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Abstract. We study the regularity of the free boundary in the fully nonlinear
thin obstacle problem. Our main result establishes that the free boundary is C1

near any regular point. This extends to the fully nonlinear setting the celebrated
result of Athanasopoulos-Caffarelli-Salsa [ACS08].

The proofs we present here are completely independent from those in [ACS08],
and do not rely on any monotonicity formula. Furthermore, an interesting and
novel feature of our proofs is that we establish the regularity of the free boundary
without classifying blow-ups, a priori they could be non-homogeneous and/or non-
unique. We do not classify blow-ups but only prove that they are 1D on {xn = 0}.

1. Introduction

The aim of this paper is to study the regularity of free boundaries in thin obstacle
problems.

1.1. Known results. The first regularity results for thin obstacle problems were al-
ready established in the seventies by Lewy [Lew68], Frehse [Fre77], Caffarelli [Caf79],
and Kinderlehrer [Kin81]. In particular, for the Laplacian ∆, it was proved in [Caf79]
that solutions are C1,α, for some small α > 0.

The regularity of free boundaries, however, was an open problem during almost
30 years. One of the main difficulties in the understanding of free boundaries in
thin obstacle problems is that there is not an a priori preferred order at which the
solution detaches from the obstacle (blow-ups may have different homogeneities), as
explained next.

In the classical (thick) obstacle problem it is not difficult to show that

0 < cr2 ≤ sup
Br(x0)

u ≤ Cr2 (1.1)

at all free boundary points x0, where u is the solution of the problem (after sub-
tracting the obstacle ϕ). Then, thanks to this, the blow-up sequence u(x0 + rx)/r2
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converges to a global solution u0, and such solutions u0 can be shown to be convex
and completely classified; see [Caf98, Caf80, Caf77] and also [LS01, FS14].

The situation is quite different in thin obstacle problems, in which one does not
have (1.1). This was resolved for the first time in Athanasopoulos-Caffarelli-Salsa
[ACS08], by using Almgren’s frequency function. Thanks to this powerful tool, one
may take the blow-up sequence

u(x0 + rx)( ∫
∂Br(x0)

u2
)1/2 ,

and it converges to a homogeneous function u0 of degree µ, for some µ > 1. Then,
by analyzing an eigenvalue problem on Sn−1, one can prove that

µ < 2 =⇒ µ =
3

2
,

and for µ = 3
2

one can completely classify blow-ups. This leads to the optimal

C1, 1
2 regularity of solutions and, using also a boundary Harnack inequality in “slit”

domains, to the C1,α regularity of the free boundary near regular points —those at
which µ < 2.

The main result of [ACS08] may be summarized as follows: if u solves the thin
obstacle problem for the Laplacian ∆ and with zero obstacle, then for each free
boundary point x0 one has:

(a) either
0 < c r3/2 ≤ sup

Br(x0)

u ≤ Cr3/2,

(b) or 0 ≤ supBr(x0) u ≤ Cr2.

Moreover, the set of points satisfying (a) is an open subset of the free boundary,
and it is locally a C1,α graph.

After the results of [ACS08], further regularity results for the free boundary have
been obtained in [CSS08], [GP09], [GPS15], [DS14], [KPS15], [KRS15] and [BFR15].

1.2. Our setting. In this paper we study the fully nonlinear thin obstacle problem F (D2u) ≤ 0 in B1

u ≥ ϕ on B1 ∩ {xn = 0},
F (D2u) = 0 in B1 \ {(x′, 0) : u(x′, 0) = ϕ(x′)}.

(1.2)

Here, x = (x′, xn) ∈ Rn. When u is even with respect to the variable xn, then the
problem is equivalent to

F (D2u) = 0 in B1 ∩ {xn > 0}
min(−uxn , u− ϕ) = 0 on B1 ∩ {xn = 0}. (1.3)

Problem (1.3) was studied in [MS08], where Milakis and Silvestre proved that
solutions u are C1,α(B1/2) (for some small α > 0) by following the ideas of [Caf79].
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More recently, Fernández-Real extended the results of [MS08] to the general non-
symmetric setting (1.2) in [Fer16].

Still, nothing was known about the regularity of the free boundary for this prob-
lem. The main difficulty in the study of such nonlinear thin free boundary problems
is the lack of monotonicity formulas for fully nonlinear operators, which makes the
proofs of [ACS08] non-applicable to the nonlinear setting.

1.3. Main results. We present here a new approach towards the regularity of thin
free boundaries, and prove that for problem (1.2) the free boundary is C1 near
regular points.

As in [MS08, Fer16], we assume that the fully nonlinear operator F satisfies:

F is convex, with ellipticity constants 0 < λ ≤ 1 ≤ Λ, and F (0) = 0. (1.4)

Our main result reads as follows.

Theorem 1.1. Let F be as in (1.4). There exists

α0 = α0(λ,Λ) ∈ (0, 1
2
)

for which the following holds. Let u ∈ C(B1) be any solution of (1.2), with ϕ ∈ C1,1.
Then, at each free boundary point x0 ∈ ∂{u = ϕ} ∩ B1/2 ∩ {xn = 0} we have the
following dichotomy:

(i) either c r2−α0 ≤ sup
Br(x0)

(u− ϕ) ≤ Cr1+α0 ,

with c > 0,

(ii) or 0 ≤ supBr(x0)(u− ϕ) ≤ Cε r
2−ε for all ε > 0.

Moreover, the set of points x0 satisfying (i) is an open subset of the free boundary
and it is locally a C1 graph.

Furthermore, the constant α0 ∈ (0, 1
2
) converges to 1

2
as |Λ− λ| → 0.

Notice that, for the Laplacian ∆, once we know that the free boundary is C1,
then it can be proved that it is C∞; see [DS14, KPS15] and also [RS15].

On the other hand, when F is the Laplacian ∆, at all free boundary points
satisfying (i) the blow up is homogeneous of degree 3/2, and thus all solutions are

C1, 1
2 . We do not expect this same exponent 3/2 for all nonlinear operators F (D2u).

A priori, each different operator F could have one (or more) different exponent µ,
and thus in general solutions would be no better than C1,α0 , for some α0 = α0(λ,Λ).
Still, we show that α0 → 1

2
as |Λ− λ| → 0, and thus

u ∈ C1, 1
2
−δ(B1/2) whenever |Λ− λ| is small enough;

see Corollary 7.3.
As explained above, an important difficulty in the study of the free boundary

problem (1.2) is the lack of monotonicity formulas for fully nonlinear operators.
Our proofs are completely independent from those in [ACS08], and do not use any
monotonicity formula.
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Furthermore, we think that another interesting feature of our proof of Theo-
rem 1.1 is that we establish the regularity of the free boundary without proving any
homogeneity or uniqueness of blow-ups, a priori they could be non-homogeneous
and/or non-unique. We do not classify blow-ups but only prove that they are 1D
on {xn = 0}, as explained next.

1.4. The proofs. To establish Theorem 1.1 we assume that x0 is a regular free
boundary point (i.e., (ii) does not hold at x0), and do a blow-up. We have to do the
blow-up along an appropriate subsequence, so that we get in the limit a global convex
solution to (1.2), with zero obstacle, and with subquadratic growth at infinity. Then,
we need to prove that blow-ups are 1D on {xn = 0}, that is, the blow-up u0 is a 1D
function on {xn = 0}, and in particular the contact set Ω∗ = {u0 = 0} ∩ {xn = 0}
is a half-space.

To do this, we first notice that by a blow-down argument we may reduce to the
case in which the convex set Ω∗ is a convex cone Σ∗. Then, we separate into two
cases, depending on the “size” of the convex cone Σ∗. If Σ∗ has zero measure, then u0
is in fact a global solution, and has subquadratic growth. By C2 regularity estimates
this is not possible, and thus Σ∗ can not have zero measure. If Σ∗ has nonempty
interior, by convexity of u0 this means that we have a cone of directional derivatives
satisfying ∂eu0 ≥ 0 in Rn. Then, by a boundary Harnack type estimate (that we
also establish here), we prove that all such derivatives have to be comparable in Rn,
and that this yields that the cone must be a half-space.

Once we have that blow-ups are 1D on {xn = 0}, we show that the free boundary
∂{u = ϕ} is Lipschitz in a neighborhood of any regular point x0, and C1 at that
point. Finally, by a barrier argument we show that the regular set is open —with
all points in a neighborhood satisfying a uniform nondegeneracy condition. From
here, we deduce that the free boundary is C1 at every point in a neighborhood, with
a uniform modulus of continuity.

Notice that an important step in the previous argument is the boundary Har-
nack type result for the derivatives ∂eu0, which solve an equation with bounded
measurable coefficients in non-divergence form. The boundary Harnack principle
for non-divergence equations is known to be false in C0,α domains of Rn whenever
α ≤ 1

2
; see [BB94]. Still, we prove here that a weaker version of the boundary Har-

nack principle holds in “slit” domains of the form Rn \ Σ∗, where Σ∗ ⊂ Rn−1 × {0}
is a convex cone. The proof of such boundary Harnack type estimate is new, and
we think it could be of independent interest.

Finally, notice also that our boundary Harnack type result allows us to show that
blow-ups are 1D, but does not yield the C1,α regularity of free boundaries. This is
because the constants in such boundary Harnack estimate degenerate as the cone
Σ∗ contains two rays forming an angle approaching π.

1.5. Plan of the paper. The paper is organized as follows.
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In Section 2 we construct some barriers that are needed in our proofs, and prove
a maximum principle in Rn

+ for functions u with sublinear growth. In Section 3
we establish our boundary Harnack type inequality for non-divergence equations
with bounded measurable coefficients. In Section 4 we prove that global convex
solutions with subquadratic growth to the fully nonlinear thin obstacle problem are
necessarily 1D on {xn = 0}. In Section 5 we show that at any regular free boundary
point there is an appropriate rescaling such that the rescaled solutions converge in
the C1 norm to a global convex solution with subquadratic growth. In Section 6 we
prove that the free boundary is flat Lipschitz by combining the results of Section 5
with a maximum principle argument. Finally, in Section 7 we show by a barrier
argument that the regular set is open, which yields the C1 regularity of the free
boundary.

2. Preliminaries and tools

We prove here some results that will be used in the paper. We will denote

M+u = M+(D2u) and M−u = M−(D2u),

the Pucci extremal operators; see [CC95] for their definition and basic properties.
Throughout the paper we call constants depending only on the dimension n and

the ellipticity constants λ,Λ universal constants. Also, we denote B+ the half ball
B ∩ {xn > 0}, where B is some ball centered at some point on {xn = 0}, and we
denote by B∗, Σ∗, and Ω∗, “thin” balls, cones, and sets contained on {xn = 0}.

2.1. Barriers. We first construct two barriers.

Lemma 2.1. For N = (n− 1)Λ/λ the function

φ0(x) =

{
min{1, |x′|2 +N(2xn − x2n)} in |x′| ≤ 1, 0 ≤ xn ≤ 1

1 elsewhere in xn ≥ 0

is continuous (viscosity) supersolution of M+φ0 ≤ 0 in xn > 0.

Proof. We note that |x′|2+N(2xn−x2n) ≥ |x′|2+|xn|2 ≥ |x| and thus φ0 is continuous.
Also, where φ0 < 1 we have M+ϕ0 = 2(n − 1)Λ − 2Nλ ≤ 0. Thus, using that the
minimum of two supersolutions is a supersolution we easily obtain that M+φ0 ≤ 0
in all of Rn. �

Lemma 2.2. Let ai ≥ 0 with
∑∞

i=0 ai <∞. Then, the function

φ(x) =
k∑
i=0

2iaiφ0(2
−ix)

is a continuous (viscosity) supersolution of M+φ ≤ 0 in all of xn > 0. Moreover, φ
satisfyies

2jaj ≤ φ in B+
2j+1 \B+

2j
(2.1)
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and

φ ≤ C

(
j∑
i=0

2iai +
∞∑
i=j

ai

)
in B+

2j
(2.2)

where C is a universal constant.

Proof. Let φ0 be the supersolution from Lemma 2.1. We then consider, for k ≥ 0

φk(x) =
k∑
i=0

2iaiφ0(2
−ix)

On one hand, we have

M+φk(x) ≤
k∑
i=0

2i−2aiM
+φ0(2

−ix) ≤ 0.

On the other hand, whenever k ≥ j and |x| ≥ 2j we have

φk(x) ≥ 2jajφ0(2
−jx) ≥ 2jaj, (2.3)

since we readily check that φ0 ≥ min{1, |x′|2 + |xn|2} = 1 outside B+
1 (in axn > 0).

Finally, we note that φ0 ≤ C min{1, |x′|+ |xn|} and thus

φk(x) ≤ C
k∑
i=0

2iai min{1, 2−i|x|} ≤ C

(
j∑
i=0

2iai +
∞∑
i=j

ai

)
for x ∈ B+

2j
. (2.4)

Then, the monotone increasing sequence φk converges locally uniformly in {xn > 0}
to some function φ = φ∞. By the stability of viscosity supersolutions under uniform
convergence we have M+φ ≤ 0 in all of Rn. That φ satisfies the other conditions of
the lemma is easily verified letting k →∞ in (2.3) and (2.4). �

The following subsolution will be used in the proof of our boundary Harnack
inequality.

Lemma 2.3. Given ρ ∈ (0, 1) and a ball B∗ = B∗r (z) (z ∈ Rn−1), with B∗ contained
in B∗1 , there is a function φ ∈ C(B1) satisfying

M−φ ≥ χB1−ρ in B1 \B∗

φ ≥ 0 in B1

φ ≤ CχB∗ on B∗1
φ = 0 on ∂B1

(2.5)

where C depends only on ρ, B∗ and universal constants.

Proof. Let g0 be the restriction to ∂B+
1 of the function max{0, 1− (x− z)2/r2} and

f0(x) = f0(|x|) be a radial nonincreasing function with f0 = 0 for |x| ≥ 1− ρ/2 and
f0 = 1 for |x| ≤ 1− ρ.
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For κ ∈ (0, 1) small, we let ψ be the solution to{
M−ψκ = κf0 in B+

1

ψ = g0 on ∂B+
1

(2.6)

Let us show that κ small enough (depending only on ρ and B∗) we have ψ ≥ 0
in B+

1 .
Indeed, by the strong maximum principle and Hopf’s lemma, for κ = 0 we have

ψ0 ≥ δ0 > 0 in B1−ρ/4 ∩ {xn > ρ/4}.
Thus, by the uniqueness of solution to (2.6) and the stability of viscosity solutions
we deduce that

ψκ ≥ δ0/2 > 0 in B1−ρ/4 ∩ {|xn| > ρ/4}. (2.7)

for κ small.
Next, for N large enough the function η = exp(−N |x|)− exp(−Nρ/2) satisfies

M−η =

(
λN2 − ΛN(n− 1)

|x|

)
η > 0 in {|x| ≥ ρ/4} ∩ {η > 0}. (2.8)

Thus, we have M−η ≥ c > 0 in {ρ/4 ≤ |x| ≤ ρ/2} and using δ0
2
η(x−x0) as a barrier

(by below) with x0 on {|x′| ≤ 1− ρ/2, xn = ρ/2}, and by (2.7) we obtain

ψκ ≥ 0 in B+
1−ρ/2 (2.9)

when κ is chosen small enough.
Finally, from (2.9) it follows that (still for κ small) we have ψκ ≥ 0 in all of B+

1 .
Here we are using that f0 = 0 in the half annulus B1 \B1−δ/2.

To end the proof, we let φ be the even reflection of the previous 1
κ
ψκ with respect

to the variable xn multiplied by a large positive constant C. Then, using that φ will
have a negative wedge on B∗1 \B∗ it not difficult to verify that it will satisfy all the
requirements of the lemma. �

2.2. A maximum principle in Rn
+ and construction of 1D solutions. We

next prove the following.

Lemma 2.4. Let u satisfy

sup
B+

1

|u|+
∞∑
i=0

2−i sup
B+

2i+1\B
+

2i

|u| <∞ (2.10)

and {
M−u ≤ 0 (resp. M+u ≥ 0) in {xn > 0}
u ≥ 0 (resp. u ≤ 0) on {xn = 0}.

Then, u ≥ 0 (resp. u ≤ 0) in {xn > 0}.

For this, we need the following.
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Lemma 2.5. Let (ak) be a sequence such that ak ≥ 0 and
∑

k≥1 ak < ∞. Then,
there exists a sequence (bk) such that bk/ak ≥ 1, lim bk/ak =∞, and

∑
k≥1 bk <∞.

Proof. The result is probably well known, we give here a proof for completeness.
Let us define sk =

∑
j≥k aj. Note that may (and do) assume that s1 = 1. Let

bk =
ak√∑
j≥k aj

=
ak√
sk
≥ ak.

Notice that lim bk/ak =∞, since sk → 0. Then, we have

bk =
sk − sk+1√

sk
≤ 2
√
sk − 2

√
sk+1, (2.11)

where we used that 2
√
x − 2

√
y ≥ (x − y)/

√
x for all x ≥ y (this follows from the

mean value theorem). Therefore, by (2.11), we find∑
k≥1

bk ≤ 2
√
s1 <∞,

and the lemma is proved. �

We now give the:

Proof of Lemma 2.4. Let ai := 2−i supB2i+1\B2i
|u|. By assumption

∑
ai < ∞ and

then, by Lemma 2.5, there exists bi increasing such that 1 ≤ bi/ai → ∞ and∑
bi <∞. Then, we consider

φ(x) := − sup
B+

1

|u| −
∞∑
i=0

2ibiφ0(2
−ix),

where φ0 is the supersolution in the proof of Lemma 2.2. Exactly as in the proof of
Lemma 2.2 we find that φ is subsolution in all of {xn > 0}. Then, using that u ≥ 0
on {xn = 0}, that bi/ai → ∞, and the maximum principle, we obtain u ≥ −εφ in
all of {xn ≥ 0} for every ε > 0. Thus u ≥ 0 in all of {xn ≥ 0}. �

As a consequence of Lemma 2.4, we find the following.

Proposition 2.6 (Extensions). Given g : Rn−1 → R continuous satisfying

sup
B∗1

|g|+
∞∑
i=0

2−i sup
B∗

2i+1\B∗2i
|g| <∞

there exist a unique function u belonging to C({xn > 0}) which satisfies (2.10) and{
M+u = 0 in {xn > 0}
u = g on {xn = 0}.

We then denote E+g := u.
Similarly E−g := −E+(−g) is the unique solution, among functions satisfying

(2.10), of the previous problem with M+ replaced by M−.



THE FREE BOUNDARY IN THE FULLY NONLINEAR THIN OBSTACLE PROBLEM 9

Proof. Let ai = 2−i supB∗
2i+1\B∗2i

|g| and

φ(x) := sup
B∗1

|g|+
∞∑
i=0

2iaiφ0(2
−ix),

By Lemma 2.2 we have φ ≥ g in xn = 0 and M+φ ≤ 0 in xn > 0. On the other
hand, using (2.2) we find

∞∑
j=0

2−j sup
B

2j

φ ≤
∞∑
j=0

2−j

(
sup
B∗1

|g|+ C

j∑
i=0

2i−jai + C
∞∑
j=0

∞∑
i=j

2−jai

)

≤ 2 sup
B∗1

|g|+ C
∞∑
i=0

∞∑
j=i

2i−jai + 2C
∑
i=0

ai

≤ 2 sup
B∗1

|g|+ 4C
∑
i=0

ai <∞.

Thus in particular φ satisfies (2.10) with u replaced by φ.
Now we note that φ and −φ are respectively a supersolution and a subsolution

of the problem M+u = 0 in {xn > 0}, u = g on {xn = 0}. Then, we can prove the
existence of a continuous viscosity solution between −φ and φ in several standard
ways.

One option is to choose any continuous extension ḡ of g to {xn > 0} such that
|ḡ| ≤ φ and to solve in large balls M+uR = 0 in B+

R , u = ḡ in ∂B+
R . Letting R ↑ ∞

and using the stability of viscosity solutions under local uniform converge, we find
a solution of the of the problem in all of xn > 0. The barriers ±φ guarantee the
convergence. Another option is to proof the existence of a solution in the half space
directly by Perron’s method.

The uniqueness of viscosity solution to this problem among continous functions
u satisfying (2.10) is a straightforward consequence of the maximum principle in
Lemma 2.4 and the fact that the difference w of two solutions satisfies M+w ≥ 0
and M−w ≤ 0 in {xn > 0}, and w = 0 on {xn = 0}. �

We next construct 1D solutions in R2
+.

Proposition 2.7. For any β ∈ (0, 1), let us consider the function ϕ±β (x, y) :=

E±(x+)β in R2
+. Then,

(a) We have

∂yϕ
+
β = C(β)xβ−1 in {x > 0} ∩ {y = 0},

∂yϕ
−
β = C(β)xβ−1 in {x > 0} ∩ {y = 0}.

The constants C and C depend only on β and ellipticity constants.
(b) The functions C(β) and C(β) are continuous in β, and there are

0 < β1 <
1

2
< β2 < 1
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such that
C(β1) = 0 and C(β2) = 0.

Moreover, β1 and β2 are unique.
(c) For any small δ > 0, we have

1

2
− δ < β1 <

1

2
< β2 <

1

2
+ δ whenever |Λ− 1|+ |λ− 1| ≤ δ/C,

with C universal.

We will need the following auxiliary result.

Lemma 2.8. Let wk = E+gk (resp. wk = E−gk) where∑
i≥1

2−i sup
B∗

2i

∣∣gk∣∣ ≤ C, (2.12)

and
‖gk‖C1,α(B∗

1/2
) ≤ C, (2.13)

for some α ∈ (0, 1), with C independent of k.
Suppose that, for some g ∈ C(Rn−1 × {0})∑

i≥1

2−i sup
B2i

∣∣gk − g∣∣→ 0 on {xn = 0}. (2.14)

Then, |∂xnwk − ∂xnw|(0)→ 0, where w = E+g (resp. w = E−g).

Proof. We first show that wk ∈ C1,α
(
B+

1/4

)
, with a bound independent of k, and

that wk → w uniformly in B+
1/4.

Indeed, it follows from (2.12) and from Lemma 2.2 (see also the proof of Propo-
sition 2.6) that ‖wk‖L∞(B+

1 ) ≤ C, with C independent of k. Then, by the C1,α esti-

mates up to the boundary (see [CC95]) using (2.13) we obtain that ‖wk‖C1,α(B+
1/4

)
≤

C.
On the other hand, wk−w is a viscosity solution of M−(wk−w) ≤ 0 ≤M+(wk−w)

in {xn > 0}. Then by (2.14) —using again Lemma 2.2— we find supB+
1

(wk−w)→ 0.

Since all the wk are uniformly C1,α(B+
1/4) and converge uniformly to w in B+

1 we

find in particular wk → w in C1(B+
1/4). Thus, |∂xnwk − ∂xnw|(0)→ 0. �

We now give the:

Proof of Proposition 2.7. (a) It follows by the scaling properties of M± and by
uniqueness of E± that ϕ±β are homogeneous functions of degree β. Thus, part (a)
follows, with

C(β) = ∂yϕ
+
β (1, 0), C(β) = ∂yϕ

−
β (1, 0).

(b) It follows from Lemma 2.8 —translating the origin to the point (1,0)— that
∂yϕ

±
β′(1, 0) → ∂yϕ

±
β (1, 0). As a consequence, C(β) and C(β) are continuous in
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β ∈ (0, 1). Although for β = 0, the function (x+)β = χx>0 has a discontinuity, we
can easily adapt the proof of Lemma 2.8 to this situation by using that the only dis-
continuity point is at (0, 0) and that the solution is bounded near this discontinuity
point.

Note instead that a similar continuity property is not true as β ↑ 1, since we
approach the critical growth and hence we can not guarantee that ‖ϕ±β ‖L∞(B+

1/4
(1,0))

stays bounded as β ↑ 1. In fact, we will show later on in this proof that this L∞

norm diverges.
Now, when β = 0, as said abobe ϕ±β (x, 0) = χ{x>0} and Hopf lemma implies that

∂yϕ
±
β (1, 0) < 0. Thus,

lim
β↓0

C(β) ≤ lim
β↓0

C(β) < 0.

On the other hand, we claim that

C(β) ≥ C(β) ≥ c

1− β
→∞ as β ↑ 1. (2.15)

Indeed, let ψ be the subsolution of Lemma 2.3, with r0 = 1
4

and extended by zero
outside B1. Consider the new subsolution

ψk(x, y) =
k∑
i=0

2βiψ(2−ix− 1

2
, 2−iy),

which satisfies M−ψk ≥ 0 in all of {y > 0}.
Note that, since r0 = 1/4, the functions we have ψ(2−ix− 1/2, 2−iy) have disjoint

supports at y = 0. Thus, we find

ψk(x, 0) ≤ 2iβχ{0<x<2i} for all k and i

In particular 2−βψk ≤ (x+)β on {y = 0}. Now, for fixed β we readily show, using
Lemma 2.4 and Proposition 2.6, that

2−βψk ≤ ϕ−β = E−(x+)β (for all k). (2.16)

But note that, by Lemma 2.3, at x = 1
4

we have ψk(
1
4
, 0) = 0 and thus

ψk

(
1

4
, y

)
=

k∑
i=0

2(β−1)i(∂iψ)

(
2−i − 1

2
, 2−iy

)
≥ c

1− 2(β−1)k

1− 2β−1
y.

for |y| < 1/2. Letting k → ∞, using (2.16), and recalling that ϕ−β is homogeneous
of degree β we obtain

ϕ−β (x, y) ≥ c

1− 2β−1
y ≥ c

1− β
y for x ∈

(
1

2
,
3

2

)
, y ∈ (0, 1)

for some c > 0 universal.
As β ↑ 1, thus ϕ−β (x, y) is a nonnegative solution in Q = (1, 2, 3/2) × (0, 1) with

trace xβ on (1, 2, 3/2)×{y = 0} and that is arbitrarily large in (1, 2, 3/2)× (1/2, 1).
Then it is immediate to show that there is a quadratic polynomial P satisfying
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M−P ≥ 0 (subsolution), such that P touches ϕ−β by below in Q at the point x = 1,
y = 0, and with ∂yP (1, 0) arbitrarily large. Thus C(β) is arbitrarily large as β → 1
—with a growth c/(1− β)—, finishing the proof of the claim (2.15).

Finally, as said before, C and C are continuous functions. Thus, there are 0 <
β1 ≤ β2 < 1 such that C(β1) = 0 and C(β2) = 0.

The uniqueness of the exponents β1 and β2 follows by a simple contact argument.
Indeed, if β < β′ then some translation (to the right) of the function ϕ+

β touches

ϕ+
β′ by below at some point on {x > 0, y = 0}. But since the two functions are

homogeneous the sign of their vertical derivatives is the same on all of {x > 0, y =
0}. This shows that sign

(
C(β′)

)
> sign

(
C(β)

)
, where the strict inequality is a

consequence of Hopf Lemma. This implies that the zero of C is unique. The same
argument applies to C.

Finally, using the same contact argument to compare ϕ+
β1

and ϕ−β2 with the

harmonic extension of (x+)1/2 (i.e. the solution for the Laplacian), we obtain
β1 <

1
2
< β2.

(c) Let ψ be the solution of

ψ(x, 0) = (x+)
1
2
−δ on {y = 0},

∆ψ = −κr−
3
2
−δ in {y > 0},

where r =
√
x2 + y2. Notice that ψ is homogeneous of degree 1

2
− δ in R2.

Notice also that when κ = 0 then ψy(x, 0) = −c(δ)x− 1
2
−δ < 0 for x > 0. Thus,

if κ is small, we will have ψy(x, 0) ≤ −1
2
c(δ)x−

1
2
−δ for x > 0. In fact, a simple

computation shows that c(δ) ≥ cδ for δ small. Thus, by linearity, we may take
κ ≥ cδ > 0, too.

Let us now check that, if |Λ− 1|+ |λ− 1| ≤ γ, with γ > 0 small, then

M+ψ ≤ 0 in {y > 0}.
For this, notice that by homogeneity of ψ we only need to check it on ∂B1, where ψ
is C2. Also, notice that

M+ψ = λ∆ψ + (Λ− λ)(sum of positive eigenvalues of D2ψ),

so that
M+ψ ≤ λ∆ψ + C(Λ− λ) ≤ −λκ+ Cγ ≤ −cδ + Cγ ≤ 0

provided that γ ≤ δ/C.
Thus,

M+ψ ≤ 0 on {y > 0},
ψy ≤ 0 on {y = 0, x > 0},

ψ is homogeneous of degree
1

2
− δ.

This, and the same contact argument as before, yields 1
2
− δ < β1. Repeating the

same argument with 1
2

+δ, we get 1
2

+δ > β2, and thus the proposition is proved. �
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As a consequence, we have the following.

Corollary 2.9. Given e ∈ Sn−2, let

w+
0 (x) := ϕ+

β1
(x′ · e, |xn|), w−0 (x) := ϕ−β2(x

′ · e, |xn|),

where ϕ±β and β1, β2 are given by Proposition 2.7. Then,{
M±w±0 = 0 in Rn \

(
{x′ · e ≤ 0} ∩ {xn = 0}

)
w±0 = 0 on {x′ · e ≤ 0} ∩ {xn = 0}.

The functions w+
0 and w−0 are homogeneous of degree β1 and β2, respectively, and

0 < β1 <
1
2
< β2 < 1.

Moreover, 1
2
− δ < β1 <

1
2
< β2 <

1
2

+ δ whenever |Λ− 1|+ |λ− 1| ≤ δ/C.

Proof. The result follows from Proposition 2.7, and taking into account that since
M±w±0 = 0 in {xn 6= 0} and w±0 are C1 at points on {x′ · e > 0} ∩ {xn = 0}, then
they also solve the equation therein. �

2.3. A maximum principle type Lemma. We finally prove the following Lemma,
similar to [ACS08, Lemma 5].

Lemma 2.10. Let c0, c1 be given positive constants with c1 <
√
λ/(9nΛ) —i.e.

universally small enough. Then, there exists σ > 0 for which the following holds.
Assume v ∈ C(B1) satisfies

• M−v ≤ σ in B1 \ Ω∗, with Ω∗ ⊂ {xn = 0}
• v = 0 on Ω∗

• v ≥ c0 > 0 for |xn| ≥ c1 > 0
• v ≥ −σ in B1

Then, v ≥ 0 in B1/2. Moreover, v ≥ c2|xn| in B1/2, for some c2 > 0 (small).

Proof. Let us prove that v ≥ 0 in B1/2. Once this is proved, then v ≥ c2|xn| follows
from the standard subsolution of Hopf’s lemma —see (2.8)— provided that σ is
small enough.

Assume there is z = (z′, zn) ∈ B1/2 ∩ {|xn| < c1} such that v(z) < 0. Let

Q =

{
(x′, xn) : |x′ − z′| ≤ 1

3
, |xn| ≤ c1

}
and

P (x) = |x′ − z′|2 − nΛ

λ
x2n.

Notice that M+P = −Λ.
Define

w = v + δP,

where δ > 0 is such that 0 < Cσ < δ < c0/C, with C large enough. Then, we have

• w(z) = v(z)− δΛz2n < 0
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• M−w ≤M−v + δM+P ≤ σ − δΛ ≤ 0 outside Ω∗

• w ≥ 0 on Ω∗

Thus, w must have a negative minimum on ∂Q.
On ∂Q ∩ {|xn| = c1} we have

w ≥ c0 − δ
nΛ

λ
c21 ≥ 0.

On ∂Q ∩ {|x′ − z′| = 1/3} ∩ {0 ≤ |xn| ≤ c1}, we have v ≥ −σ, so that

w ≥ −σ + δ

(
1

9
− nΛ

λ
c21

)
≥ 0.

Hence, w ≥ 0 on ∂Q and we have reached a contradiction. Therefore, v ≥ 0 in B1/2,
as desired. �

3. A boundary Harnack inequality

We prove here a boundary Harnack inequality in “slit” cones, for solutions that are
monotone in some “outwards” directions. More precisely, we establish the following.

Proposition 3.1. Let Σ∗ ⊂ Rn−1 × {0} be some nonempty closed convex cone
satisfying

Σ∗ ⊂
{
x

|x|
· e ≤ −ε

}
(3.1)

for some e ∈ Sn−2 and ε ∈ (0, 1/8). Let θ1, θ2 be unit vectors in Rn−1 × {0} with
−θi ∈ Σ∗.

Assume that u1, u2 ∈ C(B1) satisfy

M+(au1 + bu2) ≥ 0 in B1 \ Σ∗ (3.2)

for all a, b ∈ R,
u1 = u2 = 0 on B∗1 ∩ Σ∗.

Assume also ui ≥ 0 in B+
1 , supBε/2 u1 = supBε/2 u2, and ui is monotone nondecreas-

ing in the direction θi in all of B1 —that is, ui(x̄) ≥ ui(x) whenever x̄− x = tθi for
some t ≥ 0 and x, x̄ ∈ B1.

Then,
1

Cε−M
u2 ≤ u1 ≤ Cε−M u2 in Bε/4,

where C and M are positive universal constants.

Proof. We may and do assume that

sup
Bε/2

ui = 1. (3.3)

Step 1. We define
Aε := B7/8 ∩ {x · e ≥ ε/4}.
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We first prove that that
0 < C−1ε ≤ inf

Aε
ui ≤ 1 (3.4)

where Cε := Cε−M for some positive universal constants C and M . Thoughout the
proof Cε denotes a constant of this form though C and M may vary from line to
line.

Indeed, first note that by taking the four choices a = ±1, b = 0 and a = 0, b = ±1
in (3.10) we obtain that ui are viscosity solutions of

M−ui ≤ 0 ≤M+ui ∈ B1 \ Σ∗.

Thus, using a standard chain of interior Harnack inequalities we have

sup
Aε

ui ≤ Cε inf
Aε
ui.

On the other hand, let us show that

given x ∈ Bε/2 exist x̄ ∈ Aε, t ≥ 0 such that x̄− x = tθi

Indeed, if x ∈ Bε/2 we have x·e > −ε/2 and thus, using (3.9) the point x̄ = x+ 3
4
θi

satisfies
x̄ · e ≥ −ε/2 + 3ε/4 ≥ ε/4.

Here we have used that θi · e ≥ ε since −θi are unit vectors in Σ∗ and we have (3.9).
In addition, x̄ ∈ B7/8 since

∣∣3
4
θi
∣∣ = 3/4 and |x| = ε/2 ≤ 1/8.

Thus, using the monotonicity of ui in the direction θi we have that

1 = sup
Bε/2

ui ≤ sup
Aε

ui ≤ Cε inf
Aε
ui ≤ Cε sup

Bε/2

ui = Cε,

where for the last inequality we have used that Aε ∩Bε/2 6= ∅.
Thus, (3.4) follows.

Step 2. We next prove that, with Cε as above,

u1 ≥ C−1ε u2 in B∗ε/4. (3.5)

We consider the rescaled solutions ūi(x) = ui
(
ε
2
x
)
. Then, ū1, ū2 ∈ C(B1) satisfy

M+(aū1 + bū2) ≥ 0 in B2 \ Σ∗ (3.6)

for all a, b ∈ R, and
ū1 = ū2 = 0 on B∗2 ∩ Σ∗.

In addition we have ūi ≥ 0 in B2. supB1
ūi = 1 —recall (3.3)—, and, by Step 1,

C−1ε ≤ inf
B1∩{e·x≥1/4}

ūi.

Using again a chain of interior Harnack inequalities we obtain

C−1ε ≤ inf
B∗
ūi, (3.7)

where B∗ = B∗1/4(z) for z = e/2.
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Fix ρ = 1/10. Let η ∈ C2(B1) be some smooth “cutoff” function with η = 1 for
|x| ≥ 1− ρ and η = 0 in B1/2. Let us call

C1 := sup
B1

M+η = sup
B1−ρ

M+η

Let φ be the subsolution of Lemma 2.3 —with ρ = 1/10 and B∗ = B∗1/4(z) for

z = e/2, as before.
We will show next that, for Cε ≥ 1 large enough,

Cεū1 + η ≥ ū2 + C1φ in B1. (3.8)

Indeed, on the one hand since 0 ≤ ūi ≤ 1 in B1 we and η = 1 for for |x| ≥ 1− ρ
we have and φ = 0 on ∂B1 we have that (7.5) holds on ∂B1. On the other hand we
have

M−(Cū1 + η − ū2 − C1φ) ≤M+η − C1M
−φ ≤ C1χB1−ρ − C1χB1−ρ ≤ 0 in B1 \B∗

while, using (3.7)

Cεū1 + η − ū2 − C1φ ≥ (Cεū1 − ū2) + (Cεū1 − C1φ) ≥ 0 in B∗

where we recall that C is a constant of the type Cε−M with C and M universal and
varying from line to line.

Thus, (7.5) follows using by the maximum principle. Finally, since φ ≥ 0 and
η = 0 in B1/2 from (7.5) we deduce that

Cεū1 ≥ ū2 in B1/2

and thus after rescaling we obtain (3.5).
Finally, since the roles of ū1 and ū2 are interchangeable we obtain the compara-

bility of ū1 and ū2 in B+
1/8. Rescaling back, we obtain that u1 and u2 are comparable

in Bε/4, as desired. �

As a consequence we obtain the following.

Corollary 3.2. Let Σ∗ ⊂ Rn−1×{0} be some nonempty closed convex cone satisfying

Σ∗ ⊂
{
x

|x|
· e ≤ −ε

}
(3.9)

for some e ∈ Sn−2 and ε ∈ (0, 1/8). Let θ1, θ2 be unit vectors in Rn−1 × {0} with
−θi ∈ Σ∗.

Assume that u1, u2 ∈ C(Rn) satisfy

M+(au1 + bu2) ≥ 0 in Rn \ Σ∗ (3.10)

for all a, b ∈ R,
u1 = u2 = 0 on Σ∗.

Assume also ui ≥ 0 in Rn, supB1
u1 = supB1

u2, and ui is monotone nondecreasing
in the direction θi in all of Rn —that is, ui(x̄) ≥ ui(x) whenever x̄ − x = tθi for
some t ≥ 0 .



THE FREE BOUNDARY IN THE FULLY NONLINEAR THIN OBSTACLE PROBLEM 17

Then,
1

Cε−M
u2 ≤ u1 ≤ Cε−M u2 in all of Rn.

where C and M are positive universal constants.

Proof. We may assume that supB1/2
u1 = supB1/2

u2 = 1.

Let R ≥ 4 arbitrary. Consider the two rescaled functions ū1 and ū2 defined by

ūi(x) =
ui(Rx)

Ci
for Ci = ‖ui‖L∞(BR).

By Proposition 3.1 we obtain that

C−1ε ū2 ≤ ū1 ≤ Cε ū2 in B1/8,

where Cε = Cε−M with C and M universal constants.
Thus, using that

1 = ‖ui‖L∞(B1/2) = Ci‖ūi‖L∞(B1/(2R))

Since we have that ‖ū1‖L∞(B1/(2R)) and ‖ū2‖L∞(B1/(2R)) are comparable (recall that

R ≥ 4) we obtain that C1 and C2 are comparable and thus, scaling back, that

C−1ε u2 ≤ u1 ≤ Cε u2 in BR/8.

Since R can be taken arbitrarily large the Corollary follows. �

4. Global solutions

In this Section we prove that any global solution to the obstacle problem with
subquadratic growth must be 1D on {xn = 0}.

Theorem 4.1. Let F be as in (1.4), and u ∈ C(Rn) be any viscosity solution of
F (D2u) ≤ 0 in Rn

F (D2u) = 0 in Rn \ Ω∗

u = 0 on Ω∗

u ≥ 0 on {xn = 0},

(4.1)

with

u(0) = 0, ∇u(0) = 0. (4.2)

Assume that u satisfies the following growth control

‖u‖L∞(BR) ≤ R2−ε for all R ≥ 1. (4.3)

Then, either u ≡ 0, or

u(x) = u0(e · x′, xn) and {u(x′, 0) = 0} = {e · x′ ≤ 0}
for some e ∈ Sn−2. Moreover, u0 is convex in the x′ variables.

We will need the following intermediate steps in the proof of Theorem 4.1.
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Lemma 4.2. Let F be as in (1.4), and u ∈ C(Rn) be any viscosity solution of

F (D2u) = 0 in Rn,

with u(0) = 0 and ∇u(0) = 0. Assume that u satisfies the growth control (4.3).
Then, u ≡ 0.

Proof. By interior C1,1 estimates [CC95] —here we use the convexity of the operator—
we have

‖D2u‖L∞(B1) ≤ C.

Applying the same estimate to the rescaled function u(Rx)/R2−ε, we find

‖D2u‖L∞(BR) ≤ CR−ε,

for any R ≥ 1. Letting R → ∞, we deduce that u is affine. Since u(0) = 0 and
∇u(0) = 0, it must be u ≡ 0. �

We next prove the following.

Proposition 4.3. Let F be as in (1.4), and u ∈ C(Rn) be any viscosity solution of
(4.1)-(4.2)-(4.3) which is convex in the x′ = (x1, ..., xn−1) variables.

Assume in addition that Σ∗ = {u = 0} ∩ {xn = 0} is a closed convex cone with
nonempty interior and vertex at the origin. Then, either u ≡ 0 or

Σ∗ = {x′ · e ≤ 0}
for some e ∈ Sn−2.

Proof. Assume that u is not identically zero and that Σ∗ is not a half-space.
Notice that if Σ∗ contains a line {te′ : t ∈ R} then by convexity of u we will have

u(x+ te′) = u(x) for all t ∈ R, x ∈ Rn. Hence, if Σ∗ contains a line, u is a solution
in dimension n − 1. Therefore, by reducing the dimension n if necessary, we may
assume that Σ∗ contains no lines.

In particular,

Σ∗ ⊂
{
x′

|x′|
· e ≤ −ε

}
(4.4)

for some e ∈ Sn−2 and some ε > 0.
Let ε > 0 be the largest positive number for which (4.4) holds. Let e1 ∈ Sn−2 be

such that −e1 ∈ Σ∗ and −e1 · e = −ε.
Since −e ∈ Σ∗ and −e1 ∈ Σ∗, then by convexity of u we have

w = ∂eu ≥ 0 and w1 = ∂e1u ≥ 0 on {xn = 0}.
Moreover, since Σ∗ contains no lines, then these two functions are positive in {xn =
0} \ Σ∗. Moreover, we have

M+(aw + bw1) ≥ 0 in Rn \ Σ∗

for all a, b ∈ R. Furthermore, the convexity of u and the growth control (4.3) yield

‖w‖L∞(BR) + ‖w1‖L∞(BR) ≤ CR1−ε.
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By the maximum principle in Lemma 2.4, this implies

w = ∂eu ≥ 0 and w1 = ∂e1u ≥ 0 in Rn.

Therefore, by the boundary Harnack type principle in Corollary 3.2, this means that

∂e1u ≥ c∂eu in Rn.

Equivalently, ∂e1−ceu ≥ 0. But then this yields −(e1 − ce) ∈ Σ∗, which combined
with −(e1 − ce) · e = −ε− c is a contradiction with (4.4). �

Using Lemma 4.2 and Proposition 4.3, we can now give the:

Proof of Theorem 4.1. If u ≡ 0 there is nothing to prove. By the (local) semi-
convexity estimates in [Fer16] applied (rescaled) to a sequence of balls with radius
converging to infinity, we readily prove u is convex in the x′ variables. Thus, Ω∗ is
convex.

If Ω∗ = {x′ · e ≤ 0} for some e ∈ Sn−2, then by convexity we have u(x′, 0) =
u0(x

′ · e, 0), and thus u(x) = u0(x
′ · e, xn), where u0 is a 2D solution to the problem.

We next prove that if Ω∗ is not a half-space, then there is no solution u.
Assume by contradiction that Ω∗ is not a half-space and that u is a nonzero

solution. Then, we do a blow-down argument, as follows.
For R ≥ 1 define

θ(R) = sup
R′≥R

‖u‖L∞(BR′ )

(R′)2−ε
.

Note that 0 < θ(R) <∞ and that it is nonincreasing.
For all m ∈ N there is R′m ≥ m such that

(R′m)
ε−2‖um‖L∞(BR) ≥

θ(m)

2
≥ θ(R′m)

2
.

Then the blow down sequence

um(x) :=
u(R′mx)

(R′m)2−εθ(R′m)

satisfies the growth control

‖um‖L∞(BR) ≤ R2−ε for all R ≥ 1

and also

‖um‖L∞(B1) ≥
1

2
.

By C1,α estimates [Fer16] and the Arzelà-Ascoli theorem, the sequence um con-
verges (up to a subsequence) locally uniformly in C1 to a function u∞ satisfying

‖u∞‖L∞(BR) ≤ R2−ε for all R ≥ 1, (4.5)

‖u∞‖L∞(B1) ≥
1

2
, (4.6)
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and 
F (D2u∞) = 0 in Rn \ Σ∗

F (D2u∞) ≤ 0 in Rn

D2u∞ ≥ 0 in Rn

u∞ = 0 in Σ∗,

(4.7)

where Σ∗ is the blow-down of the convex set Ω∗. Notice that, by convexity, since Ω∗

was not a half-space, then Σ∗ is not a half-space.
If Σ∗ has nonempty interior, by Proposition 4.3 there is no solution u. If Σ∗ has

empty interior, then by C1,α regularity of u we get uxn = 0 in all of {xn = 0}. But
using Lemma 4.2, this yields u ≡ 0 as well.

Thus, if Ω∗ is not a half-space there is no nonzero solution u, as claimed. �

We also prove the following.

Corollary 4.4. Let F be as in (1.4), and β1 ∈ (0, 1
2
) be given by Corollary 2.9. Let

u ∈ C(Rn) be any viscosity solution of (4.1) satisfying (4.2) and

‖u‖L∞(BR) ≤ R1+β for all R ≥ 1, (4.8)

with β < β1. Then, u ≡ 0.

Proof. By Theorem 4.1, we know that u(x) = u0(x
′ · e, xn), with u0 convex in the

first variable and vanishing on {x1 ≤ 0} ∩ {x2 = 0}. Thus, we only need to prove
the result in dimension n = 2. We denote v = ∂x1u ≥ 0 in R2. Notice that{

M+v ≥ 0, M−v ≤ 0 in R2 \
(
{x1 ≤ 0} ∩ {x2 = 0}

)
v = 0 on {x1 ≤ 0} ∩ {x2 = 0}.

Notice also that, by convexity and (4.8), we have ‖v‖L∞(BR) ≤ CRβ.
We now use the supersolution given by Corollary 2.9. Indeed, let w = w+

0 be the
homogeneous function of degree β1 satisfying{

M+w = 0 in R2 \
(
{x1 ≤ 0} ∩ {x2 = 0}

)
w = 0 on {x1 ≤ 0} ∩ {x2 = 0}.

Then, using interior Harnack inequality, a simple application of the maximum prin-
ciple yields

0 ≤ v ≤ Cw in B2 \B1.

Here, we used that ‖v‖L∞(B3) ≤ C. By comparison principle, we deduce

0 ≤ v ≤ Cw in B2.

Repeating the same argument at all scales R ≥ 1 —using the rescaled functions
R−β1w(Rx) = w(x) and R−β1v(Rx)—, we find

0 ≤ v ≤ CRβ−β1w in B2R \BR.

Here, we used that ‖v‖L∞(B3R) ≤ CRβ.



THE FREE BOUNDARY IN THE FULLY NONLINEAR THIN OBSTACLE PROBLEM 21

By comparison principle, the previous inequality yields

0 ≤ v ≤ CRβ−β1w in BR,

and thus letting R → ∞ we find v ≡ 0. This means that u(x1, x2) = ψ(x2),
for some function ψ. But since F (D2u) = 0 in {x2 > 0} and in {x2 < 0}, then
u(x1, x2) = ax2, and since ∇u(0) = 0, then u ≡ 0, as desired. �

5. Regular points and blow-ups

We start in this section the study of free boundary points. For this, we use some
ideas from [CRS16].

After a translation, we may assume that the free boundary point is located at the
origin. Moreover, by subtracting a plane, we may assume that

u(0) = 0 and ∇u(0) = 0.

Moreover, we assume

‖u‖L∞(B1) = 1, ‖ϕ‖C1,1 ≤ 1.

We say that a free boundary point is regular whenever (ii) in Theorem 1.1 does
not hold, that is:

Definition 5.1. We say that 0 ∈ ∂{u = ϕ} is a regular free boundary point if

lim sup
r↓0

‖u‖L∞(Br)

r2−ε
=∞

for some ε > 0. We say that it is a regular point with exponent ε and modulus ν if

sup
ρ≤r≤1

‖u‖L∞(Br)

r2−ε
≥ ν(ρ)

where ν(ρ) is a given nonincreasing function satisfying ν(ρ)→∞ as ρ ↓ 0.

The main result of this section is the following.

Proposition 5.2. Assume that 0 is a regular free boundary point with exponent ε
and modulus ν. Then, given δ > 0, there is r > 0 such that the rescaled function

v(x) :=
u(rx)

‖u‖L∞(Br)

satisfies ∣∣v − u0∣∣+
∣∣∇v −∇u0∣∣ ≤ δ in B1, (5.1)

for some global convex solution u0 of (4.1)-(4.2)-(4.3), with ‖u0‖L∞(B1) = 1. The
constant r depends only on δ, ε, ν, n, and λ,Λ.

To prove this, we need the following intermediate step.
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Lemma 5.3. Given δ > 0, there is η = η(δ, ε, n, λ,Λ) > 0 such that the following
statement holds.

Let ϕ be such that ‖ϕ‖C1,1 ≤ η, and let v ≥ 0 be a function satisfying v(0) = 0,
∇v(0) = 0,

F (D2v) = 0 in B1/η \ {xn = 0}
min(−F (D2v), v − ϕ) = 0 on B1/η ∩ {xn = 0}, (5.2)

and

‖v‖L∞(B1) = 1, ‖v‖L∞(BR) ≤ CR2−ε for 1 ≤ R ≤ 1/η. (5.3)

Then, ∣∣v − u0∣∣+
∣∣∇v −∇u0∣∣ ≤ δ in B1,

for some global convex solution u0 of (4.1)-(4.2)-(4.3), with ‖u0‖L∞(B1) = 1.

Proof. The proof is by a compactness. Assume by contradiction that for some δ > 0
we have a sequence ηk → 0, fully nonlinear convex operators Fk with ellipticity
constants λ,Λ, obstacles ϕk with ‖ϕk‖C1,1 ≤ ηk, and functions vk ≥ 0 satisfying
vk(0) = 0, ∇vk(0) = 0, (5.2), and (5.3), but such that∥∥vk − u0∥∥C1(B1)

≥ δ for all global solution u0 with ‖u0‖L∞(B1) = 1. (5.4)

By the estimates in [Fer16, MS08], we have that vk are C1,α in BR, R < 1/ηk, with
an estimate

‖vk‖C1,α(BR) ≤ C(R) for all 1 ≤ R ≤ 1/2ηk.

Thus, up to taking a subsequence, the operators Fk converge (locally uniformly
as Lipchitz functions of the Hessian) to some fully nonlinear convex operator F
with ellipticity constants λ,Λ. Likewise, the functions vk converge in C1

loc(Rn) to
a function v∞, which by stability of viscosity solutions —see [CC95]— is a global
convex solution to the obstacle problem (4.1) and satisfying (4.2) and (4.3).

By the classification result Theorem 4.1, we have

v∞ ≡ u0, for some global solution u0.

Moreover, by (5.3) we have

‖u0‖L∞(B1) = ‖v∞‖L∞(B1) = 1.

We have shown that vk → u0 in the C1 norm, uniformly on compact sets. In
particular, (5.4) is contradicted for large k, and thus the lemma is proved. �

To prove Proposition 5.2 we will also need the following.

Lemma 5.4. Assume w ∈ L∞(B1) satisfies ‖w‖L∞(B1) = 1, and

sup
ρ≤r≤1

‖w‖L∞(Br)

r2−ε
≥ ν(ρ)→∞ as ρ→ 0.
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Then, there is a sequence rk ↓ 0 for which ‖w‖L∞(Brk )
≥ 1

2
rµk , and for which the

rescaled functions

wk(x) =
w(rkx)

‖w‖L∞(Brk )

satisfy
|wk(x)| ≤ C(1 + |x|µ) in B1/rk ,

with C = 2. Moreover, we have

0 < 1/k ≤ rk ≤ (ν(1/k))−1/µ.

Proof. Let
θ(ρ) := sup

ρ≤r≤1
r−µ‖w‖L∞(Br).

By assumption, we have

θ(ρ) ≥ ν(ρ)→∞ as ρ ↓ 0.

Note that θ is nonincreasing.
Then, for every k ∈ N there is rk ≥ 1

k
such that

(rk)
−µ‖w‖L∞(Brk )

≥ 1

2
θ(1/k) ≥ 1

2
θ(rk). (5.5)

Note that since ‖w‖L∞(B1) = 1 then

(rk)
−µ ≥ 1

2
θ(1/k) ≥ 1

2
ν(1/k),

and hence
0 < 1/k ≤ rk ≤ (ν(1/k))−1/µ.

Moreover, we have θ(rk) ≥ 1, and thus ‖w‖L∞(Brk )
≥ 1

2
rµk .

Finally, by definition of θ and by (5.5), for any 1 ≤ R ≤ 1/rk we have

‖wk‖L∞(BR) =
‖w‖L∞(BrkR)

‖w‖L∞(Brk )

≤ θ(rkR)(rkR)µ

1
2
(rk)µθ(rk)

≤ 2Rµ.

In the last inequality we used the monotonicity of θ. �

We now give the:

Proof of Proposition 5.2. Let rk → 0 be the sequence given by Lemma 5.4 (with
µ = 2− ε). Then, the functions

uk(x) =
u(rkx)

‖u‖L∞(Brk )

satisfy
|uk(x)| ≤ C(1 + |x|µ) in B1/rk ,

and
‖uk‖L∞(B1) = 1, uk(0) = 0, ∇uk(0) = 0. (5.6)
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Moreover, they are solutions to the obstacle problem in B1/rk , i.e.,

F (D2uk) = 0 in B1/rk \ {xn = 0}
min(−F (D2uk), uk − ϕk) = 0 on B1/rk ∩ {xn = 0},

where

‖ϕk‖C1,1 =
‖ϕ(rk · )‖C1,1

‖uk‖L∞(Brk )

≤ C(rk)
2

(rk)2−ε
= C(rk)

ε

converges to 0 uniformly as k → ∞. Therefore, by Lemma 5.3 for k large enough
(so that (rk)

ε ≤ (ν(1/k))−1/(2−ε) ≤ η) we have∣∣v − u0∣∣+
∣∣∇v −∇u0∣∣ ≤ δ in B1,

for some global convex solution u0 of (4.1)-(4.2)-(4.3), with ‖u0‖L∞(B1) = 1, as
desired. �

6. Lipschitz regularity of the free boundary

We now prove that the free boundary is Lipschitz in a neighborhood of any regular
point x0.

Proposition 6.1. Assume that 0 is a regular free boundary point with exponent ε
and modulus ν. Then, there exists e ∈ Sn−1 ∩ {xn = 0} such that for any ` > 0
there exists r > 0 for which

∂τu ≥ 0 in Br for all τ · e ≥ `√
1 + `2

, τ ∈ Sn−1 ∩ {xn = 0}.

In particular, the free boundary is Lipschitz in Br, with Lipschitz constant `.
The constant r depends only on `, ε, ν, n, λ, Λ.

To prove this, we need the following.

Lemma 6.2. Let u0(x) = u0(x
′ · e, xn) be a global solution of (4.1)-(4.2)-(4.3), with

‖u0‖L∞(B1) = 1. Let τ ∈ Sn−1 ∩ {xn = 0} be such that τ · e > 0.
Then, for any given η > 0 we have

∂τu0 ≥ c0(τ · e) > 0 in {x′ · e ≥ η > 0} ∩B2

and
∂τu0 ≥ c0(τ · e) > 0 in {|xn| ≥ η > 0} ∩B2,

with c0 depending only on η and ellipticity constants.

Proof. Since u0(x) = u0(x
′ ·e, xn) it suffices to show the result in dimension n = 2. In

that case, we have F (D2u0) = 0 in R2\{x1 ≤ 0}, and satisfies ∂x1x1u0 ≥ 0, ∂x1u0 ≥ 0
in R2. Then, by the interior Harnack inequality, and using ‖u0‖L∞(B1) = 1, it follows
that

∂x1u0 ≥ c > 0 in {x1 ≥ η > 0} ∩B2

and
∂x1u0 ≥ c > 0 in {|x2| ≥ η > 0} ∩B2,

as desired. �
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We can now give the:

Proof of Proposition 6.1. Let r > 0 be as in the proof of Proposition 5.2, and

v(x) =
u(rx)

‖u‖L∞(Br)

.

Then, v satisfies

F (D2v) = 0 in B2 \ {xn = 0},

min
(
−F (D2v), v − ϕr

)
= 0 on B2 ∩ {xn = 0}.

Moreover, ‖ϕr‖C2(B1) ≤ Crε.
Thus, the function

w = v − ϕr
solves F (D2w + D2ϕr) = 0 in B2 ∩ {xn > 0}, and min(−F (D2w), w) = 0 on
B2 ∩ {xn = 0}. Therefore, any derivative ∂τw, with τ ∈ Sn−1 ∩ {xn = 0}, satisfies

M+(∂τw) ≥ −Crε and M−(∂τw) ≤ Crε in B2 \ Ω∗,

where Ω∗ := {w = 0} ∩ {xn = 0} ∩B2. Moreover, we have

∂τw = 0 on Ω∗.

Now, notice that by Proposition 5.2, for any given δ > 0 we may choose r > 0
small enough so that |∂τw − ∂τu0| ≤ δ, where u0 is a global solution of (4.1)-(4.2)-
(4.3). By Lemma 6.2, we find

∂τw ≥ c0(τ · e)− δ in
(
{x′ · e ≥ η} ∪ {|xn| ≥ η}

)
∩B2.

Now, choosing δ small enough (depending on `), this gives

∂τw ≥ c̃0 in
(
{x′ · e ≥ η} ∪ {|xn| ≥ η}

)
∩B2,

for all τ ∈ Sn−1 ∩ {xn = 0} such that τ · e ≥ `/
√

1 + `2. Finally, using Lemma 2.10
(applied to ∂τw) we obtain

∂τw ≥ 0 in B1,

as desired. �

7. The regular set is open and C1

In this Section, we finally prove Theorem 1.1. By Proposition 6.1, we know that
if x0 is a regular point, then the free boundary is C1 at x0. We next prove that the
regular set is open, and this will yield Theorem 1.1.

In this section α0 denotes a fixed constant in (0, 1−β2), where β2 is “subsolution”
exponent given by Proposition 2.7.
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Proposition 7.1. Assume 0 is a regular free boundary point with exponent ε and
modulus ν. Then, there is e ∈ Sn−1 ∩ {xn = 0} and there is r > 0 such that for any
free boundary point x0 ∈ ∂{u = ϕ} ∩ {xn = 0} ∩Br we have

(u− ϕ)(x0 + te) ≥ ct2−α0 for all t ∈ (0, r/2).

The constant c > 0 depends only on n, ε, ν, and ellipticity constants. In particular,
every free boundary point in Br is regular, with a uniform exponent ε = α0/2 and a
uniform modulus ν̃ = ν̃(t) = ctε−α0.

To prove Proposition 7.1, we need the following Lemma. Recall that x′ denote
points in Rn−1 and the extension operators E+ and E− were defined in Proposi-
tion 2.6.

Lemma 7.2. Let e be a unit vector in Rn−1 × {0}, and 0 < β1 <
1
2
< β2 < 1 the

exponents in Corollary 2.9. Define

ψsub(x′) := e · x′ − η|x′|
(

1− (e · x′)2

|x′|2

)
ψsuper(x

′) := e · x′ + η|x′|
(

1− (e · x′)2

|x′|2

)
,

Φsub := E−
[
(ψsub)β2+γ+

]
and Φsuper := E+

[
(ψsuper)

β1−γ
+

]
.

For every γ ∈ (0,min{|β1 − 0|, |β2 − 1|}) there is η > 0 such that two functions
Φsub and Φsuper satisfy

M−Φsub = 0 in {xn > 0}
∂xnΦsub ≥ cγd

β2+γ−1 > 0 on {xn = 0} ∩ C∗η
Φsub = 0 on {xn = 0} \ C∗η

and 
M+Φsuper = 0 in {xn > 0}
∂xnΦsuper ≤ −cγdβ2+γ−1 < 0 on {xn = 0} ∩ C∗−η
Φsuper = 0 on {xn = 0} \ C∗−η

where C∗±η is the cone

C∗±η :=

{
(x′, 0) ∈ Rn : e · x

′

|x′|
> ±η

(
1−

(
e · x

′

|x′|

)2
)}

, (7.1)

and d is the distance to C∗±η. The constants cγ and η depend only on γ, s, ellipticity
constants, and dimension.

Proof of Lemma 7.2. We prove the statement for Φsub. The statement for Φsuper is
proved similarly.

Let us denote ψ = ψsub and Φ = Φsub. Note that Φ is the E− extension of a
homogeneous function of degree β2 + γ and thus by uniqueness of the extension
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(among functions with subcritical growth) it will be homogeneous with the same
exponent.

By definition we have M−Φ = 0 in {xn > 0} and Φ = 0 on {xn = 0} \ C∗η since
ψ < 0 on that set.

We thus only need to check that, for η > 0 small enough

∂xnΦ ≥ 0 on {xn = 0}
By homogeneity, it is enough to prove that ∂xnΦ ≥ 0 on points belonging to

e + ∂C∗η , since all the positive dilations of this set with respect to the origin cover
the interior of C∗η .

Let thus P ∈ ∂C∗η , that is,

e · P = η

(
|P | − (e · P )2

|P |

)
.

We note that —recall that both P, e ∈ {xn = 0}

ψ(P + e+ x′) = e · (P + e+ x′)− η
(
|P + e+ x′| − (e · (P + e+ x′))2

|P + e+ x′|

)
= 1 + e · x− η

(
|P + e+ x| − |P | − (e · (P + e+ x))2

|P + e+ x|
+

(e · P )2

|P |

)
= 1 + e · x′ − ηψP (x′)

ψP (x′) := |P + e+ x′| − |P | − (e · (P + e+ x′))2

|P + e+ x′|
+

(e · P )2

|P |
.

Then we define
ΦP,η(x) := Φ(P + e+ x)

= E−
[
(x′, 0) 7→

(
1 + e · x′ − ηψP (x′)

)β2+γ
+

]
(x),

where
Note that the functions ψP satisfy

ψP (0) = 0,

|∇ψP (x′)| ≤ C in Rn \ {−P − e},
and

|D2ψP (x′)| ≤ C for x′ ∈ B∗1/2,
where C does not depend on P (recall that |e| = 1).

Then, the (traces of) the family ΦP,η satisfy

ΦP,η → (1 + e · x′)β2+γ+ in C2(B∗1/2)

as η ↘ 0, uniformly in P .
Moreover, ∣∣ΦP,η − (1 + e · x′)β2+γ+

∣∣ ≤ (Cη|x′|)β2+γ

with C independent of P .
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Thus, since β2 + γ < 1, Lemma 2.8 implies

∂xnΦP,η(0)→ ∂xnE
− [(x′, 0) 7→ (1 + e · x′)s+γ+

]
(0) = c(s, γ, λ) > 0,

uniformly in P as η ↘ 0.
In particular one can chose η = η(γ, λ,Λ) so that ∂xnΦP,η(0) ≥ c(s, γ, λ) > 0 for

all P ∈ ∂C∗η and the lemma is proved. �

We can now show Proposition 7.1.

Proof of Proposition 7.1. We want to show that there is e ∈ Sn−1 ∩ {xn = 0} and
there is r > 0 such that for any free boundary point x0 ∈ ∂{u = ϕ}∩ {xn = 0}∩Br

we have

(u− ϕ)(x0 + te) ≥ ct2−α0 for all t ∈ (0, r/2). (7.2)

This will follow using the subsolitions of Proposition 7.2 and Lemma 2.3, from a
inspection of the Proof of Proposition (6.1). Recall that in all the paper α0 denotes
some constant in (0, 1− β2).

Indeed, given η > 0 by Proposition (6.1) we find r > 0 such that, for every
x0 ∈ ∂{u = ϕ} ∩ {xn = 0} ∩Br

u > ϕ on B∗2r ∩ (x1 + Cη). (7.3)

Then, similarly as in the proof of Proposition (6.1) the function

w(x) =
u(rx)− ϕ(rx)

‖u‖L∞(Br)

,

with r > 0 small satisfies

M+(∂ew) ≥ −δ and M−(∂ew) ≤ δ in B2 \ {xn = 0, w = 0},
where δ can be arbitrarily small provided that r is small enough.

Moreover, still as in the proof of Proposition (6.1), we have

∂ew ≥ c0 > 0 onn B∗1 ∩ {x′ · e ≥ 1/10}. (7.4)

Rescaling (7.3) we that hat, for every x0 ∈ ∂{w = 0} ∩B∗1
{xn = 0, w = 0} ∩B∗2 ⊂ B∗2 \ (x1 + Cη)

Let us fix ρ = 1/10, B∗ = B∗1/4(e/2), and γ ∈ (β2, 1) satisfying β2 + γ = 1 − α0.

Let η ∈ C2(B1) be some smooth “cutoff” function with η = 1 for |x| ≥ 1 − ρ and
η = 0 in B1/2. Let us call

C1 := sup
B1

M+η = sup
B1−ρ

M+η > 0

Let φ be the subsolution of Lemma 2.3 with ρ = 1/10 and B∗ = B∗1/4(e/2). Let

Φ = Φsub/‖Φsub‖L∞(B1) the subsolution of Lemma 7.2 that vanishes in Rn−1 \C∗η and
has homogeneity β2 + γ.

Let us fix x0 ∈ ∂{w = 0} ∩B∗1 .
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We will show next that, for C large enough,

C∂ew − (xn)2 + 2η ≥ 2C1φ+ Φ( · − x0) in B1. (7.5)

Let

v = ∂ew − (xn)2 + 2η − 2C1φ− Φ( · − x1).
On on hand, let us show that v ≥ 0 on ∂B1. Indeed, we have (r is large) we

have ∂ew ≥ 0 in B1. Also, η = 1 for for |x| ≥ 1 − ρ and thus η − |x|2 = 0 on ∂B1.
Moreover, recall that φ = 0 on ∂B1 and, since 0 ≤ Φ ≤ 1 in B1, η − Φ ≥ 0 on ∂B1.

On the other hand, let us show that

M−v ≤ 0 in (B1 \B∗) ∪ (x0 + C∗η).

Indeed, we have

M−v = M−(C∂ew − (xn)2+ + 2η − 2C1φ− Φ)

≤ CM−(∂ew)− 2λ+ 2 sup
B1−ρ

M+η − 2C1M
−φ+M+Φ( · − x0)

≤ Cδ − 2λ+ 2C1χB1−ρ − 2C1χB1−ρ +M+Φ( · − x0)
≤ Cδ − 2λ

≤ 0

in (B1 \B∗) ∪ (x1 + C∗η) provided that Cδ − 2nλ ≤ 0.
That v ≥ 0 in B∗1 \ (x0 + C∗η) is a now a consequence of (7.3) which implies that

w = (xn)2 = φ = Φ = 0 on that set. Last, recalling (7.4) we see that v ≥ 0 in B∗ can
be guaranteed by choosing C large (depending only on c0 and universal constants).

Thus, choosing first C large and then δ small enough so that Cδ − 2nλ ≤ 0, and
using the maximum principle, we prove v ≥ 0 in B1 and thus that

C∂ew ≥ Φ( · − x0) = (ψsub( · − x1))β2+γ+ onB∗1/2,

where ψsub was defined in Lemma 7.2.
After rescaling and noting that ψsub(te) = t, this implies that

∂ew(te) ≥ ctβ2+γ = ct1−α0 > 0 fort ∈ (0, r/2).

Thus, (7.2) follows integrating with respect to t (note that w(0) = ∂e(0) = 0) . �

Finally, as a consequence of the previous results, we give the:

Proof of Theorem 1.1. By Proposition 7.1, the set of regular points is open, and (i)
holds at all such points. Moreover, still by Proposition 7.1, given any free boundary
point x0, there is a ball Br(x0) in which all free boundary points are regular, with
a common modulus of continuity ν. Thus, by Proposition 6.1, the free boundary
is C1 at each of these points, with a uniform modulus of continuity (that depends
on x0). Thus, the free boundary is locally a C1 graph in Br(x0). �

When the ellipticity constants λ and Λ are close to 1, we establish the following.
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Corollary 7.3. Let F be as in (1.4), and u be any solution of (1.2), with ϕ ∈ C1,1.
Then, for any small δ > 0 we have

u ∈ C1, 1
2
−δ(B1/2) whenever |Λ− 1|+ |λ− 1| ≤ δ/C0.

The constant C0 is universal. Furthermore, under such assumption on the ellipticity
constants, we have

‖u‖
C1, 12−δ(B1/2)

≤ C
(
‖u‖L∞(B1) + ‖ϕ‖C1,1(B1∩{xn=0})

)
,

with C depending only on n, λ and Λ.

Proof. The proof is by contradiction, using the result in Corollary 4.4.
Dividing by a constant if necessary, we assume ‖u‖L∞(B1)+‖ϕ‖C1,1(B1∩{xn=0}) ≤ 1.

We first claim that, for every free boundary point x0 ∈ B1/2 ∩ ∂{u = ϕ}, we have∣∣u(x)− u(x0)−∇u(x0) · (x− x0)
∣∣ ≤ C|x− x0|

3
2
−δ, (7.6)

with C depending only on n and λ,Λ.
Let us prove (7.6) by contradiction. Indeed, assume there are sequences of oper-

ators Fk as in (1.4), obstacles ϕk satisfying ‖ϕk‖C1,1(B1∩{xn=0}) ≤ 1, solutions uk to
(1.2) with ‖uk‖L∞(B1) ≤ 1, and free boundary points xk ∈ B1/2, such that∣∣uk(x)−∇uk(xk)

∣∣ ≥ k|x− xk|
3
2
−δ,

for all k ≥ 1. By the C1,α estimates in [Fer16], we know that |∇uk(x0)| ≤ C, so that
after subtracting a linear function we may assume uk(xk) = 0 and ∇uk(xk) = 0.
Moreover, after a translation we may assume for simplicity that xk = 0.

Then, defining

θ(ρ) = sup
ρ≤r≤1

sup
k
rδ−

3
2‖uk‖L∞(Br),

and by the exact same argument in Lemma 5.4, we find a sequence rk → 0 for which

wk(x) =
uk(rkx)

‖uk‖L∞(Brk )

satisfies

|wk(x)| ≤ C
(
1 + |x|

3
2
−δ) in B1/rk ,

‖wk‖L∞(B1) = 1, wk(0) = 0, ∇wk(0) = 0, and

Fk(D
2wk) = 0 in B1/rk \ {xn = 0}

min(−Fk(D2wk), wk − ϕk) = 0 on B1/rk ∩ {xn = 0},

where

‖ϕk‖C1,1(BR) =
‖ϕ‖BRrk
‖uk‖L∞(Brk )

≤ CR2(rk)
2

(rk)
3
2
−δ

= CR2(rk)
1
2
+δ

converges to 0 for every fixed R as k →∞.
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Thus, by C1,α estimates, up to a subsequence the operators Fk converge to an
operator F as in (1.4), and the functions wk converge locally uniformly to a function
w satisfying

|w(x)| ≤ C
(
1 + |x|

3
2
−δ) in Rn,

‖w‖L∞(B1) = 1, w(0) = 0, ∇w(0) = 0, and

F (D2w) = 0 in Rn \ {xn = 0}
min(−F (D2w), w) = 0 on Rn ∩ {xn = 0}.

By Corollary 4.4, we get w ≡ 0, a contradiction. Thus, (7.6) is proved.
Finally, combining (7.6) with interior regularity estimates, the result follows ex-

actly as in the proof of [Fer16, Theorem 1.1]. �
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