg € By, N 02 is now the closest point to x on B;/, N 0€). This follows from

(5.26)), as shown in Step 2.

We also need interior estimates for u; /us. Indeed, for any ball By, (z) C QN By s,
with 2r = d(x), there is a constant K such that |Ju; — Kusl|| 1, @) < Cr*t®. Thus,
by interior estimates we find that [u; — Kug]ce—c(p,(z)) < Cr°*e. This, combined

with (5:23)-(523) yields
[u1/us]co—e (B, (2)) < C. (5.29)
Let now z,y € By N {2, and let us show that

~—

ui(z)  wily
ug(z us(y

‘ < Clz —y|*. (5.30)

~—
~—

If y € B.(z), 2r = d(x), or if z € B,(y), 2r = d(y), then this follows from ([5.29).
Otherwise, we have |z —y| > s max{d(z),d(y)}, and then (5.30)) follows from ({5.28).
In any case, ((5.30) is proved, and therefore we have

||U1/u2||C°‘—€(ﬁﬂB1/2) =C

Since this can be done for any « € (0, @) and any € > 0, the result follows. O

Proof of Theorem[1.3 The proof is the same as Theorem[I.6] replacing the Liouville-
type result [RS14l, Proposition 5.1] by [RS14b, Theorem 4.1], and replacing & by s.
U

Remark 5.5. Notice that in Proposition [5.4] we only require the right hand side of
the equation to be bounded by d“~°. Thanks to this, Theorem [1.3| holds as well for

—0d"* < fi(w) < Cod* 3, a € (0,s). (5.31)
In that case, we get
w1 /uzllca@np, ) < CCo,
with the exponent « in (5.31]).
Proof of Corollary[1.4 The result follows from Theorem [I.3] O



34 XAVIER ROS-OTON AND JOAQUIM SERRA

REFERENCES

[BBB91] R. Bafiuelos, R. Bass, K. Burdzy, Hélder domains and the boundary Harnack principle,
Duke Math. J. 64 (1991) 195-200.

[BB94] R. Bass, K. Burdzy, The boundary Harnack principle for non-divergence form elliptic op-
erators, J. Lond. Math. Soc. 50 (1994), 157-169.

[Bog97] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math.,
123 (1997), 43-80.

[BKKO08] K. Bogdan, T. Kulczycki, and M. Kwasnicki, Estimates and structure of a-harmonic
functions, Probab. Theory Related Fields 140 (2008), 345-381.

[BKK15] K. Bogdan, T. Kumagai, M. Kwasnicki, Boundary Harnack inequality for Markov pro-
cesses with jumps, Trans. Amer. Math. Soc. 367 (2015), 477-517.

[CRS15] L. Caffarelli, X. Ros-Oton, J. Serra, Obstacle problems for integro-differential operators:
regularity of solutions and free boundaries, preprint arXiv (Jan. 2016).

[CS09] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,
Comm. Pure Appl. Math. 62 (2009), 597-638.

[CS11Db] L. Cafarelli, L. Silvestre, Regularity results for nonlocal equations by approzimation, Arch.
Rat. Mech. Anal. 200 (2011), 59-88.

[Dah77] B. Dahlberg, Estimates of harmonic measure, Arch. Rat. Mech. Anal. 65 (1977) 275-288.

[DS14] D. De Silva, O. Savin, Boundary Harnack estimates in slit domains and applications to
thin free boundary problems, Rev. Mat. Iberoam., to appear.

[Grulb] G. Grubb, Fractional Laplacians on domains, a development of Hormander’s theory of
u-transmission pseudodifferential operators, Adv. Math. 268 (2015), 478-528.

[Gruld] G. Grubb, Local and nonlocal boundary conditions for p-transmission and fractional el-
liptic pseudodifferential operators, Anal. PDE 7 (2014), 1649-1682.

[RS14] X.Ros-Oton, J. Serra, Boundary regularity for fully nonlinear integro-differential equations,
Duke Math. J., to appear.

[RS14b] X. Ros-Oton, J. Serra, Regularity theory for general stable operators, J. Differential Equa-
tions, to appear.

[RV15] X. Ros-Oton, E. Valdinoci, The Dirichlet problem for nonlocal operators with singular
kernels: conver and non-convexr domains, Adv. Math. 288 (2016), 732-790.

[SW99] R. Song, J.-M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct.
Anal. 168 (1999), 403-427.

THE UNIVERSITY OF TEXAS AT AUSTIN, DEPARTMENT OF MATHEMATICS, 2515 SPEEDWAY,
AusTiN, TX 78751, USA
E-mail address: ros.oton@math.utexas.edu

UNIVERSITAT POLITECNICA DE CATALUNYA, DEPARTAMENT DE MATEMATIQUES, DIAGONAL
647, 08028 BARCELONA, SPAIN
E-mail address: joaquim.serra@upc.edu



	1. Introduction and results
	1.1. C1, domains
	1.2. C1 domains
	1.3. Equations with bounded measurable coefficients

	2. Barriers: C1, domains
	3. Regularity in C1, domains
	3.1. Hölder regularity up to the boundary
	3.2. Regularity for u/ds
	3.3. Equations with bounded measurable coefficients

	4. Barriers: C1 domains
	5. Regularity in C1 domains
	References

