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Abstract. We consider the monomial weight |x1|A1 · · · |xn|An in Rn, where Ai ≥
0 is a real number for each i = 1, ..., n, and establish Sobolev, isoperimetric,
Morrey, and Trudinger inequalities involving this weight. They are the analogue
of the classical ones with the Lebesgue measure dx replaced by |x1|A1 · · · |xn|Andx,
and they contain the best or critical exponent (which depends on A1, ..., An).
More importantly, for the Sobolev and isoperimetric inequalities, we obtain the
best constant and extremal functions.

When Ai are nonnegative integers, these inequalities are exactly the classical
ones in the Euclidean space RD (with no weight) when written for axially sym-
metric functions and domains in RD = RA1+1 × · · · × RAn+1.

1. Introduction and results

In this paper we establish Sobolev, Morrey, Trudinger, and isoperimetric inequal-
ities in Rn with the weight xA, where A = (A1, ..., An) and

(1.1) xA := |x1|A1 · · · |xn|An , A1 ≥ 0, ..., An ≥ 0.

They were announced in our previous article [3]. In fact, their interest and appli-
cations arose in [3], where we had n = 2 in (1.1). In that paper we studied the
regularity of stable solutions to reaction-diffusion problems in bounded domains of
double revolution in RN . That is, domains of RN which are invariant under rotations
of the first m variables and of the last N −m variables, i.e.,

Ω = {(x1, x2) ∈ Rm × RN−m : (s = |x1|, t = |x2|) ∈ Ω2},

where Ω2 ⊂ (R+)2 is a bounded domain.
The first step towards the results in [3] consisted of obtaining bounds for some

integrals of the form ∫
Ω2

{
s−αu2

s + t−βu2
t

}
ds dt,

where u is any stable solution and s and t are, as above, the two radial coordinates
describing Ω. Then, from this bound we needed to deduce that u ∈ Lq(Ω), with q as
large as possible. After a change of variables of the form s = σγ1 , t = τ γ2 , what we
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needed to establish is the following Sobolev inequality. Given a > −1 and b > −1,
find the greatest exponent q for which(∫

Ω̃2

σaτ b|u|qdσdτ
)1/q

≤ C

(∫
Ω̃2

σaτ b|∇u|2dσdτ
)1/2

holds for all smooth functions u vanishing on ∂Ω̃2 ∩ (R+)2, where Ω̃2 = {(σ, τ) ∈
(R+)2 : (s = σγ1 , t = τ γ2) ∈ Ω2} is an arbitrary bounded domain of (R+)2.

On the one hand, we obtained that u ∈ L∞(Ω̃2) whenever the right hand side
is finite for some a, b with a + b < 0. On the other hand, in case a + b > 0 we
established the following.

Throughout the paper, C1
c (Rn) denotes the space of C1 functions with compact

support in Rn.

Proposition 1.1 ([3]). Let a and b be real numbers such that

a > −1, b > −1, and a+ b > 0.

Let u be a nonnegative C1
c (R2) function such that

(1.2) uσ ≤ 0 and uτ ≤ 0 in {σ > 0, τ > 0}.
with strict inequalities in the set {u > 0}. Then, there exists a constant C, depending
only on a and b, such that

(1.3)

(∫
{σ>0, τ>0}

σaτ b|u|2∗dσdτ
)1/2∗

≤ C

(∫
{σ>0, τ>0}

σaτ b|∇u|2dσdτ
)1/2

,

where 2∗ = 2D
D−2

and D = a+ b+ 2.

In [3] we also obtained Sobolev inequalities with other powers |∇u|p, 1 ≤ p < D.
By a standard scaling argument one sees that the exponent 2∗ = 2D

D−2
in (1.3) is

optimal, in the sense that (1.3) can not hold with any other exponent larger than
this one. In addition, when a < 0 or b < 0 inequality (1.3) is not valid without
assumption (1.2); see Remark 3.3 for more details.

Remark 1.2. When a and b are positive integers, inequality (1.3) is exactly the
classical Sobolev inequality in RD = Ra+1 × Rb+1 for functions which are radially
symmetric on the first a+ 1 variables and on the last b+ 1 variables.

Indeed, for each z ∈ RD write z = (z1, z2), with z1 ∈ Ra+1 and z2 ∈ Rb+1,
and define (σ, τ) = (|z1|, |z2|) ∈ {σ ≥ 0, τ ≥ 0}. Now, for each function u in
(R+)2 we define ũ(z) = u(|z1|, |z2|). We have that |∇zũ| = |∇(σ,τ)u|. Moreover, an
integral over RD of a function depending only on |z1| and |z2| can be written as an
integral in (R+)2 with dz = ca,bσ

aτ bdσdτ for some constant ca,b. Therefore, writing
in the coordinates (σ, τ) the classical Sobolev inequality in RD for the function ũ,
we obtain the validity of (1.3). Note that if a > 0 and b = 0 then we obtain the

inequality in {σ > 0} instead of {σ > 0, τ > 0}, that is,
(∫
{σ>0} σ

a|u|2∗dσdτ
)1/2∗

≤
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C
(∫
{σ>0} σ

a|∇u|2dσdτ
)1/2

— and this motivates definition (1.4) below in the case

of a general monomial xA.

The same argument as in the previous remark, but now with multiple axial sym-
metries, shows the following. When A1, ..., An are nonnegative integers, the Sobolev,
isoperimetric, Morrey, and Trudinger inequalities with the monomial weight

xA = |x1|A1 · · · |xn|An

are exactly the classical ones in

RA1+1 × · · · × RAn+1

when written in radial coordinates for functions which are radially symmetric with
respect to the first A1 + 1 variables, also with respect to the next A2 + 1 variables,
and so on until radial symmetry with respect to the last An + 1 variables.

The aim of this paper is to extend inequality (1.3) in R2 to the case of Rn with
any weight of the form (1.1), i.e., of the form xA = |x1|A1 · · · |xn|An . When Ai are
nonnegative real numbers, we prove that this weighted Sobolev inequality holds
for any function u ∈ C1

c (Rn) — and thus assumption (1.2) is not necessary. We
obtain also Sobolev inequalities with |∇u|2 replaced by other powers |∇u|p. More
importantly, we find the best constant and extremal functions in these inequalities.
For this, a crucial ingredient is a new isoperimetric inequality involving the weight xA

and with best constant. This is Theorem 1.4 below, a main result of this paper. In
addition, we prove Morrey and Trudinger type inequalities involving the monomial
weight. All these results were announced in our previous paper [3].

The first result of the paper is the Sobolev inequality with a monomial weight,
and reads as follows. Here, and in the rest of the paper, we denote

(1.4) Rn
∗ = {(x1, ..., xn) ∈ Rn : xi > 0 whenever Ai > 0}

and

B∗r = Br(0) ∩ Rn
∗ .

For each 1 ≤ p <∞, let W 1,p
0 (Rn, xAdx) be the closure of the space of C1

c (Rn) under

the norm
(∫

Rn x
A(|u|p + |∇u|p)dx

)1/p
.

Theorem 1.3. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
1 ≤ p < D be a real number. Then,

(a) There exists a constant Cp such that for all u ∈ C1
c (Rn),

(1.5)

(∫
Rn∗
xA|u|p∗dx

) 1
p∗
≤ Cp

(∫
Rn∗
xA|∇u|pdx

) 1
p

,

where p∗ = pD
D−p and xA is given by (1.1).
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(b) The best constant Cp is given by the explicit expression (4.2)-(4.3). When

p = 1, this constant is not attained in W 1,1
0 (Rn, xAdx). Instead, when 1 <

p < D it is attained in W 1,p
0 (Rn, xAdx) by the functions

(1.6) ua,b(x) =
(
a+ b|x|

p
p−1

)1−D
p
,

where a and b are any positive constants.

Note that the exponent p∗ is exactly the same as in the classical Sobolev inequality,
but in this case the “dimension” is given by D instead of n. Note also that when
A1 = ... = An = 0 then D = n and (1.5) is exactly the classical Sobolev inequality.
As before, a scaling argument shows that the exponent p∗ is optimal, in the sense
that (1.5) can not hold with any other exponent.

Note that the integrals in (1.5) are computed over Rn
∗ but the functions u involved

need not vanish on the coordinate hyperplanes on ∂Rn
∗ . Let us mention that ua,b are

extremal functions for inequality (1.5), but we do not know if these are all extremal
functions for the inequality — except in the case when all Ai are integers.

The Sobolev inequalities in all of Rn follow easily (without the best constant)
from the ones in Rn

∗ by applying them at most 2n times (one for each hyperoctant of
Rn, that is, for each set {εixi > 0, i = 1, ..., n}, where εi ∈ {−1, 1}) and adding up
the obtained inequalities. Consider now functions u ∈ C1

c (Rn) that are even with
respect to those variables xi for which Ai > 0. They arise naturally in nonlinear
problems in RD whenever D is an integer (see [3]). Among these functions, the
Sobolev inequality in all of Rn has also as extremals the functions ua,b in (1.6).

After a change of variables of the form xi = yγii , (1.5) yields new inequalities of
the form

‖u‖Lp∗ (Rn∗ ) ≤ C
n∑
i=1

‖xαii uxi‖Lp(Rn∗ ),

where αi are arbitrary exponents in [0, 1); see Corollary 3.5. In these inequalities, the
exponent on the left hand side is given by p∗ = pD

D−p , where D = n+ α1

1−α1
+· · ·+ αn

1−αn .

When p > 1 and Ai < p − 1 for all i = 1, ..., n, the weight (1.1) belongs to
the Muckenhoupt class Ap, and thus part (a) — without the best constant and for
bounded domains — can be deduced from some classical results on weighted Sobolev
inequalities. Indeed, it follows from a classical result of Fabes-Kenig-Serapioni [11]
that for any bounded domain Ω ⊂ Rn there exists q > p for which ‖u‖Lq(Ω,xAdx) ≤
C‖u‖W 1,p

0 (Ω,xAdx) holds. Moreover, the optimal exponent q = p∗ can be found by

using a result of Hajlasz [14, Theorem 6]. However, in general the monomial weight
(1.1) does not satisfy the Muckenhoupt condition Ap and Theorem 1.3 cannot be
deduced from these results on weighted Sobolev inequalities, even without the best
constant in the inequality.

The main ingredient in the proof of Theorem 1.3 is a new weighted isoperimetric
inequality with best constant, given by Theorem 1.4 below. Let us mention that
if one is willing not to have the best constant in the Sobolev inequality, we give
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an alternative and more elementary proof of part (a) of Theorem 1.3 under some
additional hypotheses. Namely, we assume Ai > 0 for all i and uxi ≤ 0 in {xi >
0, i = 1, ..., n} — an assumption equivalent to (1.2) in Proposition 1.3 and which
suffices for some applications to nonlinear problems.

The following is the new isoperimetric inequality with a monomial weight.

Theorem 1.4. Let A be a nonnegative vector in Rn, xA given by (1.1), and D =
A1 + · · ·+ An + n. Let Ω ⊂ Rn be a bounded Lipschitz domain. Denote

m(Ω) =

∫
Ω

xAdx and P (Ω) =

∫
∂Ω

xAdσ.

Then,

(1.7)
P (Ω)

m(Ω)
D−1
D

≥ P (B∗1)

m(B∗1)
D−1
D

,

where B∗1 = B1(0)∩Rn
∗ is the unit ball intersected with Rn

∗ , and Rn
∗ is given by (1.4).

It is a surprising fact that the weight xA is not radially symmetric but still Eu-
clidean balls centered at the origin (intersected with Rn

∗ ) minimize this isoperimetric
quotient.

Recently, these type of isoperimetric inequalities with weights (also called “with
densities”) have attracted much attention; see the nice survey of F. Morgan in the
Notices of the AMS [17]. In a forthcoming paper [5] we will prove new weighted
isoperimetric inequalities in convex cones of Rn that extend Theorem 1.4; some of
them have been announced in [4].

Equality in (1.7) holds when Ω = B∗r = Br(0) ∩ Rn
∗ , where r is any positive

number. We expect these balls centered at the origin intersected with Rn
∗ to be

the unique minimizers of the isoperimetric quotient. However, our proof involves
the solution of an elliptic equation and due to an issue on its regularity we need to
regularize slightly the domain Ω. This is why we can not obtain that B∗r are the
unique minimizers of (1.7). In a future paper [6] (still in progress) we will study the
non uniformly elliptic operator (1.9) below and prove some regularity results in Rn

∗
which may lead to the characterization of equality in the isoperimetric inequality
(1.7).

Remark 1.5. Note that, when A 6= 0, the entire balls Br = Br(0) are not minimizers
of the isoperimetric quotient. This is because

P (B∗1)

m(B∗1)
D−1
D

= 2−
k
D

P (B1)

m(B1)
D−1
D

<
P (B1)

m(B1)
D−1
D

,

where k is the number of positive entries in the vector A. However, if we look for

the minimizers of the isoperimetric quotient P (Ω)/m(Ω)
D−1
D among all sets Ω which

are symmetric with respect to each plane {xi = 0} with i such that Ai > 0, then
the balls Br(0) solve this isoperimetric problem.
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As explained below in Remark 2.2, the fact that P (Ω)/m(Ω)
D−1
D ≥ c for some

constant c > 0 smaller than the one in (1.7) (and hence, nonoptimal) is an interesting
consequence of the isoperimetric inequality in product manifolds of A. Grigor’yan
[13].

As said before, our sharp isoperimetric inequality (1.7) is the crucial ingredient
needed to prove Theorem 1.3 on the Sobolev inequality, especially part (b) on the
best constant and on extremals. Indeed, we prove part (b) by applying our isoperi-
metric inequality with best constant together with two results of Talenti. The first
one is a radial symmetrization result, which applies since our isoperimetric inequal-
ity (1.7) gives the best constant and the sets Br(0) ∩ Rn

∗ are extremal sets for any
r > 0. The second one is a result in dimension 1, which characterizes the minimizers
of the functional

J(u) =

(∫∞
0
rD−1|u′|p

)1/p(∫∞
0
rD−1|u|p∗

)1/p∗
,

where p∗ = pD
D−p .

When n = 2 and A1 = 0, our Sobolev and isoperimetric inequalities with best
constant were already obtained by Maderna and Salsa [16] in 1981. Namely, they
proved the sharp isoperimetric inequality in {(x, y) ∈ R2 : y > 0} with weight
yk, k > 0, and from it they deduced the Sobolev inequality with weight yk. These
inequalities arose in the study of an elliptic problem which involved the operator
y−kdiv(yk∇u) in {(x, y) ∈ R2 : y > 0}, where k is any positive number. Using sym-
metrization techniques and their weighted isoperimetric inequality, they obtained
sharp estimates for the solution of the problem. To prove the isoperimetric in-
equality with weight yk they first established the existence of a minimizer for the
perimeter functional under constraint of fixed area, then computed the first variation
of this functional, and finally solved the obtained ODE to deduce that minimizers
must be half balls. Their result can be seen as a particular case of Theorem 1.4 by
setting n = 2 and A1 = 0. Our proof of the weighted isoperimetric inequality will
be completely different from the one in [16], as explained next.

The proof of Theorem 1.4 follows the ideas introduced by the first author in a
new proof of the classical isoperimetric inequality; see [1, 2] or the last edition of
Chavel’s book [9]. It is quite surprising (and fortunate) that this proof (which gives
the best constant) can be adapted to the case of monomial weights.

The proof of the classical isoperimetric inequality from [1, 2] considers the linear
problem

(1.8)

{
∆u = c in Ω
∂u
∂ν

= 1 on ∂Ω,

where c is the unique constant for which the problem has a solution. Then, one uses
an argument similar to the Alexandroff-Bakelman-Pucci method (also called ABP
method; see for example [12]) applied to this solution u. Using this argument and
the classical inequality between the arithmetic mean (AM) and the geometric mean
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(GM), the isoperimetric inequality follows. When Ω = B1, the solution of (1.8) is
u(x) = |x|2/2 and all inequalities in the proof become equalities. Here we consider
a similar problem to (1.8) but where the Laplacian is replaced by the operator

(1.9) x−Adiv(xA∇u) = ∆u+ A1
ux1
x1

+ · · ·+ An
uxn
xn

.

Now, using the same ABP argument with this new problem and a weighted version
of the AM-GM inequality, we obtain (1.7). An essential fact in our proof (and this
is why B1(0) ∩ Rn

∗ is the minimizer) is that the function u(x) = |x|2/2 also solves
the equation x−Adiv(xA∇u) = c for some constant c > 0. In addition, it has normal
derivative uν = 1 on ∂B1, as in problem (1.8).

When A1, ..., An are nonnegative integers, the operator (1.9) is the Laplacian in
the space RD = RA1+1 × · · · ×RAn+1 written in radial coordinates. Thus, if instead
Ai are not integers, (1.9) can be seen as some kind of Laplacian in a fractional
dimension D. This class of operators was studied by A. Weinstein and others for
n = 2, and the theory on these equations is called “Generalized Axially Symmetric
Potential Theory”; see for example [21]. In case A1 = · · · = An−1 = 0 and An =
a ∈ (−1, 1), the operator x−Adiv(xA∇u) appears in the re-interpretation of the
fractional Laplacian as a local problem in one higher dimension; see [7].

The paper [15] by Ivanov and Nazarov establishes some weighted Sobolev in-
equalities for W 1,p functions with multiple radial symmetries — a space of functions
denoted by W 1,p

sym. Their result is related to ours in the case in which all the expo-
nents Ai are nonnegative integers. They prove that for functions with multiple radial
symmetries in RD, the embedding W 1,p

sym(B1) ⊂ Lq(B1; |x|α), with p < D and α > 0,
holds for some exponents q depending on α that are greater than p∗ = pD/(p−D).

Some theorems of trace and interpolation type for functional spaces with weights
of the form (1.1) were proved by A. Cavallucci [8] in 1969. Namely, he established
some inequalities of the form

‖Dλf‖Lp((R+)m×{0},yBdy) ≤ C
(
‖f‖Lp((R+)n,xAdx) + ‖Dlf‖Lp((R+)n,xAdx)

)
,

where m ≤ n, yB = yB1
1 · · · yBmm and xA = xA1

1 · · ·xAnn are two monomial weights,
and λ and l are multiindices satisfying a certain condition involving A, B, m, n,
and p. Note that in these inequalities the exponent p is the same in both sides, and
thus they are not Sobolev-type inequalities. To obtain his results, the author used
a representation of Dλf in terms of integral transforms of Dlf .

The third result of our paper is the weighted version of the Morrey inequality,
which reads as follows.

Theorem 1.6. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
p > D be a real number. Then, there exists a constant C, depending only on p and
D, such that

(1.10) sup
x 6=y, x, y∈Rn∗

|u(x)− u(y)|
|x− y|α

≤ C

(∫
Rn∗
xA|∇u|pdx

)1/p
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for all u ∈ C1
c (Rn), where α = 1− D

p
.

As a consequence, if Ω ⊂ Rn is a bounded domain and u ∈ C1
c (Ω) then

(1.11) sup
Ω
|u| ≤ C diam(Ω)1−D

p

(∫
Ω

xA|∇u|pdx
)1/p

.

This weighted Morrey inequality will be deduced from the classical one by applying
it in dyadic domains and then summing geometric series appropriately; see Section
5 for more details.

The next result is the weighted version of the classical Trudinger inequality.

Theorem 1.7. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
Ω ⊂ Rn be a bounded domain. Then, for each u ∈ C1

c (Ω),∫
Ω

exp

{(
c1|u|

‖∇u‖LD(Ω,xAdx)

) D
D−1

}
xAdx ≤ C2m(Ω),

where m(Ω) =
∫

Ω
xAdx, and c1 and C2 are constants depending only on D.

Our proof of this result is based on a bound for the best constant (4.3) in the
weighted Sobolev inequality as p goes to D. Then, the Trudinger inequality will
follow by expanding exp(·) as a power series and applying the weighted Sobolev
inequality to each term of the series. The obtained series is convergent thanks to
the mentioned bound for the best constant (4.3).

Finally, adding up the results of Theorems 1.3, 1.6, and 1.7 we obtain the fol-
lowing continuous embeddings, which are weighted versions of the classical Sobolev
embeddings.

Recall that the Orlicz space Lϕ(X, dµ) is defined as the space of measurable
functions u : X → R such that

‖u‖Lϕ(X,dµ) = inf

{
K > 0 :

∫
X

ϕ

(
|u|
K

)
dµ ≤ 1

}
is finite. Setting ϕ(t) = tp we recover the definition of the Lp spaces.

Corollary 1.8. Let A be a nonnegative vector in Rn, xA be given by (1.1), and
D = A1 + · · ·+An + n. Let k ≥ 1 be an integer and p ≥ 1 be a real number. Then,
for any bounded domain Ω ⊂ Rn we have the following continuous embeddings:

(i) If kp < D then

W k,p
0 (Ω, xAdx) ⊂ Lq(Ω, xAdx),

where q is given by 1
q

= 1
p
− k

D
.

(ii) If kp = D then

W k,p
0 (Ω, xAdx) ⊂ Lϕ(Ω, xAdx),

where
ϕ(t) = exp

(
t

D
D−1

)
− 1.
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(iii) If kp > D then

W k,p
0 (Ω, xAdx) ⊂ Cr,α(Ω),

where r = k − [D
p

] − 1, and α = [D
p

] + 1 − D
p
whenever D

p
is not an integer,

or α is any positive number smaller than 1 otherwise.

The paper is organized as follows. In section 2 we give the proof of the weighted
isoperimetric inequality. Section 3 establishes the weighted Sobolev inequalities,
while in section 4 we obtain their best constants and extremal functions. Section
5 deals with the weighted Morrey inequality. Finally, in section 6 we prove the
weighted Trudinger inequality and Corollary 1.8.

2. Proof of the Isoperimetric inequality

In this section we prove the isoperimetric inequality with a monomial weight. Our
proof extends the one of the classical isoperimetric inequality due to the first author
[1, 2] (see also the last edition of [9]). In fact, setting A = 0 in the following proof we
obtain exactly the original one. It is quite surprising (and fortunate) that this proof
(which gives the best constant) can be adapted to the case of monomial weights. A
crucial fact in being able to obtain the sharp constant in the isoperimetric inequality
is that

u(x) = |x|2/2,
x ∈ B1 ∩ Rn

∗ , is the solution of

(2.1)


div(xA∇u) = bΩx

A in Ω

xA
∂u

∂ν
= xA on ∂Ω,

for some constant bΩ > 0 when Ω = B1 ∩ Rn
∗ .

In a forthcoming paper [5] we will use similar ideas to prove new sharp isoperi-
metric inequalities with homogeneous weights in open convex cones Σ of Rn. We
have already announced some of them in [4]. Note that monomial weights are ho-
mogeneous functions in the convex cone Σ = Rn

∗ . In fact, the results in [5] extend
the present isoperimetric inequality with a monomial weight.

Proof of Theorem 1.4. By symmetry, we can assume that A = (A1, ..., Ak, 0, ..., 0),
with Ai > 0 for i = 1, ..., k, where 0 ≤ k ≤ n.

Moreover, we can also suppose that Ω is contained in Rn
∗ . Indeed, split the

domain Ω in at most 2k disjoint subdomains Ωj, j = 1, ..., J , each one of them
contained in the cone {εixi > 0, i = 1, ..., k} for different εi ∈ {−1, 1}, and with
Ω = Ω1 ∪ · · · ∪ ΩJ . Then, since the weight is zero on {xi = 0} for each i = 1, ..., k,

we have that P (Ω) =
∑J

j=1 P (Ωj) and m(Ω) =
∑J

j=1 m(Ωj). Therefore

P (Ω)

m(Ω)
D−1
D

≥ min
1≤j≤J

{
P (Ωj)

m(Ωj)
D−1
D

}
=:

P (Ωj0)

m(Ωj0)
D−1
D

,
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with strict inequality unless J = 1. After some reflections, we may assume that
Ωj0 ⊂ Rn

∗ . Moreover, since Ωj0 is the intersection of a Lipschitz domain of Rn with
Rn
∗ , Ωj0 can be approximated in weighted area and perimeter by smooth domains

Ωε with Ωε ⊂ Ωj0 ⊂ Rn
∗ .

Therefore, from now on we assume:

Ω is smooth and Ω ⊂ Rn
∗ .

In particular, xA ≥ c in Ω for some positive constant c.
Let u be a solution of the Neumann problem

(2.2)


div(xA∇u) = bΩx

A in Ω

∂u

∂ν
= 1 on ∂Ω,

where the constant bΩ is chosen so that the problem has a unique solution up to an
additive constant, i.e.,

(2.3) bΩ =
P (Ω)

m(Ω)
.

Since the equation in (2.2),

(2.4) x−Adiv(xA∇u) = ∆u+
A1

x1

ux1 + · · ·+ An
xn
uxn = bΩ

is uniformly elliptic in Ω, u is smooth in Ω. The C1,1 regularity of u up to Ω will be
crucial in the rest of the proof.

The following comment is not necessary to complete the proof, but it is useful to
notice it here. Problem (2.2) is equivalent to (2.1) since ∂Ω ⊂ Rn

∗ . At the same
time, when Ω = B∗1 = B1 ∩ Rn

∗ the solution to (2.1) is given by u(x) = |x|2/2, and
we will have that all inequalities in the rest of the proof are equalities for Ω = B∗1
(see Remark 2.1 for more details).

Coming back to the solution u of (2.2), consider the lower contact set of u, defined
by

Γu = {x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y − x) for all y ∈ Ω}.
It is the set of points where the tangent hyperplane to the graph of u lies below u
in all Ω. Define also

Γ∗u = {x ∈ Γu : ux1(x) > 0, ..., uxk(x) > 0} = Γu ∩ (∇u)−1(Rn
∗ ).

We claim that

(2.5) B∗1 ⊂ ∇u(Γ∗u),

where B∗1 = B1(0) ∩ Rn
∗ .

To show (2.5), take any p ∈ Rn satisfying |p| < 1. Let x ∈ Ω be a point such that

min
y∈Ω
{u(y)− p · y} = u(x)− p · x
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(this is, up to a sign, the Legendre transform of u). If x ∈ ∂Ω then the exterior
normal derivative of u(y)− p · y at x would be nonpositive and hence (∂u/∂ν)(x) ≤
p · ν ≤ |p| < 1, a contradiction with (2.2). It follows that x ∈ Ω and, therefore,
that x is an interior minimum of the function u(y)− p · y. In particular, p = ∇u(x)
and x ∈ Γu. Thus B1 ⊂ ∇u(Γu). Intersecting now both sides of this inclusion with
Rn
∗ , claim (2.5) follows. It is interesting to visualize geometrically the proof of the

claim (2.5), by considering the graphs of the functions p · y+ c for c ∈ R. These are
parallel hyperplanes which lie, for c close to −∞, below the graph of u. We let c
increase and consider the first c for which there is contact or “touching” at a point
x. It is clear geometrically that x 6∈ ∂Ω, since |p| < 1 and ∂u/∂ν = 1 on ∂Ω.

Now, from (2.5) we deduce

m(B∗1) ≤
∫
∇u(Γ∗u)

pAdp ≤
∫

Γ∗u

(∇u(x))A detD2u(x)dx

=

∫
Γ∗u

(∇u(x))A

xA
detD2u(x)xAdx.

(2.6)

We have applied the area formula to the smooth map ∇u : Γ∗u → Rn, and we have
used that its Jacobian, detD2u, is nonnegative in Γu by definition of this set.

We use now the weighted version of the arithmetic-geometric mean inequality,

(2.7) wλ11 · · ·wλmm ≤
(
λ1w1 + · · ·+ λmwm
λ1 + · · ·+ λm

)λ1+···+λm
.

Here λi and wi are arbitrary nonnegative numbers. To prove this inequality, take
logarithms on both sides and use the concavity of the logarithm. We apply (2.7)
to the numbers wi = uxi/xi and λi = Ai for i = 1, ..., k, and to the eigenvalues of
D2u(x) and λj = 1 for j = k + 1, ..., k + n. They are all nonnegative when x ∈ Γ∗u.
We obtain(
ux1
x1

)A1

· · ·
(
uxk
xk

)Ak
detD2u ≤

(
A1

ux1
x1

+ · · ·+ Ak
uxk
xk

+ ∆u

A1 + · · ·+ Ak + n

)A1+···+Ak+n

in Γ∗u.

This, combined with (2.4)

A1
ux1
x1

+ · · ·+ Ak
uxk
xk

+ ∆u =
div(xA∇u)

xA
≡ bΩ,

yields ∫
Γ∗u

(∇u(x))A

xA
detD2u(x)xAdx ≤

∫
Γ∗u

(
bΩ

D

)D
xAdx.

Therefore, by (2.6) and (2.3),

m(B∗1) ≤
(

P (Ω)

Dm(Ω)

)D
m(Γ∗u) ≤

(
P (Ω)

Dm(Ω)

)D
m(Ω).
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Thus, we conclude that

(2.8) Dm(B∗1)
1
D ≤ P (Ω)

m(Ω)
D−1
D

.

Finally, an easy computation — using that |x|2/2 solves (2.1) with bΩ = D in
Ω = B∗1 — gives P (B∗1) = Dm(B∗1). Thus,

(2.9) Dm(B∗1)
1
D = P (B∗1)/m(B∗1)

D−1
D

and the isoperimetric inequality (1.7) follows. �

Remark 2.1. An alternative (and more instructive) way to finish the proof goes as
follows. When Ω = B∗1 we consider u(x) = |x|2/2 and Γu = B∗1 . Now, ∂u/∂ν = 1 is
only satisfied on Rn

∗∩∂Ω but, since xA ≡ 0 on ∂Rn
∗∩∂Ω, we have bB∗1 = P (B∗1)/m(B∗1)

— as in (2.3). This is because |x|2/2 solves problem div(xA∇u) = bΩx
A in Ω,

xAuν = xA on ∂Ω for Ω = B∗1 . For these concrete Ω and u one verifies that
all inequalities in the proof are equalities, and therefore from (2.8) we deduce the
isoperimetric inequality (1.7).

Remark 2.2. The fact that P (Ω)/m(Ω)
D−1
D ≥ c for some nonoptimal constant c is an

interesting consequence of the following result of A. Grigor’yan [13] (see also [18]).
We say that a manifold M satisfies the m-isoperimetric inequality if there exists

a positive constant c such that µ(∂Ω) ≥ cµ(Ω)
m−1
m for each Ω ⊂ M . In [13], he

proved that if M1 and M2 are manifolds that satisfy the m1-isoperimetric and m2-
isoperimetric inequalities, respectively, then the product manifold M1×M2 satisfies
the (m1 +m2)-isoperimetric inequality. By applying this result to Mi = (R, xAii dxi),
this allows us to reduce the problem to n = 1, and in this case the isoperimetric
inequality is easy to verify.

3. Weighted Sobolev inequality

The aim of this section is to prove the Sobolev inequality with a monomial weight,
that is, part (a) of Theorem 1.3.

As in the classical inequality in Rn, we can deduce any weighted Sobolev inequal-
ity from the isoperimetric inequality with the same weight via the coarea formula.
Moreover, if the isoperimetric inequality has the sharp constant then this procedure
gives the optimal constant for the Sobolev inequality when the exponent is p = 1 (see
the following proof and also Remark 3.1). This classical argument is valid even on
Riemannian manifolds; see for example [9]. We use it to prove part (a) of Theorem
1.3.

Proof of Theorem 1.3 (a). We prove first the case p = 1. By density arguments,
we can assume u ≥ 0 and also u ∈ C∞c (Rn). Moreover, by approximation we can
suppose u ∈ C∞c (Rn

∗ ). Indeed, consider ũε = uηε, where ηε ∈ C∞c (Rn
∗ ) is a function
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satisfying ηε ≡ 1 in the set {xi > ε whenever Ai > 0} and |∇ηε| ≤ C/ε. Then, it is
clear that

‖uηε‖
L

D
D−1 (Rn∗ ,xAdx)

−→ ‖u‖
L

D
D−1 (Rn∗ ,xAdx)

as ε→ 0. Moreover,

‖∇ηε‖L1(Rn∗ ,xAdx) ≤
∑
Ai>0

∫
{0≤xi≤ε}

C

ε
xAdx ≤

∑
Ai>0

CεAi −→ 0,

and thus
‖∇(uηε)‖L1(Rn∗ ,xAdx) −→ ‖∇u‖L1(Rn∗ ,xAdx).

Thus, we now have u ∈ C∞c (Rn
∗ ). For each t ≥ 0, define

{u > t} := {x ∈ Rn
∗ : u(x) > t} and {u = t} := {x ∈ Rn

∗ : u(x) = t}.
By Theorem 1.4 and Sard’s Theorem, we have

(3.1) m({u > t})
D−1
D ≤ C1P ({u > t}) = C1

∫
{u=t}

xAdσ

for almost all t (those t for which {u = t} is smooth). Here, C1 is the optimal
constant in (1.7), i.e., recalling (2.9)

(3.2) C1 =
P (B∗1)

m(B∗1)
D−1
D

= Dm(B∗1)
1
D .

Letting χA be the characteristic function of the set A, we have

u(x) =

∫ +∞

0

χ{u(x)>τ}dτ.

Thus, by Minkowski’s integral inequality(∫
Rn∗
xAu

D
D−1dx

)D−1
D

≤
∫ +∞

0

(∫
Rn∗
χ{u(x)>τ}x

Adx

)D−1
D

dτ

=

∫ +∞

0

m({u > τ})
D−1
D dτ.

Inequality (3.1), together with the coarea formula, yield(∫
Rn∗
xAu

D
D−1dx

)D−1
D

≤ c0

∫ +∞

0

∫
{u=t}

xAdσ dτ = c0

∫
Rn∗
xA|∇u|dx,

and the theorem is proved for p = 1.
It remains to prove the case 1 < p < D. Take u ∈ C1

c (Rn), and define v = |u|γ,
where γ = p∗

1∗
. Since, γ > 1, we have v ∈ C1

c (Rn), and we can apply the weighted

Sobolev inequality with exponent p = 1 (proved above) to get(∫
Rn∗
xA|u|p∗dx

)1/1∗

=

(∫
Rn∗
xA|v|

D
D−1dx

)D−1
D

≤ c0

∫
Rn∗
xA|∇v|dx.
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Now, |∇v| = γ|u|γ−1|∇u|, and by Hölder’s inequality we deduce∫
Rn∗
xA|∇v|dx ≤ C

(∫
Rn∗
xA|∇u|pdx

)1/p(∫
Rn∗
xA|u|(γ−1)p′dx

)1/p′

.

Finally, from the definition of γ and p∗ it follows that

1

1∗
− 1

p′
=

1

p∗
, (γ − 1)p′ = p∗,

and hence, (∫
Rn∗
xA|u|p∗dx

)1/p∗

≤ C

(∫
Rn∗
xA|∇u|pdx

)1/p

.

�

Remark 3.1. Since the constant appearing in (3.1) is optimal, this proof gives the
optimal constant for the weighted Sobolev inequality for p = 1. This is because for
each Lipschitz open set E there exists an increasing sequence of smooth functions
uε → χE, such that ‖∇uε‖L1(Rn∗ ,xAdx) → P (E).

Moreover, for p = 1 it follows from the previous proof (in fact from the use of
Minkowski’s inequality) that if equality is attained by a function u, then all the sets
{u > t} must coincide for t ∈ (0,maxu). That is, the extremal function must be
a characteristic function. This proves that the optimal constant is not attained by
any W 1,1

0 (Rn, xAdx) function for p = 1.

We give now an alternative and short proof of part (a) of Theorem 1.3 — without
best constant — under some additional assumptions. Indeed, under the hypotheses
Ai > 0 for all i and uxi ≤ 0 in {xi > 0, i = 1, ..., n}, we establish the weighted
Sobolev inequality (1.5) following the ideas used in [3] to prove the isoperimetric
inequality in dimension n = 2 (without best constant) with the weight σaτ b. The
following proof is much more elementary than the previous one, which used the
weighted isoperimetric inequality. It does not use any elliptic problem nor the
coarea formula, and it is also shorter. However, it does not give the best constant
in the inequality, even for p = 1. The monotonicity hypotheses uxi ≤ 0 in {xi >
0, i = 1, ..., n} are equivalent to (1.2) in Proposition 1.3. As said before, the
weighted Sobolev inequality under these monotonicity assumptions suffices for some
applications to nonlinear problems.

Proposition 3.2. Let A be a positive vector in Rn and 1 ≤ p < D be a real number.
Then, there exists a constant C such that for all u ∈ C1

c (Rn) satisfying

(3.3) uxi ≤ 0 in (R+)n for i = 1, ..., n,

we have (∫
(R+)n

xA|u|p∗dx
)1/p∗

≤ C

(∫
(R+)n

xA|∇u|pdx
) 1

p

,

where p∗ = pD
D−p and D = A1 + · · ·+ An + n.
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Proof. It suffices to prove the case p = 1, since the inequality for 1 < p < D follows
from it by applying Hölder’s inequality — see the previous proof of Theorem 1.3
(a).

From assumption (3.3), we deduce u ≥ 0 in (R+)n. Now, integrating by parts we
have ∫

(R+)n
xA(|uxi |+ · · ·+ |uxn|)dx = −

∫
(R+)n

xA(ux1 + · · ·+ uxn)dx

=

∫
(R+)n

xAu

(
A1

x1

+ · · ·+ An
xn

)
dx,

and thus

(3.4)

∫
(R+)n

xAu

(
1

x1

+ · · ·+ 1

xn

)
dx ≤ K

∫
(R+)n

xA|∇u|dx,

where K =
√
n/miniAi.

Let now λ > 0 be such that∫
(R+)n

xAu
D
D−1dx = bλD,

where b =
∫
{0≤xi≤1} x

Adx. Here {0 ≤ xi ≤ 1} = {x ∈ Rn : 0 ≤ xi ≤ 1 for i =

1, ..., n}.
We claim that, for each x ∈ (R+)n we have u(x)

1
D−1 ≤ λ

xi
for some i ∈ {1, ..., n}.

Indeed, otherwise there would exist y ∈ (R+)n such that u(y)
1

D−1 > λ
yi

for each i,

and therefore

u(y)
D
D−1 >

λD

yA+1
,

where A + 1 = A + (1, ..., 1) = (A1 + 1, ..., An + 1). But, by (3.3), u(x) ≥ u(y) if
0 ≤ xi ≤ yi for all i = 1, ..., n. We deduce∫

{0≤xi≤yi}
xAu(x)

D
D−1dx > λD

∫
{0≤xi≤yi}

xAy−A−1dx = λD
∫
{0≤zi≤1}

zAdz = bλD,

a contradiction.
Hence,

u(x)
1

D−1 ≤ λ

(
1

x1

+ · · ·+ 1

xn

)
in (R+)n,

and therefore

(3.5)

∫
(R+)n

xAu
D
D−1dx ≤ λ

∫
(R+)n

xAu

(
1

x1

+ · · ·+ 1

xn

)
dx.

Finally, taking into account the value of λ

λ = b−
1
D

(∫
(R+)n

xAu
D
D−1dx

) 1
D

,
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we deduce from (3.5) and (3.4) that(∫
(R+)n

xAu
D
D−1dx

)D−1
D

≤ b−
1
D

∫
(R+)n

xAu

(
1

x1

+ · · ·+ 1

xn

)
dx

≤ Kb−
1
D

∫
(R+)n

xA|∇u|dx.

This completes the proof and gives as constant Kb−
1
D , computed explicitly within

the proof. �

This proof can not be used to establish the classical Sobolev inequality. Indeed,
the constant on the right hand side blows up as Ai → 0 for some i. It is surprising
that the above proof of the Sobolev inequality with the monomial weight xA, A > 0,
seems more elementary than those of the classical Sobolev without weight.

The following remark justifies our assumption A ≥ 0 in the weighted Sobolev
inequality (1.5). It is related to the monotonicity assumption (1.2) in Proposition
1.3.

Remark 3.3. When a < 0 or b < 0 inequality (1.3) is not valid without the mono-
tonicity assumption (1.2). To prove it, we only need to take functions u with support
away from the origin, as follows. Assume that a < 0, a+b > 0 (and thus b > 0), and
that (1.3) holds for functions u with support in the ball B1(x0), with x0 = (2, 0).
Then, since σa is bounded in this ball from above and below by positive constants,
the same inequality holds — with a larger constant C — with the weight σaτ b re-
placed by τ b. But, since a < 0, we have q′ := 2D′

D′−2
< 2D

D−2
, where D′ = b + 2.

This is a contradiction with the fact that the exponent q′ is optimal for the weight
τ b (which can be seen by a scaling argument, i.e., considering the rescaled func-
tions uλ(x) = u(x0 + λ(x − x0)), with λ ≥ 1). Of course, when a and b are both
nonnegative this argument does not work.

Remark 3.4. One can think on adapting the classical proof of the Sobolev inequality
by Gagliardo and Nirenberg (see for example [10]) to the case of monomial weights.
As we show next, this leads to inequality

(3.6)

(∫
Rn
xA|u|

n
n−1dx

)n−1
n

≤
∫
Rn
x
n−1
n
A|∇u|dx,

but not to our Sobolev inequality (1.5) with the same weight xA in both integrals.
The constant C (which does not appear) on the right hand side equals 1. To prove
(3.6), one shows first that

(3.7) |xi|
n−1
n
Ai |u(x)| ≤

∫
R
|yi|

n−1
n
Ai |∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi.
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This follows by integrating uyi on (xi,+∞) if xi > 0 and on (−∞, xi) if xi < 0, and
using |xi| ≤ |yi| in these halflines. Then, (3.7) yields

|x1|
A1
n · · · |xn|

An
n |u(x)|

n
n−1 ≤

n∏
i=1

(∫ +∞

−∞
|∇u(x1, ..., yi, ..., xn)||yi|

n−1
n
Aidyi

) 1
n−1

.

Integrating both sides with respect to the measure x
n−1
n
Adx we deduce∫

Rn
xA|u(x)|

n
n−1dx ≤

∫
Rn

n∏
i=1

(∫ +∞

−∞
|∇u(x1, ..., yi, ..., xn)||yi|

n−1
n
Aidyi

) 1
n−1

x
n−1
n
Adx,

and the proof of (3.6) is completed in the same way as the classical one with the

measures dxi and dyi replaced by dµi(xi) = |xi|
n−1
n
Aidxi and dµi(yi) = |yi|

n−1
n
Aidyi.

Different from (1.5), inequality (3.6) is the Sobolev inequality for the Riemannian
manifold conformal to Rn with conformal factor g = xA. Indeed, the Riemannian

gradient in Rn with this metric is given by ∇Ru = x−
A
n∇u, and hence it holds

x
n−1
n
A|∇u| = xA|∇Ru|.

Moreover, from this Sobolev inequality one can deduce the following isoperimetric
inequality (with nonoptimal constant) on this manifold(∫

Ω

xAdx

)n−1
n

≤
∫
∂Ω

x
n−1
n
Adσ.

To end this section, we give an immediate consequence of Theorem 1.3. Recall
that in [3] we wanted to prove inequality (3.8) for n = 2 and that, after a change
of variables, we saw that it is equivalent to the Sobolev inequality (1.5) with a
monomial weight.

Corollary 3.5. Let α1, ..., αn be real numbers such that αi ∈ [0, 1). There exists a
constant C such that for all u ∈ C1

c (Rn),

(3.8)

(∫
Rn∗
|u|p∗dx

) 1
p∗
≤ C

(∫
Rn∗

{
|x1|pα1|ux1|p + · · ·+ |xn|pαn|uxn|p

}
dx

) 1
p

,

where p∗ = pD
D−p and D = n+ α1

1−α1
+ · · ·+ αn

1−αn .

Proof. It suffices to make the change of variables yi = x1−αi
i in (3.8) and then apply

Theorem 1.3 with Ai = αi
1−αi . �

The optimal exponent in (3.8) is p∗ = pD
D−p , as in (1.5). However, in (3.8) the

constant D has no clear interpretation in terms of any “dimension”.
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4. Best constant and extremal functions in the weighted Sobolev
inequality

In this section we obtain the best constant and the extremal functions in the
weighted Sobolev inequality (1.5).

The first step is to compute the measure of the unit ball in Rn
∗ with the weight

xA. From this, we will obtain the optimal constant in the isoperimetric inequality
and, therefore, the optimal constant in Sobolev inequality for p = 1 (see Remark
3.1).

Lemma 4.1. Let A be a nonnegative vector in Rn and B∗1 = B1(0) ∩ Rn
∗ . Then,∫

B∗1

xAdx =
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)
2kΓ

(
1 + D

2

) ,

where D = A1 + · · ·+ An + n and k is the number of strictly positive entries of A.

Proof. We will prove by induction on n that∫
B1

xAdx =
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)
Γ
(
1 + D

2

) ,

where B1 is the unit ball in Rn. After this, the the lemma follows by taking into
account that m(B∗1) = m(B1)/2k.

For n = 1 it is immediate. Assume that this is true for n − 1 and let us prove
it for n. Let us denote x = (x′, xn), A = (A′, An), with x′, A′ ∈ Rn−1, and D′ =
A1 + · · ·+ An−1 + n− 1. Then,∫

B1

xAdx =

∫ 1

−1

|xn|An
(∫
|x′|≤
√

1−x2n
x′A

′
dx′

)
dxn

=

∫ 1

−1

|xn|An
(

(1− x2
n)

D′
2

∫
|y′|≤1

y′A
′
dy′
)
dxn

=

∫
|y′|≤1

y′A
′
dy′
∫ 1

−1

|xn|An(1− x2
n)

D′
2 dxn,

and hence it remains to compute
∫ 1

−1
|xn|An(1− x2

n)
D′
2 dxn.

Making the change of variables x2
n = t one obtains∫ 1

−1

|xn|An(1− x2
n)

D′
2 dxn = 2

∫ 1

0

xAnn (1− x2
n)

D′
2 dxn

=

∫ 1

0

t
An−1

2 (1− t)
D′
2 dt

= B

(
An + 1

2
, 1 +

D′

2

)
,
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where B is the Beta function. Now, since

(4.1) B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
,

then ∫
B1

xAdx =

∫
|y′|≤1

y′A
′
dy′
∫ 1

−1

xAnn (1− x2
n)

D′
2 dxn

=
Γ
(
A1+1

2

)
· · ·Γ

(
An−1+1

2

)
Γ
(
1 + D′

2

) ·
Γ
(
An+1

2

)
Γ
(
1 + D′

2

)
Γ
(
1 + D

2

)
=

Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)
Γ
(
1 + D

2

) ,

and the lemma follows. �

Now, as in the classical Sobolev inequality, we find the extremal functions in our
weighted Sobolev inequality by reducing it to the radial case. To do this, we use
a weighted version of a rearrangement inequality due to Talenti [19]. His result
states that, whenever balls minimize the isoperimetric quotient with a weight w,
there exists a radial rearrangement (of u) which preserves

∫
f(u)w dx and decreases∫

Φ(|∇u|)w dx (under some conditions on Φ). When w = xA, this is stated in the
following.

Proposition 4.2. Let u be a Lipschitz continuous function in Rn
∗ with compact

support in Rn
∗ . Then, denoting m(E) =

∫
E
xAdx, there exists a radial rearrangement

u∗ of u such that

(i) m({|u| > t}) = m({u∗ > t}) for all t,
(ii) u∗ is radially decreasing,

(iii) for every Young function Φ (i.e., convex and increasing function that van-
ishes at 0), ∫

Rn∗
Φ(|∇u∗|)xAdx ≤

∫
Rn∗

Φ(|∇u|)xAdx.

Proof. It is a direct consequence of the main theorem in [19] and our isoperimetric
inequality (1.7). �

We can now find the best constant in the weighted Sobolev inequality (1.5). The
proof is based on Proposition 4.2, which allows us to reduce the problem to radial
functions in Rn

∗ . Then, the functional that we must minimize is exactly the same
as in the classical Sobolev inequality but with a noninteger exponent D in the 1D
weight, and the proof finishes by applying another result of Talenti in [20].
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Proposition 4.3. The best constant in the Sobolev inequality (1.5) is given by

(4.2) C1 = D

(
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)
2kΓ

(
1 + D

2

) ) 1
D

for p = 1

and by

(4.3) Cp = C1D
1
D
−1− 1

p

(
p− 1

D − p

) 1
p′

 p′Γ(D)

Γ
(
D
p

)
Γ
(
D
p′

)
 1

D

for 1 < p < D.

Here, p′ = p
p−1

and k is the number of positive entries in the vector A.

Moreover, this constant is not attained by any function in W 1,1
0 (Rn, xAdx) when

p = 1. Instead, when 1 < p < D this constant is attained in W 1,p
0 (Rn, xAdx) by

ua,b(x) =
(
a+ b|x|

p
p−1

)1−D
p
,

where a and b are arbitrary positive constants.

Before giving the proof of Proposition 4.3, we recall Lemma 2 from [20], where
the best constant for the classical Sobolev inequality is obtained.

Lemma 4.4 ([20]). Let m, p, and q be real numbers such that

1 < p < m and q =
mp

m− p
.

Let u be any real-valued function of a real variable r, which is Lipschitz continuous
and such that∫ +∞

0

rm−1|u′(r)|pdr < +∞ and u(r)→ 0 as r → +∞.

Then, (∫ +∞
0

rm−1|u(r)|qdr
) 1
q

(∫ +∞
0

rm−1|u′(r)|pdr
) 1
p

≤

(∫ +∞
0

rm−1|ϕ(r)|qdr
) 1
q

(∫ +∞
0

rm−1|ϕ′(r)|pdr
) 1
p

=: J(ϕ),

where ϕ is any function of the form

ϕ(r) = (a+ brp
′
)1−m

p

with a and b positive constants. Here p′ = p/(p− 1).
Moreover,

J(ϕ) = m−
1
p

(
p− 1

m− p

) 1
p′
[

1

p′
B

(
m

p
,
m

p′

)]− 1
m

,

where B is the Beta function.

We can now give the
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Proof of Proposition 4.3. For p = 1, the best constant in Sobolev inequality is the
same than in the isoperimetric inequality (see Remark 3.1). Recalling (3.2), it is
given by C1 = Dm(B∗1)1/D. Thus, the value of C1 follows from Lemma 4.1. That
C1 is not attained by any W 1,1

0 (Rn, xAdx) function was explained in Remark 3.1.
Let now 1 < p < D, u be a C1(Rn

∗ ) function with compact support in Rn
∗ , and u∗

be its radial rearrangement given by Proposition 4.2. Then, by the proposition,

‖∇u∗‖Lp(Rn∗ ,xAdx)

‖u∗‖Lp∗ (Rn∗ ,xAdx)

≤
‖∇u‖Lp(Rn∗ ,xAdx)

‖u‖Lp∗ (Rn∗ ,xAdx)

.

Moreover, ∫
Rn∗
xA|u∗|p∗dx =

∫ ∞
0

(∫
∂B∗r

xA|u∗|p∗dσ
)
dr

=

∫ ∞
0

rD−1|u∗|p∗
(∫

∂B∗1

xAdσ

)
dr

= P (B∗1)

∫ ∞
0

rD−1|u∗|p∗dr

and, analogously, ∫
Rn∗
xA|∇u∗|pdx = P (B∗1)

∫ ∞
0

rD−1|u′∗|pdr.

Therefore, the best constant in the Sobolev inequality can be computed as

inf
u∈C1

c (Rn)

‖∇u‖Lp(Rn∗ ,xAdx)

‖u‖Lp∗ (Rn∗ ,xAdx)

= P (B∗1)
1
D inf
u∈C1

c (R)

(∫∞
0
rD−1|u′|pdr

)1/p(∫∞
0
rD−1|u|p∗dr

)1/p∗
,

where we have used that 1
p
− 1

p∗
= 1

D
. Recalling (2.9) and (3.2), we have

P (B∗1)
1
D = D

1
Dm(B∗1)

1
D = D

1
D
−1C1.

The value of Cp follows from Lemma 4.4, using (4.2) and (4.1). From Lemma 4.4 it
also follows that the functions ua,b in (1.6) attain the best constant Cp. �

To end this section, we prove part (b) of Theorem 1.3.

Proof of Theorem 1.3 (b). For p = 1 this was proved in Section 3; see Remark 3.1.
For p > 1 the result is proved in Proposition 4.3. �
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5. Weighted Morrey inequality

In this section we prove Theorem 1.6 1, that is, we show

|u(x)− u(y)|
|x− y|α

≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

, α = 1− D

p
,

for p > D. The next lemma establishes this inequality for y = 0. Once this is done,
Theorem 1.6 follows quite easily from this case.

Lemma 5.1. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
p > D. Let u ∈ C1

c (Rn) and x ∈ Rn
∗ . Then,

(5.1) |u(x)− u(0)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|x|1−
D
p ,

where C is a constant depending only on p and D.

Before proving this result, let us show briefly the ideas of the proof by establishing
first the (weaker) inequality
(5.2)

|u(x)− u(0)| ≤ C

(∫
Rn
|∇u|p|z|γdz

)1/p

|x|1−
n+γ
p , p > D = n+ |A| =: n+ γ.

Note that since zA ≤ |z||A|, then the inequality in Lemma 5.1 is stronger than (5.2).
To show (5.2), we use the classical Morrey inequality in Rn. Indeed, for any

x ∈ Rn with |x| = r we have (see Theorem 7.17 in [12])

|u(x)− u(x/2)| ≤ C

(∫
Br/2(x)

|∇u|pdz

)1/p

r1−n
p

≤ C

(∫
Rn
|∇u|p|z|γdz

)1/p

r1−n+γ
p ,

(5.3)

where we have used that |z|γ ≥ crγ in Br/2(x).
Thus, for each x ∈ Rn we have

|u(x)− u(x/2)| ≤ C

(∫
Rn
|∇u|p|z|γdz

)1/p

|x|1−
n+γ
p .

1The proof of Theorem 1.6 in the previous version of this paper was not correct. Indeed,
Lemma 5.1 in that version was not true as stated therein. We thank Georgios Psaradakis for
pointing this to us.
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Writing the same inequality for x/2, x/4, x/8, etc., and adding up a geometric series,
we then find

|u(x)− u(0)| ≤ C

(∫
Rn
|∇u|p|z|γdz

)1/p∑
k≥0

∣∣∣ x
2k

∣∣∣1−n+γp
≤ C

(∫
Rn
|∇u|p|z|γdz

)1/p

|x|1−
n+γ
p .

This establishes (5.2).
We now establish Lemma 5.1 by using the same idea. The proof will be a little

bit more involved because one has to deal with the weight zA = zA1
1 · · · zAnn , and

thus we will need to add up n geometric series.

Proof of Lemma 5.1. Recall that we want to show (5.1). For it, we assume without
loss of generality that x = (x1, ..., xn), with x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Also, we
denote x′ = (x1, ..., xn−1).

Then, for any number y such that 0 ≤ y ≤ xn−1, we have

|u(x′, y)− u(x′, y/2)| ≤ C

(∫
By/2(x′,y)

|∇u|pdz

)1/p

|y|1−
n
p

≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|y|1−
D
p .

We have used the classical Morrey inequality (see Theorem 7.17 in [12]) and the fact
that zA ≥ c|y||A| in By/2(x′, y).

Adding up a geometric series, this yields

|u(x′, y)− u(x′, 0)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|y|1−
D
p for all 0 ≤ y ≤ xn−1.

In particular,

|u(x′, xn)− u(x′, 0)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|xn|1−
D
p .

From this (applied to x = (x′, xn) and to (x′, xn−1)), we deduce

|u(x1, ..., xn−1, xn)− u(x1, ..., xn−1, xn−1)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|x|1−
D
p .

Now, one can repeat the same argument to get

|u(x1, ..., xn−2, xn−1, xn−1)−u(x1, ..., xn−2, xn−2, xn−2)| ≤ C

(∫
Rn∗
|∇u|pzA

)1/p

|x|1−
D
p

—by comparing u(x1, ..., xn−2, y, y) with u((x1, ..., xn−2, y/2, y/2) for all y ≤ xn−2,
and then with u(x1, ..., xn−2, 0, 0) adding up a geometric series.
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Proceeding analogously for the rest of the coordinates and then adding all these
inequalities, we find that

|u(x1, ..., x1)− u(x)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|x|1−
D
p ,

and therefore it only remains to control |u(x1, ..., x1)− u(0, ..., 0)|.
For this, we use a similar argument as in (5.2)-(5.3). We first show that there

exists λ > 1 depending only on n such that, for any y > 0,

|u(y, ..., y)− u (y/λ, ..., y/λ)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|y|1−
D
p .

This is proved applying Theorem 7.17 of [12] in the ball B√n(1−1/λ)y(y, . . . , y), whose
closure contains the point (y/λ, ..., y/λ). We also use that zi ≥ y/2 for all index i
and all z ∈ B√n(1−1/λ)y(y, . . . , y), if we take λ > 1 close enough to 1. Taking y = x1

and adding all these inequalities, we deduce

|u(x1, ..., x1)− u(0)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|x|1−
D
p .

As mentioned above, from this it follows that

|u(x)− u(0)| ≤ C

(∫
Rn∗
|∇u|pzAdz

)1/p

|x|1−
D
p ,

and hence the lemma is proved. �

We can now give the:

Proof of Theorem 1.6. Let us show that

(5.4)
|u(y)− u(z)|
|y − z|1−

D
p

≤ C

(∫
Rn∗
xA|∇u|pdx

) 1
p

for all y and z in Rn
∗ . We split the proof of (5.4) in three steps.

Step 1. First, by Lemma 5.1, we have that (5.4) holds for z = 0.
Step 2. We now prove (5.4) for y and z in Rn

∗ such that y − z ∈ Rn
∗ . Applying

the inequality in Step 1 to the function v(ỹ) = u(ỹ + z), ỹ ∈ Rn, at the point
ỹ = y − z ∈ Rn

∗ , we deduce

|u(y)− u(z)| ≤ C

(∫
z+Rn∗

(x− z)A|∇u(x)|pdx
) 1

p

|y − z|1−
D
p ,

where z + Rn
∗ = {x ∈ Rn : x − z ∈ Rn

∗}. Therefore, since (x − z)A ≤ xA if x and
x− z belong to Rn

∗ , this case of (5.4) follows.
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Step 3. We finally prove (5.4) for all y and z in Rn
∗ . Define w ∈ Rn

∗ as wi =
min{yi, zi} for all i. Then, it is clear that y − w ∈ Rn

∗ and z − w ∈ Rn
∗ . Hence, we

can apply the inequality proved in Step 2 to obtain

|u(y)− u(w)| ≤ C

(∫
Rn∗
xA|∇u|pdx

) 1
p

|y − w|1−
D
p

and

|u(z)− u(w)| ≤ C

(∫
Rn∗
xA|∇u|pdx

) 1
p

|z − w|1−
D
p .

Since |y − w|2 + |z − w|2 = |y − z|2, from these two inequalities we deduce that

|u(y)− u(z)| ≤ 2C

(∫
Rn∗
xA|∇u|pdx

) 1
p

|y − z|1−
D
p

for all y, z ∈ Rn
∗ . This finishes the proof of (5.4).

Let us prove now (1.11). Let x0 ∈ Ω ⊂ Rn be such that supΩ |u| = |u(x0)|. After
a finite number of reflections with respect to the coordinate hyperplanes, we may
assume that x0 ∈ Rn

∗ . Call ũ the function u after doing such reflections, defined in

the reflected domain Ω̃. Since ũ ≡ 0 on ∂Ω̃, we have

sup
Ω
|u| · diam(Ω)−1+D

p = |ũ(x0)| · diam(Ω̃)−1+D
p ≤ sup

x, y∈Rn∗

|ũ(x)− ũ(y)|
|x− y|1−

D
p

.

The right hand side of this inequality is now bounded using (1.10). The proof is
finished controlling the integral over Rn

∗ in (1.10) by an integral over Ω ⊂ Rn. This
is needed because of the reflections done initially. �

6. Weighted Trudinger inequality and proof of Corollary 1.8

In this section we prove Theorem 1.7 and Corollary 1.8. The proof of the weighted
Trudinger inequality is based on a bound for the best constant of the weighted
Sobolev inequality as p goes to D. Then, the result follows by expanding exp(·) as
a power series and using the weighted Sobolev inequality in each term. To prove
the convergence of this series we need the mentioned bound, which is stated in the
following result.

Lemma 6.1. Let A be a nonnegative vector in Rn, D = A1 + · · ·+An +n, and p be
such that 1 < p < D. Let Cp be the optimal constant of the Sobolev inequality (1.5),
given by (4.2)-(4.3). Then,

Cp ≤ C0p
1− 1

D
∗ ,

where p∗ = pD
D−p and C0 is a constant which depends only on D.
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Proof. The optimal constant is given by

Cp = C1D
1− 1

D
− 1
p

(
p− 1

D − p

) 1
p′

 p′Γ(D)

Γ
(
D
p

)
Γ
(
D
p′

)
 1

D

,

where p′ = p/(p − 1) and C1 is a constant which only depends on A and n. It is
easy to see that the constant Cp is bounded as p ↓ 1. Thus, we only have to look at
the limit p ↑ D. It follows from the above expression that

Cp ≤ C(D − p)−
1
p′ ,

where C does not depend on p. Hence, taking into account that 1
p′

= 1 − 1
D
− 1

p∗

and D − p = pD/p∗, we deduce

Cp ≤ C0p
1− 1

D
− 1
p∗

∗ ≤ C0p
1− 1

D
∗ .

Finally, it is easy to see that C1 — which is given by (4.2) — can be bounded by
a constant depending only on D, and therefore we can choose the constant C0 to
depend only on D. �

We can now give the:

Proof of Theorem 1.7. Let u ∈ C1
c (Ω). From Theorem 1.3 and Lemma 6.1 we deduce

that ∫
Ω

xA|u|qdx ≤ Cq
0q
q− q

D

(∫
Ω

xA|∇u|
qD
q+D dx

) q+D
D

for each q > 1, where C0 is a constant which depends only on D. Moreover, by
Hölder’s inequality,∫

Ω

xA|∇u|
qD
q+D dx ≤

(∫
Ω

xAdx

) D
q+D

(∫
Ω

xA|∇u|Ddx
) q

q+D

,

and thus

(6.1)

∫
Ω

xA|u|qdx ≤ m(Ω)Cq
0q
qD−1

D ‖∇u‖q
LD(Ω,xAdx)

.

Now, dividing the function u by some constant if necessary, we can assume

‖∇u‖LD(Ω,xAdx) = 1.
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Let c1 be a positive constant to be chosen later. Then, using (6.1) with q = kD
D−1

,
k = 1, 2, 3, ..., we obtain∫

Ω

exp
{

(c1|u|)
D
D−1

}
xAdx = m(Ω) +

∑
k≥1

c
kD
D−1

1

k!

∫
Ω

|u|
kD
D−1xAdx

≤ m(Ω) +m(Ω)
∑
k≥1

c
kD
D−1

1

k!
(C0)

kD
D−1

(
kD

D − 1

)k
= m(Ω) +m(Ω)

∑
k≥1

kk

k!

(
D

D − 1
(c1C0)

D
D−1

)k
.(6.2)

Choose c1 (depending only on D) satisfying D
D−1

(c1C0)
D
D−1 < 1

e
. Then, by Stirling’s

formula

k! ∼
(
k

e

)k√
2πk,

we deduce that the series (6.2) is convergent, and thus∫
Ω

exp

{(
c1|u|

‖∇u‖LD(Ω,xAdx)

) D
D−1

}
xAdx ≤ C2m(Ω),

as claimed. Note that the constants c1 and C2 depend only on D. �

To end the paper, we give the

Proof of Corollary 1.8. It follows from Theorems 1.3, 1.6, and 1.7. For a domain Ω ⊂
Rn that is not contained in Rn

∗ , these results need to be applied to the intersections
of Ω with each of the 2k quadrants, where k is the number of positive entries of the
vector A — see the proof of (1.11) in Theorem 1.6. �
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